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Rua Marquês d’Ávila e Bolama, 6201-001, Covilhã, Portugal
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ABSTRACT

Processing medical data has always been an interesting field
that has shown the need for effective image segmentation
methods. Modern medical image segmentation solutions are
focused on 3D image volumes, which originate at advanced
acquisition devices. Operating on such data in a 3D envi-
ronment is essential in order to take the full advantage of the
available information. In this paper we present an extended
version of our 3D image segmentation and reconstruction
model that belongs to the family of Deformable Models and
is capable of processing large image volumes in competitive
times and in fully 3D environment, offering a big level of
automation of the process and a high precision of results. It is
also capable of handling topology changes and offers a very
good scalability on multi-processing unit architectures. We
present a description of the model and show its capabilities in
the field of medical image processing.

1. INTRODUCTION

Segmentation of medical image data has proven to be an im-
portant component of the modern Computer Aided Diagnos-
tic solutions. After such treatment the medical images present
a set of data that is far more readable for medical practi-
tioner and more suitable for further algorithmic processing.
In the last years the research efforts in that field have been
surrounded on 3D medical imaging, produced by the modern
medical scanners. These acquisition devices are capable of
delivering 3D volumes composed of a series of 2D slice im-
ages of high spatial resolution and with low distances between
consecutive slices. Using existing 2D image segmentation al-
gorithms on this 3D data was usually limited to segmenting
each of the component slices separately and then combining
the result to create a full 3D representation. This has proven
to be not effective and thus a group of algorithms designed
specifically for the 3D images has been designed [1, 2]. In
contrast to the 2D segmentation solutions, they allowed to in-
corporate all information present in the 3D input volume at
one instance of the segmentation task and therefore to take
better advantage of the available data and produce a more ac-
curate result. They have also allowed to include the available

medical knowledge about the dimension and shape of differ-
ent anatomical parts in the segmentation process.

In [3, 4] we have presented our 3D image segmentation
and reconstruction solution, called the Whole Mesh Defor-
mation Model (WMD). It has been designed using the ideas
of the Deformable Models (DM) [5], [6] algorithm family,
which has proven to be very successful and effective in nu-
merous fields of application. Like in most solutions from the
DM family, the segmentation process in WMD is based on op-
timization of the energy function, which is calculated taking
the current shape of the model as the input. The WMD model
has proven to be a very promising solution as it is able to de-
liver precise results in very competitive execution times and
is highly suitable for parallelization. It has however lacked an
important feature, which was the ability to deform the mesh
in full 3D environment.

2. 3D VERSUS SEMI-3D PROCESSING

In the first version of the WMD model the distribution of the
mesh upon initialization is defined by the following set of pa-
rameters:

The distances between the nodes in X and Y directions
are defined by the user. Smaller distances result with bigger
density of the mesh and larger precision of the final result.
These values could have been chosen completely freely.

The distance between layers of the mesh in Z direction is
defined by the number of slice images in the input volume.
Each input slice corresponds to exactly one layer of nodes in
the mesh and the distance between them (in voxels) has to be
passed as a parameter by the user.

During the segmentation process the nodes are allowed to
move in X and Y directions in order to explore the informa-
tion available in the input images. Movement in the Z direc-
tion was not allowed, because the progression by even one
voxel in that dimension would mean moving out of the input
image and therefore loosing the access to any image infor-
mation, which plays a vital part in the entire segmentation
process.

Although this approach has shown to be a very good trade-
off between precision and segmentation times, there are some



Fig. 1. Two examples of situations in which the 2D process-
ing of the nodes would perform not satisfactory. The top-left
and bottom-left images present the initial distribution of the
mesh in both examples. Images in the middle and on the right
present respectively the results obtained with 2D and 3D node
movement approaches.

situations for which it might prove not good enough. In some
situations the difference between two consecutive slices can
be very significant and nodes that are fixed to a specific Z
plane might not be able to properly describe the objects of
interests. Two such examples are shown on Fig. 1.

The proper functionality to handle these cases could be
obtained with the implementation of node movement in the
Z direction. The initialization of the Z planes with the 1:1
correspondence to the number of input slices should still be
maintained as the most optimal approach. The justification
for this is the following: the WMD model is constructed in a
way to decrease as much as possible the distance which the
nodes need to travel during the segmentation task. Our exper-
iments have proven that the majority of the nodes of the mesh
do not propagate away from their initial positions farther than
half of the distance between the nodes in the initial distribu-
tion of the mesh. This will be also true if the nodes have the
ability to move in the Z direction, their movement would not
exceed the half of the distance between consecutive Z planes.
Therefore, implementation of more complex mechanism that
would allow initialization of the mesh independently from the
number of input image slices, would not allow any new func-
tionality or increased precision of the result and it could result
with higher computational cost of the method.

3. DEFINITION OF FULL 3D NODE MOVEMENT

3.1. Movement of the nodes

In the original formulation of the WMD the nodes have been
allowed to move only in X and Y directions. This step has
been realized using the Greedy algorithm optimization ap-
proach [7]. During the procedure the following is performed
for each node N of the mesh: if the coordinates

Nt = (xn, yn, zn) (1)

describe the position of the node N at the time t, then for
time t+ 1 the coordinates of N would be described with

Nt+1 = (xn+k, yn+l, zn) (2)

where k, l ∈ {−1, 0, 1} and correspond to the location
with the lowest possible value of the energy function. In order
to allow the nodes to move also in the Z direction we need to
enrich (2) with the following:

Nt+1 = (xn+k, yn+l, zn+m) (3)

where alsom ∈ {−1, 0, 1} and the combination of k, l,m
corresponds to the lowest possible value of the energy func-
tion. As we can see, the extended are of movement will be
constructed from 27 instead of 9 points and the node will be
moved in its nearest neighborhood in X , Y and Z planes.
Similarly, the position with the lowest energy will be chosen
as the new position. Those steps will be repeated for each
node of the mesh until the following rule is satisfied:

∑
distm(Nt, Nt+1) < µ (4)

where µ is a small value near zero. Equation (4) verifies
the number of nodes that have changed their position in the
last algorithm iteration. Whenever this number is decreased
to zero (or very near to zero) the mesh is assumed to be in its
stable position and the segmentation is finished.

3.2. Formulation of the Energy Function

The segmentation process in the fully 3D WMD model will
be carrier out in the same manner as in the original WMD for-
mulation. The energy function would be defined to represent
the internal features of the model and the data in the input
images. This function would be calculated taking the current
shape of the mesh as the input. The state of the mesh corre-
sponding to the lowest value of the energy function would be
considered as the solution of the segmentation task.

Since the optimization process has been significantly
modified, the energy function and its numerical parameters
need to be properly updated, to enforce the correct behavior
of the mesh. As it can be seen on Fig. 1, in certain situations
we would like the nodes of the mesh to progress away from
their original Z plane. This can be generally described as
situations when two of more consecutive slices of the input
volume contain objects with their edges distributed farther
from each other than the distance between the nodes in the
initial distribution of the mesh. This can also be seen on Fig.
1 right. Some nodes of the mesh move in the Z direction
in order to construct a smoother surface between the planes
of the input volume and thus to create a more realistic seg-
mentation result. In order to enforce such behavior on the



mesh we can include the following mechanisms in the mesh
deformation scheme:

• The links of the mesh should show a subtle shrinking
trend. This will attract some of the nodes to move away
from their Z plane in situations like the ones shown on
Fig. 1, namely when their neighboring nodes are lo-
cated next to the edges of the objects of interests.

• The flexibility of the links of the mesh should be
slightly increased comparing to the previous version
of the WMD model. This means that they should be
allowed to extend to larger lengths before they will
be broken by the topology changing mechanism [3].
Fig. 1 shows that keeping a larger number of links
from breaking will help to attract the necessary nodes
to assume their positions between two Z planes, where
they would normally stay if links connecting them with
neighbors would have been broken.

The acquisition of the above mentioned features into the
WMD model might not guarantee that the mesh will behave
exactly as shown on Fig. 1, namely create a ideally regu-
lar shape, but the desired and acceptable feature is that some
of the nodes would position themselves between the original
Z planes and create a cloud of points, which would connect
the edges of objects on neighboring image slices and create a
smooth transition between them.

3.3. Calculation of External Energy Outside of the Input
Images

Calculation of the external energy function in the first formu-
lation of the WMD model was performed for each individual
node of the mesh using the greyscale values of three images
at the X and Y coordinates of that given node. The images
composing the external energy have been the following: the
input image intensity values, Gradient Vector Flow (GVF) [8]
and Canny Edge Detector [9] (the last two images have been
created from the input data in the beginning of the segmen-
tation task). In situation where we would like to allow the
nodes to propagate away from their original Z plane, we need
to provide a new way of calculating the external energy, as the
nodes would no longer be assuming positions which the data
in the input images describe. In order to provide that func-
tionality we have defined the new external energy as follows:

Eext(νx,y,z) = γ

k∑
n=1

(1− I(νn)) + δ

k∑
n=1

(1−G(νn)) +

+ε

k∑
n=1

E(νn) (5)

where νx,y,z is a mesh node ν with x, y, z coordinates, k
is the total number of nodes in the mesh, I(ν),G(ν) andE(ν)

are respectively the intensity value, GVF value and edge de-
tector value corresponding to that node. They are calculated
in the following way:

I(νn) = I(νx,y,z1)× s1 + I(νx,y,z2)× s2 (6)

where I(νx,y,z1) and I(νx,y,z2) represent the intensity
values from the input images with coordinates x, y, z1 and
x, y, z2 respectively, z1 and z2 represent the Z coordinates of
the two planes between which the given node is located, s1
and s2 represent the weights of both intensity values and are
calculated taking the following value into consideration:

si =
1

dists(Nt(x, y, z), Nt(x, y, zi))
(7)

As we can, equations 6 and 7 compute the intensity value
of node νx,y,z using the values corresponding to nodes νx,y,z1
and νx,y,z2 , which are weighted accordingly to the distance of
the current node in Z plane from the two planes surrounding
it. Using this approach we are able to project to a certain ex-
tend the information that would be present between the avail-
able image slices. It offers a good level of realism and ap-
proximation of the real data. For the remaining two types of
images used in our energy calculation the situation would be
similar: for the values of intensity calculated between two im-
age slices we would see a graduate progression of the values
from one slice to another. In the case of edge detector im-
ages the situation is slightly different, because those images
are interpreted in the following way: any value other than 0
represents an edge and all the non-edge area is represented by
0. However, our mechanism would still perform desirably, as
it would mark all the area between two slices as a non-edge
area and thus it would allow the two remaining external en-
ergy components to model the behavior of the node in that
areas. The general assumptions of this method make it very
suitable for our goals. The precision of the final result of the
segmentation can be fine-tuned by the numerical parameters
of the energy function.

4. RESULTS

We have implemented the segmentation method based on
the extended model described in Section 3. The experiments
included segmentation of three medical image volumes: a
256x256x11 CT brain scan, a 256x256x10 CT brain scan and
a 472x512x16 MRI knee scan. Fig. 2 presents the execution
times for each segmentation task. As it can be seen, if we
choose only 2D movement of the nodes of the mesh, the
results are delivered in shorter times. This has been expected
as each node is positioned in 27 instead of 9 locations in each
iteration of the algorithm. The execution times are around
52% longer in each of the experiments.



Fig. 2. Execution times (in seconds) for 3 segmentation ex-
periments presented in this section.

Fig. 3. Results of the CT brain scan segmentation experiment.
Left: full 3D movement of nodes, right: only 2D movement
of nodes

Fig. 3 presents an exemplary result obtained from the CT
brain scan using the two version of the algorithm. The 3D
movement capable version is presented on the left and the
2D movement only version is shown on the right. The im-
ages present the final result projected from the Y plane, which
means that the X and Z planes appear visible. Only the nodes
of the mesh are presented, the links have been hidden. As it
can be seen, the 3D movement has produced a volume with
nodes that are distributed in all the planes. On the other hand,
the 2D movement version has produced a volume with nodes
restricted to their original Z coordinates. As we can expect,
this sort of result would not describe properly the real-world
objects. As it can be seen from Fig. 3, using the 3D move-
ment of the nodes we are able to reconstruct the segmented
object faithfully and produce a desirable result.

5. CONCLUSIONS

In this paper we have presented an extended version of our
previous work, the Whole Mesh Deformation Model for 3D
image segmentation and reconstruction. The new version has
provided a very important feature, namely to process the im-
ages in fully 3D environment by allowing the movement of
the control points in all 3 dimensions. Using the new ap-
proach we have achieved the possibility to produce a more
realistic and smooth reconstruction of the objects of interest.
The drawback of the extended model is the increased com-
putational cost. However the overhead is not large and in
cases where full 3D movement is not justified, it would still

be possible to restrict the nodes of the WMD model to pure
2D movement.
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