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Abstract

Linguistic adaptation is a phenomenon where language representations change in response to lin-
guistic input. Adaptation can occur on multiple linguistic levels such as phonology (tuning of pho-
notactic constraints), words (repetition priming), and syntax (structural priming). The persistent
nature of these adaptations suggests that they may be a form of implicit learning and connectionist
models have been developed which instantiate this hypothesis. Research on implicit learning,
however, has also produced evidence that explicit chunk knowledge is involved in the perfor-
mance of these tasks. In this review, we examine how these interacting implicit and explicit
processes may change our understanding of language learning and processing.

Introduction

Human languages have rules that must be learned. If an English speaker says ‘I coffee
want’, they might get a confused look, rather than a drink. This is explained by assuming
that speakers have internal rules or constraints that they apply during language processing
(e.g. ‘I want coffee’ is more acceptable than ‘I coffee want’). Speakers must learn these
linguistic constraints, because they differ across languages. For example in Japanese, the
equivalent sentence for ‘I want coffee’ would place the Japanese word for ‘want’ after the
word for ‘coffee’. Despite the fact that linguistic constraints are learned in language acqui-
sition and used in language processing, research in each of these domains has traditionally
operated independently. Language processing theories have assumed that the representa-
tions in adult language are static and unchanging (van Gompel and Pickering 2007; Levelt
1993), while language acquisition theories have focused on how representations change
over time (Pinker 1984; Tomasello 2003). A general theory of language needs to explic-
itly link these two aspects.

One phenomenon that links acquisition and processing is linguistic adaptation, where
the representations that support language processing change in response to language input.
For example, speech segmentation mechanisms in infants can be influenced by exposing
them to syllable sequences (e.g. tupirogolabubidakupadoti), where statistical regularities
between syllables provide cues for word boundaries (Aslin et al. 1998; Saffran et al.
1996). Likewise, both infant and adult linguistic knowledge of permissible combinations
of sounds (phonotactic constraints) can be changed by experience with sound streams
where the phonotactic regularities have been experimentally manipulated (Chambers
et al. 2003, 2010; Dell et al. 2000; Goldrick 2004; Goldrick and Larson 2008; Onishi
et al. 2002; Seidl et al. 2009; Conrad F. Taylor and Houghton 2005; Warker et al. 2008,
2009). In addition to these phonological adaptation effects, similar results have been found
within the word production system. For example, repetition priming (faster naming of the
same picture) and semantic interference (inhibited naming of semantically-related pictures)

Language and Linguistics Compass 6/5 (2012): 259–278, 10.1002/lnc3.337

ª 2012 The Authors
Language and Linguistics Compass ª 2012 Blackwell Publishing Ltd



have been found to persist (Cave 1997; Howard et al. 2006; Mitchell and Brown 1988)
and it has been argued that these effects are due to learning within the word production
system (Oppenheim et al. 2010; for a theoretical analysis of learning and priming, see
Gupta and Cohen 2002). Further evidence for linguistic adaptation comes from a phe-
nomenon known as syntactic or structural priming, where speakers tend to reuse previ-
ously heard sentence structures in their own utterance generation (Bock 1986; Pickering
and Ferreira 2008). For example, the same picture of a man handing a book to a woman
could be described using two different sentence structures: a prepositional dative structure
like ‘the man gave the book to the woman’ or a double object dative structure like ‘the
man gave the woman the book’. However, when speakers hear another prepositional
dative sentence like ‘A child threw a ball to his friend’ before describing the picture, they
are more likely to describe it with the prepositional dative (‘the man gave the book to
the woman’). Importantly, structural priming occurs between sentences that differ in
words, semantic roles, and prosody (Bock 1989; Bock and Loebell 1990), which has been
used to argue that priming is abstract and occurs purely on the basis of structural similar-
ity independent of meaning. In addition, structural priming has been found to persist over
time (Bock and Griffin 2000; Bock et al. 2007). Here, linguistic adaptation is a term that
labels behavioral phenomena without specifying the underlying mechanism. It can
describe both short-term (Branigan et al. 1999) and long-term changes (Kaschak 2007;
Kaschak et al. 2011; Wells et al. 2009), and applies to the acquisition of new structures
(Kaschak and Glenberg 2004) or changes in the processing fluency or accessibility of
existing representations (Smith and Wheeldon 2001).

The fact that some linguistic adaptation effects persist suggests that learning has taken
place. But since language learning theories have focused on the acquisition of abstract lin-
guistic knowledge such as the position of verbs (Mazuka 1998; Pinker 1984), it is difficult
for them to explain these adaptation phenomena in adults. Instead, theories of adaptation
have drawn inspiration from theories of memory and learning, in particular from work
on artificial grammar learning (AGL). As pioneered by Reber (1967), these studies
involve arbitrary symbols (e.g. letters, shapes, words) that are combined into sequences
called items. The configuration of symbols in an item is governed by a set of rules. For
example, a string of letters like MVST is consistent with a rule that V can be followed by
S but never by T. A set of such rules specifies a grammar, which determines whether
strings are grammatical or ungrammatical. A simple type of grammar that is often used in
AGL is a finite state grammar (Figure 1).

In these studies, people are exposed to a large number of such items and are later asked
to categorize new items based on regularities that they have induced from the training
set. Many studies have found that participants’ performance on a variety of AGL tasks
indicates the acquisition of representations that reflect rule-like behavior (for a review,
see Pothos 2007). Since these studies show how adults can learn regularities, they provide
a model that can help us to understand linguistic adaptation phenomena.

To explore the nature of the mechanism that supports the learning of these regularities,
Cleeremans and McClelland (1991) conducted a grammar learning article and then fitted
the data with a computational model (for a recent review, see Cleeremans and Dienes
2008). Their article used a variant of Reber’s paradigm, where instead of categorizing
whole strings, participants had to reproduce sequences by typing them out on a keyboard.
The sequences were signaled by dots at different positions on the screen that represented
the symbols in the grammar. As participants produced these sequences, their speed
improved and this indicates that the participants were able to acquire the regularities in
the finite state grammar that generated the dot sequences. Furthermore, the continual
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growth in the knowledge of the grammar over training is broadly similar to the changes
that are seen in adult linguistic adaptation studies.

To explain this data, Cleeremans and McClelland employed a computational model
developed by Elman (1990) called the simple recurrent network (SRN). An SRN is a
connectionist model that learns to predict the next letter in a sequence from the previous
letter (for more about these models, see Cleeremans et al. 1989; Christiansen and Chater
1999). Their model had three layers (input, hidden, and output) where the input layer
projected to the output layer through the hidden layer. The input and output layers rep-
resented the letters from the artificial language by means of distinct units (Figure 2).
Sequences were presented to the input layer one letter at a time by switching on the cor-
responding unit. Each of the input units was connected to all of the hidden units by a
link with an initially-random weight (blue arrows in Figure 2). The activation of the
input layer (1 for the input letter and 0 for the rest of the units) was multiplied by these
weights to create the activation pattern for the hidden layer. The hidden layer activation
was spread to the output layer where an activation pattern was produced. In addition, the

Fig 1. Finite state grammar that generates letter strings and an equivalent sentence grammar for a subset of
English.

Fig 2. A simple recurrent network learns to predict the letter S from the input letter M.
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model had a context representation, which held a copy of the hidden layer’s activation
pattern generated by the previous input. This provided a memory for the earlier parts of
the sequence and allowed the model to learn longer distance dependencies. Thus, the
model was able to produce sequences by generating symbols one at a time using the pre-
vious symbol and context to guide those choices.

The model learned the regularities in the input by means of an error-based learning
algorithm, where the difference between the model’s predicted output and the actual next
letter (the error signal), was used to change the connection weights to strengthen the net-
work’s predictive abilities. After a number of sequences, the model was able to acquire an
internal representation of the input regularities. To illustrate, let’s assume that the model
is exposed to a sequence where S follows M (Figure 2). When M is given to the input
layer, activation spreads to the hidden layer where it combines with the context represen-
tation and a letter prediction is generated at the output layer. Since the weights that mod-
ulate the spreading of activation are initially random, the model might not predict the
next letter correctly (e.g. T is active). The error is then calculated and is used to change
the input-hidden and hidden-output weights to ensure that S is a more likely outcome
following letter M on future trials (black arrows in Figure 2). Gradually, sequences like
MS become more predictable (less error) than ungrammatical sequences like MT.

This way the network acquires knowledge about the relationship between input items
as a by-product of processing those items. Cleeremans and McClelland (1991) showed
that learning in an SRN could reproduce the development of their participants’ knowl-
edge of the grammar. Since the model both acquired the grammar and exhibited contin-
ual improvement due to learning, this model provides a template for thinking about how
language acquisition could be related to linguistic adaptation.

Implicit Sequence Learning and Sentence Production

The SRN was originally devised to learn linguistic constraints from language-related
sequences (Elman 1990, 1993). Instead of predicting the next letter, the model would
predict the next word in sentences based on the previous word and the context. For
example, if the model was given the word ‘the’, it would learn that a particular set of
words tends to follow that word (e.g. ‘boy’) and these word-to-word constraints in the
connection weights approximate a kind of syntactic knowledge that could be interpreted
as a rule that articles tend to be followed by nouns (Mintz et al. 2002). The fact that
SRNs can acquire syntactic constraints suggests that they might be able to account for
the adult adaptation of syntactic knowledge in structural priming studies.

To make this link, Chang and colleagues developed a connectionist model of sentence
production and syntactic development (Chang 2002, 2009; Chang et al. 2006; Fitz 2009;
Fitz and Chang 2008). The model had a dual pathway architecture (Dual-path model) that
combined an SRN with a meaning network containing the message that the model was
attempting to convey (Figure 3). The message represented the meaning of the sentence
and different sentences could have similar messages as in ‘The child gave Sally a book’
and ‘The child gave a book to Sally’ (see message in Figure 3). The Dual-path model
learned a language by attempting to predict sentences, word-by-word, based on the
sequential constraints in the SRN and message related information in the meaning net-
work. Before it could exhibit priming, the model had to acquire the appropriate syntactic
representations. The SRN in the Dual-path model developed syntactic categories in a dis-
tributional learning process (Elman 1990). The model then learned how to use meaning
to sequence these abstract syntactic categories in sentence generation. These language
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learning processes are powerful, allowing the model to learn both English-like and
Japanese-like languages (Chang 2009). To enable priming, the model was given a prime
sentence like ‘John threw the man a ball’ with error-based learning turned ON and the
error between the predicted and the actual sentence led to weight changes in the model.
Then a new target message, which could be described in two ways (like the example
with ‘gave’ above), was placed into the model’s meaning system. Changes in the connec-
tion weights, although small, biased the model’s description of the target message making
it more likely to use the structure of the prime sentence (e.g. ‘The child gave Sally a
book’, Figure 3).

To examine the persistence of priming in the model, Chang et al. (2006) tested it on a
task used by Bock and Griffin (2000). In this article, the prime and target sentences were
separated by a different number of structurally-unrelated filler sentences. Since learning
was activated during the processing of the prime and fillers, it was possible that learning
from the filler sentences would interfere with the prime-target priming. Instead, it was
found that the priming effect was the same regardless of whether there were 0 or 10 fill-
ers separating the target from the prime. This showed that the model’s learning mecha-
nism was able to account for the persistence of priming. In addition, although the model
started off with no knowledge of English syntax, the same learning mechanism acquired
appropriate syntactic representations to explain a wide range of structural priming results
(Bock 1989; Bock and Loebell 1990; Bock et al. 2007; Chang et al. 2003; Pickering and
Branigan 1998). These results show that structural priming behavior can be explained as
implicit language learning.

Since the Dual-path model provided a computational account of structural priming, its
mechanism also generated novel predictions about the nature of priming. The model used
a form of error-based learning called back-propagation of error (Rumelhart et al. 1986)
and this algorithm is critical for acquiring the abstract syntactic representations that sup-
port adult priming. Error-based learning predicts that adaptation should only occur if the
prime sentence mismatches the system’s expectation. Consequently, less expected struc-
tures should result in stronger priming effects. One phenomenon that can influence
expectations is verb bias (Garnsey et al. 1997; Michael P. Wilson and Garnsey 2009).

Fig 3. Simplified Dual-path model: Structural priming as implicit sequence learning.
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Verb bias reflects the tendency of particular verbs to appear in particular structures. For
example, the verb ‘threw’ occurs in the prepositional dative structure (e.g. ‘the man
threw the ball to the girl’) more often than in the double object dative structure (e.g.
‘the man threw the girl the ball’). Therefore, if a prime contained a verb that had a bias
towards a different structure it would produce a greater amount of error and stronger
weight changes, resulting in stronger priming effects. Support for this prediction has been
found in experimental and corpus-based studies (Bernolet and Hartsuiker 2010; Jaeger
and Snider 2007). In addition, verb bias itself is acquired in the model by the same mech-
anism that learns which verbs occur in which structures (subcategorization) during lan-
guage acquisition (see Juliano and Tanenhaus (1994) and Rohde (2002) for evidence that
an SRN can learn verb biases; Chang (2002, pp. 637–40), provides evidence that learned
verb-structure associations in the Dual-path model influence generalization to a novel
construction).

There is also a phenomenon related to verb overlap between the prime and the target
called the lexical boost, where the magnitude of structural priming increases when the
prime and target utterances share the same verb (Pickering and Branigan 1998; see Cle-
land and Pickering 2003; for noun-based boost effects). One account of the lexical boost
is provided by Pickering and Branigan’s (1998) Residual Activation theory (Figure 4). In
this theory, verb nodes are linked to combinatorial nodes that determine which structure
will be used to express a message. For example, the verb node for ‘throw’ can be linked
to NP-NP and NP-PP combinatorial nodes. If the NP-NP node is more activated than
the NP-PP node, a double object dative will be produced, otherwise a prepositional
dative is produced. Priming in this model is due to the fact that when a node is activated,
some of that activation remains as residual activation. In addition, the link between the
verb and the combinatorial node also has residual activation associated with its recent use.
Thus, all sentences that are experienced leave residual activation in combinatorial nodes
and the verb links. If prime and target sentence have different verbs, the residual activa-
tion in the combinatorial node increases the likelihood that the same structure is used
and this creates abstract structural priming. If they share the verb, the residual activation

Fig 4. Residual Activation account of Pickering and Branigan (1998).
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in the link further increases the likelihood of activating the combinatorial node, which
generates the lexical boost (Figure 4).

It is natural to assume that a common verb-structure mechanism supports the lexical
boost and verb bias. Verb bias learning requires a slow learning mechanism that updates a
frequency representation after each verb-structure pairing. Coyle and Kaschak (2008) pre-
sented 10 consecutive same-structure primes with the same verb and they were able to
modulate verb bias by only 15%, which means that each verb-structure prime influenced
structural choice by about 1.5%. In contrast, lexical boost studies have found massive
priming effects, where structural choices can be modulated by 73% (Hartsuiker et al.
2008; Exp. 1). The SRN in the Dual-path model can learn that certain verbs are associ-
ated with certain internal nodes that represent verb classes (Figure 5, top) and the magni-
tude of these associations depends on the model’s learning rate. A small learning rate will
create links between verbs and internal nodes that encode the frequency of verb-structure
pairs in the input (Figure 5, bottom). But a large learning rate, which is needed to
explain large lexical boost effects, will cause verb-structure associations to fluctuate vio-
lently and eventually knowledge about the frequency of verb-structure associations will
be lost. This is an example of catastrophic interference, where newly learned knowledge
overwrites old knowledge (McCloskey and Cohen 1989). For these reasons, Chang et al.
(2006) argued that the lexical boost was due to a separate mechanism that is different
from the implicit learning mechanism that supports abstract priming. The lexical boost
mechanism should create large short-term effects that would not persist in the language
system to avoid large changes in verb biases. Support for this dual-mechanism account of
priming has been growing. Hartsuiker et al. (2008) found that structural priming was per-
sistent, but the lexical boost dissipated quickly. Rowland et al. (2011) have found that
while abstract priming has a consistent magnitude in both children and adults, the lexical
boost is non-significant in 3- to 4-year-old children and very large in adults. This
indicates that the two priming effects can be dissociated.

Fig 5. Verb-structure learning in a simple recurrent network.
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To summarize, evidence of the existence of linguistic adaptation requires a way to link
language learning and language processing. Work on implicit sequence learning suggested
that learning in an SRN could provide a mechanism for explaining linguistic adaptation.
The Dual-path model confirmed this hypothesis by using the same learning algorithm for
both syntax acquisition (learning new structures) and structural priming (tuning existing
structures). Furthermore, the computational assumptions of the model, namely its imple-
mentation as slow error-based learning, made correct predictions about verb bias and lex-
ical boost effects in structural priming studies. In contrast to traditional accounts where
one set of verb-structure links support all verb-based phenomena (e.g. Pickering and
Branigan 1998), the Dual-path model suggests that multiple verb-structure association
mechanisms are needed: an implicit mechanism which gradually learns subcategorizations
and biases, and a separate explicit mechanism which can yield the large changes that are
evident in the lexical boost.

Memory, Learning, and Processing

The dual mechanism account of priming, where different mechanisms support abstract
and lexical priming effects, was influenced by theories concerned with the nature of mul-
tiple memory systems (Eichenbaum and Cohen 2004). These theories arose from the
clinical history of a patient called HM (Corkin 2002; Squire 2009). Due to removal of
the medial temporal lobe, he developed anterograde amnesia and lost his ability to recall
facts and events that happened after the operation, while retaining his ability to learn new
behaviors that were only visible in the performance of some action (e.g. learning to trace
figures in a mirror). His memory dissociations were important for drawing the distinction
between explicit memory, characterised by memories that can be accessed intentionally
(everyday events and facts), and implicit memory, which is expressed as experience-
induced change in performance (Eichenbaum and Cohen 2004; Schacter 1987; Squire
2004). When memories are changed by experience and these changes persist, then learn-
ing can be said to have occurred. Just like memory, learning can also be implicit (learning
to ride a bike) or explicit (learning some facts) (Seger 1994).

Two paradigmatic tasks for studying implicit learning are AGL and serial reaction time
(SRT) tasks. In a typical AGL experiment, participants are exposed to letter sequences
(e.g. MVVST) that unbeknownst to them are constructed from a set of rules that specify
which letter can follow which other letter (Reber 1967). In the test phase, they are pre-
sented with a new set of strings, half of which obey the rules, while the other half violate
them. Their task is to distinguish grammatical strings from ungrammatical ones (see Fig-
ure 1 for more examples). Participants usually perform significantly above chance suggest-
ing that they have learned some of the regularities in the input. In SRT studies (e.g.
Nissen and Bullemer 1987), participants are given a reaction time task, where they have
to press buttons corresponding to locations on a computer screen where stimuli appeared.
The sequence of stimulus locations is generated either by a fixed rule or a finite state
grammar (Cleeremans and McClelland 1991). The general finding here is that participants
become faster at pressing the corresponding buttons as they process blocks of sequences
(for reviews, see Clegg et al. 1998; Abrahamse et al. 2010). The increase in speed indi-
cates that participants have acquired some knowledge about the rules that generated the
sequences. While AGL and SRT are different in their manner of stimulus presentation,
both paradigms have found that humans can incidentally learn regularities that they exhi-
bit in their behavior without necessarily being able to fully verbalize the acquired knowl-
edge.
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Both AGL and SRT learning involve similar formal grammars, but there is little theo-
retical agreement about the mechanisms that support this learning. Some theories favor a
type of mechanism that records the transitional probabilities between symbols (e.g. letters,
words) in the language or, in other words, are sensitive to the frequency of symbols co-
occurring together (e.g. if only V or S can follow M and both occur equally often, then
the transitional probability of V following M is 0.5). In case of language, the transitional
probability for ‘boy’ after ‘the’ should be higher than the transitional probability of ‘oak’
after ‘the’, because ‘boy’ follows ‘the’ more often than ‘oak’. SRNs are an example of a
mechanism that is sensitive to these types of probabilities. Other theories favor chunking
mechanisms that record how often particular sets of symbols co-occur across different
strings (Perruchet and Pacteau 1990). For example, people may judge string grammatical-
ity based on the knowledge of frequently occurring chunks like MV or VST. Likewise,
in natural language, if people represent ‘the boy’ as a frequent chunk, they should prefer
that sequence over a less frequent chunk like ‘the oak’.

Formally, these mechanisms are related. The transitional probability of ‘boy’ after the
word ‘the’ (or V after M) is the chunk frequency of ‘the boy’ divided by the frequency
of ‘the’ (middle of Figure 6). Transitional probabilities are objective properties of symbol
sequences, but they only approximate the transition probabilities that guide state changes in
a finite state grammar or an SRN. The transition probability is the same as transitional
probability if each word in the language is a unique state within the grammar. But if the
same word is associated with multiple states, then transitional probabilities will not match
transition probabilities. For example, the likelihood of the word ‘boy’ and ‘oak’ should
differ in subject and object position (e.g. ‘the boy cut the oak’ sounds better than ‘the
oak cut the boy’). To explain this, we can posit two ‘the’ states, one for subject and one
for object and the probabilities can be set accordingly (bottom of Figure 6). If language
requires a state-based mechanism, then the transition between two words is the result of
internal states that are not available to conscious inspection and hence implicit. In con-
trast, chunk representations involve simple conjunctions of explicit words (top of Fig-
ure 6) and hence, these representations are thought to be available to conscious awareness
or declarative expression (Anderson et al. 2004; Perruchet and Pacteau 1990). Thus, com-
putational mechanisms that support chunking or transition probabilities make different

Fig 6. Chunks, transitional probabilities, and transition probabilities for a finite state grammar for the sentence
‘‘the boy cut the oak’’.
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predictions about the degree to which these representations are available to explicit
awareness.

Some have argued that AGL could be influenced by explicit knowledge of fragments
or chunks of symbols (Dulany et al. 1984; Gómez 1997) or that this knowledge is suffi-
cient to explain people’s performance in grammaticality judgment tasks (Perruchet and
Pacteau 1990; Perruchet et al. 1997). While there is some evidence for explicit fragment
knowledge in SRT studies (Buchner et al. 1998; Shanks and Johnstone 1999), SRT
grammar learning seems to depend less on explicit chunk knowledge (Jiménez 2008). For
example, Jiménez et al. (1996) found that grammatical knowledge was expressed in reac-
tion times in an SRT task, but not in a sequence generation task indicating that the
knowledge was not explicit enough to generalize to a new task. This suggests that both
explicit chunks and implicit transition probabilities are used in both AGL and SRT stud-
ies and that the learning of these formally-similar grammars cannot be reduced to a single
mechanism. Furthermore, dissociations in amnesic patients between chunk knowledge
and abstract rule learning support the view that both of these components are needed
(Knowlton and Squire 1996; Knowlton et al. 1992).

Some have attempted to disentangle the relationship between these two types of
knowledge. One task that has been used in the memory literature to distinguish implicit
and explicit processing is the process dissociation procedure (Jacoby 1991). Destrebecqz
and Cleeremans (2001) created a variant of this procedure within an SRT task. After
training, they instructed participants to produce sequences that were similar to the train-
ing sequences (inclusion condition) and those that did not appear in the training set
(exclusion condition). If sequence learning is due to explicit knowledge, then participants
in the exclusion condition should be able to consciously avoid producing the training
sequences. They found that participants in some conditions were unable to use their
explicit fragment knowledge, which confirms the implicit nature of SRT behavior.
Wilkinson and Shanks (2004) attempted to replicate these results, but found that partici-
pants performed successfully in both inclusion and exclusion conditions (see also Dienes
et al. 1995). Finally, Fu et al. (2008) found that motivation was part of the reason for the
difference in these two studies suggesting that implicit knowledge can dominate when
participants are not highly motivated.

Another way to distinguish different components of learning is to manipulate atten-
tional resources by including a distractor task (e.g. Curran and Keele 1993). Early work
suggested that implicit learning was mostly insensitive to attentional distraction (Cohen
et al. 1990; Jiménez and Méndez 1999), but later work has found that it was possible to
interfere with this type of learning (Jiang and Chun 2001; Shanks et al. 2005). One way
to reconcile these seemingly incompatible results has been to argue that there are multiple
types of attention and some of these can interfere with implicit components of learning.
For example, Rowland and Shanks (2006) found that visual distractors in an SRT task
did not influence sequence learning. They explained this dissociation by arguing that
there are two kinds of attention; input attention (e.g. when one has to ignore other stim-
uli) and central attention (when working memory is loaded by an additional task like
counting stimuli). They argued that only central attention influenced implicit sequence
learning. Other studies have suggested that attention has selective effects. Cohen et al.
(1990) demonstrated that attentional manipulations did not affect sequence learning if ele-
ments in the sequence could be uniquely associated with their neighbors (as in the num-
ber sequence 15243) but it interfered with sequences where symbols appeared in different
orders in different parts of the sequence (e.g. 132312). They argued that processing the
latter strings required hierarchical knowledge that would be used to distinguish different
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exemplars of the same symbol and that the acquisition of such knowledge required atten-
tion. The idea that learning these different types of sequences requires different mecha-
nisms is supported by the finding that amnesics could learn relations between adjacent
symbols, but had more trouble with higher order associations, where items could only be
predicted based on a combination of previous symbols (Curran 1997). In sum, although
there is no unified account of how attention influences sequence learning, it does seem
that attention can be used to differentiate processing components.

There are still many basic issues that have not been resolved within the AGL and SRT
literature. Different tasks seem to involve different mixtures of implicit and explicit
knowledge. The difficulty in distinguishing these components in non-linguistic tasks sug-
gests that language knowledge might also be composed of tightly interacting explicit and
implicit systems. The reviewed AGL-SRT studies suggest that these systems can be disso-
ciated in amnesic patients and are differentially sensitive to conscious and attentional
manipulations when learning complex stimuli (e.g. multiple languages, languages with
hierarchical structure). Similar techniques might also be useful for fractionating language
into its components.

Linking Language with Memory and Learning Theories

To recapitulate, linguistic adaptation phenomena indicate that learning and processing are
closely intertwined. Studies using AGL-SRT tasks have found that the same mechanisms
seem to be involved in both the acquisition and tuning of grammatical knowledge. Here,
we will review neuropsychological and behavioral evidence that suggests that the mecha-
nisms used in AGL-SRT may also be involved in language learning. In addition, compu-
tational models of linguistic adaptation and AGL-SRT studies have suggested that explicit
and implicit components may be at work in the learning of grammatical constraints. In
this section, we will point to evidence that a similar dissociation may exist in language as
well.

There is a growing body of evidence that AGL and SRT behaviors recruit similar
brain regions as those used for language processing (Conway and Pisoni 2008; de Vries
et al. 2011). Brain stimulation showed that Broca’s area, which has been classically associ-
ated with language (Geschwind 1970; Grodzinsky and Santi 2008), is also involved in
AGL (de Vries et al. 2010). Functional brain imaging showed that common areas are acti-
vated in grammatical violations in a serial AGL task and natural language processing (Pet-
ersson et al. 2012). Agrammatic aphasics display an impairment in AGL suggesting that
aphasia affected both language and sequence learning (Christiansen et al. 2010). Behav-
ioral data showed that children’s performance in non-linguistic SRT tasks directly pre-
dicted the persistence of structural priming effects (Kidd 2012). Finally, Misyak et al.
(2010a,b) demonstrated that the ability to learn non-linguistic and linguistic non-adjacent
dependencies correlated within individuals. These studies strengthen the view that the
mechanisms that support AGL-SRT learning may also be involved in linguistic adapta-
tion.

The behavioral paradigm that provides the strongest link between AGL-SRT phenom-
ena and language is statistical learning (SL), where participants extract linguistic regulari-
ties from speech samples made up of symbols (e.g. syllables or words) that exhibit
particular distributional properties (Conway and Christiansen 2001; Gómez and Gerken
2000; Perruchet and Pacton 2006). It has been shown that preverbal infants could dis-
cover word boundaries by using transitional probabilities in an artificial speech stream
(Saffran et al. 1996, 1997) and in samples of real speech (Pelucchi et al. 2009). The same
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mechanisms are also thought to govern the learning of word sequences (Gómez and Ger-
ken 1999; Saffran and Wilson 2003), word classes (Hunt and Aslin 2010; Mintz 2002),
and rudimentary phrase structure (Saffran 2001). Similar paradigms have been used to
study speech segmentation (Frank et al. 2010) and the acquisition of syntactic constraints
in adults (Morgan and Newport 1981; Thompson and Newport 2007; Wonnacott et al.
2008). These paradigms demonstrate that children and adults can acquire, mostly without
conscious awareness, rich statistical information about structure at multiple linguistic
levels.

Although SL phenomena have often been explained in terms of transitional probabili-
ties, they can also be explained by chunking mechanisms (French et al. 2011; Perruchet
and Pacton 2006), Bayesian learning (Frank et al. 2010), or SRNs (Mirman et al. 2010).
Chunking mechanisms in particular have provided accounts of language development
using statistical information from child language corpora (Chang et al. 2008; Freudenthal
and Pine 2005; Freudenthal et al. 2007). It has been argued that unique evidence in sup-
port of these accounts is provided by studies showing that children and adults have stored
four-word sequences as chunks (Arnon and Snider 2010; Bannard and Matthews 2008).
But these findings are also explainable within other mechanisms like SRNs (Rodriguez
2003, e.g. showed that an SRN could learn 5-6 word sequences). The difficulty in differ-
entiating these learning mechanisms from one another indicates that they capture similar
sets of regularities from the input. If multiple mechanisms are at work, then it might be
more fruitful to differentiate them in terms of the explicitness of their representations.

Knowledge acquired in SL is usually characterized as implicit, but recent studies have
begun to explore how explicit factors like attention might be involved. Toro et al.
(2011) found that adults could learn vowel-matching rules in both adjacent (AAB) and
non-adjacent (ABA) syllables when exposed to syllable streams. But a secondary distractor
task impaired learning of non-adjacent regularities more than adjacent ones, which sug-
gests that attention plays a role in SL of rules. This mirrors the findings of Cohen et al.
(1990) in an SRT task showing that attentional distraction impaired participants’ abilities
to learn hierarchical structures. If SL has components that differ in their sensitivity to
conscious processes like attention, then the process dissociation paradigm may be useful
for distinguishing these components. Franco et al. (2011) applied this paradigm in an SL
article where people had to learn two artificial languages. They found that participants
were consciously aware of the acquired knowledge and were able to control the language
that they responded with. This task required that participants applied cognitive control in
their language use and it has been hypothesized that cognitive control is regularly
involved in language processing (Novick et al. 2010) and learning (Davidson and Indefrey
2011). Critically, the implicit SL mechanisms discussed thus far do not specify how cog-
nitive control, conscious awareness, and attention influence learning, and that suggests
that these effects are supported by separate systems or mechanisms.

Since infants and children presumably have different attention and cognitive control
abilities compared to adults, we should expect to see similar dissociations in language
development. Some SL studies of segmentation have found similar behavior in children
and adults (Saffran et al. 1997), while other studies have found that adults are better than
7-year-old children in the SL of phrase structure (Saffran 2001). This is consistent with
the idea that adults may be engaging in more explicit strategies for higher-level represen-
tations. These developmental dissociations can also be seen structural priming. Rowland
et al. (2011) found that abstract structural priming had a consistent magnitude in
3–4 year olds, 5–6 year olds, and children and adults. The lexical boost, however, was
not present in the youngest children and it grew over development. Although these
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dissociations could be specific to language, similar patterns have been observed in a visual
SRT task. Thomas and Nelson (2001) found that 7- and 10-year olds’ speed at tracking
an object’s location improved over blocks as they implicitly acquired sequential regulari-
ties. While implicit learning was similar over both ages, the ability to explicitly generate
the sequence was higher in the 10-year olds than the 7-year olds. Taken together, these
studies suggest that there are mechanisms that are relatively constant over development
(e.g. segmentation, abstract priming, visual tracking) and those that grow in this period
(e.g. phrase structure learning, lexical boost, visual prediction).

In addition to these developmental dissociations, there are also neuropsychological disso-
ciations. Traditionally, amnesia has been thought to spare language abilities as patients like
HM were able to generate fairly complex sentences (Kensinger et al. 2001; Skotko et al.
2005). There are also reports of amnesics acquiring the vocabulary and syntax of a new lan-
guage (Hirst et al. 1988). Furthermore, amnesics exhibit abstract structural priming (Ferreira
et al. 2008), which suggests that they have intact mechanisms for changing abstract gram-
matical knowledge. However, other studies have documented a range of language-related
deficits in HM, suggesting that the medial temporal lobe may be critical for maintaining
some language functions (MacKay and Hadley 2009; MacKay and James 2002; MacKay,
Burke, and Stewart 1998a; MacKay et al. 2011, 1998b). Of particular interest is evidence
that HM showed impairments in the ability to update his idiomatic ⁄ clichéd language
knowledge (MacKay et al. 2007). Furthermore, intracranial ERP studies where electrodes
were placed directly on the medial temporal lobe have found sensitivity to syntactic and
semantic operations (Patric Meyer et al. 2005). Together, these findings suggest that the
medial temporal lobe is involved in language processing and that it may partially be respon-
sible for dissociations between idiomatic and abstract knowledge.

Further support for the idiomatic-abstract dissociation can be found in adult production.
Idioms like ‘kicked the bucket’ (meaning ‘died’) act like chunks, in that they do not allow
standard syntactic operations on their components (e.g. ‘John kicked the ball and the
bucket’ cannot mean that ‘John kicked the ball and died’). Even though idioms have these
chunk-like properties, work in sentence production has found that speech errors are sensi-
tive to their internal syntactic structure (Cutting and Bock 1997). Thus idioms have a dual
nature in that they act both as chunks and as syntactically-structured sequences of words.

If the lexical boost involves more explicit memory than abstract structural priming,
then we might predict that the chunk nature of idioms should be evident in the lexical
boost, while the structural nature of idioms should be involved in abstract priming.
Konopka and Bock (2009) provided data that support this hypothesis. They found that an
utterance like ‘The New York Mets brought up the rear’ with an idiomatic verb-particle
combination like ‘brought up’ (meaning ‘occupied’) increased the likelihood of speakers
to use a post-verb order like ‘the toddler threw away one of his toys’ rather than the
post-object order ‘the toddler threw one of his toys away’. Since different verbs and
prepositions were used in this article, this finding can only be explained as abstract prim-
ing based on the idiom’s internal syntactic structure (e.g. verb preposition). They also
tested the lexical boost with these particle verbs and found that a lexical boost effect only
occurred when both the verb and particle were repeated, but not when just the verb or
particle was repeated. Thus the lexical boost seems to depend on the chunk nature of the
idiom, while abstract priming across verbs seems to depend on internal structure.

One way to make the idea of multiple interacting systems more concrete is to combine
the Dual-path model with ideas from the complementary cortical ⁄hippocampal systems
theory (McClelland et al. 1995; O’Reilly and Rudy 2001). In these theories, the hippo-
campus in the medial temporal lobe has bidirectional connections with various cortical
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areas and the hippocampus represents sparse conjunctive codes that encode associations
between these areas (Figure 7). If we assume that these conjunctive code units are con-
nected to lexical or semantic units for verbs and structural units such as the hidden layer
in the SRN, then they will encode verb-structure associations. An important assumption
in these theories is that cortical systems have a slow learning rate and hippocampal links
with cortical systems have a fast learning rate. The fast learning in the hippocampal links
means that verb-structure associations will be quickly changed as new associations are
stored, and this could explain the decay of the lexical boost (Hartsuiker et al. 2008). Hip-
pocampal units are thought to be involved in encoding the task context (Komorowski
et al. 2009) and this could help to explain variation in the magnitude of the lexical boost
(Hartsuiker et al. 2008; reported same verb + structure priming of 73% in Exp. 1 and
priming of 42% in Exp. 4). If the ability to maintain a constant task context across an
experiment grows in development, then the links between task context and hippocampal
associations could also help to explain the growth of the lexical boost in Rowland et al.’s
(2011) article. Finally, if the meaning of ‘brought up’ is linked to the conjunctive codes,
then the whole idiom will be needed to get the lexical boost. Meanwhile, the slow learn-
ing in the SRN can explain why different verb-particle combinations prime each other.
This complementary systems account is speculative, but it does suggest some avenues that
can be explored in future research: Which language representations are linked to the
hippocampus? How does task context influence the lexical boost? What is the role of the
medial temporal lobe in the boost?

Conclusion

Traditionally, language acquisition and language processing have been treated as distinct
domains. Linguistic adaptation phenomena indicate that representations in the language
processing system are being changed by some type of learning mechanism. The AGL-SRT

Fig 7. Complementary systems Dual-path model account of lexical boost and abstract priming.
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literature suggests that the same mechanisms that govern the acquisition of new grammati-
cal information could also be responsible for the tuning of existing representations. Com-
putational models like the Dual-path model extended this idea to natural language by
demonstrating that acquisition mechanisms like error-based learning can explain adult lin-
guistic adaptation. These models also suggested that a single mechanism may not be able to
account for the full complexity of adaptation phenomena, which pointed to the existence
of multiple mechanisms. Likewise, AGL-SRT studies have found evidence for multiple
mechanisms that differ in the explicitness of their representations, and we have reviewed
findings from neuropsychological and developmental literatures which support a similar
distinction in language. We suggest that further progress can be made by using the dissocia-
tion methods developed in the AGL-SRT literature to article the multifaceted nature of
linguistic representations. In addition, models of language need to go beyond linguistic
representations and integrate themselves with the multiple systems in the brain.
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