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1 Introduction

Among the known examples of consistent non-linear embeddings in Kaluza-Klein super-

gravity (and Kaluza-Klein theories in general), the non-linear embedding of N =8, d=4

gauged supergravity [1] into N = 1, d= 11 supergravity [2] stands out as the most subtle

and complicated. This embedding was derived a long time ago in [3] on the basis of the

SU(8) invariant reformulation of d= 11 supergravity presented in [4] (a list of references

to earlier work can be found in [3]). However, with the exception of [5], where the simpler

embedding of maximal d= 7 gauged supergravity into the d= 11 theory was completely

worked out, there has not been much follow-up work on maximal supergravity embeddings

since then. In particular, no complete proof exists for the AdS5 × S5 compactification of

IIB supergravity to maximal gauged N =8 supergravity in d=5, although partial formulae

for the embedding were obtained in [6–8]. By contrast, there has been considerable work

on consistent truncations of N =1, d=11 supergravity to non-maximal supergravities in

d=4, whose scalar sectors are much simpler.1

1For a partial list of references, see [9–17].
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In this paper we re-analyze the embedding of the scalar sector of the N =8 theory and,

in particular, examine the flux ansätze in [3] for solutions of N =1, d=11 supergravity that

correspond to lifts of critical points of the scalar potential in four dimensions. Our present

interest in this problem has been motivated on the one hand by the recent discovery of a

large number of new critical points [18–21] for which the corresponding eleven-dimensional

solutions are not yet known. On the other hand, the explicit flux formulae in [3] have never

been tested for any but the maximally supersymmetric point. The present investigation

originated from an attempt to extend this analysis to non-trivial vacua, and to test the

general formulae by performing numerical checks for some configurations of the scalar fields.

To our surprise, these checks revealed systematic inconsistencies.2 This raised questions

not just about the flux formulae per se, but also about the completeness of the proof of

consistency for the S7 truncation in [3]. In this paper, we resolve the apparent discrepancies

and complete the proof of consistency, on the way also deriving the exact formulae for the

non-linear flux ansätze. Indeed, the formulae given in [3], after considerable work, turn

out to be essentially correct, modulo an important subtlety that was not appreciated there,

and which is the main subject of the present paper.

Recall that solutions of d= 11 supergravity corresponding to given critical points of

gauged N =8 supergravity are warped products AdS4 ×M7,

ds11 = ∆−1ds2AdS4
+ ds2M7

, (1.1)

F(4) = f ∆−2 volAdS4 +
1

4!
Fabcd e

a ∧ eb ∧ ec ∧ ed , (1.2)

where ds2AdS4
denotes the line element in AdS4 with warp factor ∆−1, and ds2M7

≡
gmn dy

m ⊗ dyn is the internal seven-metric (as in [3], we will label four-dimensional co-

ordinates xµ by Greek indices µ, ν . . . = 0, 1, 2, 3, and internal coordinates ym by Latin

indices m,n, . . . = 1, . . . , 7). The flux components are defined in the usual way, with flat

indices and 24if ≡ εαβγδFαβγδ (so the constant f0 ≡ f∆−2 is the Freund-Rubin parame-

ter [23]). Hence, the internal manifold M7 is a deformation of the seven-sphere S7 (which

corresponds to the maximally supersymmetric vacuum [24]). In fact, such deformations

can be studied for any field configuration of the d=4 theory satisfying the field equations

of N =8 supergravity, in which case the internal metric and fluxes depend on both x and

y, such as for instance the AdS4-type vacua with x-dependent scalar field configurations

which have attracted recent interest in the context of M2-branes and holographic supercon-

ductors. The main question then concerns (i) how to construct the non-linear embedding

of a given d=4 configuration into the d=11 theory, and (ii) the consistency of this em-

bedding. By a consistent truncation (or embedding) we shall here generally mean that

any d=4 solution (whether x-independent or not), when embedded into the d=11 theory,

should yield an exact solution of the latter at the full non-linear level (see e.g. [25] for

an introductory review). As we will see, this requirement will lead to rather complicated

formulae for both the internal metric and the fluxes in terms of the d=4 fields.

2Recently, a similar inconsistency for the SO(7)+ point was independently observed in [22].
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2 Synopsis

In this section we recall some central results from earlier work and summarize our main

new insights. We strongly recommend that readers consult the two main references [3, 4],

whose notations and conventions we will follow throughout this paper, as well as [26] for

further details whenever necessary.

The explicit construction of the lift in [3, 4, 26] starts with the so-called generalized

vielbein. This object is a ‘soldering form’ with one internal upper world index and two flat

(tangent space) SU(8) indices, and plays a key role in the SU(8) invariant reformulation of

d=11 supergravity presented in [4, 27]. It is expressed in two different and independent

ways, one coming from the d = 11 side via the reformulation [4], and the other coming

from the d=4 theory, and in terms of the scalar fields of N = 8 supergravity and the S7

Killing spinors. The comparison between the d=4 and the d=11 expressions, obtained by

judicious analysis of the supersymmetry variations, then yields crucial information about

the non-linear embedding, as we now explain.

Let us start with the d=11 side, which is based on the reformulation [4], where the

original tangent space symmetry SO(1, 10) is replaced by SO(1, 3) × SU(8), as appropri-

ate to a (4+7)-decomposition of the original theory [2], and where the dependence on

all coordinates is initially retained. The generalized vielbein is defined from the d = 11

supersymmetry variations as

emAB(x, y) = i ea
m∆−1/2 Γa

AB , (2.1)

where em
a(x, y) is the siebenbein of the full metric on M7, and ea

m(x, y) its inverse. The

factor ∆ is essentially the siebenbein determinant, except that for convenience we define

Sa
b(x, y) ≡ ◦

ea
m(y)em

b(x, y) , ∆ ≡ detS , (2.2)

thus taking out the y-dependent background factor det
◦

em
a, where

◦

em
a(y) is the back-

ground S7 siebenbein, and the metric on the round S7 is
◦

gmn =
◦

em
a ◦

en
bδab.

3 The SO(7)

gamma matrices, Γa, are purely imaginary, and therefore emAB, as defined in (2.1), is real.

However, a crucial step taken in [4] in order to re-write the theory into SU(8) covariant

form is now to replace (2.1) by the more general definition

emAB(x, y) = i ea
m∆−1/2 (ΦTΓaΦ)AB , emAB = (emAB)

∗ , (2.3)

where ΦA
B(x, y) is an arbitrary local SU(8) rotation depending on all eleven coordinates.

In this way the local SO(7) tangent space symmetry is enhanced to local SU(8) in eleven

dimensions. As a consequence, the real internal siebenbein is converted into a complex

object transforming under local SU(8), unlike the original siebenbein which transforms

only under SO(7). The real form (2.1) is then viewed as an SU(8) tensor 28⊕ 28 taken in

a special gauge.4 This gauge choice will prove extremely useful below, and we will return

to it on several occasions.
3Factoring out the background S7 siebenbein leads to extra determinant factors

◦

g in various formulae

below. Such factors can be dropped for all practical purposes by adopting a local frame where
◦

em
a = δm

a.
4In fact, the complex pair (emAB , e

mAB) can be assigned to the 56 representation of E7(7), even though

the latter is only a symmetry of the theory when compactified on R
1,3 × T 7 [28].
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On the d=4 side, by contrast, the generalized vielbein is determined in terms of the

70 scalar fields of N =8 supergravity and the 28 Killing vectors on S7 as

emij(x, y) = KmIJ(y)
(
uij

IJ(x) + vijIJ(x)
)
, emij = (emij)

∗ , (2.4)

where the scalar ‘56-bein’

V(x) =
(
uij

IJ(x) vijIJ(x)

vijIJ(x) uijIJ(x)

)
∈ E7(7) , (2.5)

is an element of the maximally (‘split’) non-compact form of the E7 Lie group in the

fundamental representation. The Killing vectors in (2.4) are represented in the usual way

as bilinears of the Killing spinors,

KmIJ = i
◦

ea
m η̄IΓaηJ . (2.6)

Those (commuting) Killing spinors, ηI(y), satisfy

(
◦

Dm +
i

2
m7

◦

Γm

)
ηI = 0 , I = 1, . . . , 8 , (2.7)

where m7 is the inverse radius of S7,
◦

Γm ≡ ◦

em
aΓa, and

◦

Dm denotes the S7 background

covariant derivative.

We also note that, when considered as 8×8 matrices, the Killing spinors are orthonor-

mal, in the sense that ηIAη
A
J = δIJ , etc. As explained in [3], this allows us to use the

Killing spinors to convert the two kinds of SU(8) indices: A,B,C, . . . , and i, j, k, . . . or

I, J,K, . . . , appropriate to d = 11 and d = 4, respectively, into one another. However, a

direct comparison between d= 11 and d= 4 quantities is more subtle, and realizing that

was one of the crucial steps in the proof of the consistent truncation in [3].

One key ingredient in the proof of consistency is the SU(8) rotation matrix Φ ≡ Φ(x, y)

introduced in (2.3), which is required for a consistent ‘alignment’ of the d=4 and d=11

theories and, in particular, of the generalized vielbeine (2.3) and (2.4). More precisely, the

d=4 and d=11 vielbeine (2.3) and (2.4) above are related by

emAB(x, y) ≡ i ea
m∆−1/2 Γa

CD ΦC
AΦ

D
B = emij η

i
Aη

j
B . (2.8)

This formula makes obvious the necessity of complexifying the original internal sieben-

bein (2.1) via (2.3), because (2.4) and hence the right hand side of (2.8) are manifestly

complex. It also confirms that the SU(8) rotation Φ in general depends non-trivially on

both the d=4 (space-time) and the d=7 (internal) coordinates. The existence of the SU(8)

rotation Φ for any vielbein of the form (2.4) follows from the fact that the latter can be

shown to satisfy the Clifford property by virtue of some E7(7) identities, as explained in

section 2 of [3].

From the two different representations of the generalized vielbein in (2.1) and (2.4),

and from (2.8), we deduce two key results:

– 4 –
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(i) The non-linear metric ansatz [26]

8 (∆−1 gmn)(x, y) = emije
n ij = (KmIJKnKL)(y)(uij

IJ + vijIJ)(u
ij
KL + vijKL)(x) ,

(2.9)

implicitly giving the dependence of the internal metric on the scalar 56-bein V(x) and
the S7 Killing vectors KIJ(y). Given any configuration of the N =8 fields, this for-

mula can be solved (at least in principle) for the embedded internal metric gmn(x, y).

(ii) The SU(8) rotation matrix Φ(x, y) is determined as a function of the scalar 56-bein

and the S7 Killing spinors. As already mentioned, this SU(8) rotation is needed

to ‘align’ the linear fermionic ansätze with the non-linear bosonic ones in an SU(8)

gauge where the linear fermionic ansätze are exact to all orders, as explained in [3].

Of course, closed form expressions for either gmn(x, y) and Φ(x, y) are hard to come

by, and can only be obtained in very special circumstances. Nevertheless, the non-linear

metric ansatz (2.9) has been successfully tested over the years for a variety of non-trivial

solutions: critical points [26, 29, 30], RG flows [29, 31–34] and quadratic fluctuations [35].

It was also used to construct smaller truncations [11, 35], and was generalized to maximal

supergravities in d=5 [6] and d=7 [5, 36]. Observe that (2.9) fixes the overall normalization

of the metric relative to the trivial vacuum for any solution of the d=11 equations of motion

corresponding to a consistent embedding of an on-shell configuration of N=8 supergravity

(whereas the former are in principle only determined up to an overall scaling).

Similarly, the SU(8) rotation is known in closed form only for some special critical

points, the very simplest example being the maximally supersymmetric point, Φ = 1. Cor-

rections to first order in the supersymmetry parameter induced by the non-linear embed-

ding were given in [37], although without mention of SU(8). For purely scalar fluctuations,

with no pseudoscalars, a perturbative expansion for Φ was derived in [38], but no closed

form for the summed series is known. For all other scalar and pseudoscalar configurations,

the explicit solutions for Φ become rapidly very complicated and cumbersome, as can be

seen from the examples in section 6.

While the above results are enough to derive the non-linear metric ansatz, they are

not sufficient to obtain the fluxes as functions of the scalar 56-bein. For this we need to

invoke the extra information provided by two consistency requirements, namely (i) the

generalized vielbein postulate, and (ii) the so-called A-equations.5

The first condition derived in [4] is that the generalized vielbein must satisfy an equa-

tion, the so-called Generalized Vielbein Postulate (or GVP, for short). Like the generalized

vielbein itself, this condition comes in two different guises. Again, we first discuss the

equation as obtained from the d=11 side where emAB must obey

◦

DmenAB + Bm
C
[Ae

n
B]C +AmABCDe

nCD = 0 , (2.10)

5Let us, however, emphasize that the final formulae for the non-linear flux ansätze can only be valid on-

shell because the dualizations needed to convert the two-form fields from d=11 supergravity to scalar fields

necessarily require the equations of motion. This is in marked contrast to the AdS7×S4 truncation of ref. [5],

where the scalar fields arise directly in the reduction without dualizations, whereas similar complications

can be anticipated for the AdS5 × S5 truncation which requires the dualization of a three-form field.

– 5 –
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with a corresponding equation for the complex conjugate vielbein emAB. Here, Bm
A
B(x, y)

and AmABCD(x, y) together can be viewed as an E7(7) connection in the seven internal

dimension. The GVP constitutes the analog of the corresponding conditions for the d=4

connection (Bµ
A
B , AµABCD), which upon compactification on S7 reduce to the Cartan-

Maurer equations for E7(7) (with SO(8) gauge covariant derivatives, cf. [3]).

Explicit expressions in terms of d = 11 fields are obtained by careful analysis of the

d=11 supersymmetry variations [4]:

Bm
A
B =

1

2
(S−1

◦

DmS)abΓ
ab
AB +

i
√
2

14
f emaΓ

a
AB −

√
2

48
em

aFabcdΓ
bcd
AB , (2.11)

AmABCD = −3

4
(S−1

◦

DmS)abΓ
a
[ABΓ

b
CD] +

i
√
2

56
emaf Γab

[ABΓ
b
CD] +

√
2

32
em

aFabcdΓ
b
[ABΓ

cd
CD] .

(2.12)

The matrix Sa
b was already defined in (2.2), while the remaining flux terms originate from

the four-form field strength of d=11 supergravity in the standard way. These two formulae

are only valid in the ‘real vielbein gauge’ (2.1), and they will change when we switch to

another SU(8) gauge. On the other hand, when reverting from a general SU(8) covariant

expression back to the real gauge, one must, of course, ensure that the resulting expressions

preserve the tensor structure inherited from d=11 supergravity, which is manifest in (2.11)

and (2.12).6

An important feature of the real gauge (2.1), not spelled out in [4], is that (2.11) is in

fact not the most general solution; rather, the GVP will still be satisfied if we replace

fema → em
aXa|b , em

aFabcd → em
aXa|bcd , (2.13)

where Xa|b is an arbitrary matrix, and Xa|bcd is anti-symmetric only in the indices [bcd].

In other words, the GVP admits solutions which in general are not compatible with the

properties of the fluxes dictated by d = 11 supergravity. A crucial requirement for the

consistency of the truncation is therefore to ensure that the embedding formula for the

fluxes respects these properties. We will call it the correct tensor structure condition.

Let us now turn to the d = 4 side of the story. Here we have formally the same

GVP equation
◦

Dmenij + Bm
k
[i e

n
j]k +Amijkl e

nkl = 0 , (2.14)

but where the SU(8) gauge field Bm
i
j and the self-dual tensor field Amijkl are now to be

expressed in terms of the d = 4 fields. To match the d = 11 supersymmetry variations

with those of gauged N = 8 supergravity, however, we must invoke a second consistency

requirement. This is to require that the A1 and A2 tensors, defined as [3]

A
ij
1 = −

√
2

4
(emik Bm

j
k +Am

ijklemkl) , (2.15)

A2l
ijk = −

√
2

4
(3 em [ijBm

k]
l − 3 empq Am

pq[ijδk]l − 4Am
ijkpempl) , (2.16)

6In addition, the flux components must satisfy the Bianchi identities. As shown in [4], this is guaranteed

by the SU(8) covariant field equations.

– 6 –
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are equal to the corresponding A1 and A2 tensors7 of N = 8, d = 4 supergravity, which

parametrize the g-dependent deformations (Yukawa couplings and scalar potential) from

the ungauged theory:

A
ij
1 = g Aij

1 , (2.17)

A2 l
ijk = g A2 l

ijk . (2.18)

In the remainder we will refer to these equations as the ‘A-equations.’

The role of these two conditions in the consistent truncation is to ensure that the

dependence on the internal space drops out in the reduction of the supersymmetry varia-

tions of d= 11 supergravity to four dimensions, and that in the process one recovers the

complete supersymmetry transformations of gauged N =8 supergravity. In particular, one

should note that while the A1 and A2 tensors on the right hand side in (2.17) and (2.18)

are functions only of the scalar 56-bein of the d=4 theory, hence depend only on x, the

A1 and A2 tensors are hybrid objects that a priori depend both on the scalar 56-bein and

the internal coordinates.

A special solution of the GVP (2.14) and the A-equations (2.17) and (2.18) was con-

structed explicitly in [3] in terms of the scalar 56-bein and the Killing vectors on S7 as

follows. Consider

Bm
i
j(α, β) = −2

3
αm7Km

IJ(uikIKujk
JK − vikIKvjkJK)

− 2

3
β

◦

DmKn
[IJKnKL](vikIJujk

KL − uikIJvjkKL) ,

(2.19)

Amijkl(α, β) = αm7 Km
IJ (vijJKukl

IK − uij
JKvklIK)

− β
◦

DmKn
[IJKnKL](uij

IJukl
KL − vijIJvklKL) ,

(2.20)

where α and β are arbitrary real parameters (recall that the indices on the Killing vectors

are raised with the S7 background metric, that is, KmIJ ≡ ◦

gmnKIJ
n ). Substitution of

these expressions into (2.14) shows that the GVP is satisfied provided α+ 4β = 1, leaving

a one-parameter family of solutions.

The remaining freedom is then fixed by imposing the A-equations. This is by no

means obvious, but happily, the detailed analysis of [3] shows that the A-equations do have

a solution of the form above and indeed fix the free coefficients uniquely,

α =
4

7
, β =

3

28
, (2.21)

when the gauge coupling constant of the d=4 theory is set to the inverse radius of S7,

g =
√
2m7 . (2.22)

With these values, one re-obtains the correct four-dimensional expressions, such that all

dependence on the internal coordinates drops out on the left hand side of (2.17) and (2.18),

7Explicit formulae for A1 and A2 are given in (4.1) and (4.2) below.

– 7 –
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as required for consistency. For this reason, we will refer to the solution (2.19) and (2.20)

with the special values (2.21) as the standard inhomogeneous solution of the GVP, and

simply denote it by (
◦

Bm
i
j ,

◦

Amijkl).

Nevertheless, direct translation of (2.19) and (2.20) into the d=11 expressions (keeping

track of the SU(8) alignment rotation, see below) leads to apparent discrepancies with

d=11 supergravity, in the sense that the resulting expressions in general will not respect

the tensor structure required by (2.11) and (2.12). The main new result of the present paper

is to show how this defect can be remedied: namely, the GVP and the A-equations still

leave the freedom to modify the standard inhomogeneous solution by a homogeneous term

‘in the kernel of the GVP and the A-equations,’ and this extra homogeneous contribution

is precisely what is needed for the fluxes in (2.11) and (2.12) to acquire the requisite tensor

structure compatible with d=11 supergravity. We show that such a correction exists and is

unique for any point on the scalar manifold E7(7)/SU(8).

Put another way, given any solution to the GVP (2.14) and the A-equations (2.17)

and (2.18), viewed as a system of linear equations for Bm
i
j and Amijkl on the d=4 side,

one can, at least in principle, determine the corresponding solution of the GVP (2.10) on

the d=11 side by performing the SU(8) gauge transformation:

Bm
A
B = UA

i

[
Bm

i
j + 2

◦

Dm

]
U j

B ,

AmABCD = AmijklU
i
AU

j
BU

k
CU

l
D ,

(2.23)

where

UA
i(x, y) ≡ ΦA

B(x, y)η
B
i(y) , (2.24)

involves both the SU(8) alignment matrix Φ(x, y) and the conversion matrix η(y) (alias

Killing spinor) between the two kinds of SU(8) indices. Note that Bm transforms as a

bona fide SU(8) gauge connection with the usual inhomogeneous contribution. There is a

priori no reason why the standard inhomogenous solution (2.20) and (2.19) would yield

the particular solution (2.11) and (2.12) with the correct tensor structure in d=11, and,

in fact, as we verify explicitly in section 6, in general it does not. This means that the

proof of the consistent truncation based on that particular solution is incomplete; one must

still show that for each point on the E7(7)/SU(8) coset there exists a solution to the linear

system (2.14), (2.17) and (2.18) on the d=4 side that does have the correct tensor structure

in d=11.

Our strategy will be to look for a correction (δBm
i
j , δAmijkl) to the standard inho-

mogeneous solution and solving the homogeneous part of the GVP, such that

Bm
i
j =

◦

Bm
i
j + δBm

i
j , Amijkl =

◦

Amijkl + δAmijkl , (2.25)

satisfy all consistency conditions. In particular, the ‘corrections’ δBm and δAm must drop

out of the A-equations (hence belong to their ‘kernel’), as otherwise the agreement with the

d=4 theory would be spoiled! Identifying these ‘corrections’ is actually a simpler problem

than finding a full solution because the tensors (δBm
i
j , δAmijkl) satisfy the homogenous

system of equations corresponding to (2.14), (2.17) and (2.18) and transform covariantly

– 8 –
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under the U -rotation. We will not present a closed form solution (which is available in

principle, but very cumbersome), but we do prove that it always exists and is unique.

Quite remarkably, it will turn out that the closed form solution is not even needed to

extract the non-linear ansätze for the fluxes!

Given a solution to all consistency conditions, the fluxes can be either read off from

the expansions (2.11) and/or (2.12), or alternatively from the SU(8)-invariant projection

that is summarized in the flux formula (7.5) in [3]8

4

7
if gn[pδq]

m +
1

2
Fm

npq = −i

√
2

480
∆4 ǫpqrstuv e

m
ij (e

rēsetēuev)klAn
ijkl . (2.26)

Let us emphasize once again that in general this equation is inconsistent ifAm
ijkl is replaced

with the standard one (=
◦

Am
ijkl ) but, as we will show, there always exists a unique δAmijkl

such that (2.26) does hold with (2.25). Solving (2.26) for the flux components, we find

f = −
√
2

48 · 5! ∆
4 gmu ǫmnpqrst e

n
ij (e

[pēqerēset])kl Au
ijkl , (2.27)

and

Fmnpq = − i

144
∆4 grw erij(e

[sēteuēvew])kl ǫstuw[mnpAq]
ijkl . (2.28)

Note that in order to exploit these equations we must first solve for the full metric gmn

from (2.9). As we will explain in detail below, f and Fmnpq as given in (2.27) and (2.28)

are invariants of the linear system. In other words, it does not matter which solution

to the linear system (2.14), (2.17) and (2.18) one uses to evaluate them by projecting

the right hand side of (2.26) onto the components (2.27) and (2.28): all solutions, in

particular the standard inhomogeneous solution (2.19)–(2.21) give the same answer! In this

sense [3] contains already the complete result for the fluxes. Besides the analytic examples

of section 6 we will present some non-trivial numerical checks of (2.27) in section 7.

The rest of this paper is more technical, as we present the details of our calculations. In

section 3 we determine the general solutions for GVP (2.14) and (2.10). The A-equations

are included in section 4. We show that the full linear system is invariant under the

natural action of E7(7) and use this symmetry to determine the general solution for all

consistency conditions on the d= 4 and the d= 11 sides. This allows us to complete the

proof of the consistent truncation. Explicit flux formulae are rederived in section 5. In

section 6 we illustrate various point of the construction on two examples, the SO(7)− and

SO(7)+ families. Some results of numerical explorations are summarized in section 7 and

we conlude in section 8.

3 The Generalized Vielbein Postulate (GVP)

We now return to the vielbein equation (2.14) in order to explain the construction in more

detail and to work out the most general solution of the GVP. For a given vielbein, (2.14) can

8We correct some typos in the original formula. For clarity of notation we put a bar on the complex

conjugate vielbein emij ≡ ēmij in the formulae below, whenever the SU(8) indices are not written out.
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be viewed as an inhomogenous linear equation for the components of the SU(8) gauge field,

Bm
i
j , and the tensor field, Amijkl. Recall that the generalized vielbein, emij , and its complex

conjugate, emij , can be assigned to transform in the 56-dimensional representation of E7(7).

For a given point on the scalar coset represented by the group element V(x), cf. (2.5), we
can rewrite (2.4) as (

emij
emij

)
=

(
uij

IJ vijIJ
vijIJ uijIJ

)(
Km

IJ

KmIJ

)
, (3.1)

where Km
IJ ≡ KmIJ , as the Killing vectors are real. Similarly, Bm

i
j and Amijkl, together

with the complex conjugates, can be assigned to the adjoint representation 133 of E7(7),

(
δ[i

[kBmj]
l] Amijkl

Am
ijkl δ[i[kBm

j]
l]

)
= V

(
δ[I

[KBmJ ]
L] AmIJKL

Am
IJKL δ[I [KBm

J ]
L]

)
V−1 . (3.2)

By performing a purely x-dependent E7(7) rotation9 by V−1(x), one transforms the

GVP (2.14) into an equation that has no explicit dependence on the scalar 56-bein any

more [3],
◦

DmKn
IJ +Bm

K
[IK

n
J ]K +AmIJKLK

nKL = 0 . (3.3)

This equation can be further simplified if we consider the Killing spinors ηIA in (2.6) as a

local SO(8) ⊂ SU(8) transformation on S7. Taking into account the inhomogeneous term

in the transformation of Bm
I
J , cf. (2.23), we can also remove the explicit dependence on

the S7 coordinates in (3.3),

Bm
C
[AΓ

n
B]C +AmABCDΓ

n
CD = 0 , (3.4)

ending up with a homogenous equation for Bm
A
B and AmABCD. This amounts to an-

alyzing (3.3) at the North Pole of S7, from where it can be parallel transported back

to any other point by application of the matrix η. The anti-hermitean Bm
A
B and the

complex-selfdual AmABCD can now be expanded into a basis of Γ-matrices as follows:

Bm
A
B = αmab Γ

ab
AB − i αma Γ

a
AB + αmabc Γ

abc
AB , (3.5)

AmABCD = βmab Γ
a
[ABΓ

b
CD] + i βma Γ

ab
[ABΓ

b
CD] + βmabc Γ

[a
[ABΓ

bc]
CD] , (3.6)

where the expansion coefficients are (anti-)symmetric according to the contraction with

the Γ-matrices, but otherwise real and arbitrary. Substituting those expansions into (3.4),

we obtain an equation that is antisymmetric in the spinor indices. The contraction with

Γa
AB and Γab

AB projects out two independent equations for the expansion coefficients:

αmab +
2

3
βmab +

1

3
δab βmcc = 0 , (3.7)

αmabc +
2

3
βmabc −

i

3
δa[b (αmc] + 4βmc]) = 0 , (3.8)

9Which from the d=7 perspective looks like a rigid transformation.
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where the antisymmetrization is only over the flat indices. From the symmetric and anti-

symmetric parts of (3.7) and the real and imaginary parts of (3.8), we obtain the general

solution:

αmab = 0 , βmab = 0 , (3.9)

αma + 4βma = 0 , αmabc +
2

3
βmabc = 0 . (3.10)

Rotating back with Killing spinors gives the general solution to (3.3), which may be par-

tially recast in terms of the Killing vectors:

Bm
I
J = −i (m7

◦

ema + αma) η̄
IΓaηJ + αmabc η̄

IΓabcηJ

= − (m7 δm
n + αm

n)Kn
IJ + αmabc η̄

IΓabcηJ , (3.11)

AmIJKL = i βma η̄
[IΓabηJ η̄KΓbηL] + βmabc η̄

[IΓabηJ η̄KΓcηL]

= −βm
n

◦

DnK
[IJ
p Kp IJ ] + βmabc η̄

[IΓabηJ η̄KΓcηL] , (3.12)

where

αm
n = αma

◦

ean , βm
n = βma

◦

ean . (3.13)

Finally, by applying the E7(7) transformation (3.2) to (3.11) and (3.12), we obtain the

general solution to the GVP (2.14) on the d = 4 side.

We see that the one parameter family in the standard solution (2.19) and (2.20) of the

vielbein equation corresponds to the special choice

αm
n = (α− 1)m7 δm

n , βm
n = β δm

n , α+ 4β = 1 . (3.14)

This family is distinguished in that Bm
i
j and Amijkl are constructed entirely from the

56-bein and the Killing vectors, and are ‘covariant’ with respect to the round S7 in the

sense that αma ∼ βma ∼ ◦

ema. However, we will see in the following that the consistent

truncation calls for more general solutions than the standard one.

To enumerate all solutions to the GVP in d=4, we introduce the independent param-

eters with flat indices,

αa|b =
◦

ea
m αmb , αa|bcd =

◦

ea
m αmbcd , (3.15)

which, as suggested by the notation, have no a priori symmetry between the first index and

the remaining ones. Hence, under the SO(7) tangent rotations acting on the background

siebenbein
◦

ea, they decompose into the following irreducible components:

αa|b = αab + αab + (α− 1)m7 δab ,

αa|bcd = αabcd + αabcd + δa[bα̃cd] ,

(3.16)

all of which will in general be present in any particular solution (note that αab and α̃ab

are different).

Let us now turn to the GVP (2.10) on the d=11 side. Using covariance of the GVP,

the SU(8) gauge field Bm
A
B and the self-dual tensor AmABCD of the general solution in
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d=11 can be obtained by applying the SU(8) gauge transformation (the U -rotation) (2.23)

to the general solution for Bm
i
j and Amijkl in (3.11) and (3.12), respectively. However,

since the U -rotation is not known explicitly, we will proceed differently and solve (2.10)

directly on the d=11 side.

First we note that the decomposition of Bm
A
B and AmABCD into irreducible SU(8)

components is given by precisely the same expansions as in (3.5) and (3.6), respectively,

although values of the expansion parameters for a given solution will in general be different

on the d=4 and the d=11 side. Next we evaluate the derivative of the generalized vielbein

in (2.10), which, using (2.1) and (2.2), can be expressed in terms of the matrix S−1
◦

DmS [4].

It is then straightforward to check that the first terms in (2.11) and (2.12) given by the

antisymmetric and symmetric parts of (S−1
◦

DmS)ab, respectively, already solve (2.10) by

themselves and that the resulting homogeneous equation that determines parameters of the

general solution is exactly the same as (3.4) or, equivalently, (3.9) and (3.10). Hence, we

may readily write down the most general solution to (2.10) which, in accordance with (2.13),

is given by

Bm
A
B =

1

2
(S−1

◦

DmS)abΓ
a
AB + 4iXma Γ

a
AB − 2

3
Xmbcd Γ

bcd
AB , (3.17)

AmABCD = −3

4
(S−1

◦

DmS)abΓ
a
[ABΓ

b
CD] + iXma Γ

b
[ABΓ

ab
CD] +Xmbcd Γ

b
[ABΓ

cd
CD] , (3.18)

where Xma and Xmabc = Xm [abc] are real and otherwise arbitrary.10

After conversion to flat indices, the tensors

Xa|b = ea
mXmb , Xa|bcd = ea

mXmbcd , (3.19)

may be decomposed into irreducible components under the SO(7) rotations acting on the

metric vielbein ea,

Xa|b = Xab +Xab + δabX ,

Xa|bcd = Xabcd +Xabcd + δa[bX̃cd] .

(3.20)

with the same representation content as in (3.16).

Comparing with the solution (2.11) and (2.12), we see that the only SO(7) represen-

tations in (3.19) and (3.16) that are consistent with the supersymmetry in d = 11 are

the singlet and the totally antisymmetric one. Those are determined by the components

of the flux,

X =

√
2

56
f , Xabcd =

√
2

32
Fabcd . (3.21)

The correct tensor structure condition simply means that the X-parameters in all other

representations must vanish.

In table 1 we have summarized the different forms of the vielbein equation that we

looked at in this section and listed the functions that parametrize the space of solutions.

10We also rescaled them with respect to (2.13).
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GV E7(7) connection Parameters GVP Rotation

iΓm
AB Bm

A
B , AmABCD αa|b , αa|bcd (3.4)

η ∈ SO(8)
Km

IJ Bm
I
J , AmIJKL αa|b , αa|bcd (3.3)

V ∈ E7(7)
emij Bm

i
j , Amijkl αa|b , αa|bcd (2.14)

U ∈ SU(8)
emAB Bm

A
B , AmABCD Xa|b , Xa|bcd (2.10)

Table 1. Generalized Vielbein Postulate in different frames.

While it is clear that any solution on the d = 4 side given in terms of αa|b(x, y) and

αa|bcd(x, y) maps under the SU(8) rotation, U(x, y), onto a unique solution given in terms

of S(x, y), Xa|b(x, y) and Xa|bcd(x, y), it is by no means guaranteed that the latter will be

consistent with the tensor structure (3.21) required by d=11 supergravity.

4 The A-equations

To resolve the possible remaining discrepancies we need to take a closer look at A-

equations (2.17) and (2.18) which, together with the GVP (2.14), guarantee the consistent

reduction of the supersymmetry transformations from d = 11 to d = 4 [3]. The new key

insight of the present work is that these equations admit more general solutions than the

one given in [3], and encapsulated in the standard inhomogeneous solution (2.19)–(2.21).

We first show that the system of vielbein equations and A-equations is invariant under

the action of E7(7). To this end we recall that the Aij
1 and A2 l

ijk tensors and their complex

conjugates correspond to two SU(8) irreducible components of the so-called T -tensor of

N =8, d=4 gauged supergravity. The latter is defined in terms of the scalar 56-bein [1]

Ti
jkl = (uklIJ + vklIJ)(uim

JKujmKI − vimJKvjmKI) . (4.1)

Then

Aij
1 =

4

21
Tk

ikj , A2 l
ijk = −4

3
Tl

[ijk] . (4.2)

It follows from the variations of the T -tensor in [1] that under infinitesimal transfor-

mations of the scalar vielbein,

δV =

(
δ[i

[kΛj]
l] Σijkl

Σijkl δ[i[kΛ
j]
l]

)
V , (4.3)

where Λi
j are antihermitian and Σijkl are self-dual, the Aij

1 and A2 i
ijkl tensors together

transform in the 912 irreducible representation of E7(7) [39].
11 We will now show that the

E7(7) transformations of the generalized vielbein and the tensor fields in (3.1) and (3.2)

induce exactly the same E7(7) transformations of the composite A
ij
1 and A2 i

jkl tensors

defined in (2.15) and (2.16).

11The modern formulation of gauged supergravities relies on the embedding tensor formalism [40, 41]. The

above transformation property of the T -tensor then simply expresses the so-called representation constraint

that the embedding tensor must satisfy.

– 13 –



J
H
E
P
0
3
(
2
0
1
2
)
0
9
9

Since the SU(8) covariance is manifest, all we must show is that under infinitesimal

transformation by the coset generators [39]

δAij
1 = −1

6
(A2

i
pqrΣ

jpqr + A2
j
pqrΣ

ipqr) , (4.4)

δA2 i
jkl = −2A1ipΣ

pjkl − 3Σpq[jk
A2

l]
ipq − Σpqr[j δkiA2

l]
pqr . (4.5)

Evaluating δAij
1 from the definition (2.15) and setting it equal to (4.4) gives

Σijkl Bm
p
[k e

m
l]p+Σklpq Am

ijpq emkl+
2

3
Σklpq Am

jklp emiq+
2

3
ΣiklpAmklpq e

mjq ?
= 0 . (4.6)

Then using selfduality of Σijkl and Amijkl, we can rewrite the second and the third terms as

Σklpq Am
ijpq emkl = Σijkl Amklpq e

mpq +
1

6
Σklpq Amklpq e

mij

− 2

3
(ΣiklpAmklpq e

mjq − ΣjklpAmklpq e
miq) ,

(4.7)

and

2

3
Σklpq Am

jklp emiq = −1

6
Σklpq Amklpq e

mij − 2

3
ΣjklpAmklpq e

miq , (4.8)

respectively. This reduces (4.6) to the vielbein equation,

Σijkl (Bm
p
[k e

m
l]p +Amklpq e

mpq) = 0 , (4.9)

where we have used that
◦

Dmemij = 0 , which follows from the definition of the generalized

vielbein in terms of the Killing vectors on S7.

One can also check the δAij
1 equation (4.4) starting from the equivalent definition [3]

A
ij
1 =

√
2

4
emk(iBm

j)
k , (4.10)

which makes the symmetry in (ij) manifest. Here, a simple substitution of variations yields

the condition

Σipqr Ampqrs e
mjs + (i ↔ j)

?
= 0 . (4.11)

Denote U j
pqr = Ampqrs e

mjs and use the self-duality of the E7(7) generator to rewrite the

left hand side in (4.10) as

1

24
Σxywz ǫ

xywzipqr U j
pqr + (i ↔ j) =

1

24
Σxywz ǫ

ixywzpqr δsp U
j
sqr + (i ↔ j) . (4.12)

The vanishing of this expression follows now from the Schouten identity applied to the

indices xywzpqrsj and the explicit symmetry in (ij).

The δA2i
jkl equation obtained by comparing the variation of (2.16) with (4.5), is

satisifed after using the vielbein equation and the selfduality of Σijkl and Amijkl. The

intermediate expressions are more involved and we omit them here.
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The E7(7) invariance of the A-equations (2.17) and (2.18) on the space of solutions of

the generalized vielbein equation (2.14) allows us to solve those equations at the origin of

the coset, where

Aij
1

∣∣
V=1

= δij , A2 i
jkl
∣∣
V=1

= 0 , (4.13)

and Bm
i
j and Amijkl are given in (3.11) and (3.12). Furthermore, since the Killing spinors

form an SO(8) matrix, they can be rotated away from all equations, which then involve

only the parameters αa|b and αa|bcd, and the Γ-matrices.

Let us first look at the A1 equation (2.17). Using (3.11), (4.10) and (4.13) it becomes

g δij =

√
2

4
iΓa

k(i

[
− i (m7 δab + αa|b)Γ

b
j)k + αa|bcd Γ

bcd
j)k

]
. (4.14)

Collecting the independent terms and using (2.22), we get

(3m7 + αa|a) δij − i αa|bcd Γ
abcd
ij = 0 , (4.15)

which sets the completely antisymmetric component α[a|bcd] to zero and fixes the trace

of αa|b via (3.14) such that α = 4
7 . All the other components of αa|b and αa|bcd are

left arbitrary.

It is more tedious to check that the A2-equation (2.18), which now simply reads

A2 i
jkl
∣∣
V=1

= 0 , (4.16)

is also solved if (4.15) is satisfied. To check this explicitly, we note that (4.16) is anti-

symmetric in [jkl], hence we may instead show that the two equations obtained by con-

tracting (4.16) with Γa
jk and Γab

jk are satisfied. This is actually easier than working with

the original equation, which is a fourth-rank tensor that must be expanded in the basis

of independent products of Γ-matrices. Instead, after the contraction, one ends up with a

second rank tensor, which is much simpler. Still given all anti-symmetrizations in (2.16)

and in (3.12), one ends up with a large number of terms which are best handled by a

computer.

To summarize, we have shown that a general solution to the generalized vielbein equa-

tion and the A-equations is given by

αa|b = −3

7
m7 δab + αab + αab , αa|bcd = αabcd + δa[bα̃cd] , (4.17)

where we used the same notation as in (3.16). All parameters in (4.17) are completely

arbitrary. The standard solution (2.19)–(2.21) is obtained by setting all those parameters

to zero. Then from (3.14) we get α = 4
7 which agrees with (2.21).

The reader might have noticed that the SO(7) representations that arise in the so-

lution (4.17) are precisely the same representations that must be set to zero in the pa-

rameters (3.19) of the general solution (3.17) and (3.18) to the GVP in d=11 to obtain

standard form with the fluxes in (3.21). However, one must be careful here because, as

we have noted at the end of section 3, the relation between the parameters αa|b and αa|bcd

on the d= 4 side and the parameters Xa|b and Xa|bcd on the d= 11 side is by no means
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straightforward as it involves, see table 1, both the E7(7) and the SU(8) rotations that can

mix different SO(7) components.

Let us now choose a particular solution in d = 4, for example the standard solu-

tion, (
◦

Bm
i
j ,

◦

A ijkl). Any other solution is then obtained by adding to it a solution,

(δBm
i
j , δAmijkl), to the homogenous equations given by setting the first term in (2.14)

and the left hand sides in (2.17) and (2.18) to zero. Since δBm
i
j and δAmijkl transform

homogeneously under SU(8), we may now apply the U rotation to those homogeneous

equations to revert to the real vielbein gauge (2.1). After converting to flat indices using

the metric vielbein, ea
m, and dropping the warp factor, the homogeneous part of the GVP

reduces to

δBa
C
[AΓ

b
B]C + δAaABCDΓ

a
CD = 0 , (4.18)

while the conditions for (δBa
A
B, δAaABCD) to be ‘in the kernel of the A-equations’ become

ΓaC(A δBa
B)

C = 0 , (4.19)

3 Γa [AB δBa
C]

D − 3Γa
EF δAEF [AB

a δC]
D − 4 δAa

ABCEΓa
ED = 0 . (4.20)

Those are equations of the type we have already encountered and solved above

in (3.4), (4.14) and (4.16), so we may readily write the solution

ea
mδBm

A
B = −4 i δXa|b Γ

b
AB − 2

3
δXa|bcd Γ

bcd
AB , (4.21)

ea
mδAmABCD = i δXa|b Γ

c
[ABΓ

ac
CD] + δXa|bcd Γ

b
[ABΓ

cd
CD] , (4.22)

where

δXa|a = 0 , δX[a|bcd] = 0 . (4.23)

While it is straightforward to verify the solution for (4.19), the proof for (4.20) is more

involved. We proceed similarly as before by first substituting (4.21) and (4.22) into (4.20)

and then contracting this equation with Γa
AB and Γab

AB, respectively, to show that the

resulting expressions indeed vanish if (4.23) is satisfied. Again we omit the lengthy inter-

mediate expressions.

This proves that given any solution on the d= 4 side, we can always correct it such

as to obtain after the U -rotation a solution with the tensor structure consistent with the

d=11 supersymmetry. Moreover, that solution is unique and hence determines the fluxes

f and Fabcd in terms of the scalar vielbein of the N = 8, d= 4 theory. Furthermore, the

constraints (4.23) on the homogeneous correction are precisely such that both f and Fabcd

do not get modified in the process, and hence, at a given point on the scalar coset, can be

read off from any solution on the d=4 side, even if that solution may not be the one that

has the correct tensor structure after it is U -rotated to d= 11. This both completes the

proof of the consistent truncation in [3] and shows that one can extract correct fluxes from

the standard solution that was found there.

5 The fluxes

In this section, we will outline in a systematic way two methods for computing the fluxes,

f and Fmnpq, in terms of d = 4 quantities. The first method follows directly from the
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discussion above and has been essentially spelled out already. The second one requires

some additional work to prove the flux formulae (2.27) and (2.28).

For a fixed scalar 56-bein (2.5) in d= 4, the starting point for computing the corre-

sponding field configuration in d=11 is the triplet,

emij , Bm
i
j , Amijkl , (5.1)

where emij is the generalized vielbein defined in (2.4) and (Bm
i
j ,Amijkl) is a solution to

the GVP (2.14) and the A-equations (2.17) and (2.18). One can either use the standard

inhomogeneous solution (2.19)–(2.21), or any other solution if that is more convenient. It

follows from the general solution to the GVP in section 3 that, for a given generalized

vielbein, Bm
i
j and Amijkl completely determine each other. Hence either of them contains

the full information about the fluxes. Here we choose to work with Amijkl for the simple

reason that it is an SU(8) tensor.

From the generalized vielbein we determine the metric, gmn, and the warp factor, ∆,

which in general are already quite difficult to obtain in a closed analytic form.

Next we turn to the fluxes. In the first method, we calculate the metric vielbein, em
a,

and solve (2.8) for the SU(8) rotation matrix, U , and then use the latter to rotate Amijkl to

d=11 according to (2.23). The resulting AmABCD tensor is a solution to the GVP (2.10)

and thus of the general form given in (3.18). We then read off the expansion coefficients,

Xa|b and Xa|bcd, from which the fluxes are obtained by projecting onto irreducible SO(7)

components, see (3.21),

f = 4
√
2Xa|a , Fabcd = 16

√
2X[a|bcd] . (5.2)

As was shown above, the result does not depend on which particular solution Amijkl of

the GVP we start with on the d=4 side.

A difficulty one encounters in trying to apply this construction in any specific example

is that both the metric vielbein, em
a, and the SU(8) rotation, U , are obtained by solving

quadratic equations, and can become quite complicated, if calculable analytically at all.

Hence, one would like to avoid having to perform the rotation explicitly by working with

SU(8) invariant quantities as in (2.9). The method how to do this was outlined in [3], and

here we expand on it.

We start on the d = 11 side with AmABCD that is obtained from Amijkl by the

U -rotation (2.23). Then the fluxes are given by the projections (5.2) of the expansion

coefficients of AmABCD in (3.18), so all that is needed is an effective way to extract those

two projections from the d=4 result. The problem here is that the basis of the Γ-matrices

used in (3.18) is not SU(8)-covariant and U -rotation mixes different terms in the expansion.

In order to construct SU(8)-covariant projections, we note that (2.1) and (2.8) imply

a covariant transformation between the Γ-matrices on the d=11 side and the generalized

vielbeine on the d=4 side, namely

Γa
ABU

A
iU

B
j = −i∆1/2 em

a emij , (5.3)

and

Γa
AB(U

A
i)
∗(UB

j)
∗ = −i∆1/2 em

a emij , (5.4)
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and it is this covariance that must be preserved. In particular, it implies that an SU(8)-

covariant basis for the expansion of the AmABCD tensor must be constructed from odd

products of Γ-matrices, which are then U -rotated into SU(8)-invariant contractions of the

vielbeine emij and emij . To implement this change of basis, we use Γ-matrix identities,

Γab
AB = − i

5!
ǫabcdefgΓcdefg

AB , Γabcde
AB =

i

2
ǫabcdefg Γ

fg
AB , (5.5)

and

Γa
[ABΓ

bcdef
CD] = Γ

[a
[ABΓ

bcdef ]
CD] +

5

3
δa[bΓ

|g|
[ABΓ

cdef ]g
CD] , (5.6)

to recast (3.18) in the form

AmABCD = −3

4
(S−1

◦

DmS)abΓ
a
[ABΓ

b
CD] + iXmabcd Γ

f
[ABΓ

abcdf
CD] +Xmabcdef Γ

[a
[ABΓ

bcdef ]
CD] ,

(5.7)

where Xmabcd and Xmabcdef are completely antisymmetric in their (flat) indices, and are

related to the original expansion coefficients in (3.18) by

Xmabcd = − 1

3 · 4!ǫabcdefg Xmefg , (5.8)

Xmabcdef =
1

5!
ǫabcdefg Xmg . (5.9)

Then from (5.2) we obtain12

f = 4
√
2 ea

mXma =
2
√
2

3
ǫabcdefg ea

mXmbcdefg , (5.10)

and

Fabcd = −8
√
2 e[a

mǫbcd]
efghXmefgh . (5.11)

One should note the antisymmetrization in (5.11) that projects onto the correct tensor

structure of the four-form flux in d=11 supergravity.

To project out the components (5.8) and (5.9) from the AmABCD tensor, we can

simply contract with the basis tensors Γf
[ABΓ

abcdf
CD] and Γ

[a
[ABΓ

bcdef ]
CD] , which are orthogonal

with respect to each other and normalized according to

Γc
[ABΓ

a1a2a3a4c
CD] Γd

ABΓ
b1b2b3b4d
CD = 48 · 4! δa1a2a3a4b1b2b3b4

, (5.12)

Γ
[a1
[ABΓ

a2a3a4a5a6]
CD] Γ

[b1
ABΓ

b2b3b4b5b6]
CD = 32 · 5! δa1a2a3a4a5a6b1b2b3b4b5b6

. (5.13)

The same projections in terms of SU(8)-covariant products of the vielbeine, emij and emij ,

obtained using (5.3) and (5.4), can be applied to Amijkl. In this way, after passing to

curved indices, we obtain explicit formulae for the fluxes expressed entirely in terms of

d=4 quantities:

f = −
√
2

48 · 5! ∆
4 gmu ǫmnpqrst e

n
ij (e

[pēqerēset])kl Au
ijkl , (5.14)

12The indices on the Levi-Civita symbol are raised and lowered with the background metric.
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and

Fmnpq = − i

144
∆4 grw erij(e

[sēteuēvew])kl ǫstuv[mnpAq]
ijkl . (5.15)

Those expressions for the fluxes are valid for any Amijkl satisfying the GVP and the

A-equations. In particular, they hold for
◦

Amijkl, the standard solution (2.20).

For the particular Amijkl that has the correct tensor structure in d = 11, we may

combine (5.14) and (5.15) into (2.26), however, for other Amijkl this equation will in

general not hold if there are other than just the flux components in AmABCD. We will

illustrate this on some examples in the next section.

Finally, let us note that by plugging in the general solution for Amijkl derived in

sections 3 and 4, and parametrized in terms of αa|b and αa|bcd, in the flux formulae (5.14)

and (5.15), we can directly relate two of the X-parameters, namely, X and Xabcd, to the α-

parameters. Working out projection formulae for the other SO(7) irreducible components,

similar relations can be obtained for other parameters as well. However, it is clear that,

largely because of the E7(7) rotation that mixes different Γ-matrix structures, the final

formulae will be quite involved and not very illuminating.

6 Analytic examples

In this section we illustrate various points of the general discussion on three examples: (i)

the SO(8) critical point, (ii) the SO(7)− invariant family, and (iii) the SO(7)+ invariant

family, for which the U -rotations are known in a closed form.

6.1 SO(8)

We begin with the maximally supersymmetric critical point,

uij
IJ = δij

IJ , vijIJ = 0 , (6.1)

corresponding to the AdS4 × S7 solution [23] of d=11 supergravity,

em
a =

◦

em
a , f = 3

√
2m7 , Fabcd = 0 . (6.2)

The generalized vielbein and the U -rotation are simply,

emij = i
◦

ea
m η̄iΓaηj , U i

A = ηiA , (6.3)

and the general solution to the GVP and the A-equations, c.f. (4.17), is

◦

ea
mAmijkl =− i

4

(
− 3

7
m7 δab + αab + αab

)
η̄[iΓ

bcηj η̄kΓ
cηl]

− 3

2

(
αabcd + δa[bα̃cd]

)
η̄[iΓ

[bcηj η̄kΓ
d]ηl] . (6.4)

Since the U -rotation is merely a change between the two types of SU(8) indices, the X-

parameters are proportional to the α-parameters,

Xa|b = −1

4
αa|b , αa|bcd = −2

3
Xa|bcd , (6.5)
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and, in particular, we have

X =
3

4
m7 , Xabcd = 0 , (6.6)

from which the fluxes (6.2) follow.

We also note that by setting the explicit α-parameters in (6.4) to zero, we recover

the standard inhomogenous solution, which in this example satisfies the correct tensor

structure condition. This is not surprising, as by construction the standard inhomogenous

solution (2.19) and (2.20) has the same symmetry as the scalar background in d=4, and

the only SO(8)-invariant α-parameter that one can have is a constant singlet. The formula

for the fluxes based on the standard solution was already tested in [3].

We may also verify the fluxes by evaluating the projections (5.14) and (5.15). From

the orthonormality of the Killing spinors and Γ-matrix identities, we have

ǫmnpqrst e
n
ij (e

[pēqerēset])kl η̄[iΓ
bcηj η̄kΓ

cηl] = 192 · 5! i ◦

em
a , (6.7)

and

ǫmnpqrst e
n
ij (e

[pēqerēset])kl η̄[iΓ
[bcηj η̄kΓ

d]ηl] = 0 , (6.8)

where (6.8) also follows from the SO(8) invariance. Substituting those contractions in (5.14)

and using the tracelessness of αab and αab, we get

f = −
( √

2

48 · 5!

)
×
(

3

28
i

)
× (192 · 5! i)× 7m7 = 3

√
2m7 . (6.9)

The vanishing of the internal flux is verified similarly.

6.2 SO(7)−

The SO(7)−-invariant sector of N = 8, d= 4 supergravity provides the simplest example

with a nontrivial U -rotation [42]. By symmetry, the standard inhomogenous solution must

have the correct tensor structure in d = 11 and we verify that at the SO(7)− critical

point it yields the fluxes of Englert’s ‘parallelizing torsion solution’ of N = 1, d = 11

supergravity [43].

The scalar 56-bein in this sector forms a one parameter family [39]

uij
IJ(t) = u1(t) δ

IJ
ij + u2(t)C

ijIJ
− , vijIJ(t) = v1(t) δ

IJ
ij + v2(t)C

ijIJ
− , (6.10)

where CIJKL
− is an anti-selfdual tensor satisfying

CIJMN
− CMNKL

− = 12δIJKL − 4CIJKL
− , (6.11)

and

u1(t) = cosh3(2t) , u2(t) =
1

2
cosh(2t) sinh2(2t) ,

v1(t) = i sinh3(2t) , v2(t) =
i

2
cosh2(2t) sinh(2t) .

(6.12)

The scalar potential along the SO(7)− family is

P(t) = −2 g2 cosh5(4t)(5− 2 cosh(8t)) , (6.13)
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and has two critical points: the maximally supersymmetric one at t = 0, and the SO(7)−

point at t = 1
4 arcoth(

√
5).

The solution of d=11 supergravity corresponding to the SO(7)− point can be expressed

entirely in terms of an SO(7)− invariant rank three tensor, Sabc, on S7,

Sabc =
i

16
CIJKL
− η̄IΓ[abη

J η̄KΓc]η
L , (6.14)

known as the ‘parallelizing torsion,’ in terms of which the generalized vielbein is given by

emij = i (u1 + v1) η̄
i
◦

Γmηj + (u2 + v2)Smab η̄
iΓabηj . (6.15)

As usual, the conversion between the flat/curved indices on the Γ-matrices and the Sabc

tensor is done with the background vielbeins. To derive (6.15), one uses the ‘inverse’

of (6.14), see [42],

CIJKL
− =

i

2
Sabc η̄

[IΓabηJ η̄KΓcηL] . (6.16)

Then, using13

SacdSbcd = 6 δab , (6.17)

the metric and the warp factor are calculated from the metric lift formula (2.9):

∆−1gmn = cosh3(4t)
◦

gmn , ∆−1 = cosh7/3(4t) . (6.18)

The metric vielbein, em
a, can be chosen to be proportional to

◦

em
a,

em
a = cosh−1/3(4t)

◦

em
a , (6.19)

which means that the S-terms in AmABCD and Bm
A
B will be absent. As we already

pointed out, once the normalization at the SO(8) point is fixed, the overall normalization

of the d = 11 metric (as well as the other fields) is fixed along the whole family, and in

particular at the SO(7)− stationary point.

The U = Φη matrix for those vielbeine was calculated in [42],

Φ =
1

8
(e−7iτ + 7eiτ ) +

i

48
(e−7iτ − eiτ )SabcΓ

abc , (6.20)

where the parameter τ is related to t by

tan(2τ) = tanh(2t) . (6.21)

To evaluate
◦

Amijkl of the standard inhomogenous solution (2.20), we first rewrite the

Killing vectors in terms of the Killing spinors (2.6). It follows from (2.6) and (2.7) that

◦

DmKn
IJ = −m7 η̄

I
◦

Γmnη
J , (6.22)

and we use it to similarly rewrite the second term in (2.20). Finally, after using (6.16) in

the scalar 56-bein (6.10), and the orthonormality of the Kiling spinors, we are left with

13For a full list of identities satisfied by torsion tensor, see [39]. They imply that any contraction and

background derivative of the torsion tensor(s) can be reduced to terms that are linear in it.
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some tedious Γ-matrix algebra that is required to simplify the resulting expressions. A

number of useful identities to do that can be found in [28] and [4]. The result is

◦

Amijkl = − i

28
m7 sinh(8t)

◦

emd Sabcη
[iΓdaηj η̄kΓbcηl] +

3 i

28
m7 cosh(4t)

◦

embη̄[iΓ
baηj η̄kΓ

aηl] .

(6.23)

The U -rotation to d = 11 requires similar algebra, but is even more tedious and we

omit here the intermediate steps. At the end we find

◦

AmABCD =
i

28
m7(5− 2 cosh(8t))

◦

em
aΓab

[ABΓ
b
CD]

+
1

48
m7 sinh(4t)

◦

em
aǫabcdefgSefgΓ

b
[ABΓ

cd
CD] .

(6.24)

We see that since em
a and

◦

em
a are proportional, this tensor has the correct tensor struc-

ture (2.12) and we readily read off the fluxes not just at the critical points, but along the

entire SO(7)− family,

f =
√
2m7 cosh

1/3(4t)(5− 2 cosh(8t)) , (6.25)

Fabcd =

√
2

3
m7 cosh

1/3(4t) sinh(4t) ǫabcdefgSefg . (6.26)

Once more the correct tensor structure of (6.24) is guaranteed by the SO(7)−

symmetry — one cannot construct from the torsion tensor, Sabc, and the vielbein, em
a,

any other coefficients Xa|b and Xa|bcd than the singlet and the completely antisymmetric

tensor, respectively. However, the normalization of each term at the SO(7)− critical point

must agree with the known solution, which is a nontrivial test of our flux formulae.

The solution in [39, 42] is14

f̃ ≡ − i

24
∆−1/2ǫαβγδFαβγδ =

√
2 m̃7 (3− 4 tan2(4τ)) , (6.27)

Fabc =
1

24
∆−1/2ǫabc

defgFdefg = 2
√
2 m̃7 tan(4τ)Sabc , (6.28)

where the flux components, Fαβγδ and Fabcd, are with respect to the vielbein of the same

form as in (6.19), while f̃ is rescaled with respect to (1.2),

f̃ = ∆−1/2 f . (6.29)

Then, noticing that from (6.21) we have

5− 2 cosh(8t) = 3− 4 tan2(4τ) , sinh(4t) = tan(4τ) , (6.30)

we get

f =
√
2 m̃7∆

1/2 (5− 2 cosh(8t)) , (6.31)

Fabcd =
1

6
∆1/2ǫabcd

efgFefg =

√
2

3
m̃7∆

1/2 sinh(4t)ǫabcdefgSefg . (6.32)

14Since the same symbol in [39, 42] may denote quantities that are related by a rescaling to the ones

here, we put a tilde whenever the identification is not immediately obvious.
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We see that those fluxes agree with the ones in (6.25) and (6.26), provided we set

m̃7 = cosh3/2(4t)m7 . (6.33)

There is no explicit expression for m̃7 as a functions of t in [42], except that its relation

to the gauge coupling constant, g, changes along the family. Since we have g =
√
2m7, we

deduce from (6.33) that this relation must be

g =
√
2 cosh−3/2(4t) m̃7 . (6.34)

This implies that at the maximally supersymmetric point,

g =
√
2 m̃7 , (6.35)

while at the SO(7)− point,

g = 4 · 5−3/4 m̃7 . (6.36)

This agrees with (1.4) in [42] and is our first new non-trivial test of the lift formulae for

the fluxes.

6.3 SO(7)+

The SO(7)+ solution of N =1, d=11 supergravity is constructed in terms of an invariant

vector field ξa on S7 [44]. This implies that the Xa|bcd parameters of the standard inho-

mogenous solution in d=11 must vanish, which agrees with Fabcd = 0 [44], but allows for

Xa|b with both trace and traceless components. We will show that in fact the standard

inhomogeneous solution has a non-vanishing Xab term, which can be removed by a suitable

homogeneous correction, and that the resulting flux, f , agrees with the known solution.

Throughout this subsecton we set m7 = 1.

The scalar 56-bein of the one-parameter SO(7)+ invariant family is

uij
IJ(t) = u1(t) δ

IJ
ij + u2(t)C

ijIJ
+ , vijIJ(t) = v1(t) δ

IJ
ij + v2(t)C

ijIJ
+ , (6.37)

where CIJKL
+ is a self-dual tensor satisfying

CIJMN
+ CMNKL

+ = 12 δIJKL + 4CIJKL
+ , (6.38)

and

u1(t) = cosh3(2t) , u2(t) =
1

2
cosh(2t) sinh2(2t) ,

v1(t) = sinh3(2t) , v2(t) =
1

2
cosh2(2t) sinh(2t) .

(6.39)

All the dependence on the internal geometry can be expressed in terms of the vector field,

ξa(y) =
i

16
CIJKL
+ η̄IΓabηJ η̄KΓbηL , (6.40)

and a scalar function, ξ(y), defined by

ξaξa = (3− ξ)(21 + ξ) . (6.41)
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A complete list of identities satisfied by ξa and ξ and their derivatives as well as further

discussion of their properties can be found in [44].

Once more, (6.40) can be inverted by [44],

CIJKL
+ =

1

12
(9 + ξ) η̄[IΓaηJ η̄KΓaηL]

− ξaξb

4(3− ξ)
η̄[IΓaηJ η̄KΓaηL] +

i

12
ξa η̄[IΓabηJ η̄KΓbηL] ,

(6.42)

which is then used to rewrite the 56-bein (6.37). It is then straightforward to obtain the

generalized vielbein (2.4), which reads

emij =

[
(u1 + v1)−

1

3
(u2 + v2)(3 + ξ)

]
i η̄iΓmηj

+ (u2 + v2)
ξm ξa

3(3− ξ)
i η̄iΓaηj +

1

3
(u2 + v2) ξ

a η̄iΓamηj ,

(6.43)

where the conversion to curved indices is with the background vielbein,
◦

ea
m.

At this point it is convenient to switch to the parameter,

τ =
e8t − 1

3 (e8t + 7)
, (6.44)

introduced in [44], and absorb any dependence on ξ into the function

H(ξ, τ) =
(1 + 21τ)√

(1 + 63τ2)− 2 ξ τ (1 + 9τ)
. (6.45)

In the new parametrization, the maximally supersymmetric critical point is at τ = 0, while

the SO(7)+ critical point is at τ = 1
33 (2

√
5− 3) or, equivalently, at 16 t = ln 5.

From the generalized vielbein (6.43), one calculates the metric, the warp factor and

the metric vielbein. The latter is given by [26]

em
a = λ1/2

[
δm

a −
(
1− 1

H

)
ξmξa

]
, (6.46)

where ξa is the unit vector field corresponding to ξa, and

λ =
(1− 3τ)1/3

(1 + 21τ)1/3
H2/3 . (6.47)

The warp factor is

∆ =
(1− 3τ)7/6

(1 + 21τ)7/6
H4/3 . (6.48)

We note that the overall τ -dependent normalization factors in (6.47) and (6.48), that

follow from the lift formula for the metric (2.9), differ from those in [26] which were obtained

by a different method. While this is irrelevant for a solution at the critical point, the

correct τ -dependent normalization is needed to obtain lifts of more general solutions, such

as RG-flows.
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The U = Φη matrix was given in [26] and it reads

Φ = cosϑ+ sinϑ (i ξaΓa) , (6.49)

where

cos(2ϑ) =
H

(1 + 21τ)
(1− τξ) , sin(2ϑ) =

Hτ

(1 + 21τ)

√
(21 + ξ)(3− ξ) . (6.50)

Note that in this example Φ (and U) is a real and hence an orthogonal matrix.

The evaluation of the
◦

Amijkl tensor (2.20) of the standard inhomogenous solution

follows the same steps as in the SO(7)− example, but is much more tedious as may be

inferred from the presence of higher rank symmetric tensors that can be constructed from

products of ξa’s. We refer the reader to [4, 44] for some useful identities.

Let us expand the tensor Amijkl(α, β) on the left hand side in (2.20) as

Amijkl(α, β) = αA(α)
mijkl + βA(β)

mijkl . (6.51)

The tensors on the right hand side, written in the form similar to (6.43) that allows us to

trace the origin of individual terms, are given by

A
(α)
mijkl = (u1v2 − u2v1)

[
1

2
ξa η̄[iΓmηj η̄kΓ

aηl] −
1

6
ξm η̄[iΓ

aηj η̄kΓ
aηl] (6.52)

− i

12
(3− ξ) η̄[iΓm

aηj η̄kΓ
aηl] +

i

12

ξmξa

(3− ξ)
η̄[iΓ

abηj η̄kΓ
bηl]

]
,

A
(β)
mijkl = (u21 − v21) η̄[iΓm

aηj η̄kΓ
aηl]

+ (u1u2 − v1v2)

[
4i

3
ξa η̄[iΓmηj η̄kΓ

aηl] (6.53)

− 2

9
(3 + ξ) η̄[iΓm

aηj η̄kΓ
aηl] +

2

9

ξmξa

(3− ξ)
η̄[iΓm

aηj η̄kΓ
aηl]

]

+ (u22 − v22)

[
− 16i

3
ξa η̄[iΓmηj η̄kΓ

aηl] −
2i

9
(9 + ξ) ξm η̄[iΓ

aηj η̄kΓ
aηl]

+
2i

3

ξmξaξb

(3− ξ)
η̄[iΓ

aηj η̄kΓ
bηl] +

4

9
(15 + 2ξ) η̄[iΓm

aηj η̄kΓ
aηl]

− 2

9

ξmξa

(3− ξ)
η̄[iΓ

abηj η̄kΓ
bηl]

]
. (6.54)

The U -rotation is now effectively a substitution in (6.52) and (6.53) of the form

η̄iΓ
aηj 7−→ cos(2ϑ) Γa

AB − i sin(2ϑ) ξb Γab
AB + 2 sin2 ϑ ξa ξb Γb

AB , (6.55)

and

η̄iΓ
abηj 7−→ Γab

AB + 2 i sin(2ϑ) ξ[aΓ
b]
AB + 4 sin2 ϑ ξcξ[a Γ

b]c
AB . (6.56)

Note that, in particular, we have

ξa η̄iΓ
aηj 7−→ ξa Γa

AB , (6.57)
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as expected from a rotation about ξa.

After tedious algebra, we find

AmABCD(α, β) =P1 ξm Γa
[ABΓ

a
CD] + P2 ξ

a Γm[ABΓ
a
CD] + P3 ξmξaξb Γa

[ABΓ
b
CD]

+Q1 iΓm
a
[ABΓ

a
CD] +Q2 i ξmξa Γab

[ABΓ
b
CD] ,

(6.58)

which has the correct form (3.18) of a solution to the GVP in d = 11. Indeed, the first

three terms on the right hand side, with

P1

P0
=

2

3
H2 ,

P2

P0
= −2H ,

P3

P0
= −2H(H − 1) , (6.59)

and the common factor

P0 = −3

4
(α+ 4β)

τ(1 + 9τ)

(1 + 21τ)2

√
(21 + ξ)(3− ξ) , (6.60)

combine correctly to

− 3

4
(α+ 4β) (S−1

◦

DmS)(ab) Γ
a
[ABΓ

b
CD] , (6.61)

confirming the relation α + 4β = 1. This can be checked by evaluating the background

derivative of the siebenbein (6.46) using two identities

◦

Dmξ = 2
√
(21 + ξ)(3− ξ) ξm ,

◦

Dmξa =

√
3− ξ

21 + ξ
(

◦

em
a − ξmξa) ,

(6.62)

that follow from the definition (6.40).

The coefficients in the remaining two terms in (6.58) are considerably more compli-

cated:

Q1 = −1

8
(α− 4β)

1 + 21τ

1− 3τ

1

H
+

1

8
(α+ 4β)

1− 3τ

1 + 21τ
H , (6.63)

and

Q2 =β
1 + 21τ

1− 3τ

1

H2
+

1

8
(α− 4β)

1 + 21τ

1− 3τ

1

H

− 1

4
(α+ 4β)

1 + 18τ + 225τ2

(1− 3τ)(1 + 21τ)

− 1

8
(α+ 4β)

1− 3τ

1 + 21τ
H +

1

4
(α+ 4β)

1− 3τ

1 + 21τ
H2 .

(6.64)

Comparing (6.58) with (3.18), we read offXma and confirm thatXmabc = 0. By contracting

the former with the inverse siebenbein, see (3.19), and setting α and β to the required

values (2.21), we find that

Xa|b = X0 δ
ab +X2 ξ

aξb , (6.65)
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where

X0 = − (21τ + 1)2 − 7H2(1− 3τ)2

56H4/3(1− 3τ)7/6(21τ + 1)5/6
,

X2 =

(
H2 − 1

) (
2H2(1− 3τ)2 − (21τ + 1)2

)

8H4/3(1− 3τ)7/6(21τ + 1)5/6
.

(6.66)

Decomposing Xa|b into irreducible components (3.20), we get

X = X0 +
1

7
X2 , (6.67)

Xab = −1

7
X2 δab +X2 ξaξb . (6.68)

From (5.2) we now obtain the flux along the entire SO(7)+ family,

f =

√
2H2/3

(
H2(1− 3τ)2 − 198τ2 − 36τ + 2

)

(1− 3τ)7/6(21τ + 1)5/6
, Fabcd = 0 . (6.69)

Once more, at the SO(8) point with τ = 0 and H = 1, we reproduce (6.2). At the SO(7)+

point, we have 99τ2 + 18τ = 1, and therefore the expression for f simplifies to

f = 21/2 · 53/4∆2 , (6.70)

which agrees with the known solution, see table I in [26].15 As required by consistency,

the Freund-Rubin parameter f0 = f∆−2 becomes y-independent at the critical point.

Hence the standard inhomogeneous solution does reproduce the correct flux at the SO(7)+

point as well.

However, since X2 does not vanish outside the maximally supersymmetric point, we

conclude that in this example the standard inhomogenous solution does not have the correct

tensor structure (2.12). This can be seen even more directly by comparing the last two

terms in (6.58) with the emaf term in (2.12). In order that the matrix

Q1
◦

ema +Q2 ξmξa , (6.71)

be proportional to ema, we must have

Q2 −
(

1

H
− 1

)
Q1 = 0 . (6.72)

Evaluating the left hand side we get

(α+ 4β)

(
H2 − 1

) (
2H2(1− 3τ)2 − (21τ + 1)2

)

8H2(3τ − 1)(21τ + 1)
= 0 , (6.73)

which can vanish at each point on S7 when either H ≡ 1, which is the maximally supersym-

metric solution, or when α+4β = 0. However, the latter cannot be satisfied given (2.21). In

15The comparison involves setting the same overall normalization of the solutions, see section 7.4 below.
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the next section we will argue that this appears to be a generic feature of the Amijkl(α, β)

tensor in (2.20). To see that there is no discrepancy here at all, we verify explicitly that

the standard inhomogeneous solution can be shifted as in section 4, such that one obtains

a solution satisfying the correct tensor structure condition. From the general solution to

the homogeneous equations found in sections 3 and 4, and using the SO(7)+ invariance to

limit the allowed α-parameters, we find that the correction must be of the form

δAmijkl =

(
αm

n +
3

7
δm

n

)
A(α)

n ijkl −
(
1

4
αm

n +
3

28
δm

n

)
A(β)

n ijkl . (6.74)

The result for the U -rotated tensor can be read-off from the α and β components of

AmABCD(α, β) in (6.58). We then find that the S−1
◦

DmS terms cancel, as they should.

Imposing the correct tensor structure condition yields a unique solution

αm
n(ξ, τ) = a0(ξ, τ) δm

n + a2(ξ, τ) ξmξn , (6.75)

where

a0 = −1

7
a2 = −

(
H2 − 1

) (
2H2(1− 3τ)2 − (21τ + 1)2

)

14(21τ + 1)2
. (6.76)

Note that αm
m = 0 as required, however, the correction breaks the SO(7) ‘background

covariance’ in the sense of the comment after (3.14).

7 Numerical examples

In this section, we summarize some numerical tests that led us to reexamine the proof of

the consistent truncation in [3], and discuss the standard inhomogenous solution and fluxes

for additional critical points. We also found ‘numerical explorations’ to be quite helpful in

developing analytic arguments in sections 3–5. The term ‘numerical’ is used here in a wide

sense; it means either an actual numerical solution to the system of equations given by

the consistent truncation ansätze, or simply an explicit evaluation (mixed numerical and

analytic) of expressions using specific coordinates on the internal manifold and a particular

representation of the internal Γ-matrices.

It is important to note that the construction of the lift for the metric and the fluxes

at a given point on the scalar manifold, E7(7)/SU(8), is ‘algebraic’ with respect to the

internal space. This is of course manifest for the metric, cf. (2.9), but is also true for

the fluxes, the simple reason being that the background covariant derivative always acts

on the Killing spinors or vectors on S7 and, by virtue of (2.7) or (6.22), respectively,

is effectively an algebraic operation. Hence, all equations given by the ansätze can be

evaluated and then solved at each point on S7 independently, and the solution involves

only algebraic operations.

7.1 Preliminaries

In the following, we use stereographic coordinates on S7 and the Killing spinors that are

obtained as follows:16 Represent S7 as the surface, (X1)2+ . . .+(X8)2 = m−2
7 , in R

8. The

16For a systematic discussion, see [45] and the references therein.
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stereographic coordinates, ya ∈ R (a = 1, . . . , 7), are defined by

Xi = m−1
7

2yi

1 + (ya)2
, X8 = m−1

7

1− (ya)2

1 + (ya)2
, i = 1, . . . , 7 , (7.1)

and we use
◦

ea = −2m−1
7 dya

1 + (ya)2
, a = 1, . . . , 7 , (7.2)

as the background siebenbein. Then the spin-connection 1-forms are
◦

ωab = −m7 (y
a ◦

eb −
yb

◦

ea), such that the Ricci tensor is
◦

Rab = 6m2
7 δab.

The matrix, η = (ηIA), of the Killing spinors is

η(y) =
1+ i ya Γa

√
1 + (yb)2

. (7.3)

It is easy to check that ηI ’s satisfy the Killing spinor equation (2.7), and that η is a real

orthogonal matrix. At the North Pole, ya = 0, we have ηIA = δIA and
◦

ωab = 0.

We use the SO(7) gamma matrices, Γa
AB, a = 1, . . . , 7, that are antisymmetric and

purely imaginary and satisfy

ΓaΓb + ΓbΓa = 2 δab 1 , (7.4)

Γ7 = iΓ123456 . (7.5)

If needed, explicit representations with these properties can be found in appendix C.1

of [46], or in appendix C of [28]. Note that the latter is for the negative Euclidean signature

and gives the opposite sign in (7.5).

7.2 Initial numerical tests

In our initial tests, we looked at the orginal flux formula (2.26) for two non-supersymmetric

critical points of the scalar potential of N = 8, d = 4 supergravity: the perturbatively

unstable SU(4)− point and the perturbatively stable SO(3) × SO(3) point. The same

calculation performed for a random scalar 56-bein yields similar results.

Starting with (2.26), which is (7.5) in [3], we evaluate the trace over m = q. Since the

flux Fmnpq should be totally antisymmetric, we then get

12

7
(if) gnp = −i

√
2

480
∆4 ǫpqrstuv e

q
ij(e

rēsetēuev)klAn
ijkl(α, β) . (7.6)

The left hand side is now proportional to the metric tensor, and thus its contraction with

the inverse metric tensor ∆−1gmn in (2.9) should yield a result proportional to the identity

matrix. To test that, we would fix a point on S7, either at the North Pole or at some

random value of the stereographic coordinates, and evaluate numerically:

(i) the inverse tensor in (2.9), and

(ii) the tensor defined by the right hand side in (7.6) for arbitrary values of α and β.
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V Symmetry X Xabcd Xab Xab Xabcd δa[bX̃cd]

S0600000 SO(8) *

S0668740 SO(7)− * *

S0698771 SO(7)+ * *

S0719157 G2 * * * * * *

S0779422 SU(3)×U(1) * * * * * *

S0800000 SU(4)− * * *

S0880733 SO(3)× SO(3) * * * * * *

S1200000 U(1)×U(1) * * * * * *

S1400000 SO(3)× SO(3) * * * * * *

Table 2. Irreducible components in AmABCD

(
4

7
, 3

28

)
at some critical points.

The result is that for the SU(4)− point, the contraction between the tensors (i) and (ii) is

not proportional to the unit matrix, while for the SO(3) × SO(3) point, the tensor in (ii)

is not even symmetric. In both examples, the undesired terms are proportional to α+ 4β

and do not vanish for the standard inhomogenous solution (2.21). In retrospect, they arise

because
◦

Amijkl does not satisfy the correct tensor structure condition (2.12).

7.3 Tensor structure tests

The main purpose of a more systematic numerical exploration is to determine the structure

of the
◦

AmABCD tensor obtained by the U -rotation of the
◦

Amijkl tensor of the standard

inhomogenous solution.

Once more we take a scalar 56-bein, V , for one of the critical points and choose a

random point on S7. We then evaluate numerically the metric tensor, gmn, and the warp

factor, ∆, using (2.9). By taking the matrix square root of the metric tensor, we find the

metric vielbein, em
a, and its inverse. Then (2.8) becomes a quadratic equation for the

SU(8)-matrix, U , with the latter determined up to an overall sign that cancels in (2.23).

The resulting
◦

AmABCD tensor is expanded in the canonical basis, cf. (3.18), and we read-off

the expansion coefficients, Xma and Xmabc. Finally we evaluate Xa|b and Xa|bcd in (3.19)

and decompose them into irreducible SO(7) components (3.20).

Our results are summarized in table 2, where the star indicates that a given irreducible

component does not vanish. The critical points are listed in the first column using the

labelling scheme in [20] that is based on the value of the cosmological constant. The

second column gives the symmetry of each point, which is perhaps more recognizable than

the label. The reader may consult [20] for additional information about and references for

each point. The last four columns are the components that violate the tensor structure

condition: we see that already the highly symmetric G2 solution gives rise to all possible

tensor structures. This table includes all ‘old’ critical points and two ‘new’ ones, S0880733

and S1200000, first found numerically in [18, 20] and then further investigated in [19].
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V Symmetry −P∗/g
2 f0/m7 Refs.

S0600000 SO(8) 6 4.242641 [23]

S0668740 SO(7)− 6.68740 4.941059 [39, 43]

S0698771 SO(7)+ 6.98771 4.728708 [26, 44]

S0719157 G2 7.19157 5.085212 [26]

S0779422 SU(3)×U(1) 7.79422 5.511352 [29]

S0800000 SU(4)− 8 5.656854 [47]

S0880733 SO(3)× SO(3) 8.80733 6.227729 —

S1200000 U(1)×U(1) 12 8.485281 —

S1400000 SO(3)× SO(3) 14 9.899495 [30]

Table 3. The f0-flux at some critical points.

7.4 Critical points

The calculation in section 7.3 also gives us the flux, f , which can be readily compared with

the known lifts of critical points. Recall that at a critical point, the flux, f , along AdS4

is by conformal invariance and the Bianchi identity of the form f = f0∆
2, where f0 is a

constant. We determine numerically the value of f0 from the coefficient Xma in
◦

AmABCD

using (5.10). Then we verify that f0 is indeed constant by performing the same calculation

for two or more points on the sphere. The results are listed in table 3.

Next we compare our numerical results with the known solutions. This requires en-

suring that a solution (1.1)–(1.2) obtained from the lift and a solution we compare it with

have the same overall normalization. The potential mismatch between the normalizations

comes from the fact that the field equations of d = 11 supergravity are invariant under

the rescaling

gMN → λ gMN , FMNPQ → λ3/2FMNPQ , (7.7)

where λ is a constant. This rescaling preserves the form of a solution (1.1)–(1.2), but

changes the radius of AdS4 and the overall scale of the internal metric and the flux. Let us

also note that the relative normalization between the AdS4 and the internal parts of the

metric and the flux is completely fixed by the equations of motion. In particular, from a

linear combination of the Einstein equations, we have17

Rm
m +

5

4
Rµ

µ = f2
0∆

4 , (7.8)

which effectively is the equation of motion we are testing here.

The solution obtained from the lift comes with a particular normalization determined

by the explicit embedding of the d = 4 solution in eleven dimensions. Specifically, the

17See, e.g. (3.7) in [26]. As shown there, this equation implies the relation 15m2
4γ

−1/2−f2
0 γ

−5/3 = 42m2
7,

explaining the powers of γ appearing in (7.11).
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radius, L, of AdS4 in (1.1) is given by

L2 ≡ m−2
4 = − 3

P⋆
, (7.9)

where P∗ is the value of the scalar potential of the N =8 theory [1],

P = −g2
(
3

4

∣∣A1
ij
∣∣2 − 1

24

∣∣∣A2i
jkl
∣∣∣
2
)
, (7.10)

at the critical point. The normalization of the internal metric and the flux are in turn

determined by the lift formulae (2.9) and (5.2).

To test the first four points, we use solutions summarized in table I in [26], where

we find

m2
4 = am2

7 γ
1/2 , f0 = bm7 γ

5/6 . (7.11)

The values of the constants a and b depend on the critical point under consideration and

can be read off from table I in [26], while γ is an arbitrary parameter that sets the overall

normalization of the solution. For each critical point we find the correct γ by solving (7.9)

with m4 in (7.11). Then we use this particular value of γ to evaluate f0 in (7.11) and in

all four cases find a complete agreement with the numerical values in table 3.

The SU(3) × U(1) solution is given in [29]. From (4.29) and (4.33) in that paper

we get18

f0 =
37/4

23/2
1

L
. (7.12)

At the critical point,

P∗ = −35/2

2
g2 , (7.13)

so from (7.9), and recalling that g =
√
2m7, we get

1

L
= 33/4m7 . (7.14)

Substituting this in (7.12) yields

f0 =
35/2

23/2
m7 ≈ 5.51135m7 , (7.15)

which agrees with the numerical value in table 3.

The solution at the SU(4)− critical point was found in [47]. For the comparison we

use the explicit formulae (4.70) and (4.71) in [35], which after rescaling the flux (see,

footnote 18) read

ds211 = ds2AdS4
+ . . . , F(4) =

√
3

2

1

L
volAdS4 + . . . . (7.16)

However, the metric obtained from the lift (2.9) has a nonvanishing constant warp factor,

∆ = 2−2/3. Reintroducing this warp factor in (7.16) by rescaling the metric by ∆−1 and

18There is a difference in the normalization of the flux in [29] and in this paper, F(4) =
√
2FCPW

(4) .
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the flux by ∆−3/2, we get f0 =
√
6/L. Then, using P∗ = −8g2, and normalizing the AdS4

radius according to (7.9), we get

f0 = 4
√
2m7 ≈ 5.65685m7 , (7.17)

which is the same as the numerical value obtained from the lift.

Finally, the flux, f0, for the SO(3)×SO(3) critical point has been calculated in [30] by

solving (7.8), where the metric is obtained from the lift formula (2.9). Once more we find

that it agrees with the numerical result in table 3. Analytic solutions for the remaining

two points in table 3 are not known explicitly in closed form.

In table 3 we have also listed the values of the scalar potential at each of the critical

points. We see that there is a universal relation between P∗, or equivalently the radius of

AdS4, and f0, which in our normalization reads

− P∗

g2
=

√
2
f0
m7

. (7.18)

In principle, this relation is a consequence of (7.8), but we are not aware of any simple

proof of it. The difficulty here is that the components of the Ricci tensor in (7.8) are for

the full d=11 metric.

Curiously, the relation (7.18) holds for some other field configurations, for instance in

the entire SO(7)− invariant sector, see (6.13), (6.18) and (6.25). However, it is not valid

in general, in particular, at a generic point in the SO(7)+ sector, where f∆−2, c.f. (6.48)

and (6.69), has a nontrivial dependence on the sphere coordinates which cancels out only

at the two critical points.

While our tests in this section were limited only to solutions corresponding to the

critical points, and we looked only at the flux component along AdS4, it is clear that the

agreement we have found is a striking confirmation of the lift formulae for the flux.

8 Conclusions and outlook

In this paper we have clarified the structure of the equations given in [3] (that is, the

GVP and the A-equations) which characterize consistent truncations of eleven-dimensional

supergravity on AdS4 ×S7 to gauged supergravity. We have revealed a hidden degeneracy

in these equations and demonstrated that this degeneracy is precisely what is needed in

order to remove apparent discrepancies arising in the comparison between the d= 4 and

d=11 expressions, and to recover the correct tensor structure of the fluxes required by the

d=11 theory for any given non-trivial solution of the d=4 theory. Furthermore, we have

clarified the status of the non-linear ansätze for the fluxes, and shown that these constitute

invariants of the consistency equations.

These ‘flux lift formulae’ can now be put to practical use, and we have presented

several non-trivial tests, both analytic and numerical. It is also clear from our discussion

that on the one side an analytic calculation of the fluxes based on those formulae is quite

difficult and cumbersome, though perhaps it can be simplified in particular examples by

a judicious choice of coordinates and the Killing vectors/spinors. On the other side, a
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numerical calculation is reasonably straightforward and very likely may be sufficient to

determine properties of the full solutions one might be interested in.

Let us also remark that the degeneracy problem discussed in this paper does not arise

for the ‘mixed’ flux components: Fµbcd, Fµνbd, etc., which will no longer vanish for x-

dependent solutions of the d=4 theory; these can therefore be determined unambiguously

from the corresponding formulas given in [27] and [3, 4].

Finally, our results may also be relevant in the context of the AdS5×S5 compactifica-

tion of IIB supergravity, for which the analog of the metric lift formula (2.9) is known, but

a complete proof of the consistency is still lacking. Mutatis mutandis we anticipate that

the techniques developed here on the basis of [3] will also apply to this case.
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