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Abstract

It is well known in the context of four dimensional asymptotically flat spacetimes that the

leading order boundary metric must be conformal to unit de Sitter metric when hyperbolic

cutoffs are used. This situation is very different from asymptotically AdS settings where one

is allowed to choose an arbitrary boundary metric. The closest one can come to changing the

boundary metric in the asymptotically flat context, while maintaining the group of asymptotic

symmetries to be Poincaré, is to change the so-called ‘supertranslation frame’ ω. The most

studied choice corresponds to taking ω = 0. In this paper we study consequences of making

alternative choices. We perform this analysis in the covariant phase space approach as well

as in the holographic renormalization approach. We show that all choices for ω are allowed

in the sense that the covariant phase space is well defined irrespective of how we choose to

fix supertranslations. The on-shell action and the leading order boundary stress tensor are

insensitive to the supertranslation frame. The next to leading order boundary stress tensor

depends on the supertranslation frame but only in a way that the transformation of angular

momentum under translations continues to hold as in special relativity.

http://arxiv.org/abs/1112.2146v1
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1 Introduction

The development of gauge/gravity dualities has revolutionized string theoretic investigations of

quantum gravity. These dualities relate string theories in higher dimensions to certain quantum

theories in lower dimensions on fixed metric backgrounds. Consequently, they provide us with

a framework where one can address deep puzzles of quantum gravity concerning black holes,

singularities and the like, by performing calculations in lower dimensional non-gravitating settings.

The best understood case occurs in AdS/CFT [1] where string theory on AdS space space is dual to

certain gauge theory on the boundary of AdS space. Similar dualities are not known for spacetimes

of the most physical interest, such as cosmologies or flat Minkowski space. It is clearly of interest

to investigate if holographic dualities exist in these settings.

A well appreciated point is that although the most well understood cases of these dualities

involve AdS spaces and local CFTs, neither AdS nor CFTs are fundamental to these dualities. It is

often speculated that every possible boundary condition that defines a bulk string theory is dual to

a non-gravitational theory through the AdS/CFT correspondence. In the case of AdS spaces, the

correspondence arises from the way in which the AdS boundary parametrizes the space of possible

boundary conditions on bulk fields [2, 3]. In fact, the richness of AdS/CFT precisely comes from

the fact that in an asymptotically AdS settings one is allowed to choose a variety of boundary

conditions. In particular, one is allowed to choose an arbitrary boundary metric [4, 5, 6, 7, 8].

The corresponding situation in the asymptotically flat setting is very different. This is one of

the reason why the the subject of holographic duality for flat spacetime has resisted developments

over all these years. For example, for the four dimensional asymptotically flat spacetimes the

leading order boundary metric must be conformal to unit de Sitter metric when hyperbolic cutoffs

are used to define asymptotically flat spacetimes [9]. The structure of the asymptotic equations

is such that there is absolutely no freedom in the choice of the leading order boundary metric.

One is led to ask how much freedom one has at the next to leading order. Even there the freedom

is quite limited. As we discuss in detail in this paper, the closest one can come to changing the

boundary metric in the asymptotically flat context, while maintaining asymptotic symmetries to

be Poincaré, is to change the so-called ‘supertranslation frame’ ω. The information about the

supertranslation frame enters in the asymptotic expansion is a very specific way. In this paper

we study what it precisely means to change the supertranslation frame, and the consequences this

brings to the construction of the boundary stress tensor.

We perform this analysis in the covariant phase space approach of [10, 11, 12, 13, 14] as well as

in the holographic renormalization approach of Mann and Marolf [15, 16, 17]. The key results of

the present paper are as follows. First, we show that all choices for the supertranslation frame are

allowed. More precisely, that covariant phase space is well defined irrespective of how we choose



Supertranslations and Holographic Stress Tensor 4

to fix supertranslations. Second, we show that the on-shell action and the leading order boundary

stress tensor are insensitive to the supertranslation frame. Third, we show that the next to leading

order boundary stress tensor depends on the supertranslation frame but only in a way that the

transformation of angular momentum under translations continues to hold as in special relativity.

We will elaborate on these points momentarily, for now let us step back a bit and recall

certain basic facts about supertranslations. It turns out that the issue of supertranslations is

much related to the general notion of angular momentum. Recall that in special relativity the

notion of angular momentum is origin dependent. This origin dependence arises because there is

a four-parameter family of Lorentz subgroups in the Poincaré group. None of these subgroups is

preferred over any other, so the origin dependence is inevitable. The structure of the Lie algebra of

the Poincaré group then tells us the transformation property of the angular momentum under the

action of translations. The resulting notion matches with our intuitive understanding of angular

momentum.

For asymptotically flat spacetimes at spatial infinity, the asymptotic symmetries form an

infinite dimensional group—the so-called spatial infinity (SPI) group [18, 19]. The SPI group is

similar to the Poincaré group, except that the four translations are replaced by an infinite number

of angle dependent translations—the so called supertranslations. The group structure of the SPI

group is that of a semi-direct product of the supertranslation group with the Lorentz group. The

supertranslation group is the infinite-dimensional additive group of smooth functions on the unit

hyperboloid. The semi-direct product structure is as follows: if (α, ξa) and (β, ηa) are two elements

of the Lie algebra of the SPI group, with α and β arbitrary smooth functions on the hyperboloid

and ξa and ηa exact Killing vectors of the unit hyperboloid, then the SPI Lie bracket is [18, 19]

[(α, ξa), (β, ηa)] = (£ξβ −£ηα, [ξ, η]
a). (1.1)

Now it is immediate that the SPI group admits an infinite class of Lorentz subgroups. None of

these subgroups is preferred over the others. Therefore, a naive approach to defining angular

momentum suffers from the so-called supertranslation ambiguities: origin dependence of angular

momentum where the origin lies in an infinite dimensional space. We clearly need an additional

structure at spatial infinity that can reduce the SPI group to the Poincaré group. These points

were very well emphasized in [18, 20]. The main purpose of this paper is to systematically study

the freedom we have in the Poincaré reduction of the SPI group.

The plan of the rest of the paper is as follows. In section 2 we begin with various definitions

and provide a brief review of the counterterm construction of [15]. In this section we also review the

boundary conditions of Ashtekar, Bombelli, and Reula (ABR) [10], and present our supertranslated

generalization of the ABR boundary conditions. The main point of this section is to show that

the covariant phase space is well defined for our supertranslated boundary conditions.
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In section 3 we perform systematic expansion of the equations of motion and discuss Beig’s

integrability conditions [21, 22]. We find that despite the fact that we have an arbitrary function

ω in our asymptotic expansion, the integrability conditions do not change. As in [21, 22], the

integrability conditions require Lorentz charges constructed using

curl [4ǫcd(aσ
cσd

b)] (1.2)

to be zero. In this paper we choose, following ABR [10], mass aspect σ to be a symmetric function

on the hyperboloid. As a result, the integrability conditions are automatically satisfied [17, 22].

In this section we also perform a systematic expansion of the Mann-Marolf counterterm.

Section 4 is devoted to the study of the renormalized on-shell action and the expansion of

the boundary stress tensor. We show that the on-shell action and the leading order boundary

stress tensor are insensitive to the supertranslation frame. In section 5 properties of the boundary

stress tensor are studied in further detail. Our boundary stress tensor satisfies all the expected

properties: (i) it is conserved a la Brown-York [23], (ii) it reduces to the previous expression of

[17] when either (a) ω = 0 or (b) when ω represents a translation—i.e., when it is not a non-trivial

supertranslation, and (iii) the next to leading order boundary stress tensor transforms under

translations in an expected way. Finally, in section 6 we end with our conclusions and possible

future directions. Certain technical and computational details are relegated to two appendices. In

appendix A asymptotic expansion of the equations of motion is presented. In appendix B certain

details on the asymptotic expansion of the boundary stress tensor are presented.

As a last comment in this section, we wish to emphasize an important point. In the study

of asymptotic structure of spacetimes, the notions one introduces and the boundary conditions

one chooses are to some extent arbitrary; their justification lies in the perspective they bring.

Already there are variety of methods known to analyze asymptotic flatness and construct conserved

quantities [14, 18, 24, 25, 26, 27, 28, 29, 30]. These different approaches offer different perspectives.

All these methods ultimately lead to similar/equivalent results. For example, the framework

presented in [18] defines unambiguously a useful notion of angular momentum at spatial infinity,

and allows us to relate such construction to the analogous conserved quantities at null infinity.

The boundary conditions of [18] are further strengthened in [10] by demanding mass aspect σ to

be symmetric. These strengthened boundary conditions offer a new perspective: they lead to a

well defined covariant phase space. The study presented below should be taken in this spirit. Our

motivation is a combination of the ideas: (i) we wish to have an unambiguous and useful notion of

angular momentum, (ii) we wish to have a well defined phase space precisely in the sense of [10],

and finally (iii) drawing motivation from AdS/CFT we wish to explore systematically the freedom

we have in choosing the boundary conditions while maintaining (i) and (ii). The perspective

our study brings is that it illustrates the fact there is not a unique boundary condition, but
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rather a class of boundary conditions that all lead to a well defined notion of asymptotic flatness.

Various generalizations and variations to the study presented below are possible. This study is

a continuation of [15, 16, 17, 22, 31] and it largely motivated by comments in [15, 32, 33]. For

an alternative point of view on some of these ideas see [34]. Other studies of supertranslations

include a series of papers by Barnich et al [35] at null infinity.

2 Asymptotic Flatness, Actions, Supertranslations

In this section we first provide relevant definitions and a brief review of previous work. We then

spell out our boundary conditions.

2.1 Asymptotic Flatness and the Mann-Marolf Action

As in previous work [15, 16, 17, 22, 31], we introduce our notion of asymptotic flatness based on

the work of Beig and Schmidt [9, 21]. The key advantage of using Beig-Schmidt expansion is that

all results can be readily translated to the geometrical language of Ashtekar and Hansen [18, 27]

or that of Ashtekar and Romano [19].

Beig-Schmidt expansion for asymptotically flat spacetimes near spatial infinity takes the form

ds2 =

(

1 +
σ

ρ

)2

dρ2 + ρ2
(

h0ab +
h1ab
ρ

+
h2ab
ρ2

+O(ρ−3)

)

dxadxb, (2.1)

where h0abdx
dxb is the metric on the unit three-dimensional de Sitter space dS3, or equivalently on

the unit three-dimensional hyperboloid [9],

h0abdx
adxb = −dτ2 + cosh2 τ(dθ2 + sin2 θdφ2). (2.2)

We use Da to denote the unique torsion-free covariant derivative compatible with the metric h0ab

on the unit hyperboloid. The radial coordinate ρ is associated to some asymptotically Minkowski

coordinates xµ via ρ2 = ηµνx
µxν . The fields σ, h1ab, h

2
ab, etc. are assumed to be smooth functions

on the unit hyperboloid. We use hab to denote the complete induced metric on a constant ρ slice

(for some large ρ) and use D to denote the unique torsion-free covariant derivative compatible

with hab. Further boundary conditions will be specified below.

Next, we recall the action principle of [15]. There it was shown that a good variational principle

for asymptotically flat configurations defined by the expansion (2.1) is given by the action

S =
1

16πG

∫

M

d4x
√
−g R+

1

8πG

∫

∂M

d3x
√
−h (K − K̂). (2.3)

The counterterm in the action (2.3) is K̂ := habK̂ab. K̂ab is defined implicitly via a Gauss-Codacci

like equation

Rab = K̂abK̂ − K̂a
cK̂cb. (2.4)
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Here Rab is the Ricci tensor of the boundary metric hab. For details we refer the reader to

[15, 16, 17, 31].

2.2 Supertranslations

In the introduction section we already mentioned certain basic facts about supertranslations. The

best way to further understand the precise nature of supertranslations is to work out the set of

diffeomorphisms that preserve the form of appropriately defined asymptotically flat metrics. Since

results obtained in the Beig-Schmidt coordinates (2.1) can be readily translated to the geometrical

languages, it is most natural to work out these diffeomorphisms in this gauge. Supertranslations in

the Beig-Schmidt gauge are interpreted as different conformal completions in the SPI framework

[18] or as different hyperboloid completions in the Ashtekar-Romano framework [19]. The problem

of finding these diffeomorphisms has been analyzed by several authors [9, 18, 19, 21]; for reviews

see [22, 36]. The upshot of this analysis is that in an asymptotically Cartesian coordinate system

with ρ2 = ηµνx
µxν , all diffeomorphisms of the form

x̄µ = Lµ
νx

ν + T µ + Sµ(xa) + o(ρ0) (2.5)

preserve the form of the metric (2.1). The transformations generated by the constants Lµ
ν and T µ

constitute the Poincaré group. The transformations generated by angle dependent translations

Sµ(xa) are the so-called supertranslations. In fact, they are all spi-supertranslations. In the Beig-

Schmidt expansion, the asymptotic spi-supertranslation Killing vector ξµω is related to an arbitrary

function ω on the hyperboloid as

ξρω = ω(x) +O(ρ−1), ξaω =
1

ρ
ωa(x) +O(ρ−2), (2.6)

where ωa = Daω and where x denotes collectively the coordinates on the hyperboloid. As em-

phasized in the introduction, we need an additional structure at spatial infinity that can reduce

the SPI group to the Poincaré group, as otherwise the notion of angular momentum is not the

familiar one. Furthermore, since supertranslations depend arbitrarily on the angular coordinates,

in particular on the time coordinate τ , even if one attempts to define conserved charge for them,

the associated charges will in general be not conserved. Not surprisingly, a large body of work on

asymptotic flatness at spatial infinity has taken the point of view to strengthen the boundary con-

ditions. With the strengthened boundary conditions the freedom of performing supertranslations

is eliminated. This is achieved in [10, 18, 19, 21, 36] by demanding the leading order asymptotic

Weyl curvature to be purely electric . We will continue to demand this condition. There is still

some freedom left and this is what we would like to draw the attention of the reader to.

To this end we need to look at the next to leading order asymptotic equations of motion. It
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turns to be convenient to work with the variable

kab = h1ab + 2σh0ab. (2.7)

Equations of motion at first order now take the form [9]

�σ + 3σ = 0, (2.8)

Dbkab −Dak = 0, (2.9)

(�− 3)kab + kh0ab −DaDbk = 0, (2.10)

where � = DaDa and k = ka
a. The important point to note here is that equations for the fields σ

and kab are decoupled. By introducing the leading order electric and magnetic parts of the Weyl

tensor,

E1
ab = −DaDbσ − h0abσ , B1

ab =
1

2
curl kab =

1

2
ǫ cd
a Dckdb , (2.11)

one can rewrite these equations in a more enlightening form. See, for example, reference [31] for

a detailed discussion on this. Our boundary conditions require

B1
ab = 0. (2.12)

This implies that kab must be of the form

kab = 2DaDbω + 2h0abω, (2.13)

for some arbitrary ω. This is because the combination DaDbω + h0abω has vanishing curl, and

hence it does not contribute to the magnetic part of the Weyl tensor. For the form (2.13) of

kab, equations of motion (2.9) and (2.10) are also automatically satisfied. Now recall that this

freedom also exactly correspond to performing supertranslations in the space of Beig-Schmidt

configurations (2.1). Therefore, by choosing a particular representative for the inverse of the curl

operator, i.e., a particular ω in (2.13), we fix the supertranslation ambiguities completely. Since ω is

fixed, it is best to regard it as a fixed background structure. This background structure is precisely

what we mean by the phrase ‘supertranslation frame.’ The most studied choice corresponds to

taking ω = 0 [10, 16, 17, 18, 19, 21]. We show in the rest of this section that other choices of

ω are equally allowed. In this paper we wish to explore precisely the physics of making such a

choice. To set the stage for this discussion, we first need to look at the boundary conditions of

Ashtekar-Bombelli-Reula [10]. These boundary conditions were in turn motivated by [18]. We

will comment on the motivation of references [10, 18] for choosing ω = 0 in section 6.

2.2.1 Ashtekar-Bombelli-Reula Boundary Conditions

For gravitational theories it is a well known fact that the boundary conditions play a crucial role

in the description of the phase space. For such considerations it is often convenient to work in the
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covariant phase space formalism [10, 11, 12, 13, 14]. The key quantity to consider in this approach

is the symplectic current vector wµ. The symplectic current vector depends on the background

metric g and on perturbations around the background metric δ1g and δ2g. It is skew symmetric

in the pair (δ1g, δ2g), and for the case of general relativity it takes the form

wµ = Pµναβγδ(δ2gνα∇βδ1gγδ − δ1gνα∇βδ2gγδ), (2.14)

where

Pµναβγδ = gµγgδνgαβ − 1

2
gµβgνγgδα − 1

2
gµνgαβgγδ − 1

2
gναgµγgδβ +

1

2
gναgµβgγδ . (2.15)

Using the Ansatz

ds2 = gµνdx
µdxν = N2dρ2 + habdx

adxb, (2.16)

and

δds2 = δgµνdx
µdxν = 2NδNdρ2 + δhabdx

adxb, (2.17)

we obtain the 3+1 split of the symplectic current vector. The radial component reads

wρ =
1

4N3
habhcd

{

[

Nhefδ1habδ2hce∂ρhdf + 2δ2hac(δ1N∂ρhbd −N∂ρδ1hbd)

−2δ2hab(δ1N∂ρhcd −N∂ρδ1hcd)
]

− (1 ↔ 2)

}

, (2.18)

whereas the angular components read

wf =
1

2N
hfahbc

{

2δ2NDaδ1hbc + 2δ2hbcDaδ1N − 2δ2NDcδ1hab − 2δ2habDcδ1N

+hde
[

Nδ2hbcDaδ1hde −Nδ2hbdDaδ1hce − δ1habδ2hdeDcN −Nδ2habDcδ1hde

+2Nδ2hbdDeδ1hac −Nδ2hbcDeδ1had

]

− (1 ↔ 2)

}

. (2.19)

For the Ansatz (2.16) and (2.17), equations (2.18) and (2.19) are general expressions for the radial

and the tangential components of the symplectic current wµ. In arriving at these expressions no

reference to any boundary conditions has been made. Although these equations look somewhat

clumsy, from the computational point of view these are the easiest expressions to work with.

The integral of the Hodge dual of the symplectic current vector over a Cauchy slice Σ defines

the symplectic structure. One must choose boundary conditions to ensure that the symplectic

structure is finite and conserved. When δ1g and δ2g satisfy linearized equations of motion, it follows

from a standard argument that ∇µw
µ = 0, where ∇µ is the covariant derivative compatible with

the bulk metric g. Therefore, the two requirements—finiteness and conservation of the symplectic

structure—reduce to respectively

1

16πG

∫

Σ
⋆4w

µ < ∞ and
1

16πG

∫

Σ12

⋆4w
µ = 0. (2.20)
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Here, ⋆4 denotes the four-dimensional Hodge star, and surface Σ12 is defined as follows. Let Σ1 and

Σ2 be two Cauchy surfaces ending at spatial infinity. These surfaces enclose a spacetime volume

bounded by Σ1 and Σ2 and a portion of the boundary. Σ12 denotes that portion of the boundary.

With our notion of asymptotic flatness these requirements are translated into, respectively,

1

16πG
lim
ρ→∞

∫

Σ

√
−gwτdρdθdφ < ∞ and

1

16πG
lim
ρ→∞

∫

Σ12

√
−gwρdτdθdφ = 0, (2.21)

where we have taken Cauchy surfaces Σ1,2 to asymptote to constant τ surfaces in the hyperboloid.

Ashtekar, Bombelli, and Reula showed that with the boundary conditions

h1ab = −2σh0ab, (2.22)

δh1ab = −2δσh0ab, (2.23)

σ(τ, θ, φ) = σ(−τ, π − θ, φ+ π), (2.24)

both the above requirements are satisfied. In particular, for the integral

1

16πG
lim
ρ→∞

∫

Σ

√
−gwτdρdθdφ =

1

4πG
lim
ρ→∞

∫

Σ

√

−h0
1

ρ
(δ1σDτδ2σ − δ2σDτδ1σ) dρdθdφ, (2.25)

one find that the potentially divergent term on the right hand side vanishes upon using boundary

condition (2.24).

2.2.2 Supertranslated Boundary Conditions

The boundary conditions we work with in this paper are as follows

h1ab = −2σh0ab + 2DaDbω + 2h0abω,

δh1ab = −2δσh0ab,

σ(τ, θ, φ) = σ(−τ, π − θ, φ+ π).

(2.26)

(2.27)

(2.28)

Nothing changes in the calculation of the symplectic structure when working with these boundary

conditions. The symplectic structure is still finite and conserved as is the case with the ABR

boundary conditions. The important thing to note is that in δh1ab we do not allow variations of ω.

As mentioned in the previous section, we regard ω as the fixed background structure. We refer to

boundary conditions (2.26)–(2.28) as the supertranslated ABR boundary conditions.

At this point we wish to point out that such a generalization should be possible was already

speculated in the work of Mann and Marolf [15], though the precise boundary conditions (2.26)–

(2.28) were not stated.
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3 Asymptotic Expansions

Having specified our boundary conditions we now wish to study the consequences on the asymp-

totic equations of motion and on the construction of the boundary stress tensor at the next-to-

next-to leading order. It is necessary to work at this order to get a handle over the construction

of Lorentz charges. We will concentrate mostly on the physics, and will not go into much calcu-

lational details. Since we carry out asymptotic expansions at second order for arbitrary ω, the

manipulations involved are in fact quite intricate and tedious.

3.1 Second Order Equations of Motion

The radial 3+1 split of the bulk Einstein equations give the following equations for the Ansatz

(2.16) [21]

hab∂ρKab −NKabK
ab +D2N = 0, (3.1)

DbK
b
a −DaK = 0, (3.2)

Rab −N−1∂ρKab −N−1DaDbN −KKab + 2Ka
cKcb = 0. (3.3)

Here Kab denotes the extrinsic curvature of the constant ρ hypersurface. We carry out the ex-

pansion of these equations systematically in appendix A. The final outcome of this analysis is the

second order equations of motion. These equations take the form

h2 = 12σ2 + σaσ
a + 3ω2 + 2ω�ω + ωabω

ab − 9ωσ − σ�ω + σaω
a + σa�ωa

+2σabω
ab, (3.4)

Dbh2ab = 16σσa + 2σabσ
b + 2ωωa + 2ω�ωa + 2ωbωab + ωab�ωb + ωabcω

bc

−σωa − 3ωσa + σa�ω − σ�ωa + 3σabω
b − ωabσ

b + σab�ωb + σb
�ωab

+2σabcω
bc + 2ωabcσ

bc, (3.5)

(�− 2)h2ab = 6(σcσ
c − 3σ2)h0ab + 8σaσb + 14σσab + 2σacσ

c
b + 2σabcσ

c

+2(ω�ω − ω2 + ωcω
c)h0ab − 4ωωab + 2ωab�ω + 2ω�ωab

+4ωabcω
c − 2ωcbω

c
a + 2ωa

cdωbcd + 2ωc(a�ωb)
c

+(14ωσ − 4σ�ω − 4σcω
c + 2σc

�ωc + 4σcdω
cd)h0ab + 17σωab − ωσab

−σab�ω − σ�ωab + 5σabcω
c − 5σcωabc + σabc�ωc + σc

�ωabc

+2σabcdω
cd + 2ωabcdσ

cd + 2σc(aωb)
c + 2σc(a�ωb)

c + 4σ(a
cdωb)cd. (3.6)

In writing these equations we use the following compact notation,

ωabcd = DdDcDbDaω, (3.7)

�ωabc = (DeDe)ωabc = DeDeDcDbDaω, (3.8)
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etc. and similarly for σ. In the special case when (� + 3)ω = 0 these equations can also be

extracted from [34].

3.2 Integrability Conditions

The second order equations of motion (3.4)–(3.6) are in fact quite complicated. It might seem

difficult to rewrite these equations in a form that can be used to perform an integrability analysis

following Beig [21]. Remarkably enough, this is not the case. These equations have a somewhat

magical structure: all the (σ, ω) terms and all (ω, ω) terms on the right hand side of in equation

(3.6) can be repackaged as (� − 2) acting of the following tensor

χab = −σωab − ωσab − 4h0abσω + 2h0abσcω
c + σabcω

c + ωabcσ
c + 2σc(aωb)

c

+2ωωab + ωa
cωbc + h0abω

2 (3.9)

As a result (3.6) can be written as

(�− 2)(h2ab − χab) = 6(σcσ
c − 3σ2)h0ab + 8σaσb + 14σσab + 2σacσ

c
b + 2σabcσ

c.

The usefulness of the tensor χab goes well beyond that. Equation (3.4) can be rewritten as

h2 − χ = 12σ2 + σaσ
a, (3.10)

and similarly the divergence equation (3.5) is rewritten as

Da(h2ab − χab) = 16σσa + 2σabσ
b. (3.11)

Written in this form the second order equations are much more manageable. Now, following the

discussion in [22] we define a tensor Vab as

Vab = −h2ab + χab + 6σ2h0ab + 2σabσ − 2σaσb + σcσch
0
ab. (3.12)

In terms of Vab the equations of motion take the form

V a
a = 0,

DaVab = 0,

(�− 2)Vab = curl [4ǫcd(aσ
cσd

b)],

(3.13)

(3.14)

(3.15)

where as in (2.11) curl of a tensor Tab is defined as

curlTab = ǫa
cdDcTdb. (3.16)

For further properties of the curl operator and of the tensor structure ǫcd(aσ
cσd

b) we refer the

reader to [22].
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Since Vab is symmetric, traceless, and divergence free, discussion of the integrability conditions

of [22] applies as is. We find that despite the fact that we have an arbitrary function ω in our

asymptotic expansion the integrability conditions do not change. The integrability conditions

require Lorentz charges constructed using

curl [4ǫcd(aσ
cσd

b)] (3.17)

to be zero. In this paper, we have chosen the mass aspect σ to be a symmetric function on the

hyperboloid. As a result, the integrability conditions are automatically satisfied [17, 22]. The

outcome of this is that the tensor Vab can be readily used to construct well defined and conversed

Lorentz charges1.

3.3 Expansion of Counterterm

Having analysed the second order equations of motion and the integrability conditions, we now

turn to the expansion of the Mann-Marolf counterterm. Recall that the counterterm K̂ is defined

implicitly via the Gauss-Codacci like equation (2.4). It is convenient to introduce p̂ab = 1
ρ
K̂ab.

Expanding p̂ab as

p̂ab = h0ab +
1

ρ
p̂1ab +

1

ρ2
p̂2ab +O

(

1

ρ3

)

, (3.18)

we can invert the relation (2.4) and express p̂1ab, p̂
2
ab in terms of the expansion of the Ricci tensor

on the hyperboloid. This computation was first done in [16] for the ABR boundary conditions.

We refer the reader to the appendix B of [16] for details. By a direct calculation we find upon

using equations of motion obtained above

p̂1ab = σab − σh0ab + ωab + h0abω. (3.19)

A similar calculation for p̂2ab gives

p̂2ab = h2ab −
(

5

4
σ2 + σcσ

c +
1

4
σcdσcd

)

h0ab + 2σaσb + σσab + σa
cσcb − h0abω

2

−2ωωab − ωa
cωcb +

(

3σω +
3

2
σ�ω − σcωc +

1

2
σcdω

cd

)

h0ab + ωσab

+σab�ω − ωabcσ
c − 2σc(aωb)

c. (3.20)

1One comment regarding tensor χab is in order here: the form of χab (3.9) can also be worked out by calculating

the non-linear action of supertranslation ω on h2

ab starting with the ABR boundary conditions, in particular using

equation (2.22). This calculation in a somewhat different context was first performed in an unpublished work in

collaboration with Geoffrey Compere and Francois Dehouck. For the special case when Dakab = ka
a = 0, i.e.,

(�+3)ω = 0, such an expression can also be extracted from [34]. I thank Geoffrey Compere and Francois Dehouck

for their permission to use material from this joint unpublished work.
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The traces of p̂1ab and p̂2ab simplify to

p̂1 := h0abp̂1ab = −6σ +�ω + 3ω, (3.21)

p̂2 := h0abp̂2ab =
21

4
σ2 +

1

4
σcdσ

cd − 3ωσ +
1

2
σ�ω +

3

2
σcdω

cd. (3.22)

These equations are important for the considerations of the next section.

4 Supertranslations and Boundary Stress Tensor

In this section we study the on-shell value of the action and its first variations. We also compute

the next to leading order expression for the boundary stress tensor. We follow the corresponding

discussion in [15, 17, 31]. The new element in the following discussion is our boundary conditions

(2.26)–(2.28).

4.1 First Variations

Let us consider the first variations of the Mann-Marolf action over configurations satisfying our

boundary conditions (2.26)–(2.28) and evaluate it on-shell. This set-up was already considered in

[15] so we shall be brief. The first variation of the Mann-Marolf action is [15, 17, 31]

(16πG)δStotal =

∫

∂M

√
−hd3x(πab − π̂ab +∆ab)δhab, (4.1)

where πab = Khab −Kab, π̂ab = K̂hab − K̂ab and ∆ab is

∆ab = K̂ab − 2L̃cd(K̂cdK̂
ab − K̂a

c K̂
b
d) +D2L̃ab + habDcDdL̃

cd − 2DdD
(aL̃b)d, (4.2)

with Lab
cd and L̃ab given by [15, 17, 37]

Lab
cd = hcdK̂ab + δc(aδ

d
b)K̂ − δc(aK̂

d
b) − δd(aK̂

c
b), L̃ab := hcd(L−1)cd

ab. (4.3)

Using asymptotic expansions of the previous section it follows that

(πab − π̂ab +∆ab) =
1

ρ4

(

σab + σh0ab
)

+O
(

1

ρ5

)

. (4.4)

Now, using our boundary condition (2.27) we see that in the ρ → ∞ limit

(16πG)δStotal =

∫

dS3

√

−h0d3x
(

σab + h0 abσ
)

(

−2δσh0ab
)

. (4.5)

The equation of motion for σ now immediately tells us that the first variation of the action vanishes

identically

δStotal = 0. (4.6)
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Thus, the action (2.3) provides a good variational principle for our notion of asymptotic flatness2.

4.2 On-shell Action

We now calculate the on-shell value of the action. Given our results above this calculation is

rather straightforward. Since our spacetimes are Ricci flat the bulk term in (2.3) vanishes on-

shell. Therefore,

Son−shell =
1

8πG

∫

∂M

d3x
√
−h(K − K̂). (4.10)

Now, using expansions of Kab and K̂ab obtained above (section 3.3 and Appendix A respectively)

we have

Son−shell =
1

32πG

∫

dS3

d3x
√

−h0
[

3σ2 − σabσ
ab + 2σ�ω + 2σabω

ab
]

. (4.11)

All divergent terms have cancelled. The on-shell is finite. Doing integrations by parts and using

equations of motion for σ, we observe that the on-shell action vanishes

Son−shell = 0. (4.12)

In particular, the on-shell value does not depend on the supertranslation frame ω. An interpre-

tation of this result is as follows [31]. We showed above that δS = 0 on all variations satisfying

our boundary conditions. It follows that Son−shell must be constant as we move along any smooth

path in our phase space. Furthermore, we expect all configurations to be smoothly connected

to Minkowski space. For Minkowski space Son−shell is identically zero. Therefore, it follows that

Son−shell is identically zero on any asymptotically flat solution satisfying our boundary condition.

For more comments on this point see [31] and also footnote 2.

2Alternatively, using δhab = ρδh1

ab + . . . = −2ρδσh0

ab + 2ρDaDbδω + 2ρδωh0

ab + . . . and
√
−h = ρ3

√
−h0 + . . . it

follows that in the ρ → ∞ limit

(16πG)δStotal =

∫

dS3

√

−h0d
3
x
(

σ
ab + h

0 ab
σ
)

(

−2δσh0

ab + 2DaDbδω + 2δωh0

ab

)

. (4.7)

Using the equation of motion for σ, this equation further simplifies to

(16πG)δStotal =

∫

dS3

√

−h0d
3
x
(

σ
ab + h

0 ab
σ
)

(2DaDbδω) . (4.8)

Performing integration by parts and using equation of motion for σ one more time, we see that the first variation

of the action vanishes identically

δStotal = 0. (4.9)

In particular, supertranslations need not be fixed! Asymptotically flat metrics related to each other via arbitrary

supertranslations can be consistently considered in the Mann-Marolf variational principle. See also [34]. However,

this is not the boundary conditions we use in this paper for reasons emphasized in the introduction section.
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4.3 Boundary Stress Tensor

From the first variation of the action, the boundary stress tensor can also be computed. It admits

an expansion in the inverse powers of ρ. The leading order and the next to leading order terms

in the expansion are relevant for the construction of translations and Lorentz charges respectively

[15, 16]. After a long and tedious computation we find these expressions to be

Tab = − 1

8πG

(

T 1
ab +

1

ρ
T 2
ab + . . .

)

(4.13)

where

T 1
ab = σab + h0abσ (4.14)

and

T 2
ab = h2ab + 2σaσb +

49

4
σσab + 4σabcσ

c + 7σa
cσbc −

3

4
σabcdσ

cd +
9

4
σacdσb

cd

+

[

35

4
σ2 + 3σcσ

c − 13

4
σcdσ

cd − 3

4
σcdeσ

cde

]

h0ab +
1

2
ωaωb − 2ωωab + ωab�ω

+ω(a�ωb) + ωabcω
c − 4ωacωb

c +
1

2
�ωa�ωb −

1

2
�ω�ωab − 2ωabc�ωc

+2ωc(a�ωb)
c − ωab��ω − 1

2
ωabcdω

cd +
3

2
ωacdωb

cd +

[

−ω2 +
1

2
ωcω

c − 2ωc�ωc

+
1

2
�ωc

�ωc −
1

2
ωcd�ωcd +

1

2
�ω��ω − 1

2
ωcdeω

cde

]

h0ab + σωab + ωσab

+
7

4
σab�ω − 9

4
σ�ωab −

3

2
σabcω

c − 11

2
ωabcσ

c − 2σc(aω
c
b) + 3�ωcσabc − 3σc

(a�ωb)c

+
3

2
σab��ω +

3

4
σabcdω

cd +
3

4
ωabcdσ

cd − 9

2
σ(a

cdωb)cd +

[

4ωσ +
17

4
σ�ω − 11

2
σcω

c

+
9

2
σc
�ωc +

9

4
σ��ω +

13

4
σcdω

cd +
3

4
σcd�ωcd +

3

2
σcdeω

cde

]

h0ab. (4.15)

Equation (4.15) is one of the main result of this paper. Certain calculational details on how we

obtained this expression can be found in appendix B.

5 Properties of Boundary Stress Tensor

In this section we explore properties of our boundary stress tensor (4.13)–(4.15).

5.1 Boundary Stress Tensor is Conserved a la Brown-York

The above stress tensor can be shown to be conserved

DbTab = 0. (5.1)
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However, care must be exercised in the interpretation of this result. The derivative Da in (5.1) is

the torsion-free covariant derivative compatible with the full metric on the hyperboloid hab. When

expanded in powers of ρ this equation reads at leading order

DbT 1
ab = 0, (5.2)

and at the next to leading order

DbT 2
ab −σσa−σabσ

b− 2σωa− 2σ�ωa− 2σabω
b− 2ωabσ

b −σab�ωb− 2σabcω
bc−ωabcσ

bc = 0. (5.3)

An important question to ask at this point is whether or not the above expression can be written

as a total derivative of a symmetric tensor T̃ab. For ω independent terms this is indeed the case

[16]

T̃ab = T 2
ab − σT 1

ab. (5.4)

When ω dependent terms are included, with our preliminary investigations we were unable to

write (5.3) as a total derivative of a symmetric tensor. This is not necessarily an obstacle for the

construction of conserved charges. We already know from our study of the integrability conditions

of the second order equations of motion that a conserved tensor constructed using h2ab—namely

Vab—exist and can be used to construct conserved Lorentz charges. We expect such a tensor to

play an important role in the covariant phase space construction of charges. Given the analysis

of [34] and our considerations of the covariant phase space above, it is fairly clear that such a

construction goes through without surprises. It can be interesting to fill in all details. We will not

pursue this direction here. On the other hand, construction of conserved Lorentz charges using

the boundary stress tensor approach is more interesting and perhaps more difficult.

Reference [15] presented a general construction of boundary stress tensor charges starting with

equation (5.1). There an expression for conserved charge for an asymptotic Killing vector ξaρ is

given in terms of the variation of the renormalized action

Q[ξ] = −∆f,ξSrenorm = − lim
ρ→∞

1

2

∫

∂Mρ

√
−hT ab∆f,ξρhabd

3x, (5.5)

where

∆f,ξhab = (£fξg)ab − f(£ξg)ab, (5.6)

and where f is smooth function that take the value f = 0 at the past boundary of ∂Mρ and the

value f = 1 at the future boundary. The right hand side of (5.6) denotes quantities evaluated in the

bulk Mρ and then pulled back to the boundary ∂Mρ. Using general arguments it has been shown

in [38] that this charge is also the generator of the asymptotic symmetry ξaρ . Upon performing

integrations by parts, equation (5.5) can be converted into an integral over a co-dimension two

surface Cρ—a cut in boundary ∂Mρ

Q[ξ] = lim
ρ→∞

∫

Cρ

√

−hCρTabξ
a
ρn

b
ρd

2x. (5.7)
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We expect that our boundary stress tensor can be used to construct conserved charges in the

way described above. However, the precise details as to how this construction proceeds is not

investigated at this stage. We will return to this problem elsewhere in the future. For the case

ω = 0 this construction is fairly straightforward. It was carried out in detail in [16], where

divergence free nature of tensor T̃ab (5.4) was also observed. Although it is fairly non-trivial to

carry out explicit construction of conserved charges in all detail, it is rather straightforward to

study transformation properties of Lorentz charges under translations from (5.7). We present this

study in section 5.3. For now let us study some further properties of our stress tensor.

5.2 Special Cases

In this subsection we look at various special cases where our stress tensor simplifies. In all cases

it satisfies expected properties. This study allows us to probe the structure of our stress tensor.

5.2.1 ω = 0

When we choose ω = 0 the boundary stress reduces to a previously computed expression [17]

Tab = − 1

8πG

(

T 1
ab +

1

ρ
T 2
ab + . . .

)

, (5.8)

where

T 1
ab = σab + h0abσ, (5.9)

and

T 2
ab = h2ab + 2σaσb +

49

4
σσab + 4σabcσ

c + 7σa
cσbc −

3

4
σabcdσ

cd +
9

4
σacdσb

cd

+

[

35

4
σ2 + 3σcσ

c − 13

4
σcdσ

cd − 3

4
σcdeσ

cde

]

h0ab. (5.10)

Properties of this expression are already well studied in the literature [17, 22].

5.2.2 ωab + h0abω = 0

When ωab+h0abω = 0, i.e., when ω is a translation, kab (2.13) vanishes identically. In this case the

asymptotic metric expansion also reduces to the previously studied case of [16, 17, 22]. Therefore,

we expect again the boundary stress tensor to reduce to (5.10). It can be verified by a direct

calculation that this is indeed the case. Remarkable cancellations happen when ωab + h0abω = 0 is

substituted in (4.15). All ω dependent terms reduce to zero, giving us (5.10) as the final expression.

This provides a highly non-trivial test on our computations.
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5.2.3 σ = 0

Another non-trivial case is when the mass aspect is set to zero. In this case all conserved charges

corresponding to translations vanish identically. In this section we wish to understand properties

of the Lorentz charges with σ = 0. When σ is set to zero, h2ab is solved from equations (3.4)–(3.6)

to3 read

h2ab = 2ωωab + ωa
cωbc + h0abω

2. (5.11)

Below we substitute this expression of h2ab in the stress tensor.

To analyse the structure of the simplified stress tensor, we first need to recall a few useful

results concerning symmetric divergence free tensors from [17, 21, 26]. A tensor θab is said to

admit a scalar potential α if

θab[α] = DaDbα− h0abD2α− 2αh0ab. (5.12)

The tensor θab[α] is conserved, i.e., Daθab[α] = 0. Moreover, if ξa is a Killing vector of h0ab then

the current θab[α]ξ
b can be expressed as the divergence of an anti-symmetric tensor

θab[α]ξ
b = Db

(

2ξ[bDa]α+ αD[bξa]
)

. (5.13)

As a result the currents of the form θab[α]ξ
b do not contribute to the conserved charge associated

with ξa. Similarly, a tensor tab is said to admit a symmetric, transverse tensor potential γab with

Daγab = 0 if

tab[γab] = D2γab + 2R0
acbdγ

cd where R0
acbd = h0abh

0
cd − h0cbh

0
ad. (5.14)

The tensor tab[γab] is conserved, and for ξa a Killing vector of h0ab the current tab[γab]ξ
b is the

divergence of an anti-symmetric tensor

tab[γab]ξ
b = 2Da(ξcD[aγb]c + γc[aDb]ξ

c). (5.15)

Hence, currents of this form also do not contribute to the conserved charges.

Our strategy is to write the simplified expression for the stress tensor after setting σ = 0 and

h2ab from (5.11) in terms of a scalar and a tensor potential. The simplified boundary stress tensor

is T 1
ab

∣

∣

σ=0
= 0, and

T 2
ab

∣

∣

σ=0
=

1

2
ωaωb − 2ωωab + ωab�ω + ω(a�ωb) + ωabcω

c − 4ωacωb
c +

1

2
�ωa�ωb

−1

2
�ω�ωab − 2ωabc�ωc + 2ωc(a�ωb)

c − ωab��ω − 1

2
ωabcdω

cd +
3

2
ωacdωb

cd (5.16)

+h0ab

[

1

2
ωcω

c − ω2 − 2ωc�ωc +
1

2
�ωc

�ωc −
1

2
ωcd�ωcd +

1

2
�ω��ω − 1

2
ωcdeω

cde

]

.

3with the most natural choice Vab = 0. A choice is necessary because the corresponding equations are hyperbolic.
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Expression (5.16) can be rewritten as

T 2
ab

∣

∣

σ=0
= 2θ

(2)
ab − 1

2
t
(4)
ab +

1

2
θ
(4)
(1)ab +

1

4
s
(4)
ab +

1

4
θ
(6)
(1)ab +

1

4
θ
(6)
(2)ab −

1

4
t
(6)
(1)ab −

1

8
t
(6)
(2)ab, (5.17)

where

θ
(2)
ab = θab

[

1
2ω

2
]

, t
(4)
ab = tab

[

θ
(2)
ab

]

,

θ
(4)
(1)ab = θab [ω�ω] , θ

(4)
(2)ab = θab [ωcω

c] ,

θ
(6)
(1)ab = θab [ωc�ωc] , θ

(6)
(2)ab = θab [�ω�ω] ,

t
(6)
(1)ab = tab

[

s
(4)
ab

]

, t
(6)
(2)ab = tab

[

θ
(4)
(2)ab

]

,

(5.18)

and finally

s
(4)
ab = 2h0abωcdω

cd − 2h0ab�ω�ω − 4ωacωb
c + 4h0abωcω

c + 4ωab�ω − 4ωaωb. (5.19)

The superscripts, e.g. as (6) in t
(6)
(1)ab, denote the maximum number of derivatives appearing in

the corresponding expressions. The subscripts, e.g., (1) in t
(6)
(1)ab, are just labels. We immediately

see that with the possible exception of s
(4)
ab , terms in (5.17) cannot contribute to the conserved

Lorentz charges. As far as we have explored, we find that the tensor s
(4)
ab can possibly contribute

to the Lorentz charges. However, this is not a problem. The contribution due to s
(4)
ab is simply

a c-number due to our boundary conditions; it only depends on the background structure ω and

is completely independent of dynamical fields. Hence, it is a constant over our phase space. The

presence of such a term is consistent with the general analysis of [38].

5.3 Transformation of Lorentz Charges under Translations

Having analysed properties of the stress tensor in special cases in the previous subsection, now

let us study the transformation of Lorentz charges under translations. The idea behind this

computation is as follows. As mentioned in section 5.1 a general (perhaps somewhat formal)

expression for Lorentz charges can be written as

Q[ξ] = lim
ρ→∞

∫

Cρ

√

−hCρTabξ
a
ρn

b
ρd

2x. (5.20)

The most important quantity in this expression is the boundary stress tensor Tab, which has

has expansion in powers of ρ. To investigate transformation property of Lorentz charges under

translations, we need to look at how Tab changes under translations. On the unit hyperboloid,

translations are represented by four functions satisfying

DaDbχ+ h0abχ = 0. (5.21)

Under translations by an amount χ, the function ω changes as ω → ω + χ. We wish to know

how the expansion of the boundary stress tensor changes, i.e., we want to know the expansion of
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∆χTab. Since we are considering a difference between two stress tensors for fixed value of σ, many

terms immediately cancel out. In particular, in ∆χTab the leading term in the expansion starts

at order ρ−1. Due to this fact, calculation of ∆χQ[ξ] is a relatively straightforward exercise as

opposed to Q[ξ]. We find

∆χTab = − 1

8πGρ

(

−3χh0ab − 3χσab + h0abσcχ
c + σabcχ

c
)

+ . . . (5.22)

= −1

ρ
Dc

[

(σab + σh0ab)χ
c
]

+ . . . . (5.23)

Substituting this expression in the definition of Lorentz charges to calculate the ∆χQ[ξ], we see

that

∆χQ[ξ] = lim
ρ→∞

∫

Cρ

√

−hCρ∆χTabξ
a
ρn

b
ρd

2x (5.24)

= −
∫

C

√

−h0CDc

[

(σab + σh0ab)χ
c
]

ξanb
(0)d

2x (5.25)

=

∫

C

√

−h0CDc

[

E1
abχ

c
]

ξanb
(0)d

2x. (5.26)

Here C denotes a cut of unit hyperboloid, and ξa an exact Killing vector of the unit hyperboloid,

and nb
(0) the unit normal to the cut C. This last expression is precisely the expected transformation

property of the Lorentz charges under translations [18, 21, 27]. Note that the fact that we obtain

this result is highly non-trivial. In the expansion of ∆χTab all terms linear in ω cancel out. Once

again, these remarkable cancellations are highly non-trivial test of our computations.

6 Conclusions and Future Directions

Let us summarize what we have achieved in this paper. First and foremost, we have systematically

studied the closest one can come to changing the boundary metric in the asymptotically flat

context, while maintaining the group of asymptotic symmetries to be Poincaré. The result of this

analysis is that we can choose the supertranslation frame as we like. We studied consequences of

making choices ω 6= 0. We performed this analysis in the covariant phase space approach as well

as in the holographic renormalization approach. We showed that the covariant phase space is well

defined irrespective of how we choose to fix supertranslations. Furthermore, we showed that the

on-shell action and the leading order boundary stress tensor are insensitive to the supertranslation

frame. The most significant result of this paper is the construction of the boundary stress tensor at

second order. We carried out this construction in detail, and studied its conservation properties.

We also observed that although the next to leading order boundary stress tensor depends on the

supertranslation frame, the dependence is of a very special type. It is such that the transformation

of angular momentum under translations continues to hold as in special relativity.
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Let us now comment on the motivation Ashtekar and Hansen [18] had for choosing ω = 0.

There it was observed that when ω 6= 0, the second order magnetic part of the Weyl tensors

fails to be conserved with respect to the derivative operator compatible with the unit hyperboloid

metric. This is indeed an obstacle if one insists on using the second order magnetic part of the

Weyl tensor to construct Lorentz charges. However, this obstacle is only an illusion: above we

constructed a symmetric and divergence free tensor Vab using second order fields. Taking the curl

of Vab one obtains a new symmetric and divergence free tensor Wab [22]. The tensor Wab is the

natural quantity to use instead of the second order magnetic part of the Weyl tensor to construct

Lorentz charges following Ashtekar-Hansen when ω 6= 0.

A natural extension of our work is to calculate the conserved Lorentz charges (5.5) using our

boundary stress tensor with our supertranslated boundary conditions. Given the general analysis

of [15, 30, 38], we expect such a construction to go thorough, however, the precise details as to

how it proceeds is not investigated at this stage. We will return to this problem elsewhere. In this

regard, the precise significance of equation (5.3) is also not clear at this stage.

Although boundary stress tensor methods are most well studied for asymptotically AdS and

related settings, the success of these and related methods in other contexts [33, 39, 40, 41, 42,

43] motivates further study in the asymptotically flat context. Our work here attempted to

fill in this divide further by extending our previous work [16, 17, 22, 31]. We also highlighted

certain similarities and differences with the asymptotically AdS setting. Further exploration in

this direction should provide additional insights into the still elusive nature of holography for flat

space [32, 35, 44, 45, 46, 47, 48, 49].
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A Asymptotic Equations of Motion

The four dimensional metric is

ds2 =

(

1 +
σ

ρ

)2

dρ2 + habdx
adxb, (A.1)

where the boundary metric hab admits an expansion in the inverse powers of ρ as

hab = ρ2h0ab + ρh1ab + h2ab + . . . . (A.2)

The leading order metric h0ab is the unit metric on three-dimensional de-Sitter space. For the

considerations of the present paper h1ab is taken to be of the specific form

h1ab = −2σh0ab + 2ωab + 2ωh0ab, (A.3)

where

ωab = DaDbω. (A.4)

Asymptotic spi-supertranslation Killing vector ξµω is related to ω as

ξρω = ω(x) +O(ρ−1), ξaω =
1

ρ
ωa(x) +O(ρ−2), (A.5)

where x denotes collectively the coordinates on the three dimensional de Sitter space, and ω is an

arbitrary smooth function of these coordinates.

To obtain the asymptotic equations of motion we perform the radial 3+1 split. The extrinsic

curvature of the constant ρ hypersurfaces can be readily calculated. It admits an expansion in

inverse powers of ρ as,

Kab =
1

2N
∂ρhab (A.6)

= ρh0ab − 2σh0ab + ωab + ωh0ab +
1

ρ
(2σ2h0ab − σωab − σωh0ab) + . . . . (A.7)

We are now in position to proceed with a study of asymptotic equations of motion. We first look

at the Hamiltonian ‘constraint.’

Hamiltonian Constraint

In a simplified form the Hamiltonian constraint reads [9, 21]

hab∂ρKab −NKabK
ab +D2N = 0, (A.8)

where D denotes the unique torsion-free covariant derivative compatible with the full boundary

metric hab and N is the lapse function

N = 1 +
σ

ρ
. (A.9)
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Expansion of (A.8) at the zeroth and first order gives the equation of motion for the mass aspect

(�+ 3)σ = 0, (A.10)

and at the second order gives the equation for the trace of the second order metric

h2 = 12σ2 + σaσ
a + 3ω2 + 2ω�ω + ωabω

ab − 9ωσ − σ�ω + σaω
a + σa�ωa + 2σabω

ab. (A.11)

In writing these equations we use the following compact notation,

ωabcd = DdDcDbDaω, (A.12)

�ωabc = (DeDe)ωabc = DeDeDcDbDaω, (A.13)

and similarly for σ. In the following we will use equations (A.10) and (A.11) to simplify the

resulting expressions.

Diffeomorphism Constraints

In a simplified form the diffeomorphism constraints read [9, 21]

DbK
b
a −DaK = 0. (A.14)

Expansion of this equation at the zeroth and the first orders give no further non-trivial equation.

At the second order it gives the equation for the divergence of the second order metric

Dbh2ab = 16σσa + 2σabσ
b + 2ωωa + 2ω�ωa + 2ωbωab + ωab�ωb + ωabcω

bc

−σωa − 3ωσa + σa�ω − σ�ωa + 3σabω
b − ωabσ

b + σab�ωb + σb
�ωab

+2σabcω
bc + 2ωabcσ

bc. (A.15)

In the following we will also use this equation in the resulting expressions.

Equations of Motion

In a simplified form the equations of motion for the boundary metric hab take the form [9, 21]

Fab := Rab −N−1∂ρKab −N−1DaDbN −KKab + 2Ka
cKcb = 0. (A.16)

These equations can be expanded to give

R0
ab = 2h0ab, (A.17)

R1
ab = σab − 3σh0ab + 3ωab − h0ab�ω, (A.18)
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R2
ab = 2h2ab − h2h0ab + 2σaσb − σσab + (3σ2 − σcσ

c)h0ab

+ (ω2 + 3ω�ω + 2ωcdω
cd)h0ab − 7ωωab − ωab�ω − 2ωacω

c
b

− (σω + σ�ω + σcω
c)h0ab + 2σωab − σcωabc. (A.19)

In expressions (A.18) and (A.19) the left hand side denote the expansion of the boundary Ricci

tensor:

Rab = R0
ab + ρ−1R1

ab + ρ−2R2
ab + . . . . (A.20)

In order to obtain the asymptotic equations of motion in the most useful form we now express

R1
ab and R2

ab as appropriate derivative operators acting on the metric components. The explicit

forms for R1
ab is

R1
ab = DcD(ah

1
b)
c − 1

2
DaDbh

1 − 1

2
�h1ab, (A.21)

and similarly for R2
ab is

R2
ab = DcD(ah

2
b)
c − 1

2
DaDbh

2 − 1

2
�h2ab +

1

2
h1cdDaDbh

1
cd − h1cdDcD(ah

1
b)d

+
1

4
Dah

1
cdDbh

1cd +Ddh1b
cD[dh

1
c]a +

1

2
Dd(h

1cdDch
1
ab)−

1

4
Dch1Dch

1
ab

−
(

Ddh
1cd − 1

2
Dch1

)

D(ah
1
b)c. (A.22)

These expressions can be expanded to give respectively,

R1
ab = σab + h0ab�σ + 3ωab − h0ab�ω, (A.23)

R2
ab = DcD(ah

2
b)
c − 1

2
DaDbh

2 − 1

2
�h2ab + 3σaσb + 2σσab + 2h0abσ�σ + h0abσcσ

c

−6ωωab − 2ωab�ω + (2ω�ω − ωc
�ωc + 2ωcdω

cd)h0ab + ωabcω
c − ωabc�ωc + ωacdωb

cd

+6σωab − 2ωσab − 2σab�ω − (2σ�ω + 2ω�σ + 2σcω
c + σc

�ωc + 2σcdω
cd)h0ab

−ωabcσ
c + 4σ(a

cωb)c. (A.24)

Equating (A.18) and (A.21) gives the equations of motion for the first order metric components.

We obtain again �σ+3σ = 0. In particular, upon equating (A.18) and (A.22) we do not obtain any

new non-trivial equation. At the second order we do obtain a non-trivial equation—the equation

of motion for h2ab. After a significant amount of algebra it reads

(� − 2)h2ab = 6(σcσ
c − 3σ2)h0ab + 8σaσb + 14σσab + 2σacσ

c
b + 2σabcσ

c

+2(ω�ω − ω2 + ωcω
c)h0ab − 4ωωab + 2ωab�ω + 2ω�ωab

+4ωabcω
c − 2ωcbω

c
a + 2ωa

cdωbcd + 2ωc(a�ωb)
c

+(14ωσ − 4σ�ω − 4σcω
c + 2σc

�ωc + 4σcdω
cd)h0ab + 17σωab − ωσab

−σab�ω − σ�ωab + 5σabcω
c − 5σcωabc + σabc�ωc + σc

�ωabc

+2σabcdω
cd + 2ωabcdσ

cd + 2σc(aωb)
c + 2σc(a�ωb)

c + 4σ(a
cdωb)cd. (A.25)
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In writing all second order equations above we have carefully separated (σ, σ), (ω, ω), and (σ, ω)

terms.

B Certain Details on the Boundary Stress Tensor Computation

This appendix contains certain details on the boundary stress tensor computation. We make use

of the asymptotic equations of motion as needed. The calculation is organized as in appendix B

of [17]. We begin by calculating the expansion of the tensor L̃ab. It is defined as

L̃ab = hcd(L−1)cd
ab, (B.1)

where

Lab
cd = hcdK̂ab + δ

(c
(a
δ
d)
b)
K̂ − δ

(c
(a
K̂

d)
b)

− δ
(d
(a
K̂

c)
b)
, (B.2)

and

(L−1)cd
ab(L)ab

ef = δe(cδ
f
d). (B.3)

After a straightforward, but tedious, computation we find the expansion of L̃ab in the inverse

powers of ρ to be as follows,

L̃ab =
1

4ρ
h0ab +

1

ρ2

[

1

2
σab + h0abσ − ωab +

1

4
(�ω − ω)h0ab

]

+
1

ρ3

{

−1

4
h2ab

+
99

16
h0abσ2 − 1

4
h0abσcσ

c +
3

2
σacσb

c −
9

16
h0abσcdσ

cd + σaσb +
9

2
σσab

+
7

2
ωa
cω

cb − 3

2
ωab

�ω +
5

2
ωabω +

1

2

[

ω2 − ω�ω +
3

4
(�ω)2 − 5

4
ωcdω

cd

]

h0ab

−8σωab − 1

2
ωσab +

3

2
�ωσab − 5σc

(aωb)c − 1

2
ωabcσc +

[

−2ωσ +
29

8
σ�ω

−1

4
σcω

c +
1

4
σc�ωc +

13

8
σcdω

cd

]

h0ab

}

+O
(

1

ρ4

)

. (B.4)

Given this expression and the expansion of K̂ab, it is straightforward to compute the expansion of

the holographic stress tensor Tab

Tab = − 1

8πG
(πab − π̂ab +∆ab) , (B.5)

where

πab = Khab −Kab and π̂ab = K̂hab − K̂ab, (B.6)

and where ∆ab is

∆ab = K̂ab − 2L̃cd(K̂cdK̂ab − K̂acK̂db) +D2L̃ab + habDcDdL̃
cd − 2DdD(aL̃b)

d. (B.7)
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A straightforward computation gives

πab − π̂ab = σab + σh0ab +
1

ρ

[

h2ab + 2σaσb + σσab −
(

5

2
σ2 + σcσ

c +
1

2
σcdσ

cd

)

h0ab

+σacσ
c
b − h0abω

2 − 2ωωab − ωacω
c
b + σωab + ωσab + σab�ω − 2σc(aω

c
b)

−ωabcσ
c + (4σω + 2σ�ω − σcω

c + σcdω
cd)h0ab

]

+ . . . . (B.8)

Similarly,

K̂ab − 2L̃cd(K̂cdK̂ab − K̂acK̂db) =
1

2

(

3σab + 3σh0ab − 3ωab +�ωh0ab
)

+
1

ρ

[

3σaσb

+
21

2
σσab + 6σacσ

c
b +

(

21

2
σ2 − σcσ

c − 2σcdσ
cd

)

h0ab − 2ωab�ω + 3ωacω
c
b

+h0ab(�ω)2 − 2h0abωcdω
cd − 9σωab +

3

2
ωσab +

9

2
σab�ω − 3

2
ωabcσ

c − 12σc(aωb)
c

+

(

3

2
σω +

17

2
σ�ω − σcω

c +
1

2
σc�ωc + 5σcdω

cd

)

h0ab

]

+ . . . . (B.9)

A calculation of the derivative terms requires more work. We find

D2L̃ab + habDcDdL̃
cd − 2DdD(aL̃b)

d = −3

2
σab −

3

2
σh0ab +

3

2
ωab −

1

2
h0ab�ω +

1

ρ

{

− 3σaσb

+
3

4
σ2h0ab +

3

4
σσab + 5h0abσ

cσc + 4σabcσ
c − 3

4
σcdσ

cdh0ab −
3

4
σabcdσ

cd +
9

4
σacdσb

cd

−3

4
h0abσcdeσ

cde +

[

1

2
ωcω

c −�ω�ω − 2ωc
�ωc + 2ωcdω

cd +
1

2
�ωc�ωc +

1

2
�ω��ω

−1

2
ωcd

�ωcd −
1

2
ωcdeω

cde

]

h0ab +
1

2
ωaωb + 3ωab�ω + ω(a�ωb) + ωabcω

c − 6ωacωb
c

+
1

2
�ωa�ωb − 1

2
�ω�ωab − 2ωabc�ωc + 2ωc(a�ωb)

c − ωab��ω − 1

2
ωabcdω

cd

+
3

2
ωacdωb

cd + 9σωab −
3

2
ωσab − 15

4
σab�ω − 9

4
σ�ωab − 3

2
σabcω

c − 3ωabcσ
c

+12σc(aωb)
c + 3�ωcσab

c − 3σc(a�ωb)
c +

3

2
σab��ω +

3

4
σabcdω

cd +
3

4
ωabcdσ

cd

−9

2
σ(a

cdωb)cd + h0ab

[

4σc
�ωc − 3

2
σω − 25

4
σ�ω − 7

2
σcω

c +
9

4
σ��ω − 11

4
σcdω

cd

+
3

4
σcd�ωcd +

3

2
σcdeω

cde

]

}

+ . . . . (B.10)

Putting all this together we obtain a final expression for the boundary stress tensor to the relevant

order. Such an expression is presented in the main text (4.15).
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