
J
H
E
P
0
2
(
2
0
1
2
)
0
2
4

Published for SISSA by Springer

Received: December 21, 2011

Accepted: January 20, 2012

Published: February 9, 2012

Supertranslations and holographic stress tensor

Amitabh Virmani

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),

Am Mühlenberg 1, D-14476 Golm, Germany

E-mail: virmani@aei.mpg.de

Abstract: It is well known in the context of four dimensional asymptotically flat space-

times that the leading order boundary metric must be conformal to unit de Sitter metric

when hyperbolic cutoffs are used. This situation is very different from asymptotically

AdS settings where one is allowed to choose an arbitrary boundary metric. The closest

one can come to changing the boundary metric in the asymptotically flat context, while

maintaining the group of asymptotic symmetries to be Poincaré, is to change the so-called
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1 Introduction

The development of gauge/gravity dualities has revolutionized string theoretic investiga-

tions of quantum gravity. These dualities relate string theories in higher dimensions to

certain quantum theories in lower dimensions on fixed metric backgrounds. Consequently,

they provide us with a framework where one can address deep puzzles of quantum grav-

ity concerning black holes, singularities and the like, by performing calculations in lower
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dimensional non-gravitating settings. The best understood case occurs in AdS/CFT [1]

where string theory on AdS space space is dual to certain gauge theory on the boundary

of AdS space. Similar dualities are not known for spacetimes of the most physical inter-

est, such as cosmologies or flat Minkowski space. It is clearly of interest to investigate if

holographic dualities exist in these settings.

A well appreciated point is that although the most well understood cases of these

dualities involve AdS spaces and local CFTs, neither AdS nor CFTs are fundamental

to these dualities. It is often speculated that every possible boundary condition that

defines a bulk string theory is dual to a non-gravitational theory through the AdS/CFT

correspondence. In the case of AdS spaces, the correspondence arises from the way in

which the AdS boundary parametrizes the space of possible boundary conditions on bulk

fields [2, 3]. In fact, the richness of AdS/CFT precisely comes from the fact that in an

asymptotically AdS settings one is allowed to choose a variety of boundary conditions. In

particular, one is allowed to choose an arbitrary boundary metric [4–8].

The corresponding situation in the asymptotically flat setting is very different. This is

one of the reason why the the subject of holographic duality for flat spacetime has resisted

developments over all these years. For example, for the four dimensional asymptotically flat

spacetimes the leading order boundary metric must be conformal to unit de Sitter metric

when hyperbolic cutoffs are used to define asymptotically flat spacetimes [9]. The structure

of the asymptotic equations is such that there is absolutely no freedom in the choice of the

leading order boundary metric. One is led to ask how much freedom one has at the next

to leading order. Even there the freedom is quite limited. As we discuss in detail in this

paper, the closest one can come to changing the boundary metric in the asymptotically

flat context, while maintaining asymptotic symmetries to be Poincaré, is to change the

so-called ‘supertranslation frame’ ω. The information about the supertranslation frame

enters in the asymptotic expansion is a very specific way. In this paper we study what it

precisely means to change the supertranslation frame, and the consequences this brings to

the construction of the boundary stress tensor.

We perform this analysis in the covariant phase space approach of [10–14] as well as

in the holographic renormalization approach of Mann and Marolf [15–17]. The key results

of the present paper are as follows. First, we show that all choices for the supertranslation

frame are allowed. More precisely, that covariant phase space is well defined irrespective

of how we choose to fix supertranslations. Second, we show that the on-shell action and

the leading order boundary stress tensor are insensitive to the supertranslation frame.

Third, we show that the next to leading order boundary stress tensor depends on the

supertranslation frame but only in a way that the transformation of angular momentum

under translations continues to hold as in special relativity.

We will elaborate on these points momentarily, for now let us step back a bit and recall

certain basic facts about supertranslations. It turns out that the issue of supertranslations

is much related to the general notion of angular momentum. Recall that in special relativity

the notion of angular momentum is origin dependent. This origin dependence arises because

there is a four-parameter family of Lorentz subgroups in the Poincaré group. None of these

subgroups is preferred over any other, so the origin dependence is inevitable. The structure
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of the Lie algebra of the Poincaré group then tells us the transformation property of the

angular momentum under the action of translations. The resulting notion matches with

our intuitive understanding of angular momentum.

For asymptotically flat spacetimes at spatial infinity, the asymptotic symmetries form

an infinite dimensional group — the so-called spatial infinity (SPI) group [18, 19]. The SPI

group is similar to the Poincaré group, except that the four translations are replaced by

an infinite number of angle dependent translations — the so called supertranslations. The

group structure of the SPI group is that of a semi-direct product of the supertranslation

group with the Lorentz group. The supertranslation group is the infinite-dimensional

additive group of smooth functions on the unit hyperboloid. The semi-direct product

structure is as follows: if (α, ξa) and (β, ηa) are two elements of the Lie algebra of the SPI

group, with α and β arbitrary smooth functions on the hyperboloid and ξa and ηa exact

Killing vectors of the unit hyperboloid, then the SPI Lie bracket is [18, 19]

[(α, ξa), (β, ηa)] = (£ξβ −£ηα, [ξ, η]
a). (1.1)

Now it is immediate that the SPI group admits an infinite class of Lorentz subgroups.

None of these subgroups is preferred over the others. Therefore, a naive approach to

defining angular momentum suffers from the so-called supertranslation ambiguities: origin

dependence of angular momentum where the origin lies in an infinite dimensional space.

We clearly need an additional structure at spatial infinity that can reduce the SPI group to

the Poincaré group. These points were very well emphasized in [18, 20]. The main purpose

of this paper is to systematically study the freedom we have in the Poincaré reduction of

the SPI group.

The plan of the rest of the paper is as follows. In section 2 we begin with various

definitions and provide a brief review of the counterterm construction of [15]. In this section

we also review the boundary conditions of Ashtekar, Bombelli, and Reula (ABR) [10], and

present our supertranslated generalization of the ABR boundary conditions. The main

point of this section is to show that the covariant phase space is well defined for our

supertranslated boundary conditions.

In section 3 we perform systematic expansion of the equations of motion and discuss

Beig’s integrability conditions [21, 22]. We find that despite the fact that we have an arbi-

trary function ω in our asymptotic expansion, the integrability conditions do not change.

As in [21, 22], the integrability conditions require Lorentz charges constructed using

curl [4ǫcd(aσ
cσd

b)] (1.2)

to be zero. In this paper we choose, following ABR [10], mass aspect σ to be a symmetric

function on the hyperboloid. As a result, the integrability conditions are automatically

satisfied [17, 22]. In this section we also perform a systematic expansion of the Mann-

Marolf counterterm.

Section 4 is devoted to the study of the renormalized on-shell action and the expansion

of the boundary stress tensor. We show that the on-shell action and the leading order

boundary stress tensor are insensitive to the supertranslation frame. In section 5 properties
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of the boundary stress tensor are studied in further detail. Our boundary stress tensor

satisfies all the expected properties: (i) it is conserved a la Brown-York [23], (ii) it reduces

to the previous expression of [17] when either (a) ω = 0 or (b) when ω represents a

translation — i.e., when it is not a non-trivial supertranslation, and (iii) the next to leading

order boundary stress tensor transforms under translations in an expected way. Finally,

in section 6 we end with our conclusions and possible future directions. Certain technical

and computational details are relegated to two appendices. In appendix A asymptotic

expansion of the equations of motion is presented. In appendix B certain details on the

asymptotic expansion of the boundary stress tensor are presented.

As a last comment in this section, we wish to emphasize an important point. In the

study of asymptotic structure of spacetimes, the notions one introduces and the boundary

conditions one chooses are to some extent arbitrary; their justification lies in the perspec-

tive they bring. Already there are variety of methods known to analyze asymptotic flatness

and construct conserved quantities [14, 18, 24–36]. These different approaches offer dif-

ferent perspectives. All these methods ultimately lead to similar/equivalent results. For

example, the framework presented in [18] defines unambiguously a useful notion of angular

momentum at spatial infinity, and allows us to relate such construction to the analogous

conserved quantities at null infinity. The boundary conditions of [18] are further strength-

ened in [10] by demanding mass aspect σ to be symmetric. These strengthened boundary

conditions offer a new perspective: they lead to a well defined covariant phase space. The

study presented below should be taken in this spirit. Our motivation is a combination of

the ideas: (i) we wish to have an unambiguous and useful notion of angular momentum,

(ii) we wish to have a well defined phase space precisely in the sense of [10], and finally (iii)

drawing motivation from AdS/CFT we wish to explore systematically the freedom we have

in choosing the boundary conditions while maintaining (i) and (ii). The perspective our

study brings is that it illustrates the fact that there is not a unique boundary condition, but

rather a class of boundary conditions that all lead to a well defined notion of asymptotic

flatness. Various generalizations and variations to the study presented below are possi-

ble. This study is a continuation of [15–17, 22, 37] and it largely motivated by comments

in [15, 38, 39]. For an alternative point of view on some of these ideas see [40]. Other studies

of supertranslations include a series of papers by Barnich et al [41–44] at null infinity.

2 Asymptotic flatness, actions, supertranslations

In this section we first provide relevant definitions and a brief review of previous work. We

then spell out our boundary conditions.

2.1 Asymptotic flatness and the Mann-Marolf action

As in previous work [15–17, 22, 37], we introduce our notion of asymptotic flatness based on

the work of Beig and Schmidt [9, 21]. The key advantage of using Beig-Schmidt expansion

is that all results can be readily translated to the geometrical language of Ashtekar and

Hansen [18, 29] or that of Ashtekar and Romano [19].
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Beig-Schmidt expansion for asymptotically flat spacetimes near spatial infinity takes

the form

ds2 =

(

1 +
σ

ρ

)2

dρ2 + ρ2
(

h0ab +
h1ab
ρ

+
h2ab
ρ2

+O(ρ−3)

)

dxadxb, (2.1)

where h0abdx
dxb is the metric on the unit three-dimensional de Sitter space dS3, or equiva-

lently on the unit three-dimensional hyperboloid [9],

h0abdx
adxb = −dτ2 + cosh2 τ(dθ2 + sin2 θdφ2). (2.2)

We use Da to denote the unique torsion-free covariant derivative compatible with the metric

h0ab on the unit hyperboloid. The radial coordinate ρ is associated to some asymptotically

Minkowski coordinates xµ via ρ2 = ηµνx
µxν . The fields σ, h1ab, h

2
ab, etc. are assumed to be

smooth functions on the unit hyperboloid. We use hab to denote the complete induced met-

ric on a constant ρ slice (for some large ρ) and useD to denote the unique torsion-free covari-

ant derivative compatible with hab. Further boundary conditions will be specified below.

Next, we recall the action principle of [15]. There it was shown that a good variational

principle for asymptotically flat configurations defined by the expansion (2.1) is given by

the action

S =
1

16πG

∫

M

d4x
√
−g R+

1

8πG

∫

∂M

d3x
√
−h (K − K̂). (2.3)

The counterterm in the action (2.3) is K̂ := habK̂ab. K̂ab is defined implicitly via a Gauss-

Codacci like equation

Rab = K̂abK̂ − K̂a
cK̂cb. (2.4)

Here Rab is the Ricci tensor of the boundary metric hab. For details we refer the reader

to [15–17, 37].

2.2 Supertranslations

In the introduction section we already mentioned certain basic facts about supertransla-

tions. The best way to further understand the precise nature of supertranslations is to work

out the set of diffeomorphisms that preserve the form of appropriately defined asymptot-

ically flat metrics. Since results obtained in the Beig-Schmidt coordinates (2.1) can be

readily translated to the geometrical languages, it is most natural to work out these dif-

feomorphisms in this gauge. Supertranslations in the Beig-Schmidt gauge are interpreted

as different conformal completions in the SPI framework [18] or as different hyperboloid

completions in the Ashtekar-Romano framework [19]. The problem of finding these diffeo-

morphisms has been analyzed by several authors [9, 18, 19, 21]; for reviews see [22, 45].

The upshot of this analysis is that in an asymptotically Cartesian coordinate system with

ρ2 = ηµνx
µxν , all diffeomorphisms of the form

x̄µ = Lµ
νx

ν + Tµ + Sµ(xa) + o(ρ0) (2.5)

preserve the form of the metric (2.1). The transformations generated by the constants

L
µ
ν and Tµ constitute the Poincaré group. The transformations generated by angle de-

pendent translations Sµ(xa) are the so-called supertranslations. In fact, they are all spi-

supertranslations. In the Beig-Schmidt expansion, the asymptotic spi-supertranslation
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Killing vector ξµω is related to an arbitrary function ω on the hyperboloid as

ξρω = ω(x) +O(ρ−1), ξaω =
1

ρ
ωa(x) +O(ρ−2), (2.6)

where ωa = Daω and where x denotes collectively the coordinates on the hyperboloid. As

emphasized in the introduction, we need an additional structure at spatial infinity that can

reduce the SPI group to the Poincaré group, as otherwise the notion of angular momentum

is not the familiar one. Furthermore, since supertranslations depend arbitrarily on the

angular coordinates, in particular on the time coordinate τ , even if one attempts to define

conserved charge for them, the associated charges will in general be not conserved. Not

surprisingly, a large body of work on asymptotic flatness at spatial infinity has taken the

point of view to strengthen the boundary conditions. With the strengthened boundary

conditions the freedom of performing supertranslations is eliminated. This is achieved

in [10, 18, 19, 21, 45] by demanding the leading order asymptotic Weyl curvature to be

purely electric . We will continue to demand this condition. There is still some freedom

left and this is what we would like to draw the attention of the reader to.

Let us look at the next to leading order asymptotic equations of motion. It turns to

be convenient to work with the variable

kab = h1ab + 2σh0ab. (2.7)

Equations of motion at first order now take the form [9]

�σ + 3σ = 0, (2.8)

Dbkab −Dak = 0, (2.9)

(�− 3)kab + kh0ab −DaDbk = 0, (2.10)

where � = DaDa and k = ka
a. The important point to note here is that equations for

the fields σ and kab are decoupled. By introducing the leading order electric and magnetic

parts of the Weyl tensor,

E1
ab = −DaDbσ − h0abσ , B1

ab =
1

2
curl kab =

1

2
ǫ cd
a Dckdb , (2.11)

one can rewrite these equations in a more enlightening form. See, for example, reference [37]

for a detailed discussion on this. Our boundary conditions require

B1
ab = 0. (2.12)

This implies that kab must be of the form

kab = 2DaDbω + 2h0abω, (2.13)

for some arbitrary ω. This is because the combination DaDbω+h0abω has vanishing curl, and

hence it does not contribute to the magnetic part of the Weyl tensor. For the form (2.13)

of kab equations of motion (2.9) and (2.10) are also automatically satisfied. Now recall that
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this freedom in the choice of kab also exactly correspond to performing supertranslations

in the space of Beig-Schmidt configurations (2.1). By choosing a particular representative

for the inverse of the curl operator, i.e., a particular ω in (2.13), the freedom of performing

supertranslations is eliminated. Once such a choice is made, the function ω is fixed. It is

best to regard it as a fixed background structure. This background structure is precisely

what we mean by the phrase ‘supertranslation frame.’ The most studied choice corresponds

to taking ω = 0 [10, 16–19, 21]. We show in the rest of this section that other choices of

ω are equally allowed. In this paper we wish to explore precisely the physics of making

such a choice. To set the stage for this discussion, we first need to look at the boundary

conditions of Ashtekar-Bombelli-Reula [10]. These boundary conditions were in turn moti-

vated by [18]. We will comment on the motivation of references [10, 18] for choosing ω = 0

in section 6.

2.2.1 Ashtekar-Bombelli-Reula boundary conditions

For gravitational theories it is a well known fact that the boundary conditions play a crucial

role in the description of the phase space. For such considerations it is often convenient to

work in the covariant phase space formalism [10–14]. The key quantity to consider in this

approach is the symplectic current vector wµ. The symplectic current vector depends on

the background metric g and on perturbations around the background metric δ1g and δ2g.

It is skew symmetric in the pair (δ1g, δ2g), and for the case of general relativity it takes

the form

wµ = Pµναβγδ(δ2gνα∇βδ1gγδ − δ1gνα∇βδ2gγδ), (2.14)

where

Pµναβγδ = gµγgδνgαβ − 1

2
gµβgνγgδα − 1

2
gµνgαβgγδ − 1

2
gναgµγgδβ +

1

2
gναgµβgγδ. (2.15)

Using the Ansatz

ds2 = gµνdx
µdxν = N2dρ2 + habdx

adxb, (2.16)

and

δds2 = δgµνdx
µdxν = 2NδNdρ2 + δhabdx

adxb, (2.17)

we obtain the 3+1 split of the symplectic current vector. The radial component reads

wρ =
1

4N3
habhcd

{

[

Nhefδ1habδ2hce∂ρhdf + 2δ2hac(δ1N∂ρhbd −N∂ρδ1hbd)

−2δ2hab(δ1N∂ρhcd −N∂ρδ1hcd)
]

− (1 ↔ 2)

}

, (2.18)

whereas the angular components read

wf =
1

2N
hfahbc

{

2δ2NDaδ1hbc + 2δ2hbcDaδ1N − 2δ2NDcδ1hab − 2δ2habDcδ1N

+hde
[

Nδ2hbcDaδ1hde −Nδ2hbdDaδ1hce − δ1habδ2hdeDcN −Nδ2habDcδ1hde

+2Nδ2hbdDeδ1hac −Nδ2hbcDeδ1had

]

− (1 ↔ 2)

}

. (2.19)

– 7 –



J
H
E
P
0
2
(
2
0
1
2
)
0
2
4

For the Ansatz (2.16) and (2.17), equations (2.18) and (2.19) are general expressions for

the radial and the tangential components of the symplectic current wµ. In arriving at

these expressions no reference to any boundary conditions has been made. Although these

equations look somewhat clumsy, from the computational point of view these are the easiest

expressions to work with.

The integral of the Hodge dual of the symplectic current vector over a Cauchy slice Σ

defines the symplectic structure. One must choose boundary conditions to ensure that the

symplectic structure is finite and conserved. When δ1g and δ2g satisfy linearized equations

of motion, it follows from a standard argument that ∇µw
µ = 0, where ∇µ is the covariant

derivative compatible with the bulk metric g. Therefore, the two requirements — finiteness

and conservation of the symplectic structure — reduce to respectively

1

16πG

∫

Σ
⋆4w

µ < ∞ and
1

16πG

∫

Σ12

⋆4w
µ = 0. (2.20)

Here, ⋆4 denotes the four-dimensional Hodge star, and surface Σ12 is defined as follows.

Let Σ1 and Σ2 be two Cauchy surfaces ending at spatial infinity. These surfaces enclose

a spacetime volume bounded by Σ1 and Σ2 and a portion of the boundary. Σ12 denotes

that portion of the boundary. With our notion of asymptotic flatness these requirements

are translated into, respectively,

1

16πG
lim
ρ→∞

∫

Σ

√
−gwτdρdθdφ < ∞ and

1

16πG
lim
ρ→∞

∫

Σ12

√
−gwρdτdθdφ = 0, (2.21)

where we have taken Cauchy surfaces Σ1,2 to asymptote to constant τ surfaces in the

hyperboloid. Ashtekar, Bombelli, and Reula showed that with the boundary conditions

h1ab = −2σh0ab, (2.22)

δh1ab = −2δσh0ab, (2.23)

σ(τ, θ, φ) = σ(−τ, π − θ, φ+ π), (2.24)

both the above requirements are satisfied. In particular, for the integral

1

16πG
lim
ρ→∞

∫

Σ

√
−gwτdρdθdφ =

1

4πG
lim
ρ→∞

∫

Σ

√

−h0
1

ρ
(δ1σDτδ2σ−δ2σDτδ1σ) dρdθdφ, (2.25)

one find that the potentially divergent term on the right hand side vanishes upon using

boundary condition (2.24). In the boundary conditions (2.22)–(2.24) the choice ω = 0 has

been made. Since a particular choice has been made, supertranslations do not act on the

phase space.

2.2.2 Supertranslated boundary conditions

The boundary conditions we work with in this paper are as follows

h1ab = −2σh0ab + 2DaDbω + 2h0abω, (2.26)

δh1ab = −2δσh0ab, (2.27)

σ(τ, θ, φ) = σ(−τ, π − θ, φ+ π). (2.28)
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In the boundary conditions (2.26)–(2.28) the choice ω 6= 0 has been made. Once again

since a particular choice for ω has been made, supertranslations do not act on the phase

space. Nothing changes in the calculation of the symplectic structure when working with

these boundary conditions. The symplectic structure is still finite and conserved as is the

case with the ABR boundary conditions. It is best to regard ω as the fixed background

structure. We refer to boundary conditions (2.26)–(2.28) as the supertranslated ABR

boundary conditions.

At this point we wish to point out that such a generalization should be possible was

already speculated in the work of Mann and Marolf [15], though the precise boundary

conditions (2.26)–(2.28) were not stated.

3 Asymptotic expansions

Having specified our boundary conditions we now wish to study the consequences on the

asymptotic equations of motion and on the construction of the boundary stress tensor at

the next-to-next-to leading order. It is necessary to work at this order to get a handle over

the construction of Lorentz charges. We will concentrate mostly on the physics, and will

not go into much calculational details. Since we carry out asymptotic expansions at second

order for arbitrary ω, the manipulations involved are in fact quite intricate and tedious.

3.1 Second order equations of motion

The radial 3+1 split of the bulk Einstein equations give the following equations for the

Ansatz (2.16) [21]

hab∂ρKab −NKabK
ab +D2N = 0, (3.1)

DbK
b
a −DaK = 0, (3.2)

Rab −N−1∂ρKab −N−1DaDbN −KKab + 2Ka
cKcb = 0. (3.3)

Here Kab denotes the extrinsic curvature of the constant ρ hypersurface. We carry out

the expansion of these equations systematically in appendix A. The final outcome of this

analysis is the second order equations of motion. These equations take the form

h2 = 12σ2 + σaσ
a + 3ω2 + 2ω�ω + ωabω

ab − 9ωσ − σ�ω + σaω
a + σa�ωa

+2σabω
ab, (3.4)

Dbh2ab = 16σσa + 2σabσ
b + 2ωωa + 2ω�ωa + 2ωbωab + ωab�ωb + ωabcω

bc

−σωa − 3ωσa + σa�ω − σ�ωa + 3σabω
b − ωabσ

b + σab�ωb + σb
�ωab

+2σabcω
bc + 2ωabcσ

bc, (3.5)

(�− 2)h2ab = 6(σcσ
c − 3σ2)h0ab + 8σaσb + 14σσab + 2σacσ

c
b + 2σabcσ

c

+2(ω�ω − ω2 + ωcω
c)h0ab − 4ωωab + 2ωab�ω + 2ω�ωab

+4ωabcω
c − 2ωcbω

c
a + 2ωa

cdωbcd + 2ωc(a�ωb)
c

+(14ωσ − 4σ�ω − 4σcω
c + 2σc

�ωc + 4σcdω
cd)h0ab + 17σωab − ωσab

−σab�ω − σ�ωab + 5σabcω
c − 5σcωabc + σabc�ωc + σc

�ωabc

+2σabcdω
cd + 2ωabcdσ

cd + 2σc(aωb)
c + 2σc(a�ωb)

c + 4σ(a
cdωb)cd. (3.6)
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In writing these equations we use the following compact notation,

ωabcd = DdDcDbDaω, (3.7)

�ωabc = (DeDe)ωabc = DeDeDcDbDaω, (3.8)

etc. and similarly for σ. In the special case when (�+3)ω = 0 these equations can also be

extracted from [40].

3.2 Integrability conditions

The second order equations of motion (3.4)–(3.6) are in fact quite complicated. It might

seem difficult to rewrite these equations in a form that can be used to perform an inte-

grability analysis following Beig [21]. Remarkably enough, this is not the case. These

equations have a somewhat magical structure: all the (σ, ω) terms and all (ω, ω) terms on

the right hand side of in equation (3.6) can be repackaged as (�−2) acting of the following

tensor

χab = −σωab − ωσab − 4h0abσω + 2h0abσcω
c + σabcω

c + ωabcσ
c + 2σc(aωb)

c

+2ωωab + ωa
cωbc + h0abω

2 (3.9)

As a result (3.6) can be written as

(�− 2)(h2ab − χab) = 6(σcσ
c − 3σ2)h0ab + 8σaσb + 14σσab + 2σacσ

c
b + 2σabcσ

c.

The usefulness of the tensor χab goes well beyond that. Equation (3.4) can be rewritten as

h2 − χ = 12σ2 + σaσ
a, (3.10)

and similarly the divergence equation (3.5) is rewritten as

Da(h2ab − χab) = 16σσa + 2σabσ
b. (3.11)

Written in this form the second order equations are much more manageable. Now, following

the discussion in [22] we define a tensor Vab as

Vab = −h2ab + χab + 6σ2h0ab + 2σabσ − 2σaσb + σcσch
0
ab. (3.12)

In terms of Vab the equations of motion take the form

V a
a = 0, (3.13)

DaVab = 0, (3.14)

(�− 2)Vab = curl [4ǫcd(aσ
cσd

b)], (3.15)

where as in (2.11) curl of a tensor Tab is defined as

curlTab = ǫa
cdDcTdb. (3.16)

For further properties of the curl operator and of the tensor structure ǫcd(aσ
cσd

b) we refer

the reader to [22].
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Since Vab is symmetric, traceless, and divergence free, discussion of the integrability

conditions of [22] applies as is. We find that despite the fact that we have an arbitrary

function ω in our asymptotic expansion the integrability conditions do not change. The

integrability conditions require Lorentz charges constructed using

curl [4ǫcd(aσ
cσd

b)] (3.17)

to be zero. In this paper, we have chosen the mass aspect σ to be a symmetric function on

the hyperboloid. As a result, the integrability conditions are automatically satisfied [17, 22].

The outcome of this is that the tensor Vab can be readily used to construct well defined

and conversed Lorentz charges.1

3.3 Expansion of counterterm

Having analysed the second order equations of motion and the integrability conditions, we

now turn to the expansion of the Mann-Marolf counterterm. Recall that the counterterm K̂

is defined implicitly via the Gauss-Codacci like equation (2.4). It is convenient to introduce

p̂ab =
1
ρ
K̂ab. Expanding p̂ab as

p̂ab = h0ab +
1

ρ
p̂1ab +

1

ρ2
p̂2ab +O

(

1

ρ3

)

, (3.18)

we can invert the relation (2.4) and express p̂1ab, p̂
2
ab in terms of the expansion of the Ricci

tensor on the hyperboloid. This computation was first done in [16] for the ABR boundary

conditions. We refer the reader to the appendix B of [16] for details. By a direct calculation

we find upon using equations of motion obtained above

p̂1ab = σab − σh0ab + ωab + h0abω. (3.19)

A similar calculation for p̂2ab gives

p̂2ab = h2ab −
(

5

4
σ2 + σcσ

c +
1

4
σcdσcd

)

h0ab + 2σaσb + σσab + σa
cσcb − h0abω

2

−2ωωab − ωa
cωcb +

(

3σω +
3

2
σ�ω − σcωc +

1

2
σcdω

cd

)

h0ab + ωσab

+σab�ω − ωabcσ
c − 2σc(aωb)

c. (3.20)

The traces of p̂1ab and p̂2ab simplify to

p̂1 := h0abp̂1ab = −6σ +�ω + 3ω, (3.21)

p̂2 := h0abp̂2ab =
21

4
σ2 +

1

4
σcdσ

cd − 3ωσ +
1

2
σ�ω +

3

2
σcdω

cd. (3.22)

These equations are important for the considerations of the next section.

1One comment regarding tensor χab is in order here: the form of χab (3.9) can also be worked out by cal-

culating the non-linear action of supertranslation ω on h2

ab starting with the ABR boundary conditions, in

particular using equation (2.22). This calculation in a somewhat different context was first performed in an

unpublished work in collaboration with Geoffrey Compere and Francois Dehouck. For the special case when

Dakab = ka
a = 0, i.e., (� + 3)ω = 0, such an expression can also be extracted from [40]. I thank Geoffrey

Compere and Francois Dehouck for their permission to use material from this joint unpublished work.
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4 Supertranslations and boundary stress tensor

In this section we study the on-shell value of the action and its first variations. We also

compute the next to leading order expression for the boundary stress tensor. We follow

the corresponding discussion in [15, 17, 37]. The new element in the following discussion

is our boundary conditions (2.26)–(2.28).

4.1 First variations

Let us consider the first variations of the Mann-Marolf action over configurations satisfying

our boundary conditions (2.26)–(2.28) and evaluate it on-shell. This set-up was already

considered in [15] so we shall be brief. The first variation of the Mann-Marolf action

is [15, 17, 37]

(16πG)δStotal =

∫

∂M

√
−hd3x(πab − π̂ab +∆ab)δhab, (4.1)

where πab = Khab −Kab, π̂ab = K̂hab − K̂ab and ∆ab is

∆ab = K̂ab − 2L̃cd(K̂cdK̂
ab − K̂a

c K̂
b
d) +D2L̃ab + habDcDdL̃

cd − 2DdD
(aL̃b)d, (4.2)

with Lab
cd and L̃ab given by [15, 17, 46, 47]

Lab
cd = hcdK̂ab + δc(aδ

d
b)K̂ − δc(aK̂

d
b) − δd(aK̂

c
b), L̃ab := hcd(L−1)cd

ab. (4.3)

Using asymptotic expansions of the previous section it follows that

(πab − π̂ab +∆ab) =
1

ρ4

(

σab + σh0ab
)

+O
(

1

ρ5

)

. (4.4)

Now, using our boundary condition (2.27) we see that in the ρ → ∞ limit

(16πG)δStotal =

∫

dS3

√

−h0d3x
(

σab + h0 abσ
)

(

−2δσh0ab
)

. (4.5)

The equation of motion for σ now immediately tells us that the first variation of the action

vanishes identically

δStotal = 0. (4.6)

Thus, action (2.3) provides a good variational principle for our notion of asymptotic flat-

ness.2

2Alternatively, using δhab = ρδh1

ab+. . . = −2ρδσh0

ab+2ρDaDbδω+2ρδωh0

ab+. . . and
√
−h = ρ3

√
−h0+. . .

it follows that in the ρ → ∞ limit

(16πG)δStotal =

∫

dS3

√

−h0d
3
x
(

σ
ab + h

0 ab
σ
)

(

−2δσh0

ab + 2DaDbδω + 2δωh0

ab

)

. (4.7)

Using the equation of motion for σ, this equation further simplifies to

(16πG)δStotal =

∫

dS3

√

−h0d
3
x
(

σ
ab + h

0 ab
σ
)

(2DaDbδω) . (4.8)

Performing integration by parts and using equation of motion for σ one more time, we see that the first

variation of the action vanishes identically

δStotal = 0. (4.9)

In particular, supertranslations need not be fixed! Asymptotically flat metrics related to each other via

arbitrary supertranslations can be consistently considered in the Mann-Marolf variational principle. See

also [40]. However, this is not the boundary conditions we use in this paper for reasons emphasized in the

introduction section.
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4.2 On-shell action

We now calculate the on-shell value of the action. Given our results above this calculation

is rather straightforward. Since our spacetimes are Ricci flat the bulk term in (2.3) vanishes

on-shell. Therefore,

Son−shell =
1

8πG

∫

∂M

d3x
√
−h(K − K̂). (4.10)

Now, using expansions of Kab and K̂ab obtained above (section 3.3 and appendix A respec-

tively) we have

Son−shell =
1

32πG

∫

dS3

d3x
√

−h0
[

3σ2 − σabσ
ab + 2σ�ω + 2σabω

ab
]

. (4.11)

All divergent terms have cancelled. The on-shell is finite. Doing integrations by parts and

using equations of motion for σ, we observe that the on-shell action vanishes

Son−shell = 0. (4.12)

In particular, the on-shell value does not depend on the supertranslation frame ω. An in-

terpretation of this result is as follows [37]. We showed above that δS = 0 on all variations

satisfying our boundary conditions. It follows that Son−shell must be constant as we move

along any smooth path in our phase space. Furthermore, we expect all configurations to

be smoothly connected to Minkowski space. For Minkowski space Son−shell is identically

zero. Therefore, it follows that Son−shell is identically zero on any asymptotically flat so-

lution satisfying our boundary condition. For more comments on this point see [37] and

also footnote 2.

4.3 Boundary stress tensor

From the first variation of the action, the boundary stress tensor can also be computed.

It admits an expansion in the inverse powers of ρ. The leading order and the next to

leading order terms in the expansion are relevant for the construction of translations and

Lorentz charges respectively [15, 16]. After a long and tedious computation we find these

expressions to be

Tab = − 1

8πG

(

T 1
ab +

1

ρ
T 2
ab + . . .

)

(4.13)

where

T 1
ab = σab + h0abσ (4.14)
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and

T 2
ab = h2ab + 2σaσb +

49

4
σσab + 4σabcσ

c + 7σa
cσbc −

3

4
σabcdσ

cd +
9

4
σacdσb

cd

+

[

35

4
σ2 + 3σcσ

c − 13

4
σcdσ

cd − 3

4
σcdeσ

cde

]

h0ab +
1

2
ωaωb − 2ωωab + ωab�ω

+ω(a�ωb) + ωabcω
c − 4ωacωb

c +
1

2
�ωa�ωb −

1

2
�ω�ωab − 2ωabc�ωc

+2ωc(a�ωb)
c − ωab��ω − 1

2
ωabcdω

cd +
3

2
ωacdωb

cd +

[

−ω2 +
1

2
ωcω

c − 2ωc�ωc

+
1

2
�ωc

�ωc −
1

2
ωcd�ωcd +

1

2
�ω��ω − 1

2
ωcdeω

cde

]

h0ab + σωab + ωσab

+
7

4
σab�ω − 9

4
σ�ωab −

3

2
σabcω

c − 11

2
ωabcσ

c − 2σc(aω
c
b) + 3�ωcσabc − 3σc

(a�ωb)c

+
3

2
σab��ω +

3

4
σabcdω

cd +
3

4
ωabcdσ

cd − 9

2
σ(a

cdωb)cd +

[

4ωσ +
17

4
σ�ω − 11

2
σcω

c

+
9

2
σc
�ωc +

9

4
σ��ω +

13

4
σcdω

cd +
3

4
σcd�ωcd +

3

2
σcdeω

cde

]

h0ab. (4.15)

Equation (4.15) is one of the main result of this paper. Certain calculational details on

how we obtained this expression can be found in appendix B.

5 Properties of boundary stress tensor

In this section we explore properties of our boundary stress tensor (4.13)–(4.15).

5.1 Boundary stress tensor is conserved a la Brown-York

The above stress tensor can be shown to be conserved

DbTab = 0. (5.1)

However, care must be exercised in interpreting this result. The derivative Da in (5.1) is

the torsion-free covariant derivative compatible with the full metric on the hyperboloid hab.

When expanded in powers of ρ this equation reads at leading order

DbT 1
ab = 0, (5.2)

and at the next to leading order

DbT 2
ab−σσa−σabσ

b− 2σωa− 2σ�ωa− 2σabω
b− 2ωabσ

b−σab�ωb− 2σabcω
bc−ωabcσ

bc =0.

(5.3)

An important question to ask at this point is whether or not the above expression can be

written as a total derivative of a symmetric tensor T̃ab. For ω independent terms this is

indeed the case [16]

T̃ab = T 2
ab − σT 1

ab. (5.4)

When ω dependent terms are included, with our preliminary investigations we were unable

to write (5.3) as a total derivative of a symmetric tensor. This is not necessarily an
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obstacle for the construction of conserved charges. We already know from our study of the

integrability conditions of the second order equations of motion that a conserved tensor

constructed using h2ab —namely Vab —exist and can be used to construct conserved Lorentz

charges. We expect such a tensor to play an important role in the covariant phase space

construction of charges. Given the analysis of [40] and our considerations of the covariant

phase space above, it is fairly clear that such a construction goes through without surprises.

It can be interesting to fill in all details. We will not pursue this direction here. On the

other hand, construction of conserved Lorentz charges using the boundary stress tensor

approach is more interesting and perhaps more difficult; we explore certain aspect of this

in the rest of the paper.

Reference [15] presented a general construction of boundary stress tensor charges start-

ing with equation (5.1). There an expression for conserved charge for an asymptotic Killing

vector ξaρ is given in terms of the variation of the renormalized action

Q[ξ] = −∆f,ξSrenorm = − lim
ρ→∞

1

2

∫

∂Mρ

√
−hT ab∆f,ξρhabd

3x, (5.5)

where

∆f,ξhab = (£fξg)ab − f(£ξg)ab, (5.6)

and where f is smooth function that take the value f = 0 at the past boundary of ∂Mρ and

the value f = 1 at the future boundary. The right hand side of (5.6) denotes quantities

evaluated in the bulk Mρ and then pulled back to the boundary ∂Mρ. Using general

arguments it has been shown in [48] that this charge is also the generator of the asymptotic

symmetry ξaρ . Upon performing integrations by parts, equation (5.5) can be converted into

an integral over a co-dimension two surface Cρ —a cut in boundary ∂Mρ

Q[ξ] = lim
ρ→∞

∫

Cρ

√

−hCρTabξ
a
ρn

b
ρd

2x. (5.7)

At this stage the above expression for conserved charges is somewhat formal. All

quantities that enter into this expression admit expansions in inverse powers of ρ. For

analysing Lorentz charges second order expansion of various quantities is required, which

makes the analysis quite intricate. Nevertheless, we expect that our boundary stress tensor

can be used to construct conserved charges. The precise details as to how this construc-

tion proceeds is not investigated at this stage. We will return to this problem elsewhere

in the future.

It is worthwhile to point out that for the case ω = 0 the corresponding construction

was carried out in [16], where divergence free nature of tensor T̃ab (5.4) was also observed.

Although it is fairly non-trivial to carry out explicit construction of conserved charges

for ω 6= 0 in all detail, it is rather straightforward to study transformation properties of

Lorentz charges under translations from (5.7). We present this study in section 5.3. For

now let us explore some further properties of our stress tensor.
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5.2 Special aases

In this subsection we look at various special cases where our stress tensor simplifies. In all

cases it satisfies expected properties. This study allows us to probe the structure of our

stress tensor.

5.2.1 ω = 0

When we choose ω = 0 the boundary stress reduces to a previously computed expres-

sion [17]

Tab = − 1

8πG

(

T 1
ab +

1

ρ
T 2
ab + . . .

)

, (5.8)

where

T 1
ab = σab + h0abσ, (5.9)

and

T 2
ab = h2ab + 2σaσb +

49

4
σσab + 4σabcσ

c + 7σa
cσbc −

3

4
σabcdσ

cd +
9

4
σacdσb

cd

+

[

35

4
σ2 + 3σcσ

c − 13

4
σcdσ

cd − 3

4
σcdeσ

cde

]

h0ab. (5.10)

Properties of this expression are already well studied in the literature [17, 22].

5.2.2 ωab + h0abω = 0

When ωab + h0abω = 0, i.e., when ω is a translation, kab (2.13) vanishes identically. In

this case the asymptotic metric expansion also reduces to the previously studied case

of [16, 17, 22]. Therefore, we expect again the boundary stress tensor to reduce to (5.10).

It can be verified by a direct calculation that this is indeed the case. Remarkable cancella-

tions happen when ωab + h0abω = 0 is substituted in (4.15). All ω dependent terms reduce

to zero, giving us (5.10) as the final expression. This provides a highly non-trivial test on

our computations.

5.2.3 σ = 0

Another non-trivial case is when the mass aspect is set to zero. In this case all conserved

charges corresponding to translations vanish identically. Perhpaps Minkowski space is the

only solution with this property. In this section we wish to understand properties of the

Lorentz charges when σ = 0. When σ is set to zero, h2ab is solved from equations (3.4)–(3.6)

to3 read

h2ab = 2ωωab + ωa
cωbc + h0abω

2. (5.11)

Below we substitute this expression of h2ab in the stress tensor. The resulting stress tensor

is the stress tensor of Minkowski space in a general supertranslation gauge. The fact that

3With the most natural choice Vab = 0. A choice is necessary because the corresponding equations are

hyperbolic.
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the following calculation is non-trivial and has a non-zero answer is somewhat analogous

to holographic conformal anomaly.

To analyse the structure of the simplified stress tensor, we first need to recall a few

useful results concerning symmetric divergence free tensors from [17, 21, 28]. A tensor θab
is said to admit a scalar potential α if

θab[α] = DaDbα− h0abD2α− 2αh0ab. (5.12)

The tensor θab[α] is conserved, i.e., Daθab[α] = 0. Moreover, if ξa is a Killing vector of h0ab
then the current θab[α]ξ

b can be expressed as the divergence of an anti-symmetric tensor

θab[α]ξ
b = Db

(

2ξ[bDa]α+ αD[bξa]
)

. (5.13)

As a result the currents of the form θab[α]ξ
b do not contribute to the conserved charge

associated with ξa. Similarly, a tensor tab is said to admit a symmetric, transverse tensor

potential γab with Daγab = 0 if

tab[γab] = D2γab + 2R0
acbdγ

cd where R0
acbd = h0abh

0
cd − h0cbh

0
ad. (5.14)

The tensor tab[γab] is conserved, and for ξa a Killing vector of h0ab the current tab[γab]ξ
b is

the divergence of an anti-symmetric tensor

tab[γab]ξ
b = 2Da(ξcD[aγb]c + γc[aDb]ξ

c). (5.15)

Hence, currents of this form also do not contribute to the conserved charges.

Our strategy is to write the simplified expression for the stress tensor after setting

σ = 0 and h2ab from (5.11) in terms of a scalar and a tensor potential. The simplified

boundary stress tensor is T 1
ab

∣

∣

σ=0
= 0, and

T 2
ab

∣

∣

σ=0
=

1

2
ωaωb − 2ωωab + ωab�ω + ω(a�ωb) + ωabcω

c − 4ωacωb
c +

1

2
�ωa�ωb

−1

2
�ω�ωab − 2ωabc�ωc + 2ωc(a�ωb)

c − ωab��ω − 1

2
ωabcdω

cd +
3

2
ωacdωb

cd (5.16)

+h0ab

[

1

2
ωcω

c− ω2− 2ωc�ωc+
1

2
�ωc

�ωc−
1

2
ωcd�ωcd +

1

2
�ω��ω − 1

2
ωcdeω

cde

]

.

Expression (5.16) can be rewritten as

T 2
ab

∣

∣

σ=0
= 2θ

(2)
ab − 1

2
t
(4)
ab +

1

2
θ
(4)
(1)ab +

1

4
s
(4)
ab +

1

4
θ
(6)
(1)ab +

1

4
θ
(6)
(2)ab −

1

4
t
(6)
(1)ab −

1

8
t
(6)
(2)ab , (5.17)

where

θ
(2)
ab = θab

[

1

2
ω2

]

, t
(4)
ab = tab

[

θ
(2)
ab

]

, (5.18)

θ
(4)
(1)ab = θab [ω�ω] , θ

(4)
(2)ab = θab [ωcω

c] , (5.19)

θ
(6)
(1)ab = θab [ωc�ωc] , θ

(6)
(2)ab = θab [�ω�ω] , (5.20)

t
(6)
(1)ab = tab

[

s
(4)
ab

]

, t
(6)
(2)ab = tab

[

θ
(4)
(2)ab

]

, (5.21)

(5.22)
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and finally

s
(4)
ab = 2h0abωcdω

cd − 2h0ab�ω�ω − 4ωacωb
c + 4h0abωcω

c + 4ωab�ω − 4ωaωb. (5.23)

The superscripts, e.g. as (6) in t
(6)
(1)ab, denote the maximum number of derivatives appearing

in the corresponding expressions. The subscripts, e.g., (1) in t
(6)
(1)ab, are just labels. We

immediately see that with the possible exception of s
(4)
ab , terms in (5.17) cannot contribute

to the conserved Lorentz charges. As far as we have explored, we find that the tensor

s
(4)
ab can possibly contribute to the Lorentz charges. However, this is not a problem. The

contribution due to s
(4)
ab is simply a c-number due to our boundary conditions; it only

depends on the background structure ω and is completely independent of dynamical fields.

Hence, it is a constant over our phase space. The presence of such a term is consistent

with the general analysis of [48].

5.3 Transformation of Lorentz charges under translations

Having analysed properties of the stress tensor in special cases in the previous subsection,

now let us study the transformation of Lorentz charges under translations. The idea behind

this computation is as follows. As mentioned in section 5.1 a general (perhaps somewhat

formal) expression for Lorentz charges can be written as

Q[ξ] = lim
ρ→∞

∫

Cρ

√

−hCρTabξ
a
ρn

b
ρd

2x. (5.24)

The most important quantity in this expression is the boundary stress tensor Tab, which

has expansion in powers of ρ. To investigate transformation property of Lorentz charges

under translations, we need to look at how Tab changes under translations. On the unit

hyperboloid, translations are represented by four functions satisfying

DaDbχ+ h0abχ = 0. (5.25)

Under translations by an amount χ, the function ω changes as ω → ω + χ. We wish to

know how the expansion of the boundary stress tensor changes, i.e., we want to know the

expansion of ∆χTab. Since we are considering a difference between two stress tensors for

fixed value of σ, many terms immediately cancel out. In particular, in ∆χTab the leading

term in the expansion starts at order ρ−1. Due to this fact, calculation of ∆χQ[ξ] is a

relatively straightforward exercise as opposed to Q[ξ]. We find

∆χTab = − 1

8πGρ

(

−3χh0ab − 3χσab + h0abσcχ
c + σabcχ

c
)

+ . . . (5.26)

= −1

ρ
Dc

[

(σab + σh0ab)χ
c
]

+ . . . . (5.27)
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Substituting this expression in the definition of Lorentz charges to calculate the difference

∆χQ[ξ], we see that

∆χQ[ξ] = lim
ρ→∞

∫

Cρ

√

−hCρ∆χTabξ
a
ρn

b
ρd

2x (5.28)

= −
∫

C

√

−h0CDc

[

(σab + σh0ab)χ
c
]

ξanb
(0)d

2x (5.29)

=

∫

C

√

−h0CDc

[

E1
abχ

c
]

ξanb
(0)d

2x. (5.30)

Here C denotes a cut of unit hyperboloid, and ξa an exact Killing vector of the unit

hyperboloid, and nb
(0) the unit normal to the cut C. This last expression is precisely the

expected transformation property of the Lorentz charges under translations [18, 21, 29].

Note that the fact that we obtain this result is highly non-trivial. In the expansion of

∆χTab all terms linear in ω cancel out. Once again, these remarkable cancellations are

highly non-trivial test of our computations.

6 Conclusions and future directions

Let us summarize what we have achieved in this paper. First and foremost, we have

systematically studied the closest one can come to changing the boundary metric in the

asymptotically flat context, while maintaining the group of asymptotic symmetries to be

Poincaré. The result of this analysis is that we can choose the supertranslation frame as we

like. We studied consequences of making choices ω 6= 0. We performed this analysis in the

covariant phase space approach as well as in the holographic renormalization approach. We

showed that the covariant phase space is well defined irrespective of how we choose to fix

supertranslations. Furthermore, we showed that the on-shell action and the leading order

boundary stress tensor are insensitive to the supertranslation frame. The most significant

result of this paper is the construction of the boundary stress tensor at second order. We

carried out this construction in detail, and studied its conservation properties. We also

observed that although the next to leading order boundary stress tensor depends on the

supertranslation frame, the dependence is of a very special type. It is such that the transfor-

mation of angular momentum under translations continues to hold as in special relativity.

Let us now comment on the motivation Ashtekar and Hansen [18] had for choosing

ω = 0. There it was observed that when ω 6= 0, the second order magnetic part of the Weyl

tensors fails to be conserved with respect to the derivative operator compatible with the

unit hyperboloid metric. This is indeed an obstacle if one insists on using the second order

magnetic part of the Weyl tensor to construct Lorentz charges. However, this obstacle is

only an illusion: above we constructed a symmetric and divergence free tensor Vab using

second order fields. Taking the curl of Vab one obtains a new symmetric and divergence free

tensor Wab [22]. The tensor Wab is the natural quantity to use instead of the second order

magnetic part of the Weyl tensor to construct Lorentz charges following Ashtekar-Hansen

when ω 6= 0.

A natural extension of our work is to calculate the conserved Lorentz charges (5.5)

using our boundary stress tensor with our supertranslated boundary conditions. Given the
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general analysis of [15, 36, 48], we expect such a construction to go thorough, however, the

precise details as to how it proceeds are not investigated at this stage. The reason this

computation is non-trivial is because the expression (5.7) is somewhat formal. All quantities

that enter into this expression admit expansions in powers of ρ. This makes the analysis of

Lorentz charges from holographic point of view significantly complicated. We will return

to this problem elsewhere. In this regard, the precise significance of equation (5.3) is also

not clear at this stage.

Although boundary stress tensor methods are most well studied for asymptotically AdS

and related settings, the success of these and related methods in other contexts [39, 49–53]

motivates further study in the asymptotically flat context. Our work here attempted

to fill in this divide further by extending our previous work [16, 17, 22, 37]. We also

highlighted certain similarities and differences with the asymptotically AdS setting. Further

exploration in this direction should provide additional insights into the still elusive nature

of holography for flat space [38, 41–44, 54–59].
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A Asymptotic equations of motion

The four dimensional metric is

ds2 =

(

1 +
σ

ρ

)2

dρ2 + habdx
adxb, (A.1)

where the boundary metric hab admits an expansion in the inverse powers of ρ as

hab = ρ2h0ab + ρh1ab + h2ab + . . . . (A.2)

The leading order metric h0ab is the unit metric on three-dimensional de-Sitter space. For

the considerations of the present paper h1ab is taken to be of the specific form

h1ab = −2σh0ab + 2ωab + 2ωh0ab, (A.3)

where

ωab = DaDbω. (A.4)
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Asymptotic spi-supertranslation Killing vector ξµω is related to ω as

ξρω = ω(x) +O(ρ−1), ξaω =
1

ρ
ωa(x) +O(ρ−2), (A.5)

where x denotes collectively the coordinates on the three dimensional de Sitter space, and

ω is an arbitrary smooth function of these coordinates.

To obtain the asymptotic equations of motion we perform the radial 3+1 split. The

extrinsic curvature of the constant ρ hypersurfaces can be readily calculated. It admits an

expansion in inverse powers of ρ as,

Kab =
1

2N
∂ρhab (A.6)

= ρh0ab − 2σh0ab + ωab + ωh0ab +
1

ρ
(2σ2h0ab − σωab − σωh0ab) + . . . . (A.7)

We are now in position to proceed with a study of asymptotic equations of motion. We

first look at the Hamiltonian ‘constraint.’

Hamiltonian constraint. In a simplified form the Hamiltonian constraint reads [9, 21]

hab∂ρKab −NKabK
ab +D2N = 0, (A.8)

where D denotes the unique torsion-free covariant derivative compatible with the full

boundary metric hab and N is the lapse function

N = 1 +
σ

ρ
. (A.9)

Expansion of (A.8) at the zeroth and first order gives the equation of motion for the mass

aspect

(�+ 3)σ = 0, (A.10)

and at the second order gives the equation for the trace of the second order metric

h2 = 12σ2+σaσ
a+3ω2+2ω�ω+ωabω

ab−9ωσ−σ�ω+σaω
a+σa�ωa+2σabω

ab. (A.11)

In writing these equations we use the following compact notation,

ωabcd = DdDcDbDaω, (A.12)

�ωabc = (DeDe)ωabc = DeDeDcDbDaω, (A.13)

and similarly for σ. In the following we will use equations (A.10) and (A.11) to simplify

the resulting expressions.

Diffeomorphism constraints. In a simplified form the diffeomorphism constraints

read [9, 21]

DbK
b
a −DaK = 0. (A.14)
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Expansion of this equation at the zeroth and the first orders give no further non-trivial

equation. At the second order it gives the equation for the divergence of the second order

metric

Dbh2ab = 16σσa + 2σabσ
b + 2ωωa + 2ω�ωa + 2ωbωab + ωab�ωb + ωabcω

bc

−σωa − 3ωσa + σa�ω − σ�ωa + 3σabω
b − ωabσ

b + σab�ωb + σb
�ωab

+2σabcω
bc + 2ωabcσ

bc. (A.15)

In the following we will also use this equation in the resulting expressions.

Equations of motion. In a simplified form the equations of motion for the boundary

metric hab take the form [9, 21]

Fab := Rab −N−1∂ρKab −N−1DaDbN −KKab + 2Ka
cKcb = 0. (A.16)

These equations can be expanded to give

R0
ab = 2h0ab, (A.17)

R1
ab = σab − 3σh0ab + 3ωab − h0ab�ω, (A.18)

R2
ab = 2h2ab − h2h0ab + 2σaσb − σσab + (3σ2 − σcσ

c)h0ab

+ (ω2 + 3ω�ω + 2ωcdω
cd)h0ab − 7ωωab − ωab�ω − 2ωacω

c
b

− (σω + σ�ω + σcω
c)h0ab + 2σωab − σcωabc. (A.19)

In expressions (A.18) and (A.19) the left hand side denote the expansion of the boundary

Ricci tensor:

Rab = R0
ab + ρ−1R1

ab + ρ−2R2
ab + . . . . (A.20)

In order to obtain the asymptotic equations of motion in the most useful form we now

express R1
ab and R2

ab as appropriate derivative operators acting on the metric components.

The explicit form for R1
ab is

R1
ab = DcD(ah

1
b)
c − 1

2
DaDbh

1 − 1

2
�h1ab, (A.21)

and similarly for R2
ab is

R2
ab = DcD(ah

2
b)
c − 1

2
DaDbh

2 − 1

2
�h2ab +

1

2
h1cdDaDbh

1
cd − h1cdDcD(ah

1
b)d

+
1

4
Dah

1
cdDbh

1cd +Ddh1b
cD[dh

1
c]a +

1

2
Dd(h

1cdDch
1
ab)−

1

4
Dch1Dch

1
ab

−
(

Ddh
1cd − 1

2
Dch1

)

D(ah
1
b)c. (A.22)

These expressions can be expanded to give respectively,

R1
ab = σab + h0ab�σ + 3ωab − h0ab�ω, (A.23)

R2
ab =DcD(ah

2
b)
c − 1

2
DaDbh

2 − 1

2
�h2ab + 3σaσb + 2σσab + 2h0abσ�σ + h0abσcσ

c

−6ωωab − 2ωab�ω + (2ω�ω − ωc
�ωc + 2ωcdω

cd)h0ab + ωabcω
c − ωabc�ωc + ωacdωb

cd

+6σωab − 2ωσab − 2σab�ω − (2σ�ω + 2ω�σ + 2σcω
c + σc

�ωc + 2σcdω
cd)h0ab

−ωabcσ
c + 4σ(a

cωb)c. (A.24)
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Equating (A.18) and (A.21) gives the equations of motion for the first order metric com-

ponents. We obtain again �σ+3σ = 0. In particular, upon equating (A.18) and (A.22) we

do not obtain any new non-trivial equation. At the second order we do obtain a non-trivial

equation — the equation of motion for h2ab. After a significant amount of algebra it reads

(�− 2)h2ab = 6(σcσ
c − 3σ2)h0ab + 8σaσb + 14σσab + 2σacσ

c
b + 2σabcσ

c

+2(ω�ω − ω2 + ωcω
c)h0ab − 4ωωab + 2ωab�ω + 2ω�ωab

+4ωabcω
c − 2ωcbω

c
a + 2ωa

cdωbcd + 2ωc(a�ωb)
c

+(14ωσ − 4σ�ω − 4σcω
c + 2σc

�ωc + 4σcdω
cd)h0ab + 17σωab − ωσab

−σab�ω − σ�ωab + 5σabcω
c − 5σcωabc + σabc�ωc + σc

�ωabc

+2σabcdω
cd + 2ωabcdσ

cd + 2σc(aωb)
c + 2σc(a�ωb)

c + 4σ(a
cdωb)cd. (A.25)

In writing all second order equations above we have carefully separated (σ, σ), (ω, ω), and

(σ, ω) terms.

B Certain details on the boundary stress tensor computation

This appendix contains certain details on the boundary stress tensor computation. We

make use of the asymptotic equations of motion as needed. The calculation is organized

as in appendix B of [17]. We begin by calculating the expansion of the tensor L̃ab. It is

defined as

L̃ab = hcd(L−1)cd
ab, (B.1)

where

Lab
cd = hcdK̂ab + δ

(c
(aδ

d)
b) K̂ − δ

(c
(aK̂

d)
b) − δ

(d
(aK̂

c)
b) , (B.2)

and

(L−1)cd
ab(L)ab

ef = δe(cδ
f

d). (B.3)

After a straightforward, but tedious, computation we find the expansion of L̃ab in the

inverse powers of ρ to be as follows,

L̃ab =
1

4ρ
h0ab +

1

ρ2

[

1

2
σab + h0abσ − ωab +

1

4
(�ω − ω)h0ab

]

+
1

ρ3

{

−1

4
h2ab

+
99

16
h0abσ2 − 1

4
h0abσcσ

c +
3

2
σacσb

c −
9

16
h0abσcdσ

cd + σaσb +
9

2
σσab

+
7

2
ωa
cω

cb − 3

2
ωab

�ω +
5

2
ωabω +

1

2

[

ω2 − ω�ω +
3

4
(�ω)2 − 5

4
ωcdω

cd

]

h0ab

−8σωab − 1

2
ωσab +

3

2
�ωσab − 5σc

(aωb)c − 1

2
ωabcσc +

[

−2ωσ +
29

8
σ�ω

−1

4
σcω

c +
1

4
σc�ωc +

13

8
σcdω

cd

]

h0ab
}

+O
(

1

ρ4

)

. (B.4)

Given this expression and the expansion of K̂ab, it is straightforward to compute the

expansion of the holographic stress tensor Tab

Tab = − 1

8πG
(πab − π̂ab +∆ab) , (B.5)
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where

πab = Khab −Kab and π̂ab = K̂hab − K̂ab, (B.6)

and where ∆ab is

∆ab = K̂ab − 2L̃cd(K̂cdK̂ab − K̂acK̂db) +D2L̃ab + habDcDdL̃
cd − 2DdD(aL̃b)

d. (B.7)

A straightforward computation gives

πab − π̂ab = σab + σh0ab +
1

ρ

[

h2ab + 2σaσb + σσab −
(

5

2
σ2 + σcσ

c +
1

2
σcdσ

cd

)

h0ab

+σacσ
c
b − h0abω

2 − 2ωωab − ωacω
c
b + σωab + ωσab + σab�ω − 2σc(aω

c
b)

−ωabcσ
c + (4σω + 2σ�ω − σcω

c + σcdω
cd)h0ab

]

+ . . . . (B.8)

Similarly,

K̂ab − 2L̃cd(K̂cdK̂ab − K̂acK̂db) =
1

2

(

3σab + 3σh0ab − 3ωab +�ωh0ab
)

+
1

ρ

[

3σaσb

+
21

2
σσab + 6σacσ

c
b +

(

21

2
σ2 − σcσ

c − 2σcdσ
cd

)

h0ab − 2ωab�ω + 3ωacω
c
b

+h0ab(�ω)2 − 2h0abωcdω
cd − 9σωab +

3

2
ωσab +

9

2
σab�ω − 3

2
ωabcσ

c − 12σc(aωb)
c

+

(

3

2
σω +

17

2
σ�ω − σcω

c +
1

2
σc�ωc + 5σcdω

cd

)

h0ab

]

+ . . . . (B.9)

A calculation of the derivative terms requires more work. We find

D2L̃ab + habDcDdL̃
cd − 2DdD(aL̃b)

d =−3

2
σab −

3

2
σh0ab +

3

2
ωab −

1

2
h0ab�ω +

1

ρ

{

− 3σaσb

+
3

4
σ2h0ab +

3

4
σσab + 5h0abσ

cσc + 4σabcσ
c − 3

4
σcdσ

cdh0ab −
3

4
σabcdσ

cd +
9

4
σacdσb

cd

−3

4
h0abσcdeσ

cde +

[

1

2
ωcω

c −�ω�ω − 2ωc
�ωc + 2ωcdω

cd +
1

2
�ωc�ωc +

1

2
�ω��ω

−1

2
ωcd

�ωcd −
1

2
ωcdeω

cde

]

h0ab +
1

2
ωaωb + 3ωab�ω + ω(a�ωb) + ωabcω

c − 6ωacωb
c

+
1

2
�ωa�ωb − 1

2
�ω�ωab − 2ωabc�ωc + 2ωc(a�ωb)

c − ωab��ω − 1

2
ωabcdω

cd

+
3

2
ωacdωb

cd + 9σωab −
3

2
ωσab − 15

4
σab�ω − 9

4
σ�ωab − 3

2
σabcω

c − 3ωabcσ
c

+12σc(aωb)
c + 3�ωcσab

c − 3σc(a�ωb)
c +

3

2
σab��ω +

3

4
σabcdω

cd +
3

4
ωabcdσ

cd

−9

2
σ(a

cdωb)cd + h0ab

[

4σc
�ωc − 3

2
σω − 25

4
σ�ω − 7

2
σcω

c +
9

4
σ��ω − 11

4
σcdω

cd

+
3

4
σcd�ωcd +

3

2
σcdeω

cde

]}

+ . . . . (B.10)

Putting all this together we obtain a final expression for the boundary stress tensor to the

relevant order. Such an expression is presented in the main text (4.15).
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