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Abstract. We undertake first steps in making a class of discrete models of
quantum gravity, spin foams, accessible to a large-scale analysis by numerical
and computational methods. In particular, we apply the Migdal–Kadanoff and
tensor network renormalization (TNR) schemes to spin net and spin foam models
based on finite Abelian groups and introduce ‘cutoff models’ to probe the fate
of gauge symmetries under various such approximated renormalization group
flows. For the TNR analysis, a new Gauß constraint preserving algorithm is
introduced to improve numerical stability and aid physical interpretation. We
also describe the fixed point structure and establish the equivalence of certain
models.
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1. Introduction

Spin foam models aim at providing a description of the microscopic structure of space–time and
thus a theory of quantum gravity [1–11]. These models can be understood as a non-perturbative
definition of the path integral for quantum gravity. To make these path integrals well defined
one has to introduce a regularization based on a choice of discretization, i.e. a lattice or, more
generally, a triangulation or two-complex. Indeed, spin foams can be understood as generalized
lattice gauge theories.

This discrete (a priori auxiliary) structure should not be confused with another feature
of spin foams, which is often termed ‘Planck scale discreteness’ [12–16], namely that the
spectra of (kinematical) geometrical quantum observables, such as areas and volumes, are
discrete. There are thus two different kinds of ultraviolet (UV) cutoffs, whose interplay has
not been fully understood yet. This has to be kept in mind when discussing a possible breaking
of (global) Lorentz or (local) diffeomorphism symmetry. A (naive) lattice regularization will
generically break these symmetries; see, for instance, [17–24] for a discussion of these issues in
gravity.

We may, however, consider a continuum limit with respect to this auxiliary discretization
scale, for example by a coarse graining or blocking procedure; see [25–27] for recent examples
involving gravity or related to it. A crucial question then is whether Lorentz or diffeomorphism
symmetry will be restored in this limit, despite the possibility of still having the second kind
of UV cutoff, provided by the discreteness of the spectra, in the theory. That this cutoff does
not necessarily lead to a violation of Lorentz symmetry has, for instance, been argued in [28]
on kinematical grounds. A full dynamical scenario for four-dimensional (4D) gravity where a
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restoration has been shown to occur is, however, missing; nonetheless, see [29, 30] for progress
in this direction2.

These questions motivate us to consider a continuum limit that involves many building
blocks or large lattices (with many vertices), as this is the limit where one can hope to obtain a
diffeomorphism-invariant theory. An alternative is the semi-classical limit [36–38], in which
rather the Planck constant, leading to ‘Planck scale discreteness’, is taken to be zero. To
distinguish these two kinds of limits, we will sometimes refer to the first one as the statistical
limit.

Experience with other quantum gravity models, such as (causal) dynamical triangulations,
has shown [39–45] that even before the question of restoration of symmetries can be addressed,
it is not at all obvious whether such a statistical limit leads to any viable model of space–time,
i.e. whether such a limit will result in smooth 4D space–time manifolds. Indeed, in this kind
of limit statistical considerations become important and it can easily happen that state sums
become entropically dominated by configurations not resembling any 4D manifold at all. As
we will see, a related issue arises for spin foam models (or other models based on first-
order/tetrad formulations) where geometrically degenerate configurations might be dominant.
Such configurations also turn up in a semi-classical or classical phase-space analysis, even if
this involves only a single simplex [46–48].

Hence, it is crucial to investigate which kind of large-scale physics or, in other words,
phases, are encoded in the candidate quantum gravity models. Phases are often characterized
by symmetries; that is, such a study might also answer which kind of symmetries might be
restored in a large-scale/statistical limit. Indeed, making progress in this direction is one of
the most pressing issues for the spin foam approach. However, it is also a long-standing open
issue [49–51] charged with a number of conceptual and technical challenges.

One important challenge is the complex structure of the models which lead to very
complicated amplitudes as compared, for instance, to quantum chromodynamics (QCD). Here,
our strategy [11] is to develop a wide range of simplified models which capture essential features
of spin foams while being much easier to handle. These simplifications are obtained, on the one
hand, by replacing Lie groups, on which the gravitational spin foams are based, with finite
groups. On the other hand, we can also consider ‘dimensionally reduced’ models (spin net
models). In fact, 2D spin net models of the simplest class share many statistical properties with
their counterpart 4D spin foam models.

Similar simplified models have been successfully studied, e.g. [52–54], to get insights
into the large-scale behavior of lattice gauge theories. Here, we hope for a similar improved
understanding of the possible phases that can occur in quantum gravity models. In particular,
we will see in the course of the paper how conjectures or even conclusions for Lie groups
can be made based on findings for finite groups. These simplified models can also be
interesting in their own right [55–57], in particular if an example is found in which some
analogue to diffeomorphism symmetry is restored. Indeed, topological phases and string
net condensates [58] which are studied in condensed matter, also regarding the question of
symmetry restoration, are tightly related to 3D spin foams with finite groups [11].

2 For 3D gravity, which is a topological theory, that is, without propagating degrees of freedom, discretization
does not necessarily lead to a breaking of diffeomorphism symmetry [20, 31, 32]. This holds also for 3D gravity
with cosmological constant [33]. One can, however, consider discretization or quantization methods, which a priori
break diffeomorphism symmetry and look for methods to restore these symmetries, see [25, 34, 35].
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The development of coarse graining and renormalization techniques seems to be the most
promising avenue to study the large-scale behavior and simplified models allow us to adapt and
further refine methods from lattice gauge theory and condensed matter systems. In this work,
we will therefore apply the Migdal–Kadanoff (MK) scheme [59, 60] and the tensor network
renormalization (TNR) method [61, 62]. These schemes involve a regular lattice and, due to
this regular structure, they are amenable to efficient numerical simulations.

With this approach, we are able to explicitly answer the question of BF symmetry
restoration for a range of models and to gain insights into how these results are related to the
case of infinite groups. These results should be understood as a first step towards harnessing
the power of numerical methods from statistical physics to deepen the understanding of the
large-scale physics of spin foam models.

In this work, we will first introduce spin foam and spin net models and write them in
ways suitable for coarse graining (section 2). We will also define a particularly important class
of models, termed ‘Abelian cutoff models’, discuss the role of BF/translation symmetry and
detail the relationship between spin foams and nets. Subsequently, in section 3, we discuss the
conceptual challenges of coarse graining in this context and argue for the approach pursued
here, in particular for the use of a regular lattice.

We then apply the MK and tensor network approximation schemes to coarse grain our
models (sections 4 and 5, respectively). In each case, we first introduce the method and
highlight some of its analytical properties before presenting numerical results that focus on
the question of whether renormalization of Abelian cutoff models will restore BF symmetry. In
particular, we feature a Gauß constraint-preserving TNR algorithm tailored to the geometrical
interpretation of our models and establish an equivalence among certain cutoff models under
the TNR renormalization scheme. We conclude by comparing both the approximation schemes
and pointing out possible future directions for research.

2. Spin foams and spin net models

Spin foams are a particular class of lattice gauge models (see, e.g., [63] for a recent review
and [11] for a review emphasizing the relation to lattice gauge and statistical physics models).
Such models are specified by variables, taking values in some group G, associated with the
edges of a lattice (or more generally an oriented two-complex), and weights associated with the
plaquettes. Thus they can also be termed as plaquette models.

A related class of models, which will be introduced below, are the so-called edge or spin
net models [11]. Here group variables are associated with the vertices of a lattice (or more
generically an oriented graph or one-complex) and weights to the edges. This class includes the
well-known Ising models, based on the group Z2. Indeed it will turn out that the structures
involved in a spin net model are very similar to those involved in spin foam models—just
that where, for instance, weights are associated with 2D plaquettes for spin foams, weights
are associated with 1D edges in spin nets, similarly for the group variables and so on. In this
sense, spin nets are a simpler or dimensionally reduced form of spin foams. There is, however,
one essential difference, which is that spin foams enjoy a local gauge symmetry, whereas spin
nets only feature a global symmetry, in both cases given by the group G the models are based
on. In section 2.3, we will also comment on another relationship between spin foams and
spin nets: spin nets can be seen as measuring non-gauge-invariant observables in spin foam
models.
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Spin foams and spin nets are defined by partition functions, and we will first consider
a representation of these partition functions as sums over group variables. Via a group
Fourier transform, we can rewrite these partition functions as sums over variables labeling the
irreducible representations of the group G. This is where the name ‘spin foam’ stems from, as
‘spin’ refers to the representation labels for the group SU (2). This alternative representation
is well known as a duality transformation for both edge and plaquette models, and is usually
employed for the high-temperature or strong coupling expansion [64]. The models in this
representation are specified not only by the dual weights but also by an intertwining projector
acting on a certain representation space. Non-trivial spin foam or spin net models can be
constructed by choosing this projector to be different from its standard form (which is the
Haar intertwiner introduced below) in plaquette and edge models, respectively. In the case
of Abelian groups we will explicitly construct non-trivial models, the so-called Abelian cutoff
models, which only consider representation labels of the group up to a certain cutoff. For these
models, we will see that the choice of a non-trivial projector is equivalent to retaining the Haar
intertwiner while restricting the dual weights in a particular way. These are precisely the models
that we will numerically analyze in sections 4 and 5.

For the non-trivial models, one can then apply the inverse group Fourier transform and
again obtain a partition function in terms of group variables. As will be explained below, this
will however require the introduction of several group variables per vertex (for edge models)
or edge (for plaquette models) [65–67]. This representation is termed holonomy representation,
for both spin foams and spin nets.

In the next two subsections, we will give a short introduction to the main concepts and
different representations of spin foams and spin nets. Furthermore, we will detail the different
possibilities of rewriting these models into tensor network form, as this will be the basis of one
of our coarse graining methods, to be discussed later on.

2.1. Spin net models

To construct spin net models we start with state sum models formulated over a finite group
G and on a graph (1D complex) with oriented edges. More precisely, we consider partition
functions of the type

Z =
1

|G|]v

∑
{gv}

∏
e

we(gs(e)g
−1
t (e)), (2.1)

where ]v is the number of vertices in the graph, s(e) denotes the source vertex (starting point)
of the edge e, t (e) denotes its target vertex (final point), and the curly brackets under the
sum symbol denote that there is a sum per vertex:

∑
{gv}

=
∏

v

∑
gv

. Here group elements are
associated with vertices and weights, which determine the couplings, with edges. Therefore
these models are also known as edge models and include the standard Ising model for which G
is equal to Z2. The weightswe(gs(e)g

−1
t (e)) can be arbitrary functions3 over the group G. However,

if we are class functions, i.e. invariant under conjugation (we(g)= we(hgh−1)∀g, h ∈ G), the
model will feature a global symmetry given by the group G: the partition function remains
invariant when applying the same conjugation to group variables at each vertex.

3 To have a statistical interpretation of we as probability weights, these should be positive. This will, however, not
necessarily be the case for spin foam models.
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e

v v(w̃ρe)aebe

ρe(gv)aece ρ∗e(gv )bece

w̃e

ρe(gv) ρ∗e(gv )

Figure 1. Left: the three objects associated with every edge. Right: their
schematic representation. Every straight line joining two objects means a
contraction of indices.

The form (2.1) defines the simplest form of spin net models in the representation based on
group variables. This representation will be called holonomy representation in analogy to spin
foam models (where group variables are associated with edges and represented holonomies of
a connection). Holonomy representations of more general models will require several group
variables associated with each vertex, as we will see later.

Via the group Fourier transform, we can change from the above representation in terms
of group elements, to the spin net representation, which is in terms of the irreducible
representations of the group4. Every function on the group can be decomposed into terms of
matrix elements of the irreducible representations ρ,

w(g)=

∑
ρ

dim ρ∑
a,b=1

(w̃ρ)ab ρ(g)ab, (w̃ρ)ab =
dim ρ

|G|

∑
g

w(g) ρ∗(g)ab, (2.2)

ρ∗ being the dual of ρ. For class functions this decomposition reduces to the character
decomposition

w(g)=

∑
ρ

w̃ρ χρ(g), w̃ρ =
1

|G|

∑
g

w(g) χρ∗(g), (2.3)

where χρ(g)=
∑dim ρ

a=1 ρ(g)aa denotes the character. We note that our convention for the delta
function over the group, δG, is

1

G

∑
g

δG(g) f (g)= f (id), δG(g)=

∑
ρ

dim ρ χρ(g). (2.4)

Using the property

ρ(g−1)ab = ρ∗(g)ba, (2.5)

we obtain

Z =
1

|G|]v

∑
{gv}

∑
{ρe}

∏
e

(w̃ρe)aebe ρe(gs(e))aece ρ
∗

e (gt (e))bece, (2.6)

where we sum over repeated indices5. Note that, associated with every edge, there is a coefficient
(w̃ρe)aebe , and two group representations, ρe(gs(e))aece living on the source vertex and ρ∗

e (gt (e))bece

living in the target vertex. The indices of these three objects are contracted, as described
schematically in figure 1.

4 See, e.g., [68] for the main concepts of group representation theory that we employ.
5 For class functions we, we have (w̃ρe)aebe = (w̃)ρe δaebe , which will contract the representation matrices (ρe)aece

to the characters χρe .
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ae1ae1

ae2
ae2

be3 be3

be4
be4

ce1 ce1

ce2 ce2

ce3 ce3

ce4ce4

ρe1(gv)

ρe2(gv)

ρ∗e3(gv)

ρ∗e4(gv)
P̃ v(ρe1 , ..., ρe4)

Figure 2. Four-valent vertex with two outgoing edges, e1 and e2, and with two
incoming edges, e3 and e4. Left: representations meeting in the vertex. Right:
schematic representation of the resulting vertex weight.

Now we can carry out the sums over group variables. The result is

Z =

∑
{ρe}

(∏
e

(w̃ρe)aebe

)∏
v

P̃v
ae...,be′ ...;ce...,ce′ ...

({ρe}e⊃v) (2.7)

where we have defined the vertex weight

P̃v
ae...,be′ ...;ce...,ce′ ...

({ρe}e⊃v) :=
1

|G|

∑
gv

∏
e:v=s(e)

ρe(gv)aece

∏
e′:v=t (e′)

ρ∗

e′(gv)be′ ce′
. (2.8)

The first and third groups of indices involve all the edges for which v is the source vertex. The
second and fourth groups of indices involve all the edges for which v is the target vertex. Using
the schematic representation employed in figure 1, we can represent the vertex weight as in
figure 2.

Note that P̃v can be seen as an intertwiner map, called the Haar intertwiner, acting on a
certain representation space for the group G. This representation space,Hv, associated with the
vertex v, is given by the tensor product of the representations ρe associated with the outgoing
edges and the representations ρ∗

e′ associated with the incoming edges

P̃v :

( ⊗
e:v=s(e)

Vρe

)
⊗

( ⊗
e′:v=t (e′)

Vρ∗

e′

)
→

( ⊗
e:v=s(e)

Vρe

)
⊗

( ⊗
e′:v=t (e′)

Vρ∗

e′

)
. (2.9)

The intertwining property of this map is guaranteed by the averaging over the group in (2.8).
Indeed, the Haar intertwiner defines an orthogonal projector onto the subspace Hinv

v of Hv,
invariant under the group action defined on this representation space.

The same intertwining map will appear in spin foam models. There, the choice of the Haar
intertwiner as a projector and face weights to be trivial defines topological models, known as
BF theories. A gauge symmetry, known as translation symmetry, arises in this case, forcing
the model not to have local physical degrees of freedom. The analogue situation happens in
spin net models. The choice of edge weights w̃e ≡ id and of the Haar intertwiner as a projector
corresponds to the model at zero temperature, with no local degrees of freedom. For the weights
we this amounts to choosing we ∼ δG . In this case, the projectors P̃v are just contracted along
the edges of the graph.

New Journal of Physics 14 (2012) 035008 (http://www.njp.org/)

http://www.njp.org/


8

Non-trivial models are more interesting. They are constructed by restricting the projector
further, i.e. by selecting a subspace of the invariant subspace of Hv and by replacing the Haar
intertwiner (2.8) by a projector onto this subspace. We will proceed in that way here and in
general assume that P̃v is a projector onto some subspace of Hinv

v . This allows us to obtain
interesting models even if we choose the edge weights w̃e to be trivial. Indeed, in these models,
the original gauge symmetry is broken and local physical degrees of freedom arise. We will see
this behavior for the Abelian cutoff models described below.

In general, in order to re-express the partition function Z of such nontrivial models in the
holonomy representation, namely as a sum over group variables, we will need to associate more
than one group element with each of the vertices in the lattice. Let us denote the number of
edges attached to the vertex v by nv. Now, we assign one group element g(v, e) to each of the
edges attached to v and define

Pv({g(v,e)}e⊃v)=

∑
{ρe}

P̃v
ae...,be′ ...;ce...,ce′ ...

({ρe}e⊃v)
∏

e|v=s(e)

dim(ρe) ρ
∗

e (g(v,e))aece

×

∏
e′|v=t (e′)

dim(ρ ′

e) ρe′(g(v,e′))be′ ce′
. (2.10)

In terms of this vertex amplitude, the partition function reads

Z =

(∏
v

1

|G|nv

) ∑
{g(v,e)}

(∏
e

we(g(s(e),e)g
−1
(t (e),e))

)(∏
v

Pv({g(v,e)}e⊃v)
)
. (2.11)

In the case when P̃v is given by (2.8), i.e. by the Haar intertwiner, we obtain the form of
the partition function given in (2.1), as Pv then enforces equality between the group elements
associated with one and the same vertex.

A different simplification occurs when we(h)∼ δG(h), a choice that we have already
mentioned above. Then the two group elements g(v,e) and g(v′,e) associated with any edge
e have to be equal. Hence, the partition function reduces to a sum over group elements
ge = g(v,e) = g(v′,e) associated with edges. This type of model is known as a vertex model—the
energy of a configuration is now determined by the vertex weights Pv({ge}e⊃v).

In this work, we will apply coarse graining to models with Abelian groups Zq . In this case,
all irreducible unitary representations, which we will label by k ∈ Zq , are 1D and defined by
their characters χk(g)= exp( 2π i

q k · g) for g ∈ Zq . The transformation between functions on the
group Zq and on the dual, equal to the space of characters, which is also given by Zq , is given
by the discrete Fourier transform

w(g)=

q−1∑
k=0

w̃k χk(g) w̃k = q−1
q−1∑
g=0

w(g)χ k(g). (2.12)

Characters for Abelian groups are multiplicative, i.e. χk(g1 · g2)= χk(g1) ·χk(g2) and also
χk(g−1)= χ−1

k (g)= χ k(g). Moreover, the delta over the group is now the q-periodic delta.
It verifies q−1

∑
g δ

(q)(g) f (g)= f (0).
The spin net representation of the partition function simplifies in the case of Abelian

groups to

Z =

∑
{ke}

∏
e

w̃ke

∏
v

P̃v({ke}e⊃v), P̃v({ke}e⊃v) := δ(q)

(∑
e⊃v

εe
vke

)
, (2.13)
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where εe
v is equal to +1 (−1) if v is the source (target) of e. The projector P̃v implements the

Gauß constraints at the vertex v. It indeed projects to the irreducible subrepresentation in the
tensor product of all representations associated with the outgoing edges and the tensor product
of dual representations of incoming edges. The tensor product is 1D and is equal to the trivial
representation if the oriented sum of the representation labels ke is equal to zero.

Note that the spin net representation is the starting point for the high-temperature
expansion [69]. The infinite or high-temperature fixed (HTF) point is represented by w̃e(k)=

δ(q)(k). On the other hand, the zero- or low-temperature fixed (LTF) point is given by w̃e(k)≡ 1.
This corresponds to weights we(h)= δG(h) in the original group representation. The model is
‘frozen’, i.e. the group elements at the different vertices have to agree (assuming that the graph
has only one connected component).

As commented before, for this choice of weights there is a gauge symmetry. It is associated
with the faces, i.e. the 2D cells (here we are assuming that the graph is actually given by an
orientable two-complex, i.e. the 2D cells are well defined). Associating with every face f an
element k f ∈ Zq we define a gauge transformation acting as

ke 7→ k ′

e = ke +
∑
f ⊃e

ε f
e k f , (2.14)

where ε f
e is +1 (−1) if the orientations of e and f agree (disagree). Under such a transformation

the contribution of a configuration {ke}e to the partition function Z does not change. Choosing
either the edge weights w̃e or the vertex projector P̃v to be non-trivial will in general break this
translation symmetry either completely or down to a smaller symmetry. Choosing a nontrivial
projector P̃v will in general result in vertex models, as one can basically reduce the set of
vertices allowed by the Gauß constraints even further.

We are now in a position to introduce the Abelian cutoff models. As said before, for the
LTF point (analogue to BF in spin foam models) the weights are

we(g)= δ(q)(g)=

∑
{k}

χk(g)↔ w̃e(k)= 1 ∀k. (2.15)

The Abelian cutoff models are derived from this by ‘cutting off’ the sum at some value K such
that some of the dual weights w̃e vanish. Explicitly,

w̃e(k)=

{
1, for |k|6 K ,

0, for |k|> K ,
(2.16)

where we will consider only even q, hence K 6 q
2 . Here the range for k is given by −q

2 < k 6 q
2 .

Also, note that the symmetry condition w̃(k)= w̃(−k)∀k is fulfilled. This requirement is
desired in the quantum gravity setting because it ensures that the model does not depend on
edge orientations and certain types of face and edge subdivisions [70, 71].

Abelian cutoff models could be equivalently described by a restriction of the projector P̃v

(and keeping the weights w̃e(k)≡ 1). They provide a simple example of breaking the translation
gauge symmetry from the frozen model in order to introduce physical degrees of freedom. Also
this choice of model corresponds to a regularization one often chooses for BF lattice theories
with Lie groups [72]. In this case, the orbits of the translation gauge symmetry are non-compact
and the evaluation of the partition function gives generically infinity. Different methods of
regularization have been developed; one would be equivalent to introducing a cutoff K (for
a theory with group G = U (1)). One can then ask whether these regularized models would flow
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ω̃
ω̃

ω̃

ω̃
ω̃

ω̃ ω̃

ω̃ω̃ω̃

ω̃
ω̃

P̃ P̃ P̃

P̃P̃P̃

P̃P̃P̃

Z = tTr

Figure 3. Employing the schematic representation of figures 1 and 2 it is
straightforward to realize that the partition function of spin net models can be
written in the form of a tensor trace over a network of tensors.

back to the full BF model, or more generally the LTF point, under coarse graining. We will
consider this question in sections 4 and 5.

So far we have presented the partition functions for spin net models as sums over group
variables (the holonomy representation) or representation labels (the spin net representation).
An alternative is to write the partition function as a contraction over tensors attached to the
vertices of the underlying lattice (or some graph associated with the lattice), i.e. in the tensor
network representation. The tensor network representation is commonly employed in statistical
and quantum systems [61, 73–76], since it is especially suitable for developing techniques of
renormalization. We will make use of this representation of the partition function in section 5,
where we will apply the renormalization approach to spin net models with Abelian groups.

In this representation, the contraction of the indices is prescribed by the edges. The partition
function can hence be expressed as a tensor trace

Z =

∑
{ke}

∏
v

T̃ v
{ke}e⊃v

≡ t Tr ⊗v T̃ v. (2.17)

This way of representing the partition function is related to the so-called graphical
calculus [77–80], which is often employed in the spin foam literature.

In the particular example of Abelian models in the spin net representation, we first absorb
the edge weights w̃ke into the vertex weights P̃v({ke}e⊃v) by distributing w̃1/2

ke
factors to each of

the adjacent vertices, namely in every vertex we define the tensor

T̃ v
{ke}e⊃v

=

(∏
e⊃v

(w̃ke)k
1/2

)
P̃v({ke}e⊃v). (2.18)

The partition function is then given by the tensor trace (2.17) (see figures 3 and 4).
More generally, we can find tensor network representations also for the non-Abelian

models in the different representations. The holonomy representations are a convenient starting
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ω̃

ω̃ ω̃

ω̃

P̃P̃

P̃P̃

T̃T̃

T̃T̃

Figure 4. Schematic definition of the vertex tensor T̃ v
{ke}e⊃v

in a square lattice.

point for a low-temperature expansion, the spin net representation to the high-temperature
region. For the spin net representation we can proceed as for the Abelian models. For the
holonomy representation assume that we have edge weights such that we(h)= δG(h). We then
just need to understand the group elements ge as indices attached to the tensors T s(e)

= P s(e)

and T t (e)
= P t (e) to see that (2.11) can be rewritten as a tensor trace. For the more general case

of non-trivial edge weights, we can introduce another set of rank two tensors w to the midpoints
of the edges.

2.2. Spin foam models

Spin foams are in many respects similar to spin nets. The main difference is that spin foams
are gauge theories, formulated with a gauge group G, which here will be a finite group.
Furthermore, spin foams require an oriented two-complex for their definition. This implies that
we have a well-defined notion of oriented edges as well as oriented faces (which are the 2D
cells of the complex or the plaquettes for a regular lattice).

In order to define a spin foam model, we assign a group element ge to every edge e of the
two-complex and a weight w f: G → C to every face f . The state sum model is then defined by
the partition function

Z =
1

|G|]e

∑
{ge}

∏
f

w f (h f ), (2.19)

where ]e denotes the total number of edges in the two-complex.
The function w f is a class function. Furthermore, in (2.19) w f depends on the group

elements only through the holonomy h f around the closed loop of edges forming the face f ,
which we will call curvature. Let us make its definition explicit. For that, we recall that the
relative orientation between a face f and any edge e in the boundary of f is denoted by ε f

e ,
and it is equal to +1 (−1) when e and f have the same (opposite) orientation. Given a face f
bounded by the ordered sequence of edges e1, e2, . . . , en, the associated curvature is given by

h f = g
ε

f
e1

e1 g
ε

f
e2

e2 · · · gε
f

en
en
, (2.20)

as depicted in figure 5(a). These properties of the weightw f guarantee that the partition function
is invariant under gauge transformations ge → gs(e)geg−1

t (e). As before, s(e) denotes the source
vertex of the edge e while t (e) denotes its target vertex.
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e1

e2

e3

e4

e5

f

(a) definition of curvature

f1

f2

f3

f4

e

ṽ

v

(b) edge and faces attached to it

Figure 5. (a) A face f bound by the edges e1, . . . , e5. The curvature is
h f = ge1 ge2 g−1

e3
ge4 g−1

e5
. (b) An edge e with four faces attached, f1 and f4

with positive relative orientation with respect to e and f2 and f3 with
negative relative orientation. The corresponding edge weight is denoted by
P̃e

a f 1
v ,a

f 4
v ,a

f 2
v ,a

f 3
v ;a f 1

ṽ
,a f 4

ṽ
,a f 2

ṽ
,a f 3

ṽ

.

The partition function (2.19) describes standard lattice gauge theories. The weights can,
for instance, be chosen to emulate the Wilson action

w f (h) = exp(−SW (h)), SW =
1

2α
(χρ(h)+χρ(h

−1)), (2.21)

where α is a coupling constant. For the choice w f (h f )= δG(h f ), with δG being the delta
function over the group defined as before, the partition function only sums over (locally) flat
holonomies. This is a discretization of BF theory, which is a topological field theory (without
propagating degrees of freedom). It coincides with the zero-temperature fixed point or zero
coupling fixed point of lattice gauge theories of the Yang–Mills type.

In order to obtain a representation of the partition function (2.19) as a sum over
representation labels (spin foam representation), we again apply the group Fourier transform.
Here, we only need to decompose class functions into characters

w(g)=

∑
ρ

w̃ρ χρ(g), w̃ρ =
1

|G|

∑
g

w(g) χρ∗(g). (2.22)

To decompose w f (h f )= w f (g
e f

e1
e1 g

e f
e2

e2 · · · g
e f

en
en ) we use the properties

χρ(gh)=

∑
ab

ρ(g)abρ(h)ba, ρ(g−1)ab = ρ∗(g)ba. (2.23)

We introduce this decomposition in equation (2.19) and individually carry out the sums over the
group elements (note that given an edge e, the group elements ge and g−1

e appear in
∏

f w f as
many times as the number of faces share the edge e). We obtain the following expression for the
partition function:

Z =

∑
{ρ f }

(∏
f

w̃ρ f

)dim ρ f∑
{a f
v =1}v⊂ f

∏
e

P̃e

a f +
s ,...,a f −

s ,...;a f +
t ,...,a f −

t ,...
({ρ f } f ⊃e), (2.24)
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where, associated with every edge, we have defined the projector

P̃e

a f +
s ,...,a f −

s ,...;a f +
t ,...,a f −

t ,...
({ρ f } f ⊃e) :=

1

|G|

∑
ge

∏
f +⊃e

ρ f +(ge)a f +
s a f +

t

∏
f −⊃e

ρ∗

f −(ge)a f −

t a f −

s
. (2.25)

In the above tensor, the first and third groups of indices (distinguished by the superindex f +)
involve all the faces that have e in their boundary with the same orientation as the face. These
groups of indices have therefore as many indices as the number of faces with ε f

e = 1. In turn, the
second and fourth groups of indices (distinguished by the superindex f −) have as many indices
as the number of faces f with ε f

e = −1. We show an example in figure 5(b). With every pair
face–edge two indices are associated, a f

s and a f
t , which we attach to the vertices of f that bound

the edge e, namely s(e) and t (e). In equation (2.24), for every face f of the two-complex, there
is a sum for every vertex v belonging to that face. Note that every index a f

v appears twice, since
there are two edges meeting at the vertex v and bounding the face f . Then, the product over
edge projectors contracts all the indices.

Associated with every edge there is a Hilbert space He. Let us denote by f1, . . . fm the
faces attached to e. Then,

He := Vρ f1
⊗ Vρ f2

⊗ · · · ⊗ Vρ fm
. (2.26)

Here, to keep the notation simple, we are assuming that ε f
e = 1 for all the faces6. The

corresponding tensor P̃e defines an orthogonal projector onto the gauge-invariant subspace of
the edge-Hilbert space He

(P̃eψ)a1a2···am := (P̃e)a1a2···am; b1b2···bmψb1b2···bm (2.27)

for ψ ∈He. Here, as for the spin net models, the projector (2.25) is the Haar intertwiner. As
before, more general spin foam models are constructed by restricting the Haar intertwiner to
proper subspaces of the gauge-invariant subspace of He.

For spin foam models one usually reorganizes the partition function (2.24) such that
amplitudes can be associated with vertices. To this end, one decomposed the projectors P̃e

by introducing an orthonormal basis ιek , k = 1, . . . ,m, for the invariant subspace of He. By
adjusting the basis, we can decompose any gauge-invariant projector as (here m ′ 6 m and
m ′

= m for the Haar intertwiner)

P̃e
=

m′∑
k=1

|ιek 〉〈ιek |, P̃e
a1a2···am′ ; b1b2···bm′

=

m′∑
k=1

ιek
a1a2···am′

ι
ek
b1b2···bm′

, (2.28)

so that the indices attached to t (e) are now carried by the intertwiners |ιe〉 and the indices
attached to s(e) are carried by the intertwiners 〈ιe|. According to the description above, we can
contract within every vertex the corresponding ιe obtaining vertex amplitudes Av(ρ f , ι

e), which
depend on the representations ρ f and intertwiners ιe associated with the faces and edges that
meet at v. With this, the partition function can be written in terms of vertex amplitudes via

Z =

∑
ρ f ιe

∏
f

w̃ρ f

∏
v

Av(ρ f , ι
e). (2.29)

This is the usual description employed in spin foam models for quantum gravity.

6 If there would be some face with opposite orientation to that of e, we would replace the corresponding vector
space Vρ f for its dual V ∗

ρ f
.
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As for the spin net models, we can also define a holonomy representation [65–67] for spin
foams using the inverse group Fourier transform. In case we are dealing with a non-trivial edge
projector (2.28), i.e. not the Haar intertwiner, the resulting holonomy representation will be
of the form of a generalized lattice gauge theory. That is, instead of only one group variable
associated with every edge we will have as many group variables attached to a given edge as
there are faces attached to this edge. Furthermore, there will not only be face weights w f but
also edge weights Pe which result from the transformed edge projectors P̃e.

Let us now consider the case of Abelian groups Zq . As for spin net models, the spin foam
representation simplifies since the irreducible representations are just 1D and the group Fourier
transform is just given by the usual discrete Fourier transform. Namely, we obtain

Z =

∑
{k f }

∏
f

w̃k f

∏
e

δ(q)
(∑

f ⊃e

ε f
e k f

)

=

∑
{k f }

∏
f

w̃k f

∏
v

∏
e⊃v

δ(q)
(∑

f ⊃e

ε f
e k f

)
, (2.30)

where the q-periodic delta function δ(q)(·) enforces the Gauß constraints, now based on the
edges (instead of on the vertices as for spin nets). In the last step, we just split the delta
functions over every edge into two delta functions over every vertex, in order to define the
vertex amplitudes (which here are Av =

∏
e⊃v δ

(q)(
∑

f ⊃e ε
f

e k f )).
In case the face weights are given by w̃k f = 1, which is the BF theory case, we obtain an

additional symmetry for the partition function (2.30), which as commented before is known as
translation symmetry. For spin foams the gauge parameters kc ∈ Zq are based on the three-cells
of the lattice (here we assume that the three-cells are well defined, for a regular hypercubic
lattice these would be the 3D cubes):

k f 7→ k ′

f = k f +
∑
c⊃ f

εc
f kc, (2.31)

where εc
f = +1 (= −1) if the orientations of the three-cell c agrees (disagrees) with the one of

the two-cell f . As for the spin net models, this translation symmetry does not change the validity
of the Gauß constraints appearing in the partition function (2.30). For the gravitational spin foam
models (in 3D), this type of gauge symmetry gives the diffeomorphism symmetry underlying
general relativity [20, 31]. Hence, it has a special status and is indeed deeply intertwined with
triangulation or more generally discretization independence of the models [20–22, 25, 27]. For
coarse graining, we will consider the Abelian cutoff models with face weights coinciding with
the edge weights in spin net models (2.16). For the cutoff models, the translation symmetry will
be broken as the weights are now no longer constant in k f . The motivating question will be
to see whether these models flow back to the BF phase, in which the translation symmetry is
restored.

Finally, let us note also that spin foams can be represented in various ways as tensor
networks. One possibility would be to start with the representation (2.29) involving vertex
amplitudes. To obtain an algebraically similar form to the tensor network representation of spin
net models, one would however keep the edge projectors P̃e intact. To this end, we associate
the tensor T̃ e

= P̃e with the midpoints of the edges of the lattice. The edges of the lattice carry
a number of indices that are all contracted with each other in the lattice vertices according to
the description below (2.25). Furthermore, we have to take care of the face weights w̃ρ f and the
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T̃ f

T̃ f
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Figure 6. Schematic definition of the tensor network for spin foams on a cubic
lattice.

sum over representation labels ρ. This can be achieved by introducing another type of tensor
T̃ f

= w̃; see figure 6. If we work with a cubic lattice these tensors are four-valent carrying
as indices representation labels: (T̃ f )ρ1ρ2ρ3ρ4 = w̃ρ1δ(ρ1, ρ2, ρ3, ρ4). The second factor is equal
to one if all representation labels in the argument coincide and zero otherwise. This tensor is
connected by auxiliary edges to the four adjacent edge tensors T e ensuring that the sum over
the representation labels involves the same representation label for every face.

2.3. Relation between spin foam and spin net models

Here, we want to comment on an interesting relationship between spin net and spin foam
models. Namely, one can understand spin nets as expectation values of (gauge symmetry
breaking) observables inserted into the spin foam partition functions. We will illustrate this only
for the simplest case: the spin foam represents BF theory and the spin net is of the form (2.1),
i.e. the vertex projector is given by the Haar intertwiner.

Indeed, the partition function (2.1) can be rewritten in the form

Z =
1

|G|]e

∑
{ge}

∏
e

we(ge)
1

|G|]v

∑
{gv}

∏
e

δG(g
−1
e gs(e)g

−1
t (e))

∝
1

|G|]e

∑
{ge}

∏
e

we(ge)
∏

f

δG(h f ), (2.32)

where f runs over a set of faces whose boundary edges and vertices generate the initial graph
over which the spin net model is defined. Moreover, the two-complex made up of this set of
faces must be simply connected for equation (2.32) to be valid (otherwise we have to amend
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the condition that holonomies along non-contractible loops should be trivial). The constant of
proportionality comes from the normalization of the delta functions and can be absorbed by a
redefinition of the weights we(ge) in the second line. The second line of equation (2.32) is the
result of introducing the product of edge weights we(ge) in the partition function for BF theory
(w f = δG) on a simply connected two-complex. Similar observables have been considered in the
context of 3D quantum gravity, namely for the Ponzano–Regge model [81, 82], and have been
interpreted as Feynman diagram evaluations. That is, the edge-weightswe(ge) can be understood
as propagators and the spin net model as a Feynman diagram evaluation.

3. Coarse graining methods

Having introduced the models of interest in the previous section, we now turn to the challenge of
implementing a coarse graining procedure. In this section, we will outline our general approach
and discuss the conceptual issues that arise. The application of two approximation schemes in
our context will then be discussed in the following sections.

Although gravitational spin foams are usually defined on a general triangulation or two-
complex, we will here consider coarse graining on a regular lattice. This allows us to actually
make explicit computations and to use methods from lattice gauge theory and condensed
matter systems. One might object that using a regular lattice will introduce a background
structure, spoiling background independence. There are, however, indications [25, 27, 83] that
a restoration of diffeomorphism symmetry will be connected with a notion of triangulation
or discretization independence, and hence the choice of a particular underlying lattice may
not matter. Indeed, the universality phenomenon of statistical systems also suggests that the
details of the chosen lattice might not matter for the questions we are interested in, i.e. a
characterization of the possible phases of the models, or whether spin foams can avoid
degenerate phases. Nevertheless, one should study whether the results depend on the choice
of lattice.

The development of a scheme where order parameters or coupling strengths might be
locally varying is another conceptual challenge [49, 50], which we will not address here. This
would be appropriate for a random lattice or for situations with a very inhomogeneous dynamics.
Again, we think that developing feasible coarse graining methods for spin foams and nets on a
regular lattice is an indispensable first step.

Furthermore, for gravitational systems, a regular underlying lattice can nevertheless
represent very inhomogeneous or irregular geometries. This is due to the fact that the dynamical
variables are the geometrical data which also determine the lattice geometry and moreover the
physical scale. In this sense, a very fine lattice can carry very different (coarser) geometries
[20, 84].7 This opens up the possibility that refining in lattice quantum gravity is even equivalent
to summing over (a class of coarser) lattices [84], thus eventually leading to a discretization-
independent theory at the fixed point [25, 27, 83]. Indeed, systems with diffeomorphism (like)
symmetry might add interesting new insights to the theory of phase transitions.

Another issue, which has to be addressed for any coarse graining or renormalization
scheme, is which space of models one considers the renormalization flow to take place in [51].
Indeed, this question is not quite obvious for spin foam or spin net models such as, for instance,

7 See also the universality result [85], which implies the simulation of irregular sublattices based on a regular
underlying lattice.
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spin net models that mix aspects of edge models, where couplings are along edges, with vertex
models, where couplings are based at the vertices.

Furthermore, spin foam models are constructed to be as independent as possible from the
underlying discretization. This translates into certain invariance properties of the amplitudes
under a certain class of subdivisions, those which effect edges or plaquettes, but do not lead
to an increase in the number of (non-trivial) vertices [70, 71, 86, 87]. Spin foam models,
which are constructed using trivial face weights but non-trivial projectors, will satisfy this
invariance. Invariance under this subclass of subdivisions can be seen as a first step toward
a discretization-independent model. One might ask whether it is possible to come up with a
renormalization scheme in which this form of the spin foam amplitudes and the invariance
properties under face and edge subdivisions is preserved; see also [67]. However, this seems
not to be very likely, as long as the amplitudes are not invariant under all kinds of subdivisions
and hence renormalization flow is trivial or at a fixed point. An intuitive reason is that the
faces and edges of a coarse grained spin foam are ‘effective’ building blocks, containing a huge
number of bare vertices, edges or plaquettes. That is, a change of the effective triangulation,
even if it only involves a subdivision of edges and faces, will correspond to a more complicated
change of the underlying ‘bare’ triangulation. Indeed, we will find that under the renormali-
zation schemes presented here, the invariance property under edge and face subdivisions is
not preserved.

A general problem with real space renormalization schemes of (higher than 1D) statistical
models is that an increasing number of non-local couplings appear with each blocking step8.
To keep the renormalization flow in a space with a finite number of parameters, some sort of
truncation or approximation scheme has to be used. We will consider two such schemes. The
first one, the MK [59, 60] scheme, is based on a truncation to local couplings. The derivation of
this scheme is based on arguments that rely on the standard form of edge and plaquette models.
Here an important question for future work would be to generalize this scheme to proper spin
foam or spin net models, which constitute a rather generalized form of these models.

Whereas the MK scheme is based on a blocking of the group variables, the second scheme,
based on the TNR, is blocking the degrees of freedom encoded in the representation labels. This
might be an advantage as the representation labels are related to metric degrees of freedom in the
geometric spin foam models. Hence, this kind of blocking is much closer to the blocking used
in the gravitation models in [25, 26], which is derived by geometrical arguments. Moreover, we
will see that this scheme allows direct access to the behavior of the vertex and edge projectors
and makes use of the properties of representation theory encoded in the models.

The TNR can, however, also be applied to the holonomy representation of the spin foam
and spin net models; see also [90]. Which scheme to use might depend on which region one
aims to explore, the high-temperature (where the spin net/spin foam representation is more
appropriate) or the low-temperature region (where the holonomy representation might be more
useful). Indeed, tensor networks are an extremely general tool, in which it is also possible to
consider the emergence of different kinds of effective degrees of freedom, long-range order
as well as topological phases [91]. Another advantage is that tensor networks can handle

8 Indeed, such non-local couplings are essential to regain diffeomorphism [26] or Lorentz symmetry [88, 89]. This
at least applies to models with genuine field degrees of freedom, i.e. 4D gravity, but not for 3D gravity, which is a
so-called topological field theory. Nevertheless, 3D gravity (which can be described by BF theory, that is the LTF
point of lattice gauge theories) is an important test case for which the restoration of symmetries can be studied in
a simpler setting.
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(a) isotropic decimation (b) anisotropic decimation

Figure 7. Derivations of MK relations for 2D spin net models involve moving
bonds and subsequent integrations. The isotropic procedure leads to exponents
γ = 1, λ= 2, whereas in the anisotropic case this is only true for the couplings
in the vertical direction—the horizontal couplings feature γ = 2, λ= 1.

non-positive weights [90]. This is an important point for gravitational spin foams where
oscillating amplitudes appear, preventing the use of Monte Carlo simulations.

The issue of non-local couplings in this renormalization scheme appears in the form
of having more and more degrees of freedom. One has to choose a cutoff for this number.
The advantage as compared with the MK scheme is that the accuracy of this scheme can
be systematically improved by increasing this cutoff. Furthermore, it is possible to study the
dependence of the results on the choice of cutoff.

On the other hand, the TNR scheme requires much more effort than the MK scheme and
offers less analytical control. This is of course related to the much bigger parameter space one is
considering in the case of tensor networks. A crucial question for future research is how feasible
the tensor network scheme will be for higher dimensional systems, as most work performed so
far is for 1D and 2D systems. Our application of the TNR method is also restricted to 2D spin
net models.

4. The Migdal–Kadanoff (MK) approximation

MK approximations are a simple tool to overcome a key difficulty in real-space renormalization:
the introduction of non-local couplings in the renormalized action (which in the statistical
physics language is the Hamiltonian) with each coarse graining step.

When coarse graining the 1D Ising model with nearest neighbor interactions by decimation,
the state sum factorizes. Integrating out the chosen spins gives a renormalized Hamiltonian
of the same form as the one we had started with [60]. However, this no longer happens
in higher dimensions: generically, the renormalized Hamiltonians feature new, longer-ranged
interaction terms that render it impossible to continue with the procedure [59]. The central idea
behind the MK approximation is to substitute this renormalized Hamiltonian by an approximate
Hamiltonian which features the same interaction terms as the original Hamiltonian, thus making
the renormalization transformation form invariant.

The original proposal [59] of Migdal amounts to neglecting certain terms in the state sum,
while strengthening others. Applied to the 2D Ising model, this translates to moving bonds
(couplings along the edges) away from those nodes which are to be eliminated by decimation.
In this way, the valency of those particular nodes is reduced to two and the situation is thereby
effectively reduced to the 1D case (see figure 7).

Kadanoff subsequently identified bond-moving as a special case of a general
approximation scheme for which he derived a bound on the free energy [60]. Further
justification for this approximation is derived from Monte Carlo simulations [52, 53]. In
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practice, MK approximations do fairly well at finding fixed points and phase transitions
and not so well at determining the order of these transitions [54]. However, specific fixed
points of the Kosterlitz–Thouless type might not be reproduced by this approximation [92].
MK approximations are computationally efficient and comparably easy to implement but not
refineable in a systematic way.

4.1. MK relations explored

Let us consider a model of spin net type

Z ∼

∑
{ge}

∏
e

w(ge) (4.1)

based on the Abelian group Zq . Bond moving then involves dropping some of the terms in (4.1)
and replacing some of the others with

w(ge′)→ w2(ge′)=

∑
k

∑
j

w̃(k − j)w̃( j)

χk(ge′) (4.2)

leading to convolution of Fourier coefficients, the main feature of MK approximations. The
subset of group variables corresponding to dropped terms can then be integrated out without
generating non-local couplings.

One can proceed similarly for lattice gauge theories or plaquette models of the form (2.19).
For both kinds of models, different versions of bond moving and different decimation schemes
can be defined. In particular, in anisotropic methods the renormalized couplings will be different
in different lattice directions, while in simpler isotropic methods the couplings will remain
homogeneous (see figure 7). We will only consider the isotropic methods here, which can also
be made exact on so-called hierarchical lattices [93].

For the normalized weights Q(k) := w̃(k)/w̃(0), this results in general recursion relations
of the form [92]

Qn+1(k)=

(∑q−1
j=0 Qγ

n (k − j)Qγ
n ( j)∑q−1

j=0 Qγ
n (− j)Qγ

n ( j)

)λ
. (4.3)

Here, γ and λ are constants specific to the model and derivation in question. However, models
with fixed γ · λ are qualitatively equivalent and share the same fixed point structure in the
following sense: two instances of (4.3), with exponents γ, λ; γ̃ , λ̃ respectively and γ · λ= γ̃ · λ̃

are related by

Qn(k)= [Q̃n(k)]
λ/λ̃ (4.4)

given initial configurations that satisfy

Q̃0(k)= [Q0(k)]
γ /γ̃ . (4.5)

Typical values for the exponents are γ = 1 and λ= 2 for the ‘isotropic’ 2D spin net and
4D lattice gauge models and γ = 1 and λ= 4 ‘isotropic’ 3D lattice gauge theories. The
corresponding fixed point equations are given by

Q(k)

q−1∑
j=0

Qγ (− j)Qγ ( j)

λ

−

q−1∑
j=0

Qγ (k − j)Qγ ( j)

λ

= 0. (4.6)
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(a) λ = 2, spin net 2D (b) λ = 4, spin foam 3D

Figure 8. Parameter space of Z4 symmetric models and their renormalization
flow. The three regions correspond to configurations flowing to HTF (0, 0),
LTF/BF (1, 1) and the ‘cyclic fixed point’ (0, 1). Other unstable fixed points
(dots) and invariant submanifolds (thick lines) are also depicted. Note the
differing behavior of the cutoff model (square) at (1, 0) in both cases.

The HTF and LTF points (Q(0)= 1, Q(k > 0)= 0 and Q(k)= 1 ∀k, respectively) are
common solutions of equation (4.6), independently of the exponents. Furthermore, for some
fixed factor d of q , there is a class of fixed points given by

Q(k)=

{
1 k mod d = 0,
0 else,

(4.7)

which derive this property from being invariant under d-fold cyclic permutations.
More generally, for a fixed factor d of q (symmetric and normalized) configurations with

Q(k)= 0 for k mod d 6= 0 and those given by

Q(k)=

{
1 k mod d = 0,
α else,

(4.8)

form invariant submanifolds of the parameter space. There are also more non-trivial fixed points,
including the higher-dimensional analogue of the Ising fixed point on the 1D invariant line
connecting the LTFs and HTFs. For Z2, this point is predicted to be a non-trivial solution of

Q(1 + Q2γ )λ − (2Qγ )λ = 0. (4.9)

In the 2D standard Ising model case (with exponents γ = 1, λ= 2), the solution is given
by Q = w̃1/w̃0 = 0.296 which corresponds via kT = artanh(Q)−1 to a temperature of kT =

3.282 (the exact solution is given by kTc = 2/ log(1 +
√

2)≈ 2.269 [94]). Also note that MK
approximations only predict this Ising-type fixed point for exponents with γ · λ > 1. Figure 8
illustrates the aforementioned features for 2D spin net and 3D spin foam models with group Z4.

4.2. Restoration of BF symmetry in Abelian cutoff models

Cutoff models are certain initial configurations for the MK renormalization group flow which
are of particular interest to quantum gravity because they are derived from BF theory. The
question of interest here is whether the topological nature of BF theory, which is destroyed
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(a) spin net, λ = 2 (b) spin foam, λ = 4

Figure 9. Flow behavior of different cutoff models, labelled by K and q . Markers
half-filled at the top flow to BF/LTF (diagonal models, K = q/2), and markers
half-filled at the bottom flow to HTF (horizontal models with K = 0). In (a),
unstable fixed points appear (pentagonal and hexagonal markers).

in the construction of the cutoff models, will be restored under the renormalization group
flow. With a possible restoration of the BF phase, also the translation symmetries (2.14)–(2.31)
would be restored, which in the 3D gravity models correspond to diffeomorphism symmetry.
Whereas the BF phase—or LTF point—in a 3D gravity setting represents flat space–time, the
HTF, at which Q(0) is equal to unity and vanishes for all other labels k, corresponds to a
geometrically degenerate phase, in which all geometric (length) observables have vanishing
expectation value. However, whether the models flow back to BF or not depends very much on
the initial configuration in question. Instead of focusing on one model with one specific group,
we here address the differences between different models for finite Abelian groups Zq with
varying q, leaving other (non-Abelian) groups for further research.

Let us first consider the case of 3D lattice gauge theory/spin foam models over Zq

for varying q where the exponents in (4.3) are given by γ = 1, λ= 4. Here, different initial
configurations parameterized by q and K converge quite fast (after 5–10 iterations) either to
the HTF or the LTF; see figure 9(b). In general, there are two competing effects encoded in the
recursion relations (4.3): the convolution leads to a broadening of the function Q(k), whereas
the exponents γ and λ lead to a dampening effect (as the Q(k)6 1).

For the 3D gauge models, most configurations flow to the HTF; that is, the dampening
factor is quite strong. Regarding the question of restoration of the translation symmetries, we
see that this happens only in cases where the initial configuration is already quite close to the
BF configuration, which coincides with the LTF.

These observations are in accordance with similar, but analytical work done in the
generalized case of U (1) [92]. There it was found that for 3D U (1) gauge models all
configurations satisfying certain conditions9 flow to the HTF.

9 These include a positivity requirement on the weight functions in both representation space and group space
which is not satisfied for our cutoff models. However, it would be satisfied, for instance, for a heat kernel
regularization of, for instance, the Ponzano–Regge model. This would show that with the MK method these
regulated models would not flow back to the Ponzano–Regge model, but to the HTF point.
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These results have been extended to 3D lattice gauge models with non-Abelian compact
groups U (N ) and SU (N ) by the authors of [95]. Hence this applies also to the 3D gravitational
(Ponzano–Regge) model, which is based on SU (2) (assuming that a change from a lattice based
on tetrahedra to a cubic lattice does not matter) and we have to conclude that within the MK
approximation, translation symmetry/diffeomorphism symmetry is not restored. Note, however,
that for finite groups (i.e. finite q), there are some (even) cutoff configurations that do flow
back to the LTF or BF phase. Here we might draw the conclusion that it is easier to restore a
compact symmetry as compared to a non-compact one, as the translation symmetry is based
on a compact parameter space for Zq and on a non-compact one for proper Lie groups. Here
it would be interesting to see whether for some analogous modifications of the Tuarev–Viro
models [33], which describe 3D quantum gravity with a cosmological constant and are based
on quantum groups, such a restoration of the (here compact) translation symmetries occurs.
See also a discussion of related issues in loop quantum gravity quantization of 3D gravity
with a cosmological constant [34, 35] and a classical coarse graining treatment of the same
system, where diffeomorphsim symmetry can be restored [25]. To study this question for the
Tuarev–Viro models one would have to adjust the MK method to quantum groups or to apply
alternative renormalization schemes, such as the tensor network scheme described in the next
section.

For 4D ‘isotropic’ lattice gauge models, or equivalently for 2D spin net or edge models,
the exponents in (4.3) are given by γ = 1, λ= 2. Hence, the dampening effect is much less
pronounced than for the 3D gauge models. Indeed, now most configurations flow back to the
LTF or BF phase, see figure 9(a). An exception is the K = 1, q > 8 configurations, which flow
to HTF, but only after a considerably large number of iterations (about 60). Nevertheless, this
can be interpreted as a phase boundary in the q–K diagram.

For a given cutoff K > 1 the number of iterations necessary to converge to the LTF grows
with q . (For K = 2 these are 8, 15, 60 iterations for q = 8, 10, 12, respectively). Moreover, for
sufficiently large q, the simulations go through a long phase of only very small changes of the
order of 10−5–10−4, so that the iterations are almost constant. For K = 2 this appears starting
with q > 14. For instance, from around iteration 10 to iteration 100 the following configurations
appear for the q = 14 simulation:

Q = (1, 0.81, 0.43, 0.15, 0.03, 0.005, 0.0005/6, 0.0001, 0.0005/6, 0.005, 0.03,

0.15, 0.43, 0.81) (4.10)

and would be stable at least up to the number of digits displayed in (4.10). This configuration
converges after 970 iterations to the LTF point10. Note, however, that this number of iterations
corresponds to an extremely large lattice (in lattice units).

This type of behavior is typical for fixed points with unstable directions but could also
occur for quasi-fixed points. To differentiate between these two cases, we considered a one-
parameter deformation of the q = 14, K = 2 model, for which we changed the Q(1)= Q(2)=

Q(12)= Q(13) values from unity to an arbitrary parameter 0< x < 1. Indeed, there is a phase
boundary for x ∼ 0.365 which leads to a non-trivial fixed point (we give only the first two

10 For higher q this convergence requires much more iterations, more than 36 000 for q = 16. But the values (4.10)
appearing through the stable phase would be very similar in the q = 14, q = 16 simulations. Indeed, as will be
explained in section 5, these two configurations can be considered to encode the same physical model.
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non-vanishing digits)

Q = (1, 0.72, 0.28, 0.057, 0.0062, 0.00035, 0.000011, 0.03500870,

0.000011, 0.00035, 0.0062, 0.057, 0.28, 0.72). (4.11)

This fixed point is considerably different from the configuration (4.10) and also the initial
configurations parameterized through x = 1 and x = 0.365 are quite different. Hence, we see
that a rather large portion of parameter space is dominated by the unstable fixed point. To obtain
convergence to either LTF and HTF extremely large iteration numbers are necessary. In other
words, the phase transition between LTF and HTF is very weak and the phase boundary not
very pronounced.

Indeed, in 2D systems and in the limit of a continuous symmetry group, such as U (1),
one cannot expect the usual type of second-order phase transition between the symmetry
breaking phase (which here would be LTF) and the disordered phase (HTF). This is explained
by the Mermin–Wagner (Coleman) theorem stating that continuous symmetries cannot be
spontaneously broken at finite temperature [96–98]. Nevertheless, there are two phases, both
in the 2D system with global U (1) symmetry [99, 100] connected by a Kosterlitz–Thouless
transition [101] and in the 4D gauge system [102, 103]. This is a phase transition of infinite
order. However, for the (isotropic) MK relations it was proven by Ito (again under certain
assumptions on the initial configurations, including positivity of weights both in group and
Fourier space) that this phase transition is not detected [92]. But also here extremely slow
convergence (of all configurations towards HTF) has to be expected due to the existence of
quasi-fixed points. Our findings are explained by these considerations (although we use initial
configurations not satisfying Ito’s assumptions); that is, by going to larger q we have to expect
weaker and weaker phase transitions. Furthermore, the Ising-type fixed point on the invariant
line between LTF and HTF is drawn continuously towards HTF, indicating the absence of the
transition in the limit of large q. For 4D lattice gauge theories with non-Abelian Lie groups
it is speculated [92] that the MK relations provide a better approximation than for those with
Abelian groups. The confinement conjecture states that, in contrast to Abelian groups, there is
no phase transition for systems with non-Abelian Lie groups [103].

5. The tensor network renormalization (TNR) scheme

Here, we will discuss a second coarse graining method and apply it to spin net models in 2D in
the spin net representation. We have shown in section 2.1 that the spin net models can be easily
brought into tensor network form. For these a number of real space renormalization techniques
have been developed in recent years [61, 62, 104]. Moreover, tensor networks have become
popular not only as a tool to formulate partition functions for ‘classical statistical models’ but
also to provide a variational ansatz for trial wave functions [73, 76, 105] for quantum statistical
models. For a variational ansatz, one has to find the expectation value of the Hamiltonian with
respect to the trial wave functions. The computational techniques [105] are similar to the TNR
group techniques.

This is another point that motivates us to consider renormalization of spin net models,
as structures very similar to spin nets, the so-called spin networks, appear in the canonical
or Hilbert space formulation of spin foam models. Hence the renormalization techniques
considered here could also be useful to find, e.g., the physical wave function (ground state)
via a variational ansatz. Indeed, the tensor network ansatz has also been developed to describe
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topological phases [62, 105], which often are represented by the so-called physical wave
functions of BF theories, which are the starting point of spin foam quantization. Moreover, as
we have also seen in section 2.1, tensor networks and spin networks are naturally related
[74, 78]. More generally, tensor networks are a general tool for graphical calculus [78, 79],
which becomes especially powerful for representation theoretic models such as spin foams and
spin nets [77, 80].

The starting point of the TNR method is to write the partition function of a given model as
a contraction of tensors associated with vertices of a graph (or lattice)

Z =

∑
a,b,c,d...

T abcd T ae f gT bhi j
· · · . (5.1)

The contraction of indices is along the edges of the graph; that is, every edge of the graph carries
one index. As these are summed over, we can interpret the indices as the variables or degrees of
freedom of the model. The dynamics is encoded in the choice of tensor.

The tensor network itself, i.e. its underlying graph, can also be interpreted as a lattice in
space or space–time. Choosing appropriate subsets of tensors and contracting all tensors inside
each subset according to the connectivity given by the network will result in a network with
fewer vertices and edges. Hence, this procedure corresponds to the blocking procedure in real
space renormalization. Each subset results in a new ‘effective’ tensor T ′ describing an effective
model. Note, however, that in the two- and higher-dimensional cases the effective tensors T ′

generically11 carry more indices than the original tensors T . For a regular lattice the number
of indices associated with the effective tensors T ′ grows with the number of iteration steps.
For the underlying graph, it means that the valency of the effective vertices will grow—mostly
in the form of having multiple edges between pairs of vertices. These multiple edges can be
summarized into effective edges, which then carry indices with an exponentially growing range.

Here is where one has to choose an approximation such that the indices run over a pre-
chosen maximum number of values Dc. By increasing Dc the approximation can be improved
systematically. Ideally, this approximation should pick out only the relevant physics and neglect
the irrelevant short-distance fluctuations. The details of how this selection is implemented
depend on the scheme; here we will follow a refined version of [61, 62].

The TNR method is very general as many different models can be written in tensor
network form. That is, in principle one can also flow between different models based on
different kinds of variables. On the other hand, one loses a direct physical interpretation of
the ‘blocking procedure’, i.e. how the effective/blocked degrees of freedom are built up from
the microscopic ones. This information can be supplemented by studying expectation values of
(coarse grained) observables. Below we will introduce a method that allows us to keep some
physical interpretation of the indices associated with the effective tensors. This is, however,
specific to the spin net/spin foam representation, where the indices are group representation
labels and for the gravitational spin foam models carry geometric information, such as lengths
and area values. Hence, we can argue that this method would correspond to blocking over
these area or length variables. Such a blocking procedure was also employed in [25, 26] for
the classical Regge model and has the advantage of a direct geometrical interpretation of the
coarse graining procedure.

Here we will consider the TNR method for a regular lattice but the principle is also
applicable to generic graphs arising for instance from random triangulations or Feynamn graphs.

11 An exception is hierarchical lattices [93].
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Figure 10. The square lattice with even (blue circles) and odd (green squares)
vertices.

In this case one needs, however, to find some suitable approximation scheme to prevent an
exponentially growing index range of the effective tensors.

5.1. Gauß constraint-preserving TNR method

In this section, we will shortly describe the TNR method following [61, 62] applied to 2D
Abelian spin net models. We will, however, introduce a technique to keep the Gauß constraints
explicitly valid throughout the renormalization process; see also [74, 75]. The reason for doing
this is that the Gauß constraints have an immediate geometrical information: in a given spin
net (with oriented edges) consider any region such that its boundary cuts only through edges.
Then only those configurations will contribute to the partition sum for which the sum of all
ingoing indices is equal (modulo q) to the sum of all outgoing indices. This means that the
Gauß constraints should also hold at the effective vertices, which arise from blocking all the
vertices in certain regions. We will first review the method for a general 2D tensor network
model based on a square lattice and afterwards specify to the case of spin net models and deal
with the Gauß constraints.

Consider a 2D tensor network based on a square lattice, so that the tensors T abcd are of
rank four; see figure 10(a). An obvious way to proceed would be to contract always four tensors
along a square and to define in this way a new effective tensor which would now carry four
double indices.

However, to find a suitable approximation, i.e. a method to keep the index range constant,
one proceeds differently. The first step is to decompose the tensors T into a product of two other
tensors S. This is performed in two different ways according to the partition of vertices into odd
and even ones. A vertex is even, respectively odd, if the sum of its lattice coordinates is even,
respectively odd.

For even vertices we decompose (see figure 10(b))

T abcd
=

∑
i

Sab,i
1 Scd,i

2 . (5.2)
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Figure 11. (a) Contraction of the four S tensors to the new T ′ tensor. (b) The
coarse grained lattice.

Such a decomposition is always possible using a singular value decomposition (SVD) for the
d2

× d2 matrix Mab,cd
1 = T abcd . Here d gives the range of the indices a, b, . . .. This gives

Mab,cd
1 =

q2
−1∑

i=0

U ab,i
1 λi(V

†
1 )

i,cd (5.3)

with positive singular values λi and unitary matrices U and V . We can then define Sab,i
1 =

√
λiU

ab,i
1 and Scd,i

2 =
√
λi(V

†
1 )

i,cd .
Similarly, for the odd vertices, we decompose (see figure 10(b))

T abcd
=

∑
i

Scb,i
3 Sad,i

4 , (5.4)

where now one uses an SVD for the matrix Mcb,ad
2 = T abcd .

In a second step, we contract four of the tensors S along the indices of type a, b, . . . , to
obtain the new tensor T ′i jkl , now with indices i, j, . . . (see figure 11(a)), and arranged along a
square lattice rotated by 45

◦

(see figure 11(b))

T ′i jkl
=

∑
a,b,c,d

Sab,i
2 Sac, j

4 Sdc,k
1 Sdb,l

3 . (5.5)

If we keep the range of i as in equation (5.3) the index range of the tensors T would grow
exponentially with the number of iterations. This is where the key approximation step comes
in, namely to consider only the Dc largest singular values in the decomposition (5.3). This
approximation is justified as the partition function is a trace over the tensors, thus involving the
sum over the singular values. The validity of the approximation can be checked by comparing
the values of the neglected singular values against the largest singular values in the SVD [61].
One can choose a rescaling after each iteration step such that this largest singular value is equal
to one. Implementing the cutoff Dc in the number of singular values in the decomposition (5.3),
we will obtain a flow in the space of tensors of rank four with a constant index range given
by Dc.

The SVD does not only serve as an approximation method but also leads to a field
redefinition. Here the field variables are given by the indices over which the tensors
are contracted. In the SVD these tensors are linearly transformed, which also induces a
transformation on the fields. The transformations aim at an efficient representation of the
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partition sum, i.e. involving a minimal range of indices or equivalently a minimal number or
range of variables. The SVD is not unique; in particular for degenerate singular values one
can add rotation matrices acting on the eigenspaces associated with the degenerate singular
values. For the spin net models, we will, however, modify the method so that the kind of field
redefinitions that can occur are restricted. This is related to preserving the Gauß constraints
throughout the renormalization process. It also has the advantage that the indices keep their
original physical interpretation, which for the gravitational models are related to geometrical
quantities.

Let us now specify to the Abelian spin net models in the spin net representation. Here it is
convenient to introduce an orientation for the edges: for the square lattice, we will choose all
horizontal edges to point to the right and all vertical edges to point upwards. In this case, the
initial tensor T is of the form (the indices are anti-clockwise cyclically ordered starting from
the leg pointing to the right, as in figure 10(b))

T abcd
= u(a)u(b)u(c)u(d) δ(q)(a + b − c − d), (5.6)

where u(·)=
√
w̃(·) in the notation of (2.13) and a = 0, . . . , q − 1 for a model based on Zq .

The delta function factor signifies the Gauß constraints. Because of this factor the matrices M1

and M2 can be brought into block diagonal form; namely for Mab,cd
1 we have the condition

that

a + b = c + d =: i mod q (5.7)

for non-vanishing entries, whereas for Mcb,ad
2 we have that

b − c = d − a =: j. (5.8)

Here the indices i, j label the non-vanishing blocks.
In the first iteration step, the decomposition into the tensors S can be obtained exactly and

involves at most q non-vanishing singular values

Sab,i
1 = u(a)u(b) δ(q)(a + b − i), Scd,i

2 = u(c)u(d) δ(q)(c + d − i),

Scb, j
3 = u(c)u(b) δ(q)(b − c − j), Sad, j

4 = u(a)u(d) δ(q)(d − a − j).
(5.9)

We assume that Dc > q (or alternatively that Dc is bigger than the number of non-vanishing
u(a)), so that no approximation is necessary at the first iteration step. Note that at least Dc = q
is necessary to flow to the LTF point, where u(a)= 1 for a = 0, . . . , q − 1. (As one can check
the corresponding tensor is a fixed point also for the tensor network renormalization flow.)

The contraction of four tensors S along the four edges of the square would involve four
sums. Due to the (four) delta functions in the sum this, however, reduces to one summation.
There will be one delta function δ(q)(i + j − k − l) left, which amounts to the Gauß constraint
for the effective tensor T ′i jkl :

T ′i jkl
= δ(q)(i + j − k − l)

∑
c

u2(c) u2(i − c) u2( j + c) u2(k − j − c). (5.10)

This new tensor will in general not be of the factorizing form (5.6) anymore, so generically
the decomposition into tensors S will now involve q2 non-vanishing singular values. That is,
in the case of Dc < q2, the approximation sets in. Nevertheless, the block diagonal form of all
tensors and matrices involved can be kept through the following iterations.
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At a general iteration step, we will work with a tensor T abcd with double indices a =

( ja,ma) where ja = 0, . . . , q − 1. As will be explained below, the range of ma depends on the
SVD in the previous iteration step. These tensors will satisfy the Gauß constraints

T ( ja,ma)( jb,mb)( jc,mc)( jd ,md ) ∼ δ(q)( ja + jb − jc − jd) (5.11)

at all iteration steps.
Similarly as before, we can define for the even vertices the matrix

M ( ja,ma)( jb,mb),( jc,mc)( jd ,md )

1 = T ( ja,ma)( jb,mb)( jc,mc)( jd ,md ). Due to the Gauß constraint (5.11) this
matrix can be brought into block diagonal form, as the non-vanishing entries must verify
ja + jb = jc + jd =: i . We will denote these blocks by M1(i). Then the SVD can be applied to
the single blocks M1(i) for i = 0, . . . , q − 1, so that

(M1(i))
( ja,ma)( jb,mb),( jc,mc)( jd ,md ) =

∑
mi

(U1(i))
( ja,ma)( jb,mb),(i,mi )λmi (V1(i)

†)( jc,mc)( jd ,md ),(i,mi ).

(5.12)

This yields of course the same singular values as for the entire matrix. Apart from providing
a faster algorithm [74, 75], the numerical implementation leads also to more stable results
for the following reason. Generically one encounters the case of having singular values with
multiplicities higher than one. In this case, the SVD is not unique as one can perform rotations
among the basis vectors associated with a given singular value. Here, keeping the block structure
explicit prevents a mixing between different blocks induced by these rotations.

To implement the approximation we now have to select the Dc largest singular values
among the singular values of each block. The number N1(i) of singular values selected from
the block i determines the range of the second index mi in the double index (i,mi). That
is this number N1(i) can take values between zero (no singular value selected) and Dc (all
selected singular values come from one and the same block). Note that for the first iteration step
N1(i)= 1 (in case all the u(a) are non-vanishing). We define the S matrices by

S( ja,ma)( jb,mb),(i,mi )

1 =
√
λmi (U1(i))( ja,ma)( jb,mb),(i,mi ),

S( ja,ma)( jb,mb),(i,mi )

2 =
√
λmi (V1(i)†)( jc,mc)( jd ,md ),(i,mi ).

(5.13)

Note that we have i = ja + jb and i = jc + jd (mod q) for the non-vanishing entries of S1 and
S2, respectively. For the matrices (M2(i))( jc,mc)( jb,mb),( ja,ma)( jd ,md ) at the odd vertices, we proceed
similarly, which will result in matrices S( jc,mc)( jb,mb),(i,mi )

3 and S( ja,ma)( jd ,md ),(i,mi )

4 . For the non-
vanishing entries of these matrices we have jb − jc = i and jd − ja = i (mod q), respectively.
The range of the indices mi is now determined by the number N2(i) of singular values selected
from the block i of the matrix M2.

The contraction of the four S-matrices along the square now results in a sum

T ′(i,mi )( j,m j )(k,mk)(l,ml )
=

∑
c

∑
mc,mi−c,m j+c,mk− j−c

S(c,mc)(i−c,mi−c),(i,mi )

2 S
(c,mc)( j+c,m j+c),( j,m j )

4

×S
(k− j−c,mk− j−c)( j+c,m j+c),(k,mk)

1 S
(k− j−c,mk− j−c)(i−c,mi−c),(l,ml )

3

∼ δ(q)(i + j − k − l). (5.14)

Here the range of mc,mk− j−c is determined by N1(c), N1(k − j − c) from the previous iteration
step, whereas mi−c,m j+c is determined by N2(i − c), N2( j + c), respectively, also from the
previous iteration step. Accordingly, the range of mi ,mk is determined by N1(i), N1(k) of
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the iteration step under consideration (that is, by the last SVD) and m j ,ml by N2( j),
N2(l), respectively.

This altered algorithm has not only the advantage of keeping the Gauß constraint explicit
but is also keeping any physical interpretation that might be attached to the representation
labels/indices ja. For the gravitational spin foam models these would carry information on
lengths and area variables—and the procedure here would correspond to a blocking where the
microscopic geometrical variables are basically added to obtain the coarse grained variables.
The Gauß constraints arise because of reasons rooted in representation theory: namely that
for Abelian groups the tensor product of representations k and k ′ leads to a representation
k + k ′. Indeed, the tensors T and S can just be seen as intertwining maps between (tensor
products of) representation spaces, and the first index ja of the double index ( ja,ma) encodes
the representation carried by the associated edge.

The same arguments based on representation theory apply for the non-Abelian spin net
models. Also there the tensors T and S are intertwining maps between representation spaces,
leading to matrices of block diagonal form. For the abstract spin net models, the initial tensor T
is basically determined by the choice of projector P̃v in (2.9), which restricts the intertwining
map from one of maximal rank to one of some smaller rank. Here it will be interesting to study
whether any of the projector properties are preserved under coarse graining.

Tensor network methods thus have the potential to give direct insight into the behavior of
the projectors P̃v under coarse graining, which are the key dynamical entities in spin foam
models. Moreover, the kind of coarse graining in the spin net or spin foam representation
uses the representation theory underlying these models and furthermore corresponds to a
geometrically natural coarse graining.

5.2. Equivalence of models

A crucial point in every renormalization method is the question of which space of models one
is considering, i.e. in which space the renormalization flow is taking place. Often the coarse
graining process leads to models outside this space and usually some approximation method is
employed to project the models back into the chosen space. For instance, in the MK approach
one considers models with local interactions; that is, non-local terms have either to be neglected
or replaced by appropriately chosen local interaction terms. In particular for a Zq gauge model
with local (single-plaquette) interactions, one always stays in the form of the Zq gauge model
(with single-plaquette interactions).

In contrast, the space of models in the TNR method is defined by the chosen cutoff Dc on
the index range of the tensors T . Hence, different models, for instance spin net models with
different Zq groups, can be considered in the same space. Indeed, for certain initial conditions
the initial tensors T abcd might actually define the same tensor network models.

Consider, for instance, the Abelian cutoff models for different (even) q but for the same
cutoff parameter K . That is we deal with the initial tensor (5.6) where

u(k)=

{
1 for |k|6 K ,

0 for |k|> K ,
(5.15)

with k running from −(
q
2 − 1) to q

2 (we consider even q).
As T abcd

= u(a)u(b)u(c)u(d)δ(q)(a + b − c − d) the corresponding (symmetric) matrices
Mab,cd

1 and Mbc,ad
2 will have zero rows and columns if these include an index a with u(a)= 0.

New Journal of Physics 14 (2012) 035008 (http://www.njp.org/)

http://www.njp.org/


30

In the SVD, these rows/columns can just be neglected as it leads to a vanishing singular value.
After neglecting zero rows and columns in the matrices arising from different models, these
matrices might, however, coincide (with appropriate matching of indices) and in this sense
define the same tensor network (TNW) model.

Indeed, one can check that in the case of the models (5.15) this occurs for a fixed cutoff K
but for varying q as long as q > 4K + 2. In this case, the first SVD for the matrices M1,M2 give
for both matrices the same 4K + 1 non-vanishing singular values

λmax , λmax − 1, λmax − 1, λmax − 2, λmax − 2, . . . , 1, 1, where λmax = 2K + 1. (5.16)

As long as the cutoff in singular values Dc is chosen such that Dc > 4K + 1, the first
decomposition (5.2) of the T matrices into S matrices is exact.

In particular, this means that Abelian spin net models with q > 4K + 2 and fixed K but
different q should go through the same renormalization sequence and hence should also end in
the same fixed point. We will see in section 5.4 that this holds almost always in the numerical
simulations. There will, however, also be examples where the fixed points depend on q. In these
cases, the simulations approach an unstable fixed point and the difference in the simulations
appears only for large iteration numbers (more than 100 iterations). Hence, the difference can
be explained by numerical instabilities and the fact that our method depends on the parameter
q in order to keep the block structure of the T matrices explicit: q defines the number of blocks
and hence the kind of possible field redefinitions which underlie the method.

Disregarding this point the equivalence between models should also hold if we send
q → ∞, i.e. consider U (1). In general, we see that the TNR method might also be applied to Lie
groups (which would lead to infinite-dimensional matrices) as long as we consider initial data
such that the initial matrices reduce to finite-dimensional ones due to the appearance of either
zero singular values, or singular values that are sufficiently small. This equivalence between
models appears only approximately in the MK method, as there the number of parameters on
which the renormalization flow acts is fixed by q or more generally the size of the group on
which the model is based.

5.3. Structure of fixed point

In the MK scheme, we considered a renormalization flow within a space described by q (or
(q − 1) after normalization) parameters for spin nets based on the group Zq . We are much more
flexible with the TNR method, where the number of parameters is determined by the chosen
cutoff Dc on the number of singular values. Hence, there are potentially many more fixed points.
Indeed the fixed point structure is considerably more complicated, in particular for Dc � q, as
we will exemplify below with the Ising model, q = 2. Note that (with the exception of Dc = 2,
which can be treated analytically), we will only discuss fixed points which we found as a result
of the renormalization process, i.e. by flowing to these fixed points. That is, we will miss most
of the unstable fixed points, which are those with repellent directions and would require a fine-
tuning of parameters to flow into.

The main feature of the TNR method—with the approximation based on the SVD—is
the appearance of non-isolated fixed points. These are argued [62] to be due to short-scale
degrees of freedom, which are not averaged out by the approximation method employed here.
In [62], different forms of additional approximation steps (termed entanglement filtering) are
suggested that apply once the flow reaches the non-isolated fixed points. We will not consider
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these additional steps here and just describe the type of fixed point encountered in the original
TNR method. For future work one should, however, study this issue in more detail. In particular,
one could benefit from a detailed comparison between approximations of the MK type and
approximations based on the TNR method and furthermore from an analysis of relevant and
irrelevant directions for the linearized renormalization flow around this kind of fixed point.

In the following, we will describe the results of the TNR method for the Ising model in
the spin net representation (associated with the high-temperature expansion) for the choice of
different cutoffs Dc; see also [62] for a treatment of the Ising model with the TNR method
improved by entanglement filtering.

The smallest cutoff that would also allow a representation of the LTF point u(0)= u(1)= 1
is Dc = 2. We start with configurations u(0)= 1, u(1)= x . For x > 0.608 58, these flow to the
LTF represented by u(0)= u(1)= 1. Accordingly, the singular values λi for this fixed point
are λ0 = 1, λ= 1 with every block j = 0, 1 contributing one singular value. (We normalize the
tensors in every step such that the largest singular value is equal to one.)

For 06 x < 0.608 57 the configurations flow towards the HTF point represented by
u(0)= 1, u(1)= 0. This corresponds to having only one non-vanishing singular value λ0 = 1.
The transition point at u(1)= 0.6085 corresponds to a phase transition temperature of kTc ≈

2.572. This is a better approximation to the exact result of kTc ≈ 2.269 than the isotropic MK
result of kTc = 3.282 in section 4.1.

In this case, Dc = 2, one can analytically compute the flow in some suitable parameters,
for instance the tensor components T abcd . This allows us to find a further (unstable) fixed
point, given by the matrix Mab,cd

1 = T abcd (the numbering of the rows and columns is ab =

00, 11, 01, 10)

M1=


1 + s4

2 s2
1(1 + s2

2) 0 0

s2
1(1 + s2

2) 2s4
1 0 0

0 0 2s2
1s2 s2

1(1 + s2
2)

0 0 s2
1(1 + s2

2) 2s2
1s2

, with s1 = 0.592 902, s2 = 0.431 05.

(5.17)

Note that the tensor describing this fixed point is no longer of the original form (5.6) as this
would require s2 = s2

1 . Nevertheless, it leads to phase transition between the low and high
temperature regimes.

Let us now turn to the case Dc = 4. In this case, configurations with x > 0.6466 will still
flow to the LTF characterized by two non-vanishing singular values λ0 = λ1 = 1, one from every
block. For configurations with x < 0.6465, we encounter, however, a new type of non-isolated
fixed point, the so-called corner double line tensors [62, 104].

‘Double line’ indicates that we have to deal with pairs A = (a, a′) of indices. The tensors
are defined by associating a matrix Cab with each corner of the four-valent vertex (see figure 12),

T (aa′)(bb′)(cc′)(dd ′)
= Ca′bCb′c′

Ccd ′

Cda. (5.18)

Such tensors are fixed points of the renormalization flow (for Dc sufficiently large). The
decomposition (5.2) of such a tensor is determined by the SVD of Cab. Namely, if

Cab
=

∑
I

ua,I ηI v
b,I , (5.19)
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C C

CA
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bb′
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c′

dd′

Figure 12. Tensor with corner double line structure.

we can write

T (aa′)(bb′)(cc′)(dd ′)
= Ca′b

(∑
I,I ′

ub′,I ud,I ′

ηIηI ′vc′,Iva,I ′

)
Ccd ′

. (5.20)

Hence, if the SVD of Cab includes n non-vanishing singular values ηI , we will obtain n2 non-
vanishing singular values of the form ηIηI ′ for the matrices obtained from T .

The fixed point we encounter in the high-temperature region for Dc = 4 is of CDL type
with the corner matrix

C =

(
1 0
0 y

)
. (5.21)

That is, in the SVD for the matrices associated with the tensor T , we encounter four non-
vanishing singular values λi = 1, y, y, y2. Here y ranges from zero and seems to get arbitrarily
close to 1 for u(1)= x reaching the transition point at 0.649 656 2 . . .. Note that here we
encounter a continuous fixed point family of ‘high temperature type’ ranging from having only
one non-vanishing singular value equal to one to having four non-vanishing singular values,
with three of these almost equal to one. If we take the transition between this fixed point family
and the LTF (with two non-vanishing singular values equal to one) as the phase transition we
obtain a critical temperature of kTc = 2.221. This again is a better approximation to the exact
phase transition temperature than the Dc = 2 result.

The appearance of these non-isolated fixed points is interpreted [62, 104] to be due to
short-range entanglement, which is not filtered out by the renormalization flow. Hence, certain
microscopic details of the models are remembered and the usual universality property of phase
transitions does not apply. One can nevertheless argue that the correspondence between phases
and fixed points does hold: here models in a certain phase flow to certain types of fixed
points. Indeed, we will see that for Dc = 9 two different types of non-isolated fixed points
appear, representing the low and high temperature regimes, respectively. In [62], additional
approximation steps are suggested, designed to filter out this short-range entanglement. We will
leave the investigation of these and other additional approximation steps for future work.

The appearance of the CDL-type fixed points suggests that cutoffs Dc = n2, with n being
a natural number, might lead to a fast convergence, as these accommodate the n2 non-vanishing
singular values of CDL-type fixed points. We will therefore discuss also the case Dc = 9. Here,
both the low-temperature phase and the high-temperature phase are described by non-isolated
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fixed points. For the initial value u(1)= x 6 0.642 93 we flow to fixed points, described by nine
non-vanishing singular values of the form

λi = 1, y, y, y2, z, z, yz, yz, z2. (5.22)

(For x = 0.642 93 we have y = 0.7588 and z = 0.4200.) This suggests a fixed point of CDL
form based on a 3 × 3 matrix C with singular values ηI = 1, y, z. This family of fixed points is
continuously connected to the proper HTF, where y = z = 0.

For u(1)= x > 0.64295, i.e. in the low-temperature phase, we also flow to a non-trivial
fixed point, this time characterized by eight non-vanishing singular values of the type

λi = 1, 1, y, y, y, y, y2, y2. (5.23)

(For x = 0.642 95, we obtain y = 0.6434. For x → 1 the parameter y approaches 0 and we
obtain the proper LTF point.) Hence, this tensor cannot be of the CDL type. Indeed, it turns out
that it is of the form

T = TCDL ⊗ TLTF, (5.24)

where TCDL is a tensor based on the corner matrix (5.21) and TLTF is the tensor associated with
the LTF point, which is of the form (5.6) with u(0)= u(1)= 1. Therefore, eight non-vanishing
singular values appear, as products of the four singular values λ= 1, y, y, y2 for the CDL tensor
and the two singular values λ′

= 1, 1 for the LTF tensor. The appearance of this type of fixed
point tensor of product form was conjectured in [62]. We will encounter more fixed points of
this form in the next subsection.

The transition between the high-temperature family of fixed points and low-temperature
family of fixed points corresponds to a critical temperature of kTc ≈ 2.274, which again
approximates the exact result kTc ≈ 2.269 better than the Dc = 4 result (kTc ≈ 2.221).

5.4. Analysis of Abelian cutoff models

We will now discuss the renormalization behavior of Abelian cutoff models to compare it to
the results obtained with the MK method in section 4.2. We will consider the same kind of
configurations as in section 4.2, parameterized by the size of the group q and by the cutoff12 K .

Now, as was pointed out in section 5.2, configurations with the same cutoff parameter K
but different q might encode the same tensor network model. To utilize this we will choose
the same cutoff Dc (Dc = 16, 25 and is equal to 32 for some models) for different q, so that
the renormalization flow should also be the same in these cases. This is different from the MK
method, where the number of parameters always depends on q.

We have seen in section 4.2 that the MK renormalization flow for the 2D spin net models
was much more involved than for the 3D spin foam models: For sufficiently large groups Zq

configurations would undergo a behavior determined by unstable fixed points and rather weak
phase transitions leading to very long convergence times. Therefore we can expect similar
properties to appear in the tensor network renormalization. Furthermore, as is usually the case
if configurations approach a region around phase transitions, the approximation implemented
by the cutoff Dc might get less and less accurate. Indeed, the values of the neglected singular

12 Let us recall that K refers to the cutoff introduced in the space of group representations, which actually defines
the model, while Dc is the maximum number of singular values considered when approximating the SVD.
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(a) Dc = 16 (b) Dc = 25

Figure 13. Flow behavior of different cutoff models, labeled by K and q;
compare figure 9. Markers half-filled at the top flow to LTF/LT F × CDL
(diagonal models, K = q/2), and empty hexagonal markers indicate a quasi-
fixed point or oscillating behavior. Connected markers illustrate equivalent
models in the sense of section 5.2.

values might become comparably large (of the order of 10−1 of the largest singular value, which
will always be normalized to one), even for the quite large cutoff Dc = 32. The TNR method,
however, offers the possibility of increasing the cutoff and thereby studying the influence of the
cutoff on the results obtained.

Another issue that appears during a number of simulations is configurations for which the
symmetry k → −k (equivalent to reversing all the edges) is broken. The reason for this is that
singular values usually appear with a twofold degeneracy, namely one from a k-block and the
other from a (−k)-block. The singular values from the block with k = 0 and k = q/2 are an
exception to this rule. Also, quite often singular values appear with even higher degeneracy.
Now, taking only a fixed number of singular values into account, one will quite often dismiss
one singular value of a degeneracy pair and in this way break the edge reversing symmetry. As
the number of k = 0 singular values which are taken into account by the cutoff is not known
a priori, and might even change during the iterations, it might be quite difficult to find a cutoff
where this issue does not appear.

In regions ‘near’ phase transitions, i.e. where convergence takes very long, these non-
symmetric modes typically lead to unstable, oscillating behavior. This also signifies that the
influence of the cutoff is not negligible. In the MK method, non-symmetric configurations
may only appear due to numerical inaccuracies and it is quite straightforward to implement
a symmetrization after each iteration step. A similar procedure for the TNR method (which is
however not as straightforward to implement as for the MK method) would probably be very
helpful in obtaining more reliable results as well. Here we will interpret an oscillating behavior
over large iteration times as indicating the presence of an unstable or quasi-fixed point.

We can broadly summarize the behavior we encountered in the simulations of the Abelian
cutoff models into the following classes, which we also illustrate in figure 13:

• The models flow quite fast (typically during 10–30 iterations) to the LTF point or to a fixed
point of type TLTF ⊗ TCDL as described in section 5.3. This happens for cutoff models which
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are not independent of q. The LTF points come with q non-vanishing singular values equal
to unity. The more complicated fixed points with CDL structure appear, in particular, for
the higher cutoff Dc = 25. The singular values associated with the CDL structures are,
however, quite small (∼10−5–0.2), so that we can safely interpret these fixed points as of
low temperature type. It also happens that initially the configurations flow to a TLTF ⊗ TCDL

fixed point with a higher number of non-vanishing singular values than provided by the
chosen cutoff. In this case the configurations slowly keep changing such that the singular
values associated with the CDL structure decrease. With the exception of two models
(K = 3, q = 12 and K = 4, q = 16) such a behavior appearing in the Dc = 16 simulation
would be confirmed in the Dc = 25 treatment.

• An interesting special case is K = 1 and q > 6 (which describes the same tensor network
model independent of q as long as q > 6). For Dc = 16 the fixed point (reached after about
60 iterations) is of the form TLTF ⊗ TCDL, but the TLTF factor comes with only four singular
values equal to unity. The CDL structure leads to 16 non-vanishing singular values, where
apart from the four singular values equal to one, the next eight ones are equal to 0.86 and
the final four ones are equal to 0.73.

The Dc = 25 results are slightly different: due to the appearance of non-symmetric
configurations as described above, the configurations are oscillating for more than 80
iterations. Then the results do actually start to depend on q: for q = 6 a TLTF ⊗ TCDL fixed
point is reached with six singular values equal to one (so it is really a q = 6 LTF point),
12 singular values equal to 0.81 and six equal to 0.655. Whereas for q = 8 a fixed point is
approached (about 200 iterations) with eight singular values equal to one, another 16 are
around 0.3, plus eight singular values around 0.12. This gives more than 25 non-vanishing
singular values, so as described above the configuration is slowly changing, decreasing the
CDL singular values. Note, however, that due to the high iteration numbers involved and
the appearance of ‘non-symmetric’ configurations, the results should be taken with some
care.

• For the Dc = 16 simulations there are two examples K = 2 and q = 10 or higher, and
K = 3 and q = 14 or higher, which show stable behavior and seem to approach a (non-
trivial) fixed point for long iteration times (approximately 20 iterations for K = 2 and
approximately 100 iterations for K = 3). The change in the singular values during this
approach can get very small, with instances where the change in the singular values is of
the order of 10−7. There is a large number of non-vanishing singular values indicating
a complex (quasi/unstable) fixed point. After this stable phase, configurations become
unstable and ‘non-symmetric’ showing a slightly oscillating behavior (changes of the order
of 10−3–10−2 from one to the next iteration). For K = 3 the configurations converge to q-
dependent LTF points (at iterations 230 for q = 14 and 180 for q = 16), for K = 2 the
behavior remains unstable for very long iteration times. This behavior is confirmed for
K = 2 with the Dc = 25 and Dc = 32 simulations (where now the stable phase is up to
100 iterations). For K = 3, the Dc = 25 and Dc = 32 simulations lead to non-symmetric
configurations which show oscillating behavior for long iteration times. However, the
complicated structure of the largest q singular values agrees with that of the simulations
with smaller cutoff.

Note that examples flowing to an HTF do not appear. The best candidate would be the K = 1
configurations (describing the same tensor network models starting with q = 6 and larger q),
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Table 1. Summary of the renormalization flow of Abelian cutoff models. To
a precision of 10−10, the numbers in brackets give the iteration times (halved
for TNR to make comparable) it takes to reach a certain behavior: LT (LTF
point, bold numbers denote the number of them that appear explicit), HT (high-
temperature fixed point), QF (quasi-fixed point), Osc (oscillating behavior), CDL
(corner double line) and NULL (finite part that dies off). For a given K and
growing q, the fine line indicates the beginning of physically equivalent models
in the sense of section 5.2.

K q MK TNR Dc = 16 TNR Dc = 25

1 4 LT(05) LT(6)× CDL(7) LT(6)× CDL(> 100)

1 6 LT(18) LT4(50)× CDL(53) Osc → LT6(42)× CDL(48)
1 8 HT(59) LT4(50)× CDL(53) Osc → LT8(98)× CDL(>100)

2 6 LT(04) LT(19)× NULL(53) LT(07)× CDL(26)
2 8 LT(07) LT(11)× NULL(14) LT(18)× CDL(19)

2 10 LT(14) QF(6)→ Osc(13) QF(8)→ Osc(53)
2 12 LT(59) QF(6)→ Osc(13) QF(8)→ Osc(53)
2 14 QF(3)→ LT(969) QF(6)→ Osc(13) QF(8)→ Osc(53)

3 8 LT(003) LT(04)× NULL(06) LT(04)× CDL(05)
3 10 LT(005) LT(06)× NULL(09) LT(17)× NULL(38)
3 12 LT(008) LT(10)× NULL(13) Osc

3 14 LT(013) QF(18)→ Osc(49)→ LT14(115) Osc
3 16 LT(030) QF(18)→ Osc(45)→ LT16(093) Osc
3 18 LT(140) – Osc
3 20 QF(4)→ LT(>1000) – Osc

4 10 LT(04) LT(4)× NULL(6) LT(07)× NULL(28)
4 12 LT(05) LT(6)× NULL(8) LT(08)× NULL(15)
4 14 LT(06) LT(7)× NULL(9) LT(10)× NULL(12)
4 16 LT(09) LT(9) Osc

4 18 LT(13) – Osc

which however flow for Dc = 16 to a fixed point with four singular values equal to unity, plus
more non-vanishing singular values due to the CDL structure.

In table 1, we list the details of our findings and compare them with the results obtained
with the MK method.

The overall picture of the MK results is confirmed by the tensor network simulations: most
configurations flow to the LTF point or to an LTF point embellished with a CDL structure. With
growing q, cutoff models with sufficiently small K show long stable phases where a fixed point
seems to be approached but then enter an unstable phase with (slightly) oscillating behavior. For
some cases, these converge finally to an LTF fixed point; however, this result has to be taken
with some care, due to the oscillating phase in which ‘non-symmetric’ configurations appear.

There is one important difference between the MK and the TNR results. As we explained
in section 5.2, examples with q > 4K + 2 should encode the same physical models both exactly
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and in the approximation provided by choosing the cutoff Dc. This property is inherent in
the TNR method (and only appears to be violated for large iteration numbers due to the
oscillating behavior). But in the MK method the truncation is determined by q and hence the
renormalization flow is still different for q not much larger than qK := 4K + 2. For much larger
q the renormalization sequences will turn out to be almost the same; however, this behavior sets
in later than in the TNR examples. Moreover, from [92], we have to expect that going to q → ∞

the configurations should flow to the HTF.
This is the reason why the quasi-fixed point behavior has to set in earlier for the TNR

method, as here the results starting with qK should in principle also hold in the limit q → ∞.
From this point of view, it is interesting that we have not seen an example in the TNR method
(especially not K = 1, as opposed to the MK K = 1, q = 8 example) which would flow to
the HTF. Hence the TNR method might be able to detect two different phases for the U (1)
theory.

As we have also seen, definite conclusions are very much hindered by the appearance of
non-symmetric configurations, i.e. where the k-blocks would differ from the −k-blocks. These
also appeared in the MK simulations for the examples which go through very long almost stable
phases. In this case non-symmetric configurations only appeared due to numerical errors and
this problem can be easily cured in the MK method by symmetrizing the Q(k) parameters after
each coarse graining step.

In the TNR method non-symmetric configurations not only appear due to numerical errors
but are also caused by the cutoff, which might neglect one of a pair of degenerate singular values.
This happens quite generically if the cutoff is increased (apart from the Dc = 25 simulations,
we also tried Dc = 32 and in between values) and it is increasingly difficult to find a value for
Dc where this does not appear, say, for the first 20 iterations.

This non-symmetric behavior does not matter so much for configurations which would
converge fast to some stable fixed point but do cause long sequences of oscillating behavior
for configurations which we suspect would otherwise rather approach slowly an unstable fixed
point. For these examples, the ordered sequence of singular values at a given iteration decreases
rather slowly. Even for Dc = 32, the neglected singular values can be of the order of 10−1 and
an unsymmetric cutoff will have considerable influence on the overall behavior. This problem
is especially pronounced for the 2D models with larger q , as there we encounter rather weak
phase transitions.

In future work one should address this issue13. There are different possibilities; one is to
use a symmetric parameterization in the coarse graining procedure, i.e. only work with the k-
blocks where k 6 q

2 . Another option is to use an adaptive cutoff Dc for each iteration step, such
that it avoids cutting between (k,−k) pairs.

A third option would be to change the approximation scheme slightly by choosing a
block-dependent cutoff Dc(k). This would actually simplify the algorithm considerably. For
sufficiently high Dc and Dc(k), these schemes should yield equivalent results; this has, however,
to be tested.

Note that non-symmetric configurations can, however, also appear due to numerical
instabilities, so that one might have to implement some symmetrization procedure (if one does
not work with a parameterization that only allows symmetric configurations).

13 It does, however, only appear for groups where the dual representation ρ∗ is not equivalent to the original
representation ρ. For the rotation group SU (2) we rather have ρ∗

≡ ρ, but for U (1) we have ρ∗

k ≡ ρ−k .
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6. Discussion and outlook

Extracting large-scale physics from spin foam models is one of the most pressing issues for
the field. Here we advocated the development and use of coarse graining and renormalization
techniques so that hopefully a feasible method for 4D models can be found. To this end, we
introduced a wide range of simplified models, spin foams with finite groups and moreover, spin
nets, which can be seen as a dimensionally reduced version of spin foams. This enables us not
only to test and develop coarse graining methods but also to obtain some physical insights and
to put forward conjectures about the dynamical behavior of the full models.

This strategy allows us to adopt coarse graining methods from lattice gauge theory and
condensed matter systems, here the MK scheme and the tensor network renormalization method.
The two methods have different drawbacks and advantages. The MK scheme facilitates quick
results (even a large number of iterations can take only seconds on a PC), so that an overview of
the phase structure encoded in the model can easily be obtained. Here the main question is how
this method can be generalized to non-Abelian spin foams with non-trivial projectors, which no
longer fall into the class of standard lattice gauge theories.

The tensor network renormalization method has the advantage of providing a systematic
improvement on the accuracy of the results. The required effort is considerably larger (100Dc =

32 iterations may take several days on a PC). The method is, however, very general and, in its
version based on the spin net representation, allows direct access to the behavior of the (vertex)
projector under coarse graining. Moreover, the blocking of variables is very natural if one takes
into account the geometric meaning of the representation labels in the gravitational spin foam
models. We presented an algorithm in which the Gauß constraints are kept explicitly intact.

The tensor network renormalization method is easily generalizable to models with non-
Abelian groups, and indeed would nicely interact with the group theoretic content of these
models; see also [74]. Here it will be very interesting to study how a non-trivial vertex or edge
projector might change the phase structure as compared to the standard choice of the Haar
projector. This will also facilitate a better understanding of the dynamics in the full gravitational
models. To this end, a class of finite group models emulating the current gravitational EPRL
models [8] is constructed in [106]. An important question for future research will be whether
the degenerate phase, i.e. the HTF, can be avoided by selecting suitable projectors. This can
already be studied for the 2D spin net models. Furthermore, it has to be explored how the tensor
network renormalization method can successfully be applied to 3D and 4D spin net and spin
foam models.

An alternative to using the tensor network formalism to describe the partition function
of a system would be to apply tensor network renormalization as a kind of improved mean
field approach in a canonical quantization. This would change the (statistical) systems from D-
dimensional classical to (D − 1)-dimensional quantum ones. In this case, the tensor networks
would provide an ansatz for the ground states of the models [73, 76, 105]. In gravity,
instead of minimizing one Hamiltonian or energy functional, one rather has to deal with
a number of constraints, which have to annihilate the so-called physical states. The master
constraint [107–109] or the uniform discretization approach [110, 111] provides a framework
where just one (master) constraint has to be minimized.

In this work, we have considered systems on a regular lattice, as this made explicit
simulations feasible. Nevertheless, one should consider generalizations of these methods to
random lattices [49, 50]. Another question is: how does the phase structure found on a fixed
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lattice relate to phases in models, which include a sum over all possible lattices [112–115], in
particular regarding the remarks in section 3?

We see this work as a contribution towards a closer link between the quantum gravity and
the statistical physics/condensed matter communities. For quantum gravity researchers, this
offers the prospect of new concepts and numerical tools to study the large-scale physics of their
models, whereas for people working in statistical physics it offers new models, new questions,
a geometrical perspective and a rich set of mathematical tools behind it.
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