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This paper presents an in-depth study of how to estimate the sensitivity of searches for gravitational-

wave pulsars—rapidly rotating neutron stars which emit quasisinusoidal gravitational waves. It is

particularly concerned with searches over a wide range of possible source parameters, such as searches

over the entire sky and broad frequency bands. Traditional approaches to estimating the sensitivity of such

searches use either computationally expensive Monte Carlo simulations, or analytic methods which

sacrifice accuracy by making an unphysical assumption about the population of sources being searched

for. This paper develops a new, analytic method of estimating search sensitivity which does not rely upon

this unphysical assumption. Unlike previous analytic methods, the new method accurately predicts the

sensitivity obtained using Monte Carlo simulations, while avoiding their computational expense. The

change in estimated sensitivity due to properties of the search template bank and the geographic

configuration of the gravitational-wave detector network are also investigated.
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I. INTRODUCTION

The last decade saw the successful construction
and operation of the first generation of large-scale
gravitational-wave interferometric detectors, at the observ-
atories of LIGO [1] in the United States, and of Virgo [2]
and GEO 600 [3] in Europe. Ongoing improvements to the
sensitivities of these detectors (e.g. [4]), combined with the
construction of new large-scale gravitational-wave inter-
ferometers in Japan [5] and potentially elsewhere, are
widely anticipated to result in the first ground-based
detection of gravitational waves within the next decade.
From these first detections will follow new tests of the
fundamental physics of gravity, as well as new tools for
exploring the astrophysics of compact objects.

Gravitational-wave pulsars are one class of sources
which may be detected by the next generation of
gravitational-wave interferometers. They are rapidly rotat-
ing neutron stars which emit long-lived, narrow-band,
quasisinusoidal gravitational waves, and are often referred
to as continuous or periodic sources. The dominant
gravitational-wave emission is expected to be due to non-
axisymmetric distortions of the neutron star; other possible
emission mechanisms are unstable oscillation modes such
as r modes, and free precession due to misaligned rotation
and symmetry axes; see [6] for a review. An isolated
neutron star may have acquired a nonaxisymmetric defor-
mation during birth in a supernova, although it is uncertain
for how long such a deformation might be retained. For
neutron stars in binary systems, nonaxisymmetry may
result from e.g. differential heating from accreted matter
leading to differential density gradients [7], or from the
confinement of the accreted matter by the star’s magnetic
field in a magnetic mountain [8,9].

Signals from gravitational-wave pulsars are being ac-
tively searched for in data from the LIGO and Virgo
detectors. Although none have been found to date, many
of these searches have reached sensitivities where (albeit
under optimistic conditions) such signals could be de-
tected. The most recent search for gravitational waves
from known radio- and x-ray pulsars [10] constrained the
gravitational-wave power radiated by the Crab pulsar to be
less than 2% of the total power available from the loss of
rotational energy. A search for gravitational waves from
the Vela pulsar [11] set energy constraints of 35%–45%,
depending on assumptions about Vela’s orientation. Upper
limits on the amplitude of gravitational waves from the
neutron star in the supernova remnant Cassiopeia A, set in
[12], are below the level expected (optimistically) from the
total conversion of rotational energy into gravitational
waves, assuming that the (as-yet unknown) rotation period
of the neutron star is within the searched frequency band.
Recent searches for undiscovered neutron stars which may
be radiating gravitational waves [13,14] have set
gravitational-wave amplitude limits comparable to upper
limits hypothesized for a population of such stars [15].
Searches for gravitational-wave pulsars in binary systems
have so far focused on the most promising known target,
the low-mass x-ray binary Scorpius X-1 [16,17].
To best assess the prospects of future searches for

gravitational-wave pulsars, it is important to be able to
accurately estimate the sensitivity such searches can
achieve. (What is meant here by sensitivity is defined in
Sec. II C.) In particular, designing searches for continuous
gravitational waves which cover a wide range of possible
signal parameters (e.g. searches for undiscovered neutron
stars) commonly requires constructing a hierarchical pipe-
line comprised of different data-analysis techniques, each
with different trade-offs, such as better sensitivity but
increased computational cost, or vice versa. An accurate*karl.wette@aei.mpg.de
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estimate of the overall sensitivity of such a pipeline is
important, therefore, for identifying the optimal combina-
tion of its elements.

Obtaining the sensitivity of a search targeting a single
source, such as a known pulsar, is relatively straightfor-
ward (e.g. [6]). The calculation becomes more difficult,
however, for searches over wide signal parameter spaces,
e.g. searches for undiscovered neutron stars, or searches
targeting known neutron stars with unknown rotation peri-
ods. This difficulty has resulted in two different approaches
to sensitivity estimation. Wide-parameter-space searches
of LIGO and Virgo data [12–14,16,18–22] set upper
limits on gravitational-wave amplitude (which in turn
characterize the sensitivity of the search) by performing
Monte Carlo simulations, where the search is reperformed
on computer-generated data containing simulated signals
(see Sec. II C). While Monte Carlo simulations are appro-
priate for accurately computing the sensitivity of searches
of real gravitational-wave detector data, which often con-
tain e.g. non-Gaussian instrumental noise artifacts, they are
usually too computationally expensive to be useful for
theoretical studies of the sensitivities of different data-
analysis techniques.

Instead, theoretical studies, e.g. [23–31], commonly
make certain assumptions about the distribution of the
gravitational-wave signals being searched for, in order to
simplify the sensitivity calculation (see Sec. III C). These
assumptions, however, result in a measure of sensitivity
that, as shown in Sec. III D, is quantitatively different from
that arrived at using Monte Carlo simulations. To date,
there has been little published work in the gravitational-
wave literature on the discrepancy between these two
approaches. Furthermore, an accurate, computationally
cheap (i.e. suitable for theoretical studies) estimator of
sensitivity, as obtained by Monte Carlo simulations, has
yet to be proposed (although combinations of numerical
and analytic sensitivity estimation methods have been
developed; see [32,33]). It is these two issues that the
present work intends to address.

Section II of this paper presents an overview of
gravitational-wave pulsar searches and describes the most
common method by which their sensitivities are estimated.
Section III contains the main result of this paper: an
analytic expression which may be used to quickly and
accurately estimate the sensitivity of wide-parameter-
space searches for gravitational-wave pulsars. Section IV
verifies the accuracy of the analytic sensitivity estimator,
and Sec. V assesses the validity of some assumptions that
were made during its derivation. Section VI discusses the
results presented in this paper, as well as possible avenues
for future research.

II. GRAVITATIONAL-WAVE PULSAR SEARCHES

This section is an overview of the signal model of
gravitational-wave pulsars (Sec. II A), the data-analysis

techniques used to search for them (Sec. II B), and the
method by which search sensitivities are estimated
(Sec. II C). See also [6] for a review of gravitational-
wave pulsar data analysis, and [34] for an overview of
the current data-analysis activities of the LIGO and Virgo
scientific collaborations.

A. Signal model

The signal from a gravitational-wave pulsar is written as
a time series hðtÞ of the dimensionless strain amplitude h,
which for a ground-based interferometric detector is pro-
portional to the differential change in the length of its
arms (which are assumed to be much shorter than the
gravitational wavelength). We assume that the signal con-
tains only a single frequency component, although it is
possible for it to contain multiple frequency components
arising from free precession [35]. Following [23], the time
series hðtÞ may be written as the summed products of four
amplitudes Ai and four time-dependent functions hiðtÞ:

hðtÞ ¼ X4
i¼1

AihiðtÞ: (2.1)

The amplitudes Ai are related to the four amplitude
parameters of the signal: its overall strain amplitude h0;
its initial phase �0; the inclination angle � between the
neutron star angular momentum and wave propagation
vectors; and the polarization angle c , which fixes the
orientation of the neutron star about the wave propagation
vector. The functions hiðtÞ are functions of the signal’s
remaining phase parameters: its sky position, given by
its right ascension � and declination �; and its frequency
evolution, given by an initial frequency f, and frequency

time derivatives or spin-downs _f, €f, fð3Þ, etc. The number
of spin-downs required generally depends on the age of the
sources being targeted [36–38].
The time series hðtÞmay also be written in a form which

illustrates the two polarizations, plus and cross, of a gravi-
tational wave:

hðtÞ ¼ AþFþðtÞ cos�ðtÞ þ A�F�ðtÞ sin�ðtÞ; (2.2)

where Aþ and A� are the amplitudes of their respective
polarizations, and �ðtÞ is the signal phase. The antenna-
pattern functions FþðtÞ and F�ðtÞ give the response of the
detector to each polarization and are modulated by the
sidereal motion of the Earth. Expressions for FþðtÞ and
F�ðtÞ are given in [23,39–42] and in Appendix A.
The signal-to-noise ratio (SNR) of a signal, �, is found

by integrating hðtÞ over the observation time T, which
gives

�2 ¼ h20T

Sh
ða2þhF2þit þ a2�hF2�itÞ; (2.3)

where hF2þit ¼ ð1=TÞRT=2
�T=2 dtFðtÞ2 is the time average

of FþðtÞ2 (similarly for hF2�it), aþ¼Aþ=h0 (similarly
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for a�), and Sh is the one-sided detector noise power
spectral density. The SNR is independent of the signal’s
phase modulation; when T is longer than several days, the
SNR’s dependence on the signal’s amplitude modulation
also vanishes, and �2 becomes a linear function of T.
Expressions for hF2þit and hF2�it are given in
Appendix A; see also [23] for expressions for �2.

B. Search techniques

Gravitational-wave pulsars are very weak sources;
the amplitude of their signals is likely to be several
orders of magnitude smaller than the noise amplitude of
current- and even next-generation interferometric detec-
tors. Nevertheless, gravitational-wave pulsar signals can be
recovered using the well-known technique of matched
filtering, where the data are correlated against a template
which models the signals’ amplitude and phase evolution
over time. Matched filtering was first applied to the detec-
tion of gravitational-wave pulsars in [23], and extended to
multiple detectors in [43]. The detection statistic derived in
these papers, known as the F statistic, maximizes the
signal SNR over the four amplitude parameters, but re-
quires values to be chosen for the phase parameters.

A search for gravitational-wave pulsars therefore con-
sists of performing matched filtering against a bank of
templates, whose phase parameters are chosen to cover
the parameter space of interest, e.g. over the whole sky
and a broad range of frequencies for a search for unknown
neutron stars. It is almost certain, however, that any signal
in the data will possess parameters which are different
from any one of the searched templates; consequentially,
no template will perfectly match the signal, and the signal
SNR will be degraded. While some loss in SNR is un-
avoidable, template banks are constructed such that the
fractional loss in SNR, also known as the mismatch, can
never be greater than some prescribed maximum. To ac-
complish this, a metric is often used to determine how
closely the templates must be spaced in each parameter
[36,44]. How to construct a bank which minimizes the
number of templates is known in theory [45], but is often
difficult to accomplish in practice.

Unfortunately, the number of templates which must be
matched filtered increases rapidly with the length of data
being analyzed. If T denotes the time span of the analyzed
data, the number of templates which must be placed in
each parameter dimension scales as follows: T�2 for the
sky position ð�; �Þ, T for frequency, and Tkþ1 for each

spin-down parameter fðkÞ. For example, the number of
templates for an all-sky search requiring one spin-down
scales as T�5. In contrast, the sensitivity achievable by

matched filtering increases only as T1=2 (assuming that the
data are contiguous in time). Because of the rapid increase
in the number of required templates, matched filtering
quickly becomes too computationally expensive for
searching long data sets and large parameter spaces [25].

The solution is to resort to a hierarchical pipeline, where
typically the data are broken into short segments, each of
which are matched filtered separately. The results from
each segment are then combined using semicoherent analy-
sis methods, which resemble matched filtering but do not
require full amplitude and phase consistency of the signal
template between data segments: typically, only the de-
rivative of the phase (i.e. the frequency) must be consistent.
(To distinguish it from semicoherent methods, matched
filtering is also referred to as coherent matched filtering.)
For fixed T, and assuming no limits on computational cost,
semicoherent methods are less sensitive than coherent
matched filtering: their sensitivity scales roughly as

N1=4
s T1=2

s , where Ns and Ts are the number and time span
of each segment, while a coherent search (assuming con-

tiguous data) scales as T1=2 ¼ N1=2
s T1=2

s . On the other hand,
wide-parameter-space gravitational-wave pulsar searches
are almost always computationally limited, due to the large
parameter spaces which must be searched. The number of
templates, and hence the computational cost, of semico-
herent methods scale with Ts � T, instead of T, making
them computationally cheaper than a fully coherent search.
This in turn permits a semicoherent search to use more
data, improving its sensitivity, while remaining computa-
tionally tractable. Some hierarchical searches, e.g. [20,22],
use Ts � 30-minute segments, so that the coherent
matched-filtering step closely resembles the computation
of a power spectrum; other searches, e.g. [13,21] use seg-
ments of Ts � 1 day.
Examples of semicoherent methods are the StackSlide

[24,27,28], Hough [26,29], PowerFlux [46], cross-
correlation [47], and global correlation transform [48]
methods. Recently, methods which blend together aspects
of semi- and fully coherent methods have been developed
[49–51]. The problem of how to optimize hierarchical
searches is studied in [27,31].

C. Search sensitivity

The sensitivity of a wide-parameter-space search for
gravitational-wave pulsars has traditionally been charac-
terized by the method presented in this section; two alter-
native methods of estimating sensitivity are discussed in
Sec. VI.
The method follows from the canonical framework for

statistical hypothesis testing formulated in [52,53]. It is
commonly referred to as the frequentist method in the
gravitational-wave literature. In essence, the method pro-
vides the answer to the following question: If there were a
population of gravitational-wave pulsar signals present in
the searched data, each with the same amplitude h0, how
large would h0 need to be before we would be confident of
detecting a very large fraction of them, e.g. 95%?
In order to make the above question more precise, we

must first define what is meant here by detection. This is
complicated by the unavoidable fact that the output of any
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real gravitational-wave detector contains noise, in addition
to any signal. When noisy data are analyzed, e.g. using
matched filtering, the results of the analysis may be subject
to false alarms and false dismissals. A false alarm is when
the results of the analysis falsely indicate the presence of a
signal, which is instead simply due to spurious noise
fluctuations; a false dismissal is when a real signal present
in the data is sufficiently corrupted by noise that it fails to
be identified as a signal in the analysis results. We define a
detection statistic to be a number quantifying a single
search result, e.g. a correlation of the data against a single
signal template. Typically, the detection statistic increases
with the probability that the data contain a signal which
matches the template. As an example, the F statistic rep-
resents the result of a matched-filtering analysis maxi-
mized over signal amplitude parameters. We say that a
signal has been detected1 if the value of its detection
statistic s exceeds some threshold sfa.

2

Suppose that we perform a wide-parameter-space search
of data which is known to contain no signal, e.g. the data
may comprise only computer-generated Gaussian noise.
Because the data used to compute the detection statistic are
combined differently for each template, the values of s
returned by the search will not be identical, but will instead
follow a certain probability distribution. The probability of
a detection in this data, i.e. the probability of a false alarm,
denoted pfa, is the probability of the detection statistic s
exceeding the threshold sfa, under the assumption that no
signal is present in the data:

pfa ¼ pðs > sfajno signal in dataÞ; (2.4)

where pðAjBÞ denotes the probability of the statement A
being true, given that we already know that B is true.

We now perform the same search using data which is
known to contain a single signal, e.g. a simulated signal
added to computer-generated Gaussian noise. Assuming
that the majority of the searched templates are insensitive
to the signal (which would be true of a properly con-
structed template bank), the majority of the returned values
of s will follow the same probability distribution as before.
For templates whose parameters are close to those of the
signal, however, the values of s will follow a different
probability distribution, which instead assumes that a sig-
nal is present. Assume that the SNR of the signal is large
enough that these templates, close to the signal, are dis-
tinguishable from the remaining search templates; this

assumption is satisfied by requiring a low false dismissal
probability. The probability of this particular signal not
being detected, i.e. the probability of its false dismissal,
denoted as pfdðpÞ, is the probability of s, in the neighbor-
hood of the signal, falling below the threshold sfa, under
the assumption that a signal with parameters p is present in
the data:

pfdðpÞ ¼ pðs � sfajsignalðparam:pÞin dataÞ: (2.5)

Note that we assume here that the search template is
perfectly matched to the signal, whereas in reality there
will be some mismatch between them. (The loss of sensi-
tivity due to mismatch between template and signal is
considered in Sec. VC.) We repeat the search for a large
number of signals, each with different p drawn from a
chosen distribution of signals parameters, pðpÞ. The over-
all false dismissal probability, denoted pfd, is the average
false dismissal probability obtained from each of the
sampled signals:

pfd ¼ hpfdðpÞip ¼
Z

� � �
Z

dppðpÞpfdðpÞ: (2.6)

Equation (2.6) is computed using Monte Carlo integration,
i.e. by the repeated computation of Eq. (2.5), with different
parameters p drawn from the distribution pðpÞ.
We now return to the question stated at the beginning of

this section: How large would the amplitude h0 of a popu-
lation of gravitational-wave signals need to be in order for
them to be detected, e.g. 95% of the time? First, Eq. (2.4) is
solved for the threshold sfa that would result in a desired
false alarm probability pfa. Then, given a target false
dismissal probability pfd, Eq. (2.6) is solved for the overall
strain amplitude h0. Suppose h95%0 is the value of h0 that

solves Eq. (2.6) for pfd ¼ 5%; then, if a population of
signals have constant amplitudes h95%0 , a fraction

1� pfd ¼ 95% of them will be detected. The amplitude
h95%0 thus characterizes the amplitude of signals a particu-

lar search method is able to confidently detect and hence
gives a useful measure of the search’s sensitivity. Where a
search finds no credible gravitational-wave signal, this
sensitivity is interpreted as an upper limit, with confidence
1� pfd, on the amplitude of signals present in the searched
data.
The above procedure is used to set upper limits on the

amplitude of gravitational waves for wide-parameter-space
searches of LIGO and Virgo data (see Sec. I for referen-
ces). The search parameter space is typically partitioned
into small frequency bands, and upper limits are set sepa-
rately for each frequency band. One important difference
to the procedure described in this section is that sfa is
determined by the largest value of s returned by the search
(after instrumental noise artifacts have been removed); an
effective false alarm probability can then be determined
from sfa using Eq. (2.4).

1It is important to note that, when performing a search of real
gravitational-wave detector data, any signal thus detected would
never be automatically claimed as a genuine gravitational-wave
signal; extensive follow-up investigations would first be per-
formed to e.g. consider possible contamination by instrumental
artifacts.

2The hierarchical searches in [13,21] employ a slightly differ-
ent definition of detection: the detection statistic must exceed a
threshold in a given number of data segments.
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III. ANALYTIC SENSITIVITY ESTIMATION

Theoretical studies of gravitational-wave pulsar search
pipelines require a method of efficiently and accurately
estimating the sensitivity achievable by such searches. The
procedure described in Sec. II C is generally unsuited to
this task, due to the computational expense of repeatedly
generating and searching data containing simulated sig-
nals. In this section, we construct an analytic expression
which accurately reproduces sensitivity estimates com-
puted using the frequentist method, using the procedure
described in Sec. II C, but is simpler to implement and
computationally cheaper to calculate. Expressions for the
false alarm and false dismissal probabilities are presented
in Secs. III A and III B respectively. Section III C presents a
commonly used, but inaccurate, analytic estimator of the
sensitivity, and Sec. III D presents a new, more accurate
expression.

We restrict our attention to detection statistics s which
follow �2 distributions (e.g. [54]). This implies that s can
be written as the sum of squares of some number of
normally distributed random variables. Examples of such
statistics are the StackSlide power [28] and the F statistic
[23,27]. Our prototypical search is a single-stage hierarch-
ical search of Ns data segments, each of which span a time
Ts. (A fully coherent search is then given by the special
case Ns ¼ 1.) A coherent analysis is performed for each
segment i, returning detection statistics si, which are then
summed using a semicoherent method to attain the final

detection statistic s ¼ PNs

i¼1 si.
In the absence of a signal, s is distributed according to a

central �2 distribution, which takes a single parameter: the
number of degrees of freedom of the statistic. Since s is the
sum of theNs values si, its number of degrees of freedom is
given by Ns�, where each of the si has � degrees of free-
dom. A detection statistic derived from the power of a
signal (e.g. the StackSlide power) has � ¼ 2; the
F statistic has � ¼ 4. We denote that s is distributed
according to a central �2 distribution with Ns� degrees
of freedom by s� �2ðNs�; 0Þ.

In the presence of a signal, s is distributed according to a
noncentral �2 distribution, which takes two parameters:
the number of degrees of freedom Ns� as before and the
noncentrality parameter

Ns�
2 ¼ h20Tða2þhF2þit þ a2�hF2�itÞ

XNs

i¼1

XNdet

j¼1

ðShÞ�1
ij : (3.1)

The noncentrality parameter is the accumulated SNR of a
signal analyzed over Ns data segments from Ndet detectors,
assuming a perfect match between signal and template.
The noise power spectral density of the ith data segment
from the jth detector is labeled ðShÞij. It is convenient to
define NsS

�1
h ¼ PNs

i¼1

PNdet

j¼1ðShÞ�1
ij , whereupon we recover

the expression for �2 given in Eq. (2.3). For simplicity,
therefore, we can ignore the summation of ðShÞij over

segments and detectors, and take �2 to be given by
Eq. (2.3) for some appropriate value of Sh. For a real
detector, Sh also varies as a function of frequency; we
therefore assume that we are considering the sensitivity
of a search over a frequency band sufficiently narrow, so
that Sh can be assumed constant.
We denote that s is distributed according to a noncentral

�2 distribution with Ns� degrees of freedom and noncen-
trality parameter Ns�

2 by s� �2ðNs�; Ns�
2Þ. Note that, as

in Sec. II C, we assume that the search template is perfectly
matched to the signal and delay considering the sensitivity
lost due to template-signal mismatch until Sec. VC.

A. False alarm probability

We start by determining the threshold sfa on the detec-
tion statistic required to give a certain false alarm proba-
bility pfa.
Assuming that no signal is present, the probability that a

single value of the detection statistic s falls below sfa is
pðs � sfajs� �2½Ns�; 0�Þ. Suppose that the search returns
Nt values of s, i.e. Nt templates3 are searched. We assume
that each value of s is statistically independent, i.e. that the
joint probability of obtaining any two values s1 and s2 is
just the product of the probabilities of obtaining s1 and s2
individually. (The validity of this assumption is examined
in Sec. VA.) The probability that Nt values of s fall below
sfa is then given by Nt multiples of the single-value proba-
bility: pð� � �ÞNt . Its complement, 1� pð� � �ÞNt , is the
probability that in a search of Nt templates, one or more
values of s will be returned above the threshold, i.e. the
probability of a false alarm, pfa. In short, we have

pfa ¼ 1� ½pðs � sfajs� �2½Ns�; 0�Þ�Nt : (3.2)

Simple rearrangement gives

ð1� pfaÞ1=Nt ¼ pðs � sfajs� �2½Ns�; 0�Þ: (3.3)

Since typically either Nt ¼ 1 (e.g. for a search for a
known pulsar) or Nt � 1, the left-hand side of Eq. (3.3)
can be replaced with the first-order binomial expansion
1� pfa=Nt. We now have

pfa=Nt ¼ pðs > sfajs� �2½Ns�; 0�Þ: (3.4)

Note that pfa=Nt can be interpreted as the false alarm
probability for a single template out of the Nt templates
searched.
We must now solve Eq. (3.4) for sfa, i.e. we must

compute the inverse function of the central �2 distribution.
For small values of pfa=Nt (typically, pfa is chosen to be
1%, and Nt � 1), an analytic expression for sfa
derived from [55] is given in Appendix B. We define the

3Note that we are referring to the number of templates
searched in the semicoherent stage of a hierarchical pipeline,
which is distinct from the number of templates searched in each
individual data segment; see e.g. [27].
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normalized false alarm threshold zfa to be the difference
between sfa and the mean of a central �2 distribution with
Ns� degrees of freedom, in units of the distribution’s
standard deviation:

zfa ¼ sfa � Ns�ffiffiffiffiffiffiffiffiffiffiffi
2Ns�

p : (3.5)

In the limit of large Ns, zfa 	
ffiffiffi
2

p
erfc�1ð2pfa=NtÞ and is

independent ofNs (see Appendix B). Note that this limiting
value for zfa is identical to the expression obtained if the
central �2 distribution is approximated by a normal distri-
bution, as is commonly done (e.g. in [26]). Figure 1 plots
zfa as a function of pfa=Nt and Ns and illustrates its con-
vergence to the normal distribution approximation for
large Ns.

B. False dismissal probability

Having determined the threshold sfa appropriate for a
desired false alarm probability pfa, we now attempt to
solve Eq. (2.6) for some quantity which usefully character-
izes the sensitivity of the search. The quantity most often
used for this purpose has been the dimensionless expres-

sion h0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ts=Sh

p
, which is sometimes referred to as the

statistical factor [30,38]. The statistical factor quantifies
the sensitivity of a search to a population of signals of
amplitude h0, relative to the performance of the detector
given by its noise power spectral density Sh, and the length
of (coherently) analyzed data Ts.

In this paper, we propose instead to use the root-mean-

square SNR,
ffiffiffiffiffiffiffiffiffih�2ip

, to quantify sensitivity. Here, h i
denotes averaging over �, sin�, c [see Eq. (A9)], and
� 
 cos�, given by h�2i� ¼ ð1=2ÞR1

�1 d��
2. This choice

of averaging implies that the population of gravitational-
wave pulsars being searched for are isotropically distrib-
uted over the sky and are isotropically oriented. Using
Eq. (2.3), we have

h�2i ¼ h20Ts

Sh
ðha2þi�hF2þi�;sin�;c ;t þ ha2�i�hF2�i�;sin�;c ;tÞ:

(3.6)

The averages of F2þ and F2� over �, sin�, and c are given
by Eq. (A11) (where we assume 	 ¼ 
=2); after this
averaging F2þ and F2� are independent of time. We assume
a signal generated by a nonaxisymmetrically deformed
neutron star, for which (e.g. [23,35])

aþ ¼ 1þ �2

2
; ha2þi� ¼ 7

15
; (3.7a)

a� ¼ �; ha2�i� ¼ 1
3: (3.7b)

Finally we have

ffiffiffiffiffiffiffiffiffi
h�2i

q
¼ 2

5
h0

ffiffiffiffiffi
Ts

Sh

s
; (3.8)

i.e.
ffiffiffiffiffiffiffiffiffih�2ip

is directly proportional to the statistical factor.

Unlike the statistical factor, however,
ffiffiffiffiffiffiffiffiffih�2ip

relates directly
to a property of the population of signals being searched
for (i.e. their mean SNR), and hence is a more directly
physical quantity. It also has a clearer interpretation as a
measure of sensitivity: for example, to improve the sensi-
tivity of a search, we must make the search able to detect
signals with weaker SNR (at the same false alarm and
dismissal probabilities), and hence we must lower the

mean SNR, i.e.
ffiffiffiffiffiffiffiffiffih�2ip

, of the population of signals which
the search can detect. It is convenient to write � in terms offfiffiffiffiffiffiffiffiffih�2ip

and a factor R, defined such that � ¼ ffiffiffiffiffiffiffiffiffih�2ip
R, which

implies hR2i ¼ 1.
Assuming that a signal with parameters p is present, the

probability that the detection statistic s (in the neighbor-
hood of the signal, as discussed in Sec. II C) falls below sfa
is pfdðpÞ ¼ pðs � sfajs� �2½Ns�;Nsh�2iR2�Þ. Since h0,
Sh, and Ts are taken to be constants, h�2i is also a constant.
The only quantity which depends on the signals parameters
is therefore R, which is a function of p ¼ ð�; �; c ; �Þ. By
Eq. (2.6), the overall false dismissal probability pfd is

pfd¼hpðs� sfajs��2½Ns�;Nsh�2iR2�Þi�;sin�;c ;�: (3.9)

Equation (3.9) is plotted in Fig. 2 for different choices of
pfa=Nt and Ns.
To proceed, we must now solve Eq. (3.9) for h�2i.

Unfortunately, an analytic solution is difficult to obtain,
due to the complicated dependence of R on the signal
parameters. Two approaches to solving Eq. (3.9) analyti-
cally are presented in Secs. III C and III D.

C. Sensitivity to constant-SNR signal populations

To solve Eq. (3.9), it is common to assume that every
signal, in the population of signals being searched for, has
the same SNR, which we denote by ��. An alternative
interpretation of this approximation is that the population

FIG. 1. Normalized false alarm threshold zfa, as a function of
pfa=Nt and Ns, with � ¼ 4 (thick lines). Its limiting values for
large Ns, given by the normal distribution approximation, are
plotted as thin vertical lines for zfa ¼ 3–7.
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of signals can be replaced by a single signal, whose

SNR is �� ¼ ffiffiffiffiffiffiffiffiffih�2ip
. While this assumption does not accu-

rately model a physically reasonable population of
gravitational-wave pulsar signals (see Sec. III D), it does
allow Eq. (3.9) to be readily solved for ��: because the
signals all have the same SNR, no averaging over signal
parameters is required, and h�2iR2 is simply replaced
by ��2. The accuracy of this approximation is examined
in Sec. III D.

Another common simplification is to approximate the
noncentral �2 distribution by a normal distribution
N ð�;�Þ with the same mean and standard deviation,

which are � ¼ Nsð�þ ��2Þ and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nsð�þ 2 ��2Þp

, re-
spectively. This approximation introduces an error in �� of
& 2:5% (at pfa=Nt ¼ 0:01, Ns ¼ 1) which decreases with
decreasing pfa=Nt and increasing Ns. With this approxi-
mation, Eq. (3.9) reduces to

pfd 	 pðs � sfajs�N ½�;��Þ (3.10)

¼ 1

2
erfc

�
Ns ��

2 � zfa
ffiffiffiffiffiffiffiffiffiffiffi
2Ns�

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsð�þ 2 ��2Þp �

; (3.11)

where we have substituted sfa with the normalized thresh-
old zfa defined by Eq. (3.5), and erfc is the complementary
error function. The solution to this equation is

�� 2 ¼
ffiffiffiffiffiffi
2�

Ns

s
zfa þ 2q2

Ns

½1þ ð1þQÞ1=2�; (3.12)

where Q ¼ ðNs�þ zfa
ffiffiffiffiffiffiffiffiffiffiffi
8Ns�

p Þ=ð2q2Þ, q ¼ ffiffiffi
2

p
erfc�12pfd,

and erfc�1 is the inverse complementary error function.
For pfa=Nt � 0:01, pfd � 0:05, Ns � 1, and � � 2, Q *

5, and it is reasonable to approximate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ

p
with

ffiffiffiffiffi
Q

p
.

This permits further simplification to

��¼
�
2�

Ns

�
1=4

�
zfaþq

�
1þ zfa

ffiffiffi
8

p
ffiffiffiffiffiffiffiffiffi
Ns�

p
�
1=2þ q2

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffi
Ns�

p
�
1=2

: (3.13)

The first factor of �� scales with N�1=4
s , which is a well-

known property of hierarchical searches [26,28]. The sec-
ond factor contains, inside the square root, a constant term,

T 1 ¼ zfa, a term which scales approximately with N�1=4
s ,

T 2 ¼ qð1þ zfa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8=Ns�

p Þ1=2, and a term which scales with

N�1=2
s , T 3 ¼ q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=Ns�

p
. These additional terms appear

because we do not employ the weak-signal approximation
of [26], which Taylor expands pfd [Eq. (3.11)] to first order
in ��. This approximation is not valid here because we are
interested in small false dismissal probabilities, which
implies that a large fraction of signals will be strong, i.e.
enough to cross the detection threshold. Each of the terms
T contribute to the value of �� over the ranges pfa=Nt �
0:01 and Ns � 1, as shown in Fig. 3; over the plotted
ranges of pfa=Nt and Ns, the contribution of each term to

the sum
ffiffiffiffiffiffiffiffiffiffiffiffiP

iT i

q
is 70%–90% for

ffiffiffiffiffiffiffi
T 1

q
, 40%–60% forffiffiffiffiffiffiffi

T 2

q
, and � 40% for

ffiffiffiffiffiffiffi
T 3

q
. For small pfa=Nt and large

Ns,
ffiffiffiffiffiffiffi
T 1

q
dominates the sum, and �� begins to scale purely

with N�1=4
s . A general power-law scaling of �� with Ns is

utilized in [31].

D. Sensitivity to isotropically distributed signals

This section presents a new, more accurate sensitivity
estimator than that presented in Sec. III C. The important
difference is that we will no longer assume that all signals
being searched for have the same SNR, and instead per-
form the correct averaging of pfdðpÞ as given in Eq. (3.9).
This implies that we are searching for a population
of signals isotropically distributed in sky position ð�; �Þ
and orientation ðc ; �Þ parameters. Unlike the assumption
of constant SNR, this is a more physically reasonable
assumption. The observed distribution of nearby (milli-
second) radio pulsars is roughly isotropic in the sky
[56], and the angular momentum of neutron stars (which

FIG. 2. False dismissal probability pfd as a function of
ffiffiffiffiffiffiffiffiffih�2ip

,
given by Eq. (3.9), with � ¼ 4, and for pfa=Nt ¼ 0:01 (solid
lines) and 10�12 (dashed lines), and Ns ¼ 1 (left panel) and 104

(right panel).

FIG. 3. Contours of contributions of the terms T (see the

text) to the second factor of Eq. (3.13):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 1=

P
iT i

q
(solid

contours),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2=

P
iT i

q
(dashed contours), and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 3=

P
iT i

q
(dotted contours).
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determines c and �) is not expected to have a preferred
direction.

We also assume that we are searching data from a net-
work comprising a large number of gravitational-wave
detectors, evenly distributed over the Earth, such that the
network is isotropically sensitive to gravitational waves
arriving from all directions. (The validity of this assump-
tion is investigated in Sec. VB.) We can therefore approxi-
mate R2 by [see Eqs. (A9) and (A10)]

R2
isoð�Þ ¼ hR2i�s;sin
;� ¼ hR2i�;sin�;c ¼ 5

16ð�4 þ 6�2 þ 1Þ:
(3.14)

Substituting into Eq. (3.9), we see that we now need only to
average pfdðpÞ over �. Figure 4 plots the probability dis-
tribution of R2

iso assuming a uniform distribution in �, given
analytically by

pðR2
isoÞ�2 ¼ 1

10ð50þ 20R2
isoÞ3=2 � 3

4ð50þ 20R2
isoÞ; (3.15)

where R2
iso ranges from 5=16 (� ¼ 0) to 5=2 (j�j ¼ 1).

Note that the most probable values of R2
iso are those from

linearly polarized signals (� ¼ 0), with a rapid falloff
toward circularly polarized (j�j ¼ 1) signals. It is clear
from this plot that the assumption that all signals have
the same SNR (i.e. that R2

iso ¼ 1), as assumed in

Sec. III C, is not a reasonable one.
We next approximate the noncentral �2 distribution by a

normal distribution N , as per Sec. III C. Here, the
approximation introduces a smaller error of & 0:5%
(at pfa=Nt ¼ 0:01, Ns ¼ 1) which also decreases with
decreasing pfa=Nt and increasing Ns. Equation (3.9) now
reads

pfd ¼ hpfdð�Þi�; (3.16)

where

pfdð�Þ ¼ 1

2
erfc

0
@Nsð�þ �̂2R2

isoÞ � sfa

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsð�þ 2�̂2R2

isoÞ
q

1
A; (3.17)

and we define �̂ 
 ffiffiffiffiffiffiffiffiffih�2ip
.

We find that pfdð�Þ is well approximated by a Gaussian
function:

pfdð�Þ 	 Ae�B�2
; (3.18)

for suitable choices of A and B. This is illustrated in Fig. 5,
where we plot Eq. (3.17) against Eq. (3.18) for two differ-
ent choices of pfa=Nt and Ns. We note that it is important
only that the integral of Eq. (3.18) accurately approximates
that of Eq. (3.17); thus, the slight underestimation of pfdð�Þ
by Eq. (3.18) at � 	 0 is partly offset by its overestimation
at j�j * 0:5. We note that pfdð�Þ 	 0 at j�j ¼ 1; numerical
investigations confirm that this property holds true for
pfa=Nt & 0:01 and Ns * 1. We can therefore replace the
integral of Eq. (3.18) over �1 � � � 1 with one over
�1 � � � 1, since the integral over j�j> 1 contributes
little to the value of pfd. The integral of Eq. (3.18) then
simplifies to

pfd 	 1

2

Z 1

�1
d�Ae�B�2 ¼ A

2

ffiffiffiffi



B

r
: (3.19)

We choose A by setting � ¼ 0 in Eq. (3.18), and obtain

A ¼ 1

2
erfc

�
Ns�̂

2R2
0 � zfa

ffiffiffiffiffiffiffiffiffiffiffi
2Ns�

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsð�þ 2�̂2R2

0Þ
q �

; (3.20)

where R2
0 ¼ R2

isoð� ¼ 0Þ. Next, we choose �1 > 0 to be the
value of � such that pfdð� ¼ �1Þ [Eq. (3.17)] equals the
target false dismissal probability pfd. By equating

FIG. 4. The distribution of R2
iso, calculated analytically using

Eq. (3.15) (thin black line), and numerically (thick gray line).
The black dashed line plots the distribution of R2

iso;mism ¼
R2
isoð1��Þ, where the mismatch � is drawn from a distribution

appropriate for a lattice-based template bank (see Sec. VC).

1.0 0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

1.0 0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 5. False dismissal probability pfdð�Þ of a single signal
observed in an isotropically sensitive detector network, as a
function of the cosine of the signal’s inclination angle, � ¼
cos�. The exact result of Eq. (3.17) (solid line) is compared
against the Gaussian function approximation of Eq. (3.18)
(dashed line), for pfd ¼ 1%, � ¼ 4, and pfa=Nt ¼ 0:01, Ns ¼
1 (left panel), and pfa=Nt ¼ 10�12, Ns ¼ 104 (right panel).
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Eqs. (3.11) and (3.17), we deduce that �1 satisfies
�̂2R2

isoð� ¼ �1Þ ¼ ��2, and is given by

�1 ¼
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 4

5

�
��

�̂

�
2

s
� 3

�
1=2

: (3.21)

Substituting �1 into Eq. (3.18) gives the solution for

B ¼ 1

�2
1

ln

�
A

pfd

�
: (3.22)

Combining Eqs. (3.19), (3.20), and (3.22), and taking
logarithms, we have

ln

�
2pfd

�1

ffiffiffiffi



p
�
¼ lnA� 1

2
ln

�
ln

�
A

pfd

��
: (3.23)

The terms on the right-hand side of Eq. (3.23) may be
Taylor expanded to second order in x ¼ erfc�12A:

lnA ¼ � ln2� 2ffiffiffiffi



p x� 2



x2 þOðx3Þ; (3.24)

1

2
ln

�
ln

�
A

pfd

��
¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ln2pfdj

q
þ 1ffiffiffiffi



p

ln2pfd

x

� 1� ln2pfd


ðln2pfdÞ2 x
2 þOðx3Þ; (3.25)

where the second expansion is valid only for pfd < 1=2.
For pfa=Nt � 0:01, pfd � 0:05, Ns � 1, and � � 2, these
expansions introduce errors of & 1% and & 16%, respec-
tively. Substituting Eqs. (3.24) and (3.25) into Eq. (3.23),
and using Eq. (3.20), we solve for

x ¼ Ns�̂
2R2

0 � zfa
ffiffiffiffiffiffiffiffiffiffiffi
2Ns�

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsð�þ 2�̂2R2

0Þ
q

¼
ffiffiffiffi



p
2

��1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ð1� �Þ lnð2pfd�Þ

q
� 1Þ; (3.26)

where

� ¼ 1� 1

ln2pfd

þ 2

1þ 2 ln2pfd

; (3.27a)

� ¼ 1

1þ 2 ln2pfd

þ 2

ð1þ 2 ln2pfdÞ2
; (3.27b)

� ¼ 2

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ln2pfdj




s
: (3.27c)

Now, suppose that p0
fd ¼ ð1=2Þerfcy, and Taylor expand

lnp0
fd to second order in y, as in Eq. (3.24); solving for y

gives an expression (valid only for p0
fd <

ffiffiffi
e

p
=2) for

y ¼ erfc�12p0
fd ¼

ffiffiffiffi



p
2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 ln2p0

fd

q
� 1Þ: (3.28)

Note the similarity of the right-hand sides of Eqs. (3.26)
and (3.28). We now define the effective false dismissal
probability p0

fd, normalized false alarm threshold z0fa, and
number of segments N0

s:

p0
fd ¼ pfd

�

ð2pfd�Þ� ; z0fa ¼ zfa�; N0
s ¼ Ns�

2:

(3.29)

Using these quantities, we equate Eqs. (3.27) and (3.28),
obtaining

N0
s�̂

2R2
0 � z0fa

ffiffiffiffiffiffiffiffiffiffiffi
2N0

s�
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0

sð�þ 2�̂2R2
0Þ

q ¼ erfc�12p0
fd: (3.30)

Finally, by noting that Eq. (3.30) is similar in form to
Eq. (3.11), it follows that its solution for �̂ is given by
analogy to Eq. (3.13):

�̂ ¼ 1

R0

�
2�

N0
s

�
1=4

�
z0fa þ q0

�
1þ z0fa

ffiffiffi
8

p
ffiffiffiffiffiffiffiffiffi
N0

s�
p �

1=2 þ q02
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffi
N0

s�
p �

1=2
:

(3.31)

where q0 ¼ ffiffiffi
2

p
erfc�12p0

fd.

Evaluation of Eq. (3.31) is complicated by the fact that
its right-hand side is itself a function of �̂, through p0

fd

[Eq. (3.29)], � [Eq. (3.27c)], and �1 [Eq. (3.21)].
Nevertheless, Eq. (3.31) may be iteratively solved for �̂
using the following scheme. First, a reasonable initial
guess �̂0 is chosen: an appropriate choice is �̂0 	 1:4 ��
(see Fig. 7). Next, �̂0 is used to compute an updated value,
�̂1, by substituting into Eq. (3.31): �̂1 ¼ �̂ð�̂0Þ. Thereafter,
new values of �̂ are obtained using the mean of the
previous two values, i.e. the nth value of �̂ is

�̂ n ¼ �̂

�
�̂n�1 þ �̂n�2

2

�
: (3.32)

Using this scheme, the sequence of values f�̂ng reliably
converges to an accurate value of �̂: typically, 20–80 iter-
ations are required to achieve sufficient accuracy. The use
of the mean of the previous two �̂ in Eq. (3.32) suppresses
divergent oscillations in the sequence f�̂ng.
Figure 6 plots �̂ as a function of pfa=Nt and Ns, with

pfd ¼ 0:1, for a detection statistic with � ¼ 4 degrees of
freedom (e.g. the F statistic). For a single-template search
at 1% false alarm and 10% false dismissal probabilities, we
see that pfa ¼ 0:01, Nt ¼ Ns ¼ 1, and �̂ ¼ 6:3, which
should be interpreted as the average sensitivity of a col-
lection of single-template searches which covers the
parameter space uniformly in sky position ð�; �Þ and ori-
entation ðc ; �Þ. This value of �̂ is equivalent to a statistical
factor of 15.7. This differs from the often-quoted (e.g. [18])
statistical factor for a single-template search of 11.4, be-
cause that statistical factor is calculated assuming a signal
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with an average SNR, i.e. it is calculated from �� instead
of �̂. For the search for Cassiopeia A presented in [12],
pfa ¼ 0:01, pfd ¼ 0:05, Nt � 1:8� 1010 [33], Ns ¼ 1, and
�̂ 	 14:5, which implies a statistical factor of �36 con-
sistent with that quoted in [33,38].

Figure 7 plots the ratio of �� to �̂, as a function of pfa=Nt

and Ns. Relative to �̂, we see that �� underestimates the
mean SNR detectable by a search by �29%� 5%, i.e. it
overestimates the search’s sensitivity by the same amount.
For comparison, the typically amplitude calibration error
of the LIGO detectors is �10% [57], and the ratio of the
best upper limits on gravitational waves from Cassiopeia A
to the indirect limits from energy conservation is �60%
[12]. Thus, an error of �30% in estimating a search’s

sensitivity is a significant discrepancy. Note, however,
that the change in ��=�̂ is small over the ranges of pfa=Nt

and Ns plotted in Fig. 7. We conclude from this that, while
�� does not predict the correct sensitivity, it does capture the
correct scaling of sensitivity with the false alarm probabil-
ity, template count, and number of segments. This conclu-
sion also follows from the similarity in form between
Eqs. (3.13) and (3.31).
To illustrate the relationship between �̂ and ��, Fig. 8

plots z0fa=zfa and N
0
s=Ns as functions of pfd, and Fig. 9 plots

p0
fd=pfd as a function of pfd and ��=�̂. We see that both

z0fa=zfa and N
0
s=Ns are less than unity for pfd > 0, while p0

fd

is generally greater than pfd by a factor of �4–8. Note
too that the right-hand side of Eq. (3.31) is divided by

FIG. 7. Contours of the ratio of ��=�̂ as a function of pfa=Nt

and Ns, with pfd ¼ 0:1 and � ¼ 4. Unlabeled thin contours are in
units of 0.01.

FIG. 6. Contours of �̂ as a function of pfa=Nt and Ns, with pfd ¼ 0:1 and � ¼ 4. Thick solid contours are in units of 1.0, thin solid
contours are in units of 0.5, and thin dashed contours are in units of 0.25.

FIG. 8. Ratios of the effective false alarm threshold z0fa=zfa
(solid line) and number of segments N0

s=Ns (dashed line) as
functions of pfd.
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R0 	 0:56 [Eq. (3.14)]. This implies that �̂ is dominated by
contributions from linearly polarized signals, as seen in the
distribution of R2

iso plotted in Fig. 4. Therefore, we may

think of �̂ as estimating the sensitivity of a search to a
population of constant-SNR signals (as for ��), but where
the signals are linearly polarized (hence the division by
R0), and where the search is performed with reduced false
alarm threshold z0fa, a reduced number of segments N0

s, and

a greatly increased false dismissal probability p0
fd.

We note that Eqs. (3.25) and (3.28) impose restrictions
on permissible values of pfd < 0:5 and p0

fd <
ffiffiffi
e

p
=2 	

0:82, respectively. The latter restriction and Fig. 9 implies
that, depending on the value of ��=�̂, pfd is further re-
stricted to be less than 0:82=4–0:82=8 	 0:1–0:2. In gen-
eral, therefore, the use of Eq. (3.31) is restricted to values
of pfd & 10%–20%. In practice this is not an onerous
restriction, as we are generally only interested in small
false dismissal probabilities of either 10% or 5%.
Gravitational-wave pulsar searches of LIGO and Virgo
data (see Sec. I for references) have set upper limits with
corresponding upper limit confidences of 90% and 95%,
respectively.

IV. ACCURACY OFANALYTIC
SENSITIVITY ESTIMATOR

In this section, we validate the accuracy of the analytic
sensitivity estimator �̂, derived in Sec. III D, against the
sensitivity calculated using two methods: numerically
solving Eq. (3.9), in Sec. IVA; and performing software
injections, in Sec. IVB. The validation is performed using
a detection statistic with � ¼ 4, and for a target false
dismissal probability of pfd ¼ 0:1.

A. Numerical solution of false dismissal equation

We first compare the sensitivity predicted by �̂ against

the sensitivity
ffiffiffiffiffiffiffiffiffih�2ip

calculated by solving Eq. (3.9) nu-

merically. We denote by ~� the value of
ffiffiffiffiffiffiffiffiffih�2ip

which solves
Eq. (3.9) for a target false dismissal probability pfd. We

denote by pfdð~�trialÞ the result of computing Eq. (3.9) for a
given trial value of ~�, denoted ~�trial. For ~�trial ¼ 0,
pfdð~�trialÞ>pfd, otherwise Eq. (3.9) has no solution for
the chosen pfd. We start by determining a ~�max such that
pfdð~�maxÞ< pfd, thus bracketing ~� to between 0 and ~�max.
We then use a simple bifurcation search to converge to ~�,
which terminates when the relative error between pfdð~�Þ
and the target pfd is less than 10

�3. Equation (3.9) is solved
for a grid of logarithmically spaced values of pfa=Nt and
Ns: 30 values in the range 10

�15 � pfa=Nt � 10�2, and 28
values in the range 1 � Ns � 104.
Figure 10 shows the relative difference between the

analytic �̂ and the numerically calculated ~�. The maximum
relative error between �̂ and ~� is & 1:4% over the given
range of pfa=Nt and Ns. Note that �̂ is consistently smaller
than ~�, i.e. �̂ slightly overestimates the sensitivity calcu-
lated using Eq. (3.9).

B. Software injections

We next determine whether the sensitivity predicted by
�̂, and calculated numerically from Eq. (3.9) in the pre-
vious section, correctly predicts the performance of a real
gravitational-wave pulsar search pipeline. To do so, we
perform software injection studies similar (with some sim-
plications) to the Monte Carlo simulations used to set
upper limits for gravitational-wave searches of LIGO and
Virgo data (see Sec. I for references). We use software
from the LALSUITE [58] repository.
First, the MAKEFAKEDATA_V4 program is used to gener-

ate gravitational-wave strain data, of time span NsTs (see
Table I), containing Gaussian noise (with a power spectral
density of Sh ¼ 1), and a simulated gravitational-wave
pulsar signal, as it would be observed in the LIGO
Livingston detector. The strain amplitude h0 is given by
[cf. Eq. (3.8)]

h0 ¼ 5

2

ffiffiffiffiffi
Sh
Ts

s
�̂ ¼ 5

2

ffiffiffiffiffi
Sh
Ts

s
~�; (4.1)

FIG. 9. Contours of the effective false dismissal probability
p0
fd=pfd as a function of pfd and ��=�̂. FIG. 10. Histogram of the relative difference between �̂, given

by Eq. (3.31), and the numerical solution to Eq. (3.9), ~�, over the
ranges 10�15 � pfa=Nt � 10�2 and 1 � Ns � 104.
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where Sh ¼ 1, Ts is given values from Table I, and either �̂
or ~� are calculated for pfd ¼ 0:1 and values for pfa=Nt and
Ns given in Table I. Other parameters of the simulated
signal are chosen uniformly from the following ranges:
�1 � � � 1, 0 � c < 2
, 0 � �0 < 2
, 0 � �< 2
,

�1 � sin� � 1, f ¼ 100 Hz, and �10�8 Hz s�1 � _f �
0 (with higher-order spin-downs set to zero).

Next, the COMPUTEFSTATISTIC_V2 program, an imple-
mentation of the F statistic, is used to perform a single-
template search of the data generated by
MAKEFAKEDATA_V4, at precisely the sky position ð�; �Þ
and frequency evolution ðf; _fÞ of the simulated
signal. (We consider the loss in sensitivity due to mismatch
between the search template and signal in Sec. VC.) A
single value of the F statistic is returned by
COMPUTEFSTATISTIC_V2 and stored. For Ns > 1, since

COMPUTEFSTATISTIC_V2 cannot combine searches of mul-

tiple data segments, we instead run COMPUTEFSTATISTIC_V2

Ns times on successive segments, of time spans Ts, and add
together the Ns returned F -statistic values. Thus, the
(summed) F -statistic values will follow �2 distributions
with Ns� ¼ 4Ns degrees of freedom.

Finally, we repeat the injection procedure 5000 times.
We record the number of (summed) F -statistic
values which are below the false alarm threshold sfa, as
calculated in Sec. III A. This fraction equals the false
dismissal probability as determined by the software
injections, which we denote pfd;inj. If the sensitivity of

COMPUTEFSTATISTIC_V2 is accurately estimated by �̂ and/

or ~�, pfd;inj should be close to the target false dismissal

probability of pfd ¼ 0:1. Different choices of pfa=Nt are

used to set different thresholds sfa and thus simulate the
sensitivity of a wide-parameter-space search over Nt

templates.
Ideally, we would then refine the injected value of h0,

increasing it if pfd;inj > pfd, decreasing it if pfd;inj < pfd,

and then repeat the entire injection procedure, until
pfd;inj ¼ pfd. The relative error between the value of h0
calculated using Eq. (4.1), and the value of h0 arrived at by
repeating the injection procedure would then be equal to
the relative error in the estimation of the sensitivity of
COMPUTEFSTATISTIC_V2. Since the injection procedure is

time consuming and computationally intensive, however,
we instead recompute �̂ or ~�, as appropriate, using the
false dismissal probability pfd;inj determined by the injec-

tions. We denote by ��̂ ¼ j�̂ðpfd;injÞ � �̂ðpfdÞj=�̂ðpfdÞ the
relative error between the value of �̂ calculated using
pfd;inj, and the value of �̂ calculated using pfd; similarly

for �~�. These quantities serve as a reasonable estimate of
the error in the sensitivities estimated by �̂ and ~�,
respectively.
The results of the software injections are shown in

Table I. Both �̂ and ~� underestimate, by & 5% and &
4:7%, respectively, the h0 required to achieve a false dis-
missal probability of 10%; except in one instance (last row
of column 4), pfd;inj > 10%. Nevertheless, these errors are

still within the �10% typical calibration error of
gravitational-wave detectors, e.g. LIGO [57], and hence
can be considered small. The difference between the pre-
dicted and actual sensitivity of COMPUTEFSTATISTIC_V2 is
likely because the F -statistic values returned by
COMPUTEFSTATISTIC_V2 do not strictly follow a �2

TABLE I. Validation of the analytic sensitivity estimator �̂, and the numerically computed
sensitivity ~�, using software injections. The injections are performed for three values of pfa=Nt

(listed in row 1), five combinations of Ns and Ts (listed in columns 1 and 2), and once each using
either �̂ (top panel) or ~� (bottom panel). Values of ��̂ (or �~�) and pfd;inj are given, for each of

the three values of pfa=Nt, in columns 3 and 4, 5 and 6, and 7 and 8, respectively.

Ns Ts pfa=Nt ¼ 10�2 pfa=Nt ¼ 10�6 pfa=Nt ¼ 10�10

Analytic �̂
��̂ pfd;inj ��̂ pfd;inj ��̂ pfd;inj

1 1 �5% 13.2% �2:5% 12.4% �5:% 14.9%

1 5 �2:4% 11.8% �2:8% 12.6% �2:9% 13.%

1 10 �4:9% 13.2% �4:7% 14.% �2:5% 12.7%

10 1 �1:3% 11.1% �1:7% 11.9% �1:7% 12.2%

25 1 �0:16% 10.5% �0:93% 11.4% �1:5% 12.2%

Numerical ~�
�~� pfd;inj �~� pfd;inj �~� pfd;inj

1 1 �3:% 11.5% �4:1% 12.9% �3:8% 13.1%

1 5 �4:7% 12.4% �3:5% 12.4% �3:4% 12.8%

1 10 �2:9% 11.4% �3:% 12.% �2:6% 12.1%

10 1 �0:2% 10.1% �1:6% 11.2% �1:8% 11.5%

25 1 0.36% 9.8% �1:2% 10.9% �0:99% 10.9%
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distribution; small errors, on the order of a few percent, are
introduced due to implementation details of the code
[59,60]; see Sec. VA and Figs. 11 and 12.

V. VALIDITY OFASSUMPTIONS

In the previous two sections, we have derived an analytic
estimator of the sensitivity of wide-parameter-space
gravitational-wave pulsar searches (Sec. III) and validated
its accuracy (Sec. IV). In doing so, we made certain
assumptions: that the values of the detection statistic re-
turned by the search are statistically independent, that the
network of gravitational-wave detectors being searched is

sensitive to gravitational waves from all sky locations, and
that any signal present in the data is perfectly matched by at
least one of the searched templates. In this section, we
investigate to what extent these assumptions are valid for
real gravitational-wave pulsar search pipelines.

A. Statistical independence of templates

It was assumed, in deriving an expression for the false
alarm probability in Sec. III A, that the Nt values of the
detection statistic s returned by the search are statistically
independent. This is not necessarily the case in practice.
Gravitational-wave pulsar searches typically use template
banks with small, e.g. 20% mismatches; templates nearby
in parameter space will therefore have similarly shaped
waveforms. Matched filtering of nearby templates will
therefore combine the same data with nearly identical
waveforms to produce corresponding values of the detec-
tion statistic. There is the potential, therefore, for values of
the detection statistic computed from nearby templates to
be correlated with each other.
To assess to what extent this effect is important,

we perform four fully coherent searches, using
COMPUTEFSTATISTIC_V2 (see Sec. IVB) of 3 days of

computer-generated Gaussian noise. The search parameter
space is sky and frequency, with higher spin-downs set to
zero. Template banks were generated using the
GRIDTYPE=2 option, which places templates over the sky

using an adaptive mesh. The first three searches are per-
formed using template banks with the following mis-
matches: an unrealistically small mismatch of 1%, a
realistic mismatch of 20%, and an unrealistically high
mismatch of 500%. The fourth search repeats the first
search using the 1% mismatch template bank, with the
following modification to the COMPUTEFSTATISTIC_V2 pro-
gram: Before each value of theF statistic is computed, the
input Gaussian noise data are regenerated, so that each
F statistic is computed from independent instances of
Gaussian noise. The frequency bands of the searches are
chosen such that the searches return 4:2� 106 values of the
F statistic.
We partition the returned F -statistic values into 2100

blocks of N ¼ 2000 values contiguous in frequency, and
select the maximum value of the F statistic in each block.
If all the values of theF statistic are mutually independent,
the distribution of the 2100F -statistic maxima is expected
to be [33]

pð2F maxÞ ¼ Npð2F ¼ 2F maxj2F � �2½4�Þ
� ½pð2F < 2F maxj2F � �2½4�Þ�N�1: (5.1)

If, however, the values of the F statistic exhibit some
mutual correlation, then we expect the distribution of the
2100 F -statistic maxima to be well modeled by Eq. (5.1),
but with an effective number of statistically independent
templates N � 2000. This procedure was used by the

FIG. 12. Histograms of the maximum values of the F statistic
obtained in blocks of 2000 templates returned by a frequency–-
spin-down search of 7 days of computer-generated Gaussian
noise. Details are the same as Fig. 11.

FIG. 11. Histograms of the maximum values of the F statistic
obtained in blocks of 2000 templates returned by an all-sky–
frequency search of 3 days of computer-generated Gaussian
noise. (Left panel) Histogram of the 1% mismatch template
bank, computed from the same Gaussian noise (black curve),
and from regenerated independent Gaussian noise (gray curve).
The theoretical distribution is plotted for N ¼ 2000 (solid black
curve), and N ¼ 400 (dashed black curve). (Right panel)
Histograms of the 20% mismatch template bank (black curve),
and the 500% mismatch template bank (gray curve). The theo-
retical distribution is plotted for N ¼ 2000 (solid black curve).
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gravitational-wave search for Cassiopeia A [12] to esti-
mate the statistical correlation of the template bank.

Figure 11 plots histograms of the F -statistic maxima
obtained from the four searches. In the left-hand plot of
Fig. 11, we see that the F -statistic values from the 1%
mismatch search (without regenerating the input data) are
highly correlated; they are best fitted by Eq. (5.1) withN ¼
400 effectively statistically independent templates. When
the input data are regenerated before computing each
F -statistic value, the distribution is much closer to the
expected distribution with N ¼ 2000 statistically indepen-
dent templates. This demonstrates that the origin of the
correlations is that the same data are being used to compute
the F -statistic values of nearby templates. The small
differences between the computed and expected distribu-
tions are likely due to the implementation details of
COMPUTEFSTATISTIC_V2 (see Sec. IVB). In the right-hand

plot of Fig. 11, we see that the distributions of the
F -statistic maxima, for both the 20% and 500% mismatch
template banks, are both close to the expected distribution
with N ¼ 2000. This suggests that, while statistical corre-
lation between F -statistic values is noticeable for very
closely spaced templates, it is less significant for realistic
template bank mismatches.

We repeat the above four searches, instead using 7 days
of data and searching over frequency and spin-down.
Template banks were generated using the GRIDTYPE=8

option to COMPUTEFSTATISTIC_V2, which places templates
over frequency and spin-down using a lattice. The resulting
distributions of the F -statistic maxima, plotted in Fig. 12,
are similar to those presented in Fig. 11, except that the
20% mismatch distribution is less well fitted by the N ¼
2000 distribution. The same template bank was used in the
search for Cassiopeia A [12], which found the number of
statistically independent templates to be�88% of the total
number of templates.

While it is difficult to precisely quantify the effect
of statistical correlations between templates on search
sensitivity, for template banks with realistic mismatches
the effect is likely to be small. As may be deduced
from Fig. 6, a change in Nt of e.g. 10% does not signifi-
cantly alter the predicted �̂. Given that, as shown in Table I,
both analytic and numerical sensitivity estimators accu-
rately predict the sensitivity of a real gravitational-wave
search pipeline to �5%, it is reasonable to neglect the
smaller effect due to statistical correlations between
templates.

B. Isotropic sensitivity of detector network

We now investigate whether it is reasonable to assume
that a real gravitational-wave detector network, e.g. that of
the LIGO and Virgo detectors, can be modeled by a net-
work which is isotropically sensitive to gravitational waves
arriving from all directions. While this assumption is rea-
sonable for all-sky searches, since averaging over the sky

position is equivalent to averaging over detector orienta-
tion (see Appendix A), it may not be reasonable for
searches targeting a single sky position.

In Sec. IVA, we numerically solved Eq. (3.9) for ~� ¼ffiffiffiffiffiffiffiffiffih�2ip
, assuming an isotropically sensitive detector net-

work, and averaging over the sky position ð�; �Þ and
polarization angle c ; we denote the values of �̂ thus
obtained by ~�iso. We now solve Eq. (3.9), using the same
algorithm detailed in Sec. IVA, for three detector net-
works: the LIGO Livingston detector, the two LIGO
(Livingston and Hanford) detectors, and the three-detector
network comprising the LIGO and Virgo detectors; detec-
tor locations and orientations are taken from [61]. We
assume that all detectors in the network are equally sensi-
tive, since we are concerned only with the effect of the
geographic configuration of the network. We consider the
following five search scenarios:
(1) A search using a long data segment length of

Ts � days, covering the entire sky. For large Ts,
the signal SNR becomes independent of � (see
Appendix A). We compute ~� averaged over the
remaining parameters, sin� and c .

(2) A search using a long data segment length of
Ts � days and targeting a source at a known sky
position but with an unknown polarization. We
compute ~� for a grid of 41 linearly spaced values
of sin� in the range �1 � sin� � 1 and average
over c .

(3) A search using a long data segment length of
Ts � days and targeting a source with both a known
sky position and polarization. We compute ~� for the
same grid of sin� values as in scenario 2 and a grid
of 10 linearly spaced values of c in the range
�
=4 � c <
=4.

(4) A search using a short data segment length of
Ts ¼ 0:5 days and targeting a source at a known
sky position but with an unknown polarization. For
Ts shorter than a day, the signal SNR is a function of
�, sin�, and c . We compute ~� for a grid of 20
linearly spaced values of � in the range 0 � �<
2
, 19 linearly spaced values of sin� in the range
�1< sin� < 1, and average over c .

(5) A search using a short data segment length of
Ts ¼ 0:5 days and targeting a source with both a
known sky position and polarization. We compute ~�
for the same grids of � and sin� values as in
scenario 4 and the same grid of c values as in
scenario 3.

For each of the above search scenarios, we record the
minimum, mean, standard deviation, and maximum of
the relative error j~�� ~�isoj=~�iso and relative difference
ð~�� ~�isoÞ=~�iso, over the grids of �, sin�, and c values
given above, and over the grids of pfa=Nt and Ns values
given in Sec. IVA.
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Table II shows the means and standard deviations of the
relative error, and the minimum and maximum relative
differences obtained under the five search scenarios. For
an all-sky search (scenario 1), the assumption of an iso-
tropic detector network is an excellent one. For the remain-
ing search scenarios, the error in assuming an isotropically
sensitive detector network increases as Ts is reduced and as
more parameters are set to fixed values. While the mean
error is limited to & 6:3% for all four scenarios, the
maximum difference can be up to 20% for a single detec-
tor, although it reduces to 15% for a three-detector net-
work. There are only a few (potential) gravitational-wave
sources for which the polarization angle may be deter-
mined with any accuracy; noted examples are the Crab
and Vela pulsars, where x-ray observations of the pulsar
wind nebula provide information on the pulsar’s orienta-
tion [10,11]. Thus, scenarios 3 and 5 are less likely to arise
in practice (but see Sec. VI for a discussion of these
scenarios in relation to the PowerFlux upper limit proce-
dure). We conclude that, while the error in assuming an

isotropically sensitive detector network may be acceptable
in many cases, it can be significant for particular choices of
fixed search parameters.
Figure 13 plots the mean relative difference ð~�� ~�isoÞ=

~�iso for scenario 2, as a function of sin�, for the three
detector networks considered. The difference between ~�
and ~�iso is smallest at sin�� 0:5–0:55, the approximate
latitudes of the three detectors (� 30
–46
); a signal orig-
inating from these declinations would therefore be located
at the approximate maximum sensitivities of the detectors.
For the same reason, a single detector at low latitude
(LIGO Livingston) is more sensitive to signals arriving at
low declinations, explaining the increased sensitivity rela-
tive to that of an isotropic detector network. The addition
of two detectors at higher latitudes (LIGO Hanford and
Virgo) shifts the network configuration toward improved
sensitivity at higher declinations.
Figure 14 plots the mean relative difference

ð~�� ~�isoÞ=~�iso for scenario 4, as a function of � and
sin�, for the LIGO-Virgo network. Consistent with
Fig. 13, the network is more sensitive to signals arriving
at the poles, and less sensitive to signals arriving at the
equator, than an isotropically sensitive network. The
change in sensitivity as a function of� and � is comparable
to previous studies of gravitational-wave detector network
configuration; see e.g. Fig 3 in [62].

C. Template bank mismatch

Finally, we consider the reduction in sensitivity due to
mismatch between the searched templates and any signal
which may be present. The mismatch � is related to the
difference between the SNR �2ðpÞ of a signal with pa-
rameters p, and the SNR �2ðp0Þ recovered by a search
template with mismatched parameters p0. It is given by
(e.g. [44])

TABLE II. Relative errors and differences in the sensitivity
estimated assuming an isotropically sensitive detector network,
under five search scenarios (see the text for details). For each
detector network (column 1), the means and standard deviations
of the relative error j~�� ~�isoj=~�iso (column 2) and the minimum
and maximum differences ð~�� ~�isoÞ=~�iso (columns 3 and 4) are
listed. The abbreviations L, LH, and LHV indicate the LIGO
Livingston detector, the LIGO detector network, and the LIGO-
Virgo detector network, respectively. Each block of the table
corresponds to a search scenario, and a summary of each
scenario is given just above each block.

Network Error j~�� ~�isoj=~�iso Difference ð~�� ~�isoÞ=~�iso

Mean� Stdv Minimum Maximum

1. Ts ! 1; averaged sin�, and c
L 0:0058%� 0:0037% �0:018% þ0:017%
LH 0:0062%� 0:0042% �0:02% þ0:017%
LH 0:0063%� 0:0044% �0:02% þ0:014%

2. Ts ! 1; known sin�; averaged c
L 3:4%� 1:8% �4:5% þ6:5%
LH 2:6%� 1:3% �4:9% þ3:8%
LHV 3:7%� 2:% �7:5% þ5:4%

3. Ts ! 1; known sin� and c
L 4:3%� 2:4% �11:% þ6:5%
LH 2:8%� 2:% �4:9% þ8:7%
LHV 3:8%� 2:4% �7:5% þ9:3%

4. T ¼ 0:5 days; known �, sin�; averaged c
L 5:1%� 3:6% �6:5% þ16:%
LH 4:7%� 3:% �10:% þ10:%
LHV 4:1%� 2:3% �8:8% þ7:4%

5. T ¼ 0:5 days; known �, sin�, and c
L 6:3%� 4:7% �14:% þ20:%
LH 5:6%� 3:7% �10:% þ18:%
LHV 4:4%� 3:1% �9:9% þ15:%

FIG. 13. Mean relative difference ð~�� ~�isoÞ=~�iso in the sensi-
tivity estimated assuming an isotropically sensitive detector
network, for search scenario 2 (see the text), as a function of
sin�, for the LIGO Livingston detector (gray curve), the LIGO
detector network (black, dashed curve), and the LIGO-Virgo
detector network (black curve).
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� ¼ �2ðpÞ � �2ðp0Þ
�2ðpÞ : (5.2)

Substituting
ffiffiffiffiffiffiffiffiffih�2ip

R for �ðpÞ and ffiffiffiffiffiffiffiffiffih�2ip
Rmism for �ðp0Þ, we

find that R2
mism ¼ R2ð1��Þ; thus the effect of mismatch is

to reduce R2 by a factor 1��. For a large template bank,
� can be considered as a random variable drawn from a
distribution pð�Þ characterizing the geometric arrange-
ment of the templates in parameter space. Equation (3.9)
is then modified to additionally average over mismatch:

pfd¼hpðs� sfajs��2½Ns�;Nsh�2iR2ð1��Þ�Þi�;sin�;c ;�;�;

(5.3)

where h� � �i� ¼ R�max

0 d�pð�Þ � � � , and �max is the maxi-

mum allowed mismatch.

We solve Eq. (5.3) numerically for ~�mism ¼ ffiffiffiffiffiffiffiffiffih�2ip
, using

a modified version of the algorithm described in Sec. IVA.
We compute ~�mism for two examples of pð�Þ: the mis-
match distribution for a template bank constructed using a
3-dimensional body-centered cubic lattice with �max ¼
20%, from [33], and an ad hoc Gaussian mismatch distri-
bution with a mean of 10% and standard deviation of 2%,
restricted to the range 0 � � � 20%. Histograms of these
distributions are plotted in Fig. 15; mismatch distributions
for lattice template banks in other dimensions are plotted in
[63]. The lattice template bank mismatch distribution has a
mean mismatch of 10% and standard deviation of 4%.

We find that taking mismatch into account increases
~�mism, relative to the equivalent (zero mismatch) ~�
computed in Sec. IVA, by on average 5:3%� 0:10% for
the lattice template bank mismatch distribution, and
5:5%� 0:10% for the Gaussian distribution. This effect
is of the same magnitude as the error in the analytic/
numerical estimators compared to software injections

(see Table I). We note that, by substituting R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h�ip

(where h�i is the mean of the mismatch distribution) for R0

in Eq. (3.31), we can predict the observed relative increase
in ~�mism reasonably accurately; for h�i ¼ 10%, �̂ is in-
creased by 5.4%. This suggests that it is reasonable to
model the effect of template bank mismatch as a uniform

reduction in recovered SNR (by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h�ip

), and that the
mean of the mismatch distribution is sufficient to quantify
this reduction; this approach is also taken in [31]. Figure 16
plots histograms of the relative difference between ~�mism

and ~�; the histograms are narrow, with no long tails,
confirming that the most typical reduction in SNR is close
to the average reduction.
Figure 4 plots the distribution of R2

iso;mism¼R2
isoð1��Þ,

where � are drawn from the lattice template bank
mismatch distribution. Relative to the zero-mismatch
distribution, R2

iso;mism is reduced for circularly polarized

FIG. 14. Mean relative difference ð~�� ~�isoÞ=~�iso in the sensi-
tivity estimated assuming an isotropically sensitive detector
network, for scenario 4 (see the text), as a function of � and
sin�, for the LIGO-Virgo detector network. The sidereal time at
Greenwich at the midpoint of the observation time is denoted
by �s.

FIG. 15. Histograms of the mismatch distribution of a
3-dimensional body-centered cubic lattice template bank
(left panel), and an ad hoc Gaussian mismatch distribution
(right panel).

FIG. 16. Histograms of the relative difference between ~�mism,
calculated using the lattice template bank (left panel) and
Gaussian mismatch distributions (right panel), and ~� (zero
mismatch) over the ranges 10�15 � pfa=Nt � 10�2 and 1 �
Ns � 104.
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signals (at high R2
iso;mism) and exhibits a broader peak at

linearly polarized signals (at low R2
iso;mism).

VI. DISCUSSION

In this paper, we developed a new analytic method of
estimating the sensitivity of wide-parameter space
searches for gravitational-wave pulsars. The new method
avoids the unphysical assumption of constant-SNR signals,
used by previous analytic sensitivity estimation methods,
and hence can accurately (to & 5%) reproduce the sensi-
tivity estimated using Monte Carlo simulations, but with-
out their computational cost. Additional effects, not
included in the analytic model but that may be important
for real gravitational-wave pulsar searches, are investi-
gated: the statistical correlation between values of the
detection statistic due to closely spaced template banks;
the deviation of the directional sensitivity of real
gravitational-wave detector networks from an ideal, iso-
tropically sensitive network; and the loss in SNR due to
mismatch between a signal and the searched templates.
While the first of these effects can be neglected, the re-
maining two may need to be accounted for where accurate
sensitivity estimates are required.

It is important to note that an accurate prediction of the
absolute sensitivity of a search may not always be neces-
sary. For studies of the optimal configuration of a hierarch-
ical search (e.g. [27,31]), the relative sensitivity of
different search schemes is usually more important. For
these studies, use of the constant-SNR sensitivity estimator
�� may be acceptable; Fig. 7 shows that �� reproduces to &
5% the correct scaling (i.e. that of �̂) of sensitivity with
respect to pfa=Nt and Ns. On the other hand, given the
similarity between the expressions for �� and �̂ [compare
Eqs. (3.13) and (3.31)], these studies may also be able to
utilize the more accurate sensitivity scaling of �̂ with little
modification.

This work has restricted its attention to detection statis-
tics which follow �2 distributions, which does not cover all
gravitational-wave search methods. In particular, the
Hough semicoherent method [26] computes a statistic,
the number count, which is the number of coherently
analyzed segments where the coherent detection statistic
(which may either be power or the F statistic) exceeds a
set threshold. It follows that the number count follows a
binomial distribution. Since, however, the Hough method
is generally used to analyze a large number of data seg-
ments (i.e. Ns is large), the binomial distribution can gen-
erally be approximated by a normal distribution (see [26]),
an approximation also used in Sec. III. Thus, the analytic
sensitivity estimation method developed here may be ap-
plicable to the Hough method with minor modifications.

Searches performed using the PowerFlux method
[14,20,22] employ a slightly different formulation of the
frequentist procedure described in Sec. II C. (To distin-
guish these two frequentist procedures, in the following

discussion we refer to the upper limits produced by the
frequentist procedure described in Sec. II C as
population-averaged upper limits.) An upper limit on h0
is set, using the Feldman-Cousins method of confidence
interval construction [64], for every searched parameter
(typically sky position, frequency, and first-order spin-
down), and assuming either linearly polarized signals
(� ¼ 0, with a range of c ) or a circularly polarized signal
(j�j ¼ 1). For each polarization case, the maximum value
of h0 over the searched parameters is chosen. Two upper
limits are then quoted: a best-case upper limit, which
assumes circular polarization; and a worst-case4 upper
limit, where h0 is further maximized over the linear
polarizations.
The PowerFlux upper limit procedure differs from the

population-averaged upper limit procedure in two respects.
(In the following comparison, we assume that the data
being searched are relatively free of non-Gaussian instru-
mental noise.) First, while the population-average proce-
dure first selects the maximum value of the detection
statistic s over the parameter space, and then computes
an upper limit on h0 using s, the PowerFlux procedure first
computes an upper limit on h0 for every value of s,
assuming a fixed polarization, and then selects the maxi-
mum upper limit. By computing upper limits assuming a
fixed sky position ð�; �Þ, corresponding to each value of s,
and a fixed c , PowerFlux is essentially performing search
scenario 5 from Table II (although with different search
parameters, e.g. Ts ¼ 30 minutes, pfd ¼ 0:05). From the
maximum relative difference in sensitivity quoted in
Table II for this scenario, we estimate that the effect of
maximizing over h0 instead of over s raises PowerFlux
upper limits by �10%–20% relative to population-
averaged upper limits.
Second, the population-average procedure produces a

single upper limit averaged over all parameters; the
PowerFlux procedure instead quotes upper limits for
best-case (circular) and worst-case (linear) polarizations.
By setting upper limits at fixed polarizations (i.e. fixed
values of �), the PowerFlux procedure is setting upper
limits on a population of signals with a fixed value of R2,
i.e. a fixed SNR. We can therefore predict the upper limits
on h0 set by the PowerFlux procedure by replacing
h�2iR2 with �2

P:F:R
2
isoð�Þ in Eq. (3.9); it follows that

�P:F: is given by ��=Risoð�Þ, where �� is given by
Eq. (3.13). The best- and worst-case sensitivities are
then given by

�P:F:best ¼ ��

Risoðj�j ¼ 1Þ ¼
ffiffiffi
2

5

s
��; (6.1)

4Actually, PowerFlux worst-case upper limits, as quoted in e.g.
[14], also account for the worst-case mismatch; in this discussion
however we assume that no mismatch is present.
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�P:F:worst ¼ ��

Risoð� ¼ 0Þ ¼
4ffiffiffi
5

p ��: (6.2)

Ratios of PowerFlux best- and worst-case sensitivities to
the sensitivity predicted by �̂ range over 0:39 �
�P:F:best=�̂ � 0:46, and 1:1 � �P:F:worst=�̂ � 1:3, for the
range of ��=�̂ plotted in Fig. 7. An injection study by
Dergachev [65] found ratios consistent with these ranges:
�P:F:best=�̂� 0:43 and �P:F:worst=�̂� 1:2. Further investi-
gation into the differences between the PowerFlux and
population-averaged upper limits methods would
facilitate direct comparison of the upper limits produced
by different gravitational-wave searches, e.g. between
[13] and [22].

Recent searches for gravitational waves from known
pulsars [10,11] use Bayesian inference to set upper limits.
The frequentist method described in this paper constructs
confidence intervals which are derived from the probability
of the data, given a particular hypothesis e.g. that a signal
is or is not present in the data. In contrast, Bayesian
inference directly calculates the probability of the hypothe-
sis, given the particular data that were observed. Despite
their very different interpretations, a study in [66] found
that the frequentist and Bayesian methods produce similar
upper limits, in the limit of large signal amplitudes. Further
research is needed to understand fully the relationship
between these two methods.
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APPENDIX A: ANTENNA-PATTERN FUNCTIONS
AND THEIR AVERAGES

We present expressions for the antenna-pattern functions
FþðtÞ and F�ðtÞ of an interferometric detector and the
averages of FþðtÞ2 and F�ðtÞ2 over various parameters;
see also the references in Sec. II A.

The antenna-pattern functions can be written in terms of
a time-dependent detector response matrix RðtÞ and con-
stant polarization matrices Hþ and H�:

FþðtÞ ¼ trðRðtÞTHþÞ; F�ðtÞ ¼ trðRðtÞTH�Þ; (A1)

where tr is the matrix trace and T denotes transposition. We
implicitly assume a coordinate system at rest with respect

to the gravitational radiation, e.g. the Solar System
barycenter.
Let n̂1ðtÞ and n̂2ðtÞ be unit vectors along the interfer-

ometer’s arms, such that the cross product n̂1ðtÞ � n̂2ðtÞ
points toward zenith. The directions along which the in-
terferometer is insensitive to any gravitational radiation are

given by the unit vectors �âðtÞ and �b̂ðtÞ, where

âðtÞ ¼ n̂1ðtÞ � n̂2ðtÞ
2 sinð	=2Þ ; b̂ðtÞ ¼ n̂1ðtÞ þ n̂2ðtÞ

2 cosð	=2Þ ; (A2)

and 	 is the angle between the interferometer arms. Note

that âðtÞ and b̂ðtÞ are orthogonal, i.e. âðtÞ � b̂ðtÞ ¼ 0.
Assuming that the gravitational wavelength is much larger
than the interferometer arm length, as is the case for
ground-based detectors, the response matrix R is given in
terms of these vectors by (e.g. [67])

R ðtÞ ¼ sin	

2
½âðtÞ � b̂ðtÞ þ b̂ðtÞ � âðtÞ�; (A3)

where � is the vector outer product. The vectors can be
expressed in terms of time-independent components:

âðtÞ ¼ â1 cos�sðt� t0Þ þ â2 sin�sðt� t0Þ þ â3; (A4)

where the Earth rotates about the unit vector �̂s in a right-

handed sense with angular frequency �s, and â1 ¼ â2 �
�̂s, â2 ¼ �̂s � â0, â3¼ð�̂s � â0Þ�̂s, and â0 ¼ âðt ¼ t0Þ;
similarly for b̂ðtÞ.
The polarization matrices Hþ and H� may also be

written in terms of certain vectors [59,68]. The directions
along which a gravitational wave creates no space-time
perturbation are given by the mutually orthogonal unit
vectors �x̂þ and �ŷþ, for a purely plus-polarized wave,
and�x̂� and�ŷ�, for a purely cross-polarized wave. The
two sets of vectors are related by

x̂þ
ffiffiffi
2

p ¼ x̂� � ŷ�; ŷþ
ffiffiffi
2

p ¼ x̂� þ ŷ�: (A5)

The cross-polarization vectors are given by

x̂� ¼ �̂ cosc þ �̂ sinc ; ŷ� ¼ �̂ cosc � �̂ sinc ;

(A6)

where �̂ ¼ ðn̂� �̂sÞ= k n̂� �̂s k , �̂ ¼ �̂ � n̂, and
�n̂ ¼ x̂þ � ŷþ ¼ x̂� � ŷ� is the direction of propaga-
tion of the wave. The polarization matrices are then
given by

H ¼ x̂ � ŷþ ŷ � x̂; (A7)

where we henceforth take FðtÞ, H, x̂, and ŷ to mean either
FþðtÞ, Hþ, x̂þ, and ŷþ or F�ðtÞ, H�, x̂�, and ŷ�, as
appropriate.
Combining Eqs. (A1), (A3), and (A7), we find that the

antenna-pattern functions F can be written as

FðtÞ
sin	

¼ ½âðtÞ � x̂�½b̂ðtÞ � ŷ� þ ½âðtÞ � ŷ�½b̂ðtÞ � x̂�: (A8)
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Note that when âðtÞ, b̂ðtÞ and x̂, ŷ are parallel to each other
[e.g. when âðtÞ is parallel to x̂, implying b̂ðtÞ is parallel
to ŷ], FðtÞ achieves its maximal values of � sin	 .

The averages of FðtÞ2 over isotropic source sky position
ð�; �Þ and orientation c , and over isotropic detector loca-
tion ð�s; 
Þ and orientation �, are given by

hF2i�;sin�;c ¼
Z 2


0
d�

Z 1

�1
dðsin�Þ

Z 2


0
dc

F2

8
2
; (A9)

hF2i�s;sin
;� ¼
Z 2


0
d�s

Z 1

�1
dðsin
Þ

Z 2


0
d�

F2

8
2
; (A10)

where �s ¼ �sðt� t0Þ is the local sidereal time at the
detector. Note that these two equations can be transformed
into each other if one makes the exchanges � $ �s,
� $ 
, and c $ �. Note too that, since hF2i�;sin�;c aver-

ages over all possible orientations of x̂ and ŷ, it must be

invariant to the orientation of âðtÞ and b̂ðtÞ; for the same
reason, hF2i�s;sin
;� must be invariant to the orientation of x̂

and ŷ. Finally, note that FðtÞ is invariant if one exchanges
âðtÞ and b̂ðtÞ for x̂ and ŷ, and vice versa. We conclude that
the averages hF2i�;sin�;c and hF2i�s;sin
;� must be equal. To

calculate e.g. hF2i�;sin�;c , we choose âðtÞ ¼ ð1; 0; 0Þ,
b̂ðtÞ ¼ ð0; 1; 0Þ for convenience, and substituting n̂ ¼
ðcos� cos�; sin� cos�; sin�Þ into Eqs. (A6) obtain

hF2i�;sin�;c ¼ hF2i�s;sin
;� ¼ 1
5sin

2	: (A11)

To compute the average of FðtÞ2 over time, hF2it, we
write âðtÞ ¼ P

3
i¼1 ciðtÞâi, where c1ðtÞ ¼ cos�sðt� t0Þ,

c2ðtÞ ¼ sin�sðt� t0Þ, c3ðtÞ ¼ 1, and t0 is chosen to be
the midpoint of the observation time, at which â0 is calcu-

lated; similarly for b̂ðtÞ. We can now write

hF2it ¼ sin2	
X3
i;j¼1

1

T

Z T=2

�T=2
dt½ciðtÞcjðtÞBij�2; (A12)

where we define

Bij ¼ ðâi � x̂Þðb̂j � ŷÞ þ ðâi � ŷÞðb̂j � x̂Þ: (A13)

To write down the result of the integration in Eq. (A12), we
first define

J�i ¼ Bi0i0 � Bi00i00 ; (A14a)

K�i ¼ Bi0i00 � Bi00i0 ; (A14b)

S�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bi0i00Bi00i0 � Bi0i0Bi00i00

p
; (A14c)

where i ¼ 1, 2, 3, and the 0 denotes a permutation opera-
tion: 1 ¼ 30 ¼ 200, 2 ¼ 10 ¼ 300, and 3 ¼ 20 ¼ 100. We also
note the following identities:

J�1 ¼ �B11; J�2 ¼ B22; Jþ3 ¼ B33: (A15)

Employing Eqs. (A14) and (A15), we find that

hF2it ¼ sin2	
X4
n¼0

Cnsinc
n�sT

2
; (A16)

where

C0 ¼ 19J2þ3 þ K2
�3

8
þ K2

þ1 þ K2
þ2 þ S2�3

2
; (A17a)

C1 ¼ ð52Jþ3 � J�1ÞKþ2 þ 1
2Kþ1Kþ3; (A17b)

C2 ¼ 3
2J�3Jþ3 þ 1

2ðK2þ2 � K2þ1Þ; (A17c)

C3 ¼ 1
2ðJ�3Kþ2 � Kþ1Kþ3Þ; (A17d)

C4 ¼ 1
8ðJ2�3 � K2

þ3Þ: (A17e)

For T * 1 sidereal day, hF2it 	 C0, which may also be
written as

C0¼9a2kb
2
kx

2
ky

2
kþ8a2?b

2
?x

2
?y

2
?þ2ða2kb2?þa2?b

2
k�a2kb

2
kÞ

�ðx2ky2?þx2?y
2
k�x2ky

2
kÞ; (A18)

where

ak ¼ �s � â0; 2a2? ¼ 1� a2k; (A21)

xk ¼ �s � x̂; 2x2? ¼ 1� x2k; (A22)

and similarly for bk, b?, yk, and y?. Note that ak, bk, xk,
and yk (and consequentially a?, b?, x?, and y?) are

independent of the Earth’s angular displacement. We de-
duce that C0 cannot depend on parameters defined relative
to the Earth’s angular displacement, which are the detec-
tor’s local sidereal time �s, and the source’s right
ascension �.

APPENDIX B: LIMITED INVERSE OF THE
CENTRAL �2 DISTRIBUTION

The right-hand side of Eq. (3.4) is equal to the normal-
ized upper incomplete gamma function:

pðs > sfajs� �2½Ns�; 0�Þ ¼ �ðNs�=2; sfa=2Þ
�ðNs�=2Þ : (B1)

We use a limiting form of the asymptotic inverse of the
incomplete gamma function given in [55], which is suffi-
ciently accurate for small values of pfa=Nt. It gives the
following expression for sfa:

sfa ¼ Ns�
ð�Þ; (B2)

where

� ¼ �0 þ 2

Ns��0

ln

�
�0


ð�0Þ � 1

�
; (B3)

�0 ¼ 2ffiffiffiffiffiffiffiffiffi
Ns�

p erfc�1ð2pfa=NtÞ; (B4)
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ðxÞ ¼ �W�1

�
� exp

�
�1� x2

2

��
; x � 0; (B5)

and W�1 is the �1 branch of the Lambert W function (see
e.g [69]). For the purposes of this work, 
ðxÞ is well
approximated by the following two functions [see [70],
Eqs. (4.13.6) and (4.13.11)]:


1ðxÞ ¼ 1þ xþ x2

3
þ x3

36
� x4

270
(B6)

for x & 2
ffiffiffiffi



p
, and


2ðxÞ ¼ y þ ð1 þ y�1 þ y�2Þ lny; y ¼ 1 þ x2

2
;

(B7)

as x ! 1. A sufficiently accurate piecewise expression for

ðxÞ is

8><
>:

1ðxÞ; x < 2;

gðxÞ
1ðxÞ þ ½1� gðxÞ�
2ðxÞ; 2 � x � 4;


2ðxÞ; x > 4;

(B8)

where gðxÞ ¼ ½1� tanh 5ðx� 3Þ�=2. Equation (B2) is ac-
curate to & 0:3% for values of pfa=Nt � 0:01.
As Ns ! 1, �0 ! 0 and 
ð�0Þ ! 
1ð�0Þ 	 1þ x.

With this approximation, � 	 �0, sfa 	 Ns�ð1þ �0Þ,
and the normalized false alarm threshold [Eq. (3.5)] is

zfa 	
ffiffiffi
2

p
erfc�1ð2pfa=NtÞ. Thus, in the limit of large Ns,

zfa is independent of Ns.
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