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IMPROVED BREAKDOWN CRITERION FOR EINSTEIN

VACUUM EQUATIONS IN CMC GAUGE

QIAN WANG

1. Introduction

Let (M,g) be a (3+1)-dimensional vacuum globally hyperbolic space-time, i.e.
g is a Lorentz metric of signature (−,+,+,+) satisfying the Einstein vacuum equa-
tions

Ric(g) = 0

and every causal curve intersects a Cauchy surface at precisely one point. If (M,g)
has a compact, constant mean curvature (CMC) Cauchy surface Σ0 with mean
curvature t0 < 0, then there exists a foliation of a neighborhood of Σ0 by compact
CMC surfaces, and the mean curvature varies monotonically from slice to slice.
The CMC conjecture states that there is a foliation in M of CMC Cauchy surfaces
with mean curvatures taking on all allowable values, i.e. the mean curvatures take
all values in (−∞, 0) if Σ0 is of Yamabe type −1 or 0, while the mean curvatures
take on all values in (−∞,∞) if Σ0 is of Yamabe type +1. Certain progress has
been made ([3]), the CMC conjecture however remains open. One of the important
step to attack the CMC conjecture is to provide a reasonable breakdown criterion
to detect what may happen when the CMC foliation can not be extended.

In order to set up the framework, in this paper we assume that M∗ is a part
of the space-time (M,g) foliated by CMC hypersurfaces Σt with mean curvature
t satisfying t0 ≤ t < t∗ for some t0 < t∗ < 0. We shall refer to Σ0 := Σt0 as the
initial slice. Thus, M∗ =

⋃

t∈[t0,t∗)
Σt with t∗ < 0 and there is a time function t

defined on M∗, monotonically increasing toward the future, such that each Σt is a
level hypersurface of t with the lapse function n and the second fundamental form
k defined by

n := (−g(Dt,Dt))
1/2

and k(X,Y ) := −g(DXT, Y ),

where T denotes the future directed unit normal to Σt, D denotes the space-time
covariant differentiation associated with g, and X,Y are vector fields tangent to
Σt. Let g be the induced Riemannian metric on Σt and let ∇ be the corresponding
covariant differentiation. For any coordinate chart O ⊂ Σ0 with coordinates x =
(x1, x2, x3), let x0 = t, x1, x2, x3 be the transported coordinates on [t0, t∗) × O
obtained by following the integral curves of T. Under these coordinates the metric
g takes the form

(1.1) g = −n2dt2 + gijdx
idxj .
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Moreover, relative to these coordinates t, x1, x2, x3 there hold the evolution equa-
tions

∂tgij = −2nkij ,(1.2)

∂tkij = −∇i∇jn+ n(Rij +Trk kij − 2kiak
a
j )(1.3)

and the constraint equations

R− |k|2 + (Trk)2 = 0,(1.4)

∇jkji −∇iTrk = 0(1.5)

on each Σt, where Rij and R denote the Ricci curvature and the scalar curvature
of the induced metric g on Σt, and Trk denotes the trace of k, i.e. Trk = gijkij .
Since Trk = t on Σt, it follows from the above equations that

(1.6) divk = 0

and

(1.7) −∆n+ |k|2n = 1

on each Σt.
The first important breakdown criterion was given by M. Anderson in [2], who

showed that when a breakdown occurs at t∗ there holds

lim sup
t→t−∗

‖R‖L∞(Σt) = ∞,

where R denotes the Riemannian curvature tensor of the space-time (M,g). Here
the pointwise norm |R| is defined with respect to the Riemannian metric gT on M,
where gT is defined as follows: for any X,Y ∈ TM∗ write

X = X0T+X and Y = Y 0T+ Y

with X,Y ∈ TΣt, then

gT(X,Y ) = X0Y 0 + g(X,Y ).

The result of Anderson implies that if

(1.8) sup
t∈[t0,t∗)

‖R‖L∞(Σt) = Λ0 <∞

for all t∗ < 0, then the CMC foliation exists for all values in [t0, 0).
Recently, Klainerman and Rodnianski [12] provided a new breakdown criterion

which shows that if a breakdown happens at t∗ < 0 then

lim sup
t→t−∗

(

‖k‖L∞(Σt) + ‖∇ logn‖L∞(Σt)

)

= ∞,

or, in other words, the CMC foliation can be extended beyond any value t∗ < 0 for
which

(1.9) sup
t∈[t0,t∗)

(

‖k‖L∞(Σt) + ‖∇ logn‖L∞(Σt)

)

= Λ0 <∞.

In contrast to the breakdown criterion of Anderson, the condition (1.9) of Klainer-
man and Rodnianski is formally weaker as it refers only to the second fundamental
form k and the lapse function n which requires one degree less of differentiability.
Moreover, by purely elliptic estimates, one can see that (1.8) implies immediately
(1.9), since the boundedness of ‖R‖L∞ exhausts all the dynamical degrees of free-
dom of the equations. Therefore, the result in [12] is a significant improvement.
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We remark that the result of Klainerman and Rodnianski can not be established
by purely elliptic estimates. Instead, the proof relies heavily on the tools from
the theory of hyperbolic equations. The analogous result has been extended to
non-vacuum space-time in [15].

If we consider the Einstein equation expressed relative to the wave coordinates,
by energy estimates one can see that the breakdown does not occur unless

(1.10)

∫ t∗

t0

‖∂g‖L∞dt = ∞.

This condition however is not geometric since it depends on the choice of a full
coordinate system. Observe that the components of the second fundamental form
k and ∇n can be viewed as part of the components of ∂g. It is natural to ask if we
have an integral form of breakdown criterion involving k and n only. The first main
result of the present paper confirms this and provides a geometric counterpart of
(1.10), which can be viewed as an improved version of the breakdown criterion of
Klainerman and Rodnianski.

Theorem 1.1 (Main theorem I). 1 Let (M∗, g) be a globally hyperbolic development
of Σ0 foliated by the CMC level hypersurfaces of a time function t < 0. Then the
space-time together with the foliation Σt can be extended beyond any value t∗ < 0
for which,

(1.11)

∫ t∗

t0

(

‖k‖L∞(Σt) + ‖∇ logn‖L∞(Σt)

)

dt = K0 <∞.

Let us fix the convention for the deformation tensor of T, expressed relative to
an orthonormal frame {e0 = T, e1, e2, e3}, as follows,

παβ = −g(DeαT, eβ), with α, β = 0, 1, 2, 3.

It is easy to check

π00 = 0, π0i = −∇i logn, πi0 = 0, πij = kij , with i, j = 1, 2, 3.

Consequently, the condition (1.9) can be formulated as

sup
t∈[t0,t∗)

‖π‖L∞(Σt) = Λ0 <∞,

while the weaker condition (1.11) can be formulated as

(A1) ‖π‖L1
tL

∞

x (M∗) :=

∫ t∗

t0

‖π‖L∞(Σt)dt = K0 <∞.

We basically follow the framework in [12] to prove Theorem 1.1; however, a
sequence of difficulties occur due to the weaker condition (1.11). In order to continue
the foliation, according to the local existence theorem given in [5, Theorem 10.2.1],
one must establish a global uniform bound for the curvature tensor R and L2-
bounds for its first two covariant derivatives. Since (M,g) is a vacuum space-time,
by virtue of the Bianchi identity R verifies a wave equation of the form

(1.12) ✷gR = R ⋆R,

where ✷ denotes the covariant wave operator ✷ = DαDα. Based on higher energy
estimates it is standard to show that the L2 bounds for DR and D2R can be

1 Our method applies equally well to the case that Σt are asymptotically flat and maximal, i.e
Trk = 0 and can also be extended to Einstein space-time with matter.
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bounded in terms of the L∞ norm of R. Thus, the derivation of the L∞ bound of
R is a crucial step. In order to achieve this goal, Klainerman and Rodnianski [10]
succeeded in representing R(p), for each p ∈ M∗, by a Kirchoff-Sobolev formula of
the form

R(p) = −

∫

N−(p,τ)

A · (R ⋆R) + other terms

where A is a 4-covariant tensor defined as a solution of a transport equation along
N−(p, τ) with appropriate initial data at the vertex p, N−(p, τ) denotes the portion
of the null boundary N−(p) in the time interval [t(p)− τ, t(p)]. The past null cone
N−(p) is in general an achronal Lipschitz hypersurface ruled by the set of past
null geodesics from p. In order to derive all necessary estimates, one must show
that N−(p) remains a smooth hypersurface in the time slab [t(p)− τ, t(p)) for some
universal constant τ > 0. Therefore, it is necessary to provide a uniform lower
bound for the past null radius of injectivity at all p ∈ M∗.

Let us recall briefly the definition of the past null radius of injectivity at p, one
may consult [11] for more details. We parametrize the set of past null vectors in
TpM in terms of ω ∈ S

2, the standard sphere in R
3. Then, for each ω ∈ S

2, let
lω be the null vector in TpM normalized with respect to the future, unit, time-like
vector Tp by

g(lω,Tp) = 1

and let Γω(s) be the past null geodesic with initial data Γω(0) = p and d
dsΓω(0) = lω.

We define the null vector field L on N−(p) by

L(Γω(s)) =
d

ds
Γω(s)

which may only be smooth almost everywhere on N−(p) and can be multi-valued
on a set of exceptional points. We can choose the parameter s with s(p) = 0 so
that

DLL = 0 and L(s) = 1.

This s is called the affine parameter.
The past null radius of injectivity i∗(p) at p is then defined to be the supremum

over all the values s0 > 0 for which the exponential map

gp : (s, ω) → Γω(s)

is a global diffeomorphism from (0, s0)×S
2 to its image in N−(p). It is known that

i∗(p) > 0 for each p, N−(p) is smooth within the null radius of injectivity, and

i∗(p) = min{s∗(p), l∗(p)},

where s∗(p), the past null radius of conjugacy at p, is defined to be the supremum
over all values s0 > 0 such that the exponential map gp is a local diffeomorphism
from (0, s0) × S

2 to its image in N−(p), and l∗(p), the past cut locus radius at
p, is defined to be the smallest value of s0 for which there exist two distinct null
geodesics Γ1 and Γ2 from p with Γ1(s0) = Γ2(s0). Thus, for a past null geodesic
Γω from p, a point q = Γω(s∗) is called a conjugate point of p if gp is singular at
(s∗, ω), while it is called a null cut point of p if gp is nonsingular at (s∗, ω) and
through q there exists another null geodesic emanating from p.

Since we are working on the CMC foliation, it is convenient to introduce the past
null radius of injectivity i∗(p, t) at each p with respect to the global time function
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t. We define i∗(p, t) to be the supremum over all the values τ > 0 for which the
exponential map

(1.13) Gp : (t, ω) → Γω(s(t))

is a global diffeomorphism from (t(p) − τ, t(p)) × S
2 to its image in N−(p). We

remark that s is a function not only depending on t but also on ω, we suppress ω
just for convenience. It is known that

i∗(p, t) = min{s∗(p, t), l∗(p, t)},

where s∗(p, t) is defined to be the supremum over all values τ > 0 such that the
map Gp is a local diffeomorphism from (t(p)− τ, t(p))× S

2 to its image, and l∗(p, t)
is defined to be the smallest value of τ > 0 for which there exist two distinct null
geodesics Γ1(s(t)) and Γ2(s(t)) from p which intersect at a point with t = t(p)− τ.

In [11] Klainerman and Rodnianski provided a uniform lower bound on the null
radius of injectivity under the assumption (1.9). In order to complete the proof
of Theorem 1.1, one must provide a uniform lower bound on the null radius of
injectivity under the weaker condition (1.11). This is contained in the second main
result of the present paper.

Theorem 1.2 (Main theorem II). Assume that M∗ is a globally hyperbolic devel-
opment of Σ0 verifying the condition (1.11). Then for all p ∈ M∗ there holds

(1.14) i∗(p, t) > min{δ∗, t(p)− t0},

where δ∗ > 0 is a constant depending only on Q0, K0, |Σ0| and t∗.
2

In order to prove this result, it is useful to review the essential steps in the work
of Klainerman and Rodnianski in [11]. The first step is to show that

(1.15) s∗(p, t) > min{l∗(p, t), δ∗}

for some universal constant3 δ∗ > 0. This can be achieved by showing that

(1.16) sup
N−(p,τ)

∣

∣

∣

∣

trχ−
2

s(t)

∣

∣

∣

∣

≤ C

with τ := min{l∗(p, t), δ∗}, where χ is the null second fundamental form χAB =
g(DAL, eB) of the 2-dimensional space-like surface St := N−(p)∩Σt with (eA)A=1,2

being a frame field tangent to St. The analog has been carried out in [7, 8, 9, 13]
for geodesic foliations under the boundedness assumption of the curvature flux. In
order to adapt those arguments to prove (1.16) for the time foliations, one needs to
show that t(p)− t and s are comparable and the geodesic curvature flux (see [11])
is bounded, both of which rely on the relation

(1.17) |a− 1| ≤
1

2
on N−(p, τ),

where a, the null lapse function, is defined by a−1 := g(T, L) with a(p) = 1. Note
that along a null geodesic

dt

ds
= −(an)−1,

da

ds
= ν, ν := kNN −∇N logn,

2Q0 denotes the Bel-Robinson energy on the initial slice Σ0 which will be defined in Section 2.
3A universal constant always means a constant depending only on Q0, K0, |Σ0|, t∗ and the

number I0 > 0 such that I−1

0
≤ (gij) ≤ I0 on the initial slice Σ0. Throughout this paper C always

denotes a universal constant.
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where N is the unit inward normal of St in Σt. If (1.9) is satisfied, one can see that
(1.17) holds for t(p) − δ∗ ≤ t ≤ t(p) for some universal δ∗ > 0, and consequently
s and t(p) − t are comparable. However, under the weaker condition (1.11) only,
it is highly nontrivial to obtain (1.17). We observe that (1.17) can be achieved by
establishing

(1.18) ‖ν‖2L∞

ω L2
t (N

−(p,τ)) = sup
ω∈S2

∫

Γω

an|ν|2dt ≤ C

where Γω is the portion of a past null geodesic initiating from p contained in
N−(p, τ), for some universal constant δ∗ > 0. How to obtain such an estimate
on ν is the first difficulty we encounter. The idea to derive the trace estimate
(1.18) is to employ the techniques in the proof of the sharp trace inequality in
[7, 8, 9]. Under the assumption (1.11) only, suppose the sharp trace inequality
holds true on null cone in time foliation, in order to prove (1.18), schematically, we
need to prove

i) there holds for /∇ν the decomposition

(1.19) /∇ν = ∇LP +Q

with P and Q appropriate St tangent tensors.
4

ii) there holds

(1.20) ‖ /∇(ν, P )‖L2(N−(p,τ)) + ‖∇L(ν, P )‖L2(N−(p,τ)) ≤ C.

The decomposition of the form (1.19) will be derived in [14]. To prove the sharp
trace inequality in time foliation and to control P and Q must be coupled with
the proof of a series of estimates for the Ricci coefficients on null hypersurface
N−(p, τ) including (1.16) by a delicate bootstrap argument. Hence, under the
condition (1.11) only, (1.16), (1.17) and (1.18) should be proved simultaneously.
The proof is rather involved and close to the spirit of the works [7, 8, 9, 13]. We
will present it in [14] with full details.

Now we simply consider how to obtain the estimate for ν in (1.20). The estimate
for ∇N logn of the form (1.20) can be obtained by elliptic estimates and trace
inequality. By elliptic estimate, in view of

(1.21) div k = 0, curl k = H,

where H denotes the magnetic part of R, we can only derive ‖k‖H1
x(Σ) ≤ C, which,

by classic trace theorem, loses 1/2 derivative if restricted to null cone. However,
(1.20) requires the L2 control of one derivative of kNN on null cones. Hence, we
must adopt a different approach, which significantly surpasses the one via elliptic
estimate and trace inequality. This inspires us to use the tensorial wave equation
for k, which symbolically is given by

(1.22) ✷k = k · Ric+ n−2∇2ṅ+ π · ∇k − n−3ṅ∇2n+ π · π · π + k · ∇2n− n−1k.

We then prove by energy method, the k-flux satisfies

(1.23) ‖ /∇k‖L2(N−(p,τ)) + ‖∇Lk‖L2(N−(p,τ)) ≤ C,

which schematically gives the desired control on kNN .
The next step is to find a system of good local space-time coordinates under

which g is comparable with the Minkowski metric. More precisely, for a sufficiently
small constant ǫ > 0, one needs to show that there exists a constant δ∗ > 0,

4 /∇ denotes the connection with respect to the induced metric γ on St.
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depending only on ǫ and some universal constants, for which each geodesic ball
Bδ∗(p) with p ∈ Σt admits local coordinates x = (x1, x2, x3) such that under
the corresponding transport coordinates x0 = t, x1, x2, x3 the metric g has the
expression (1.1) with

(1.24) |n− n(p)| ≤ ǫ and |gij − δij | ≤ ǫ

on Bδ∗(p)× [t(p) − δ∗, t(p)]. The existence of such local coordinates together with
(1.16) will enable us to show thatN−(p, δ∗) is close to the flat cone and consequently
l∗(p, t) ≥ δ∗.

The part on n in (1.24) can be established by elliptic estimates on n and ∂tn. The
derivation of the result for g under the weaker condition (1.11), however, presents
one of the core difficulties, which invokes new methods and a second application of
(1.22).

By the Bel-Robinson energy bound Q(t) ≤ C and a result of Anderson [1],
one can control the lower bound of harmonic radius on Σt, such that with the
coordinates x = (x1, x2, x3) on Bδ∗(p) ⊂ Σt,

|gij(x, t(p))− δij | ≤
1

2
ǫ.

The challenge is to control time evolution of g. Using (1.2), one has 5

(1.25) |gij(x, t(p)) − gij(x, t)| .

∫ t(p)

t

|k(x, t′)|dt′.

If (1.9) holds, or more generally, if
∫ t∗

t0

‖k(t′)‖qL∞(Σt′ )
dt′ ≤ Λ0 <∞

for some q > 1, then with δ∗ sufficiently small

(1.26) |gij(x, t(p)) − gij(x, t)| ≤ Λ
1/q
0 (t(p)− t)1−1/q <

1

2
ǫ.

The above argument fails if k verifies (1.11) only. Under the assumption (1.11),
our strategy is to prove directly the integral on the right of (1.25) can be small, i.e.

∫ t(p)

t

|k(x, t′)|dt′ <
1

2
ǫ, ∀x ∈ Σ

by establishing

(1.27) sup
x∈Σ

∫ t(p)

t

|k(x, t′)|2dt′ ≤ C,

since

|gij(x, t(p)) − gij(x, t)| .

(

∫ t(p)

t

|k(x, t′)|2dt′

)1/2

(t(p)− t)1/2 . (t(p) − t)1/2

which implies |gij(x, t(p)) − gij(x, t)| <
1
2 ǫ as long as δ∗ is appropriately chosen.

5We use Φ1 . Φ2 to mean that Φ1 ≤ CΦ2 for some universal constant C.
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The major part of the present paper is therefore to establish (1.27) under the
weaker condition (1.11). To this end, we will use the Kirchoff parametrix to repre-
sent k as

−4πn(p)k(p) · J =

∫

N−(p,τ)

✷k ·A+ other terms,

for any δ < i∗(p, t), where J is any 2-covariant tensor at p tangent to Σt(p) and A
is the Σ-tangent tensor defined by

DLAij +
1

2
trχAij = 0 on N−(p, τ), lim

t→t(p)
(t(p)− t)Aij = J.

It can be shown that ‖rA‖L∞(N−(p,τ)) . 1 together with other estimates on A,

where r =
√

(4π)−1|St| and |St| denotes the area of St. Thus

n(p)|k(p)| .

∫

N−(p,τ)

r−1|✷k|+ other terms.

Next we let p move along an integral curve Φ(t) of T to get the representations of
k at all points on this curve. Then we can reduce the proof of (1.27) to showing
that

∫ t(p)

t(p)−τ

∣

∣

∣

∣

∣

∫

N−(Γ(t),t−t(p)+τ)

r−1|✷k|+ · · ·

∣

∣

∣

∣

∣

2

dt . 1.

In view of (1.22), we have to employ various estimates of k and n on the null cones,
which will be established by delicate analysis.

This paper is organized as follows. In Section 2, we collect some preliminary
results related to the CMC foliation, which will be used frequently in the later
sections. In Section 3, we establish various elliptic estimates on the lapse function
n, in particular, we show that n can be bounded from below and above by positive
universal constants. In Section 4, we provide the sketch of the proof of Theorem
1.2. We will explain how to use the bootstrap argument to establish (1.16) and
other related estimates on the null cones. We then show how to use the estimate
(1.27) to obtain a system of good local space-time coordinates which is crucial for
completing the proof of Theorem 1.2. In order to establish (1.27), we derive a ten-
sorial wave equation for k in Section 5 and provide the estimate for the so called
k-flux in Section 6 which will be defined later. In Section 7 we provide some trace
estimates on the surfaces St. We then use these results in Section 8 to establish
various estimates for k, n and χ on the null cones. In section 9 we adapt the
Kirchoff-Sobolev formula in [10] to represent the second fundamental form k along
the null cones, through which we give the proof of (1.16) under the condition (1.11)
and thus complete the proof of Theorem 1.2. Finally in Section 9 we complete the
proof of Theorem 1.1.

Acknowledgement. The author would like to thank Professors Sergiu Klainer-
man, Michael Anderson and Richard Schoen for their constant encouragement and
support. The author would like to thank Qinian Jin and Arick Shao for interesting
discussions. The author in particular would like to thank Qinian Jin for improving
the exposition.
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2. Preliminaries

For the lapse function n, by using the elliptic equation −∆n + |k|2n = 1, it
follows easily from the maximum principle that

(2.1)
1

‖k‖L∞(Σt)
≤ n ≤

3

t2
on Σt.

Thus, if we knew that ‖k‖L∞(Σt) is uniformly bounded with respect to t ∈ [t0, t∗),
then we could get a positive uniform lower bound on n. Unfortunately, we only
have the weaker assumption (A1) on k, which does not allow (2.1) to give a positive
uniform lower bound on n directly. In the next section, we will show under the
assumption (A1) that C−1 ≤ n ≤ C on MI for some universal constant C > 0.

For each slice Σt, we use |Σt| to denote its volume. Then, by using ∂tgij = −2nkij
and Trk = t on Σt we have

d

dt

(

|t|3|Σt|
)

=

∫

Σt

t2
(

t2n− 3
)

dµg ≤ 0.

This implies that |t|3|Σt| is decreasing with respect to t. Consequently

(2.2) |Σt| ≤
|t0|3

|t|3
|Σt0 | ≤

|t0|3

|t∗|3
|Σt0 |, ∀t0 ≤ t ≤ t∗.

2.1. Bel-Robinson Energy. We start with a brief review of Bel-Robinson energy,
one may consult [5] for more details. Associated to the Weyl tensor R, the Bel-
Robinson tensor is the full symmetric, traceless tensor defined by

(2.3) Q[R]αβγδ = RαλγµRβ
λ
δ
µ + ⋆Rαλγµ

⋆Rβ
λ
δ
µ.

Then Q[R](X,Y,X, Y ) ≥ 0 whenever X,Y are timelike vectors, with equality only

if R = 0. Let Pα = Q[R]αβγδT
βTγTδ. Since Rαβ = 0, a straightforward calcula-

tion shows that

(2.4) DαPα = −3παβQ[R]αβγδT
γTδ.

If we introduce the Bel-Robinson energy Q(t) by

Q(t) :=

∫

Σt

Q[R](T,T,T,T)dµΣt ,

then, by integrating (2.4) in a slab MJ = ∪t∈JΣt with J = [t0, t] ⊂ [t0, t∗), we
obtain

Q(t) = Q(t0)− 3

∫ t

t0

∫

Σt′

nQ[R]αβ00π
αβdµΣt′

dt′.

Let E and H denote the electric and magnetic parts of the curvature tensor R
defined by

(2.5) E(X,Y ) = g(R(X,T)T, Y ), H(X,Y ) = g(⋆R(X,T)T, Y )

with ⋆R the Hodge dual ofR. It is well known that E andH are traceless symmetric
2-tensors tangent to Σt with

|R|2 = |E|2 + |H |2,

|Q| ≤ 4(|E|2 + |H |2)

and

Q(T,T,T,T) = |E|2 + |H |2.
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Therefore

Q(t) ≤ Q(t0) + 12

∫ t

t0

‖nπ‖L∞(Σt′ )
Q(t′)dt′.

By the Gronwall inequality it follows that

Q(t) ≤ Q(t0) exp

(

12

∫ t

t0

‖nπ‖L∞(Σt′ )
dt′
)

for all t ∈ [t0, t∗). Therefore, in view of the condition (A1) we obtain the uniform
boundedness of the Bel-Robinson energy.

Lemma 2.1. Under the condition (A1), there exists a constant C depending only
on K0 and t∗ such that

Q(t) ≤ CQ2
0

for all t ∈ [t0, t∗), where Q
2
0 := Q(t0).

Consequently we have

Lemma 2.2. Let the condition (A1) hold. Then on any CMC leaf Σt ⊂ M∗ there
holds

(2.6)

∫

Σt

(

|∇k|2 +
1

4
|k|4
)

+

∫

Σt

|Ric|2 . Q2
0.

Proof. The inequality on k follows from [12, Proposition 8.4] and Lemma 2.1. The
inequality on Ric then follows from the identity Rij − kiak

aj +Trk kij = Eij . �

2.2. Harmonic coordinates. For any coordinate chart O ⊂ Σ0 with local coor-
dinates x = (x1, x2, x3), we denote by x0 = t, x1, x2, x3 the transported coordinates
on I ×O obtained by transporting along the integral curves of T. The following is
an immediate consequence of (A1) and (1.2).

Proposition 1. Let the assumption (A1) hold. There exists a positive constant
C0 depending only on K0 such that, relative to the induced transported coordinates
x0 = t, x1, x2, x3 in I ×O we have

(2.7) C−1
0 |ξ|2 ≤ gij(t, x)ξ

iξj ≤ C0|ξ|
2.

Proof. This is [12, Proposition 2.4] which was stated under the stronger condition
(1.9), the proof however requires only the weaker assumption (A1). �

This proposition enables us to derive a uniform lower bound on the volume radius
for all the slices Σt. Here, for a 3-dimensional Riemannian manifold (M, g), the
volume radius rvol(p, ρ) at a point p ∈M and scales ≤ ρ is defined by

rvol(p, ρ) = inf
r≤ρ

|Br(p)|

r3

with |Br(p)| the volume of Br(p) relative to metric g. The volume radius rvol(M,ρ)
ofM on scales ≤ ρ is the infimum of rvol(p, ρ) over all p ∈M . Using Proposition 1,
it has been show in [11, Proposition 4.4] that the volume radius rvol(Σt, 1) of each
Σt on scales ≤ 1 verifies

rvol(Σt, 1) ≥ v0

for some constant v0 > 0 depending only on K0.
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From the previous subsection we have already obtained, under (A1), that

‖Ric‖L2(Σt) ≤ C and |Σt| ≤
|t0|3

|t∗|3
|Σt0 |.

Therefore, Theorem 3.5 in [1] applies and provides the following results on the
existence of harmonic coordinates.

Proposition 2. Let the assumption (A1) hold. For any ǫ > 0, there exists r0 > 0
depending on ǫ, Q0, K0, |Σ0| and t∗ such that every geodesic ball Br(p) ⊂ Σt with
r ≤ r0 admits a system of harmonic coordinates x = (x1, x2, x3) under which

(1 + ǫ)−1δij ≤ gij ≤ (1 + ǫ)δij(2.8)

r

∫

Br(p)

|∂2gij |
2dµg ≤ ǫ.(2.9)

We will not use the full strength of this result. The crucial part in our applica-
tions is the existence of a local coordinates x = (x1, x2, x3) on each Br0(p) ⊂ Σt

satisfying (2.8) with r0 > 0 depending only on ǫ, Q0, K0, |Σ0| and t∗.

2.3. Sobolev-type inequalities. We will give several Sobolev type inequalities
under the assumption (A1). These inequalities are useful in establishing various
estimates.

Lemma 2.3. Let the assumption (A1) hold on M∗. Then for any smooth tensor
field F on Σt ⊂ M∗ and any 2 ≤ p ≤ 6 there holds

(2.10) ‖F‖Lp(Σt) ≤ C
(

‖∇F‖
3/2−3/p
L2(Σt)

‖F‖
3/p−1/2
L2(Σt)

+ ‖F‖L2(Σt)

)

,

where C is a constant depending only on K0 and p.

Proof. This is [12, Corollary 2.7]. �

The following calculus inequality is useful in deriving L∞ bounds of certain
quantities.

Lemma 2.4. Let the assumption (A1) hold on M∗. Then for any smooth tensor
field F on Σt ⊂ M∗ and 3 < p ≤ 6 there holds

‖F‖L∞(Σt) ≤ C
(

‖∇2F‖
3/2−3/p
L2(Σt)

‖∇F‖
3/p−1/2
L2(Σt)

+ ‖∇F‖L2(Σt) + ‖F‖L2(Σt)

)

,

where C is a constant depending only on K0 and p.

Proof. By using a partition of unity, the Sobolev embedding W 1,p(R3) →֒ L∞(R3)
with p > 3, and (2.7) in Proposition 1, it is easy to derive for any scalar function f
on Σt that

‖f‖L∞(Σt) ≤ C
(

‖∇f‖Lp(Σt) + ‖f‖Lp(Σt)

)

.

Now we take f = |F |2 in the above inequality. It yields

‖F‖2L∞(Σt)
≤ C

(

‖∇|F |2‖Lp(Σt) + ‖|F |2‖Lp(Σt)

)

≤ C
(

‖∇F‖Lp(Σt) + ‖F‖Lp(Σt)

)

‖F‖L∞(Σt).

This implies for p > 3 that

‖F‖L∞(Σt) ≤ C
(

‖∇F‖Lp(Σt) + ‖F‖Lp(Σt)

)

.

The desired inequality follows by applying Lemma 2.3 to the term ‖∇F‖Lp(Σt). �
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3. Elliptic estimates for the lapse function n

In this section, we establish a series of elliptic estimates on the lapse function n
together with n−1 and ṅ := ∂tn under the assumption (A1). These results will be
repeatedly used in later sections. Throughout this paper we will use C to denote a
universal constant.

3.1. Estimates on n.

Proposition 3. Let the assumption (A1) hold. Then on every Σt ⊂ M∗ there
holds

‖∇2n‖L2(Σt) + ‖∇n‖L2(Σt) ≤ C.

Proof. We multiply the equation −∆n + |k|2n = 1 by n and integrate over Σt to
obtain

∫

Σt

(

|∇n|2 + |k|2n2
)

=

∫

Σt

n.

Since 0 < n ≤ 3/t2 ≤ 3/t2∗ and |Σt| ≤ |Σt0 ||t0|
3/|t∗|3, this immediately gives the

desired bound on ‖∇n‖L2(Σt).

In order to obtain the bound on ‖∇2n‖L2(Σt), we use the Böchner identity
∫

Σt

|∇2n|2 =

∫

Σt

(

|∆n|2 −Rij∇
in∇jn

)

,

the equation ∆n = |k|2n− 1, Lemma 2.2 and the Hölder inequality to infer that

‖∇2n‖L2 . ‖k‖2L4 + |Σt|
1
2 + ‖Ric‖

1
2

L2‖∇n‖L4 . 1 + ‖∇n‖L4.

With the help of Lemma 2.2, we have

‖∇2n‖L2 . 1 + ‖∇2n‖
3/4
L2 ‖∇n‖

1/4
L2 + ‖∇n‖L2.

Therefore

‖∇2n‖L2 . 1 + ‖∇n‖L2 . 1

and the proof is complete. �

Proposition 4. Let the assumption (A1) hold. Then there hold

‖∇3n‖L1
tL

2
x(M∗) ≤ C(3.1)

‖∇n‖Lb
tL

∞

x (M∗) ≤ C(3.2)

where 1 ≤ b < 2.

We will give the proof with the help of the following lemma.

Lemma 3.1. Let the assumption (A1) hold. Then for any 1-form F on Σt ⊂ M∗

we have

(3.3) ‖∇2F‖L2(Σt) ≤ C
(

‖∆F‖L2(Σt) + ‖∇F‖L2(Σt) + ‖F‖L2(Σt)

)

.

Proof. It is well known that for any 1-form F on Σt there holds the Böchner identity
∫

Σt

|∆F |2 =

∫

Σt

|∇2F |2 −
1

2

∫

Σt

RdiacRmiacFdFm

+

∫

Σt

Rad∇dFi∇aFi −

∫

Σt

Ridac∇cFd∇aFi.(3.4)
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Since Σt is 3-dimensional, the Riemannian curvature tensor is completely deter-
mined by its Ricci curvature, i.e.

Ridac = giaRdc + gdcRia −Ricgda −Rdagic −
1

2
(giagdc − gicgda)R.

Thus, we may use (3.4), the Hölder inequality, Lemma 2.2, Lemma 2.3 and Lemma
2.4 to obtain the estimate

‖∇2F‖L2 . ‖∆F‖L2 + ‖Ric‖
1/2
L2 ‖∇F‖L4 + ‖F‖L∞‖Ric‖L2

. ‖∆F‖L2 +
(

‖∇2F‖
3/4
L2 ‖∇F‖

1/4
L2 + ‖∇F‖L2

)

.

With the help of Young’s inequality, the inequality (3.3) follows immediately. �

Proposition 5. Let the assumption (A1) hold. Then on every Σt ⊂ M∗ there
hold

‖∇3n‖L2(Σt) ≤ C
(

‖∇n‖H1(Σt) + ‖k‖L∞(Σt)

)

,(3.5)

‖∇n‖L∞(Σt) ≤ C
(

‖∇n‖H1(Σt) + ‖k‖
3/2−3/p
L∞(Σt)

‖∇2n‖
3/p−1/2
L2(Σt)

)

,(3.6)

where 3 < p ≤ 6.

Proof. A simple application of Lemma 3.1 to F = ∇n gives

(3.7) ‖∇3n‖L2 . ‖∆∇n‖L2 + ‖∇2n‖L2 + ‖∇n‖L2.

Recall the commutation formula ∆∇in = ∇i∆n+Rij∇jn and the equation −∆n+
|k|2n = 1, we can estimate

‖∆∇n‖L2 . ‖k‖2L6‖∇n‖L6 + ‖k‖L∞‖∇k‖L2 + ‖Ric‖L2‖∇n‖L∞.

Plugging this into (3.7), using Lemma 2.2 and Lemma 2.3 gives

‖∇3n‖L2 . ‖∇n‖L∞ + ‖∇n‖H1 + ‖k‖L∞.

Using Lemma 2.4 for the term ‖∇n‖L∞ with p = 4, we then obtain

‖∇3n‖L2 . ‖∇3n‖
3/4
L2 ‖∇2n‖

1/4
L2 + ‖∇n‖H1 + ‖k‖L∞.

This clearly implies (3.5). The inequality (3.6) is an immediate consequence of (3.5)
and Lemma 2.4. �

Proposition 4 follows by integrating (3.5) and (3.6) in time with the help of (A1)
and Proposition 3.

3.2. Estimates on n−1.

Proposition 6. Let the assumption (A1) hold. Then on each Σt ⊂ M∗ there hold

‖∇2(n−1)‖L2(Σt) + ‖n−1‖L∞(Σt) ≤ C.

Proof. We first have from the Bochner identity that
∫

Σ

|∇2(n−1)|2 =

∫

Σ

|∆(n−1)|2 −

∫

Σ

Rij∇i(n
−1)∇j(n

−1)

≤ ‖∆(n−1)‖2L2 + ‖Ric‖L2‖∇(n−1)‖2L4 .(3.8)

Since −∆n+ |k|2n = 1, we have

(3.9) ∆(n−1) = 2n−3|∇n|2 + n−2 − |k|2n−1.
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Consequently, it follows from the Hölder inequality that

‖∆(n−1)‖L2 . ‖n−1∇n‖L4‖∇(n−1)‖L4 + ‖k‖2L6‖n−1‖L6 + ‖n−1‖2L4.

Combining this inequality with (3.8) and using the Sobolev embedding H1(Σ) →֒
Lp(Σ) with 2 ≤ p ≤ 6, which is a consequence of Lemma 2.3, we obtain

‖∇2(n−1)‖L2 . ‖n−1∇n‖L4‖∇(n−1)‖L4 +
(

‖n−1‖H1 + ‖k‖2L6

)

‖n−1‖H1

+ ‖Ric‖
1
2

L2‖∇(n−1)‖L4(3.10)

We need to estimate ‖n−1∇n‖L4. To this end, we multiply the equation −∆n+
|k|2n = 1 by n−l for some positive integer l and then integrate by parts over Σt to
obtain

(3.11)

∫

Σt

(

ln−l−1|∇n|2 + n−l
)

=

∫

Σt

n−l+1|k|2.

Taking l = 7 gives
∫

Σt

n−8|∇n|2 .

∫

Σt

n−6|k|2 . ‖k‖2L4‖n−2‖3L6 .

Therefore

‖n−1∇n‖L4 ≤

(∫

Σt

n−8|∇n|2
)1/8(∫

Σt

|∇n|6
)1/8

. ‖k‖
1/4
L4 ‖n

−2‖
3/8
L6 ‖∇n‖

3/4
L6 .

By Lemma 2.3 and Proposition 3, we have ‖∇n‖L6 ≤ C
(

‖∇2n‖L2 + ‖∇n‖L2

)

≤ C.
By using Lemma 2.3 and (3.11) with l = 5 we also have

‖n−2‖L6 . ‖n−2‖H1 .

(∫

Σt

n−4|k|2
)1/2

+ ‖n−1‖2L4

. ‖k‖L6‖n−1‖2L6 + ‖n−1‖2L4

. (1 + ‖k‖L6) ‖n−1‖2H1 .

Therefore

‖n−1∇n‖L4 .
(

1 + ‖k‖
3/8
L6

)

‖k‖
1/4
L4 ‖n

−1‖
3/4
H1 .

Combining this inequality with (3.10) and using Lemma 2.2 to bound ‖k‖L4, ‖k‖L6

and ‖Ric‖L2, it yields

‖∇2(n−1)‖L2 . ‖n−1‖
3/4
H1 ‖∇(n−1)‖L4 + (‖n−1‖H1 + 1)‖n−1‖H1 + ‖∇(n−1)‖L4 .

Applying Lemma 2.3 to the term ‖∇(n−1)‖L4 gives

‖∇2(n−1)‖L2 . ‖n−1‖
3/4
H1

(

‖∇2(n−1)‖
3/4
L2 ‖∇(n−1)‖

1/4
L2 + ‖∇(n−1)‖L2

)

+ ‖n−1‖2H1

+ ‖∇2(n−1)‖
3/4
L2 ‖∇(n−1)‖

1/4
L2 + ‖n−1‖H1 .

With the help of Young’s inequality, we obtain

(3.12) ‖∇2(n−1)‖L2 . ‖n−1‖4H1 + ‖n−1‖H1 .

In order to estimate ‖n−1‖H1 , we use (3.11) with l = 3 to obtain
∫

Σt

(

3|∇(n−1)|2 + n−3
)

=

∫

Σt

|k|2n−2.
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It then follows from the Hölder inequality and Lemma 2.3 that

‖∇(n−1)‖L2 . ‖k‖L4‖n−1‖L4 . ‖k‖L4

(

‖∇(n−1)‖
3/4
L2 ‖n−1‖

1/4
L2 + ‖n−1‖L2

)

.

This clearly implies

(3.13) ‖∇(n−1)‖L2 .
(

‖k‖L4 + ‖k‖4L4

)

‖n−1‖L2 . ‖n−1‖L2 .

The combination of (3.12) and (3.13) gives

‖∇2(n−1)‖L2 + ‖∇(n−1)‖L2 . ‖n−1‖4L2 + ‖n−1‖L2 .

Note that (3.11) with l = 2 gives

‖n−1‖2L2 ≤

∫

Σt

n−1|k|2 ≤ ‖k‖2L4‖n−1‖L2.

This implies ‖n−1‖L2 ≤ ‖k‖2L4 ≤ C. We therefore obtain ‖n−1‖H2 ≤ C. With the
help of Lemma 2.4 the estimate ‖n−1‖L∞ ≤ C follows immediately. �

3.3. Derivative estimates about ṅ. In this subsection we will give various esti-
mates on the derivative ṅ := ∂tn. We start with deriving an elliptic equation for
ṅ. By straightforward calculation we have

(3.14) ∆ṅ = −ġij∇i∇jn+ ∂t(∆n) + gijΓ̇a
ij∇an

Recall that

Γ̇a
ij =

1

2
gab(∇iġjb +∇j ġib −∇bġij).

From (1.2), (1.6) and the fact Trk = t it then follows

gijΓ̇a
ij∇an = −2kai ∇

in∇an+Trk|∇n|2.

Plugging this identity into (3.14) and using ġij = 2nkij and ∆n = |k|2n − 1 we
obtain

∆ṅ = −2nkij∇i∇jn+ |k|2ṅ+ ∂t(|k|
2)n− 2kai ∇

in∇an+Trk|∇n|2

We may use the equations (1.2) and (1.3) to derive

∂t(|k|
2) = −2kij∇i∇jn+ 2nRijk

ij + 2n|k|2Trk.

Consequently, we obtain

∆ṅ = −4nkij∇i∇jn+ |k|2ṅ− 2kai ∇
in∇an+Trk|∇n|2

+ 2nRijk
ij + 2n|k|2Trk.(3.15)

Now we multiply the equation (3.15) by ṅ and integrate over Σt, by using the
boundedness of n and the Hölder inequality we obtain

∫

Σt

(

|∇ṅ|2 + |k|2|ṅ|2
)

.

∫

Σt

(

|ṅ||k||∇2n|+ |ṅ||k||∇n|2 + |ṅ||Ric||k|+ |ṅ||k|3
)

≤
(

‖∇2n‖L2 + ‖∇n‖2L4 + ‖Ric‖L2

)

‖k‖L4‖ṅ‖L4 + ‖k‖3L6‖ṅ‖L2 .

Using the bounds derived in Lemma 2.2 and Proposition 3 together with the Sobolev
embedding we have

∫

Σt

(

|∇ṅ|2 + |k|2|ṅ|2
)

. ‖ṅ‖L4 + ‖ṅ‖L2 . ‖∇ṅ‖L2 + ‖ṅ‖L2 .
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Recall that |k|2 = |k̂|2 + t2/3 and |t| ≥ |t∗| > 0. Therefore

‖∇ṅ‖2L2 + ‖ṅ‖2L2 . ‖∇ṅ‖L2 + ‖ṅ‖L2.

We therefore obtain

Lemma 3.2. Let the assumption (A1) hold. Then for each Σt ⊂ M∗, there holds

(3.16) ‖∇ṅ‖L2(Σt) + ‖ṅ‖L2(Σt) ≤ C.

Now we are ready to give some estimates on the mixed norms of ṅ.

Proposition 7. Let the assumption (A1) hold. Let ṅ = ∂tn. Then there hold

‖∇2ṅ‖L1
tL

2
x(M∗) ≤ C and ‖ṅ‖Lb

tL
∞

x (M∗) ≤ C

for any 1 ≤ b < 2.

Proof. In view of the assumption (A1), it suffice to establish on every Σt the
inequalities

(3.17) ‖∇2ṅ‖L2(Σt) . C
(

‖k‖L∞(Σt) + 1
)

,

and

(3.18) ‖ṅ‖L∞(Σt) ≤ C
(

‖k‖
3/2−3/p
L∞(Σt)

+ 1
)

for any 3 < p ≤ 6.
By the Böchner identity, we have

‖∇2ṅ‖2L2 ≤ ‖∆ṅ‖2L2 + ‖Ric‖L2‖∇ṅ‖2L4 .

By using ‖Ric‖L2
x
. 1 and applying Lemma 2.3 to ‖∇ṅ‖L4 we obtain

‖∇2ṅ‖L2 . ‖∆ṅ‖L2 + ‖∇ṅ‖
3/4
L2 ‖∇ṅ‖

1/4
L2 + ‖∇ṅ‖L2 .

In view of Young’s inequality and (3.16), it follows

(3.19) ‖∇2ṅ‖L2 . ‖∆ṅ‖L2 + 1.

From the equation (3.15) it follows that

‖∆ṅ‖L2 . ‖k‖L∞‖
(

‖∇2n‖L2 + ‖Ric‖L2

)

+ ‖k‖2L6‖ṅ‖L6 + ‖∇n‖2L6‖k‖L6 + ‖k‖3L6.

With the help of the estimates derived in Lemma 2.2, Proposition 3 and (3.16)
together with the Sobolev embedding we have ‖∆ṅ‖L2 . ‖k‖L∞ + 1. Therefore
‖∇2ṅ‖L2 . ‖k‖L∞ + 1 which is exactly (3.17). The inequality (3.18) immediately
follows from Lemma 2.4, (3.17) and (3.16). �

4. Null radius of injectivity: proof of main theorem II

In this section we will give the sketch of the proof of Theorem 1.2. The complete
proof is rather involved and requires a delicate bootstrap argument. For any t0 <
t1 < t∗ we consider the slab MI = ∪t∈IΣt with I = [t0, t1]. We set, for each
p ∈ MI ,

ĩ∗(p, t) =

{

+∞, if i∗(p, t) > t(p)− t0,
i∗(p, t), otherwise

and define

(4.1) i∗ := min{ĩ∗(p, t) : p ∈ MI}.

Due to the compactness of MI , we have i∗ > 0. In order to complete the proof of
Theorem 1.2, it suffices to show that i∗ > δ∗ for some universal constant δ∗ > 0.
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We will use the following result concerning the lower bound on the null radius
of injectivity of a globally hyperbolic space-time which has essentially been proved
in [11].

Theorem 4.1. Let C−1 ≤ n ≤ C on MI for some constant C > 0. Then there
exists a small constant ǫ > 0 depending only on C such that if, for some constant
δ∗ > 0, the following three conditions hold for all p ∈ MI :

C1. the null radius of conjugacy satisfies

s∗(p, t) > min{i∗, δ∗};

C2. for each t satisfying

0 ≤ t(p)− t ≤ min{i∗, δ∗},

the metric γt on S
2, obtained by restricting the metric g on Σt to St :=

N−(p) ∩ Σt and then pulling it back to S
2 by the exponential map G(t, ·),

verifies

|γt(X,X)−
◦
γ (X,X)| < ǫ

◦
γ (X,X), ∀X ∈ TS2,

where
◦
γ is the standard metric on S

2;
C3. On Up := Ip×Bδ∗(p) with Ip := [t(p)−min{i∗, δ∗}, t(p)] and Bδ∗(p) ⊂ Σt(p)

a geodesic ball, there is a system of coordinates xα with x0 = t relative to
which the metric g is close to the Minkowski metric mαβ = −n(p)dt2 +
δijdx

idxj in the sense that

|n− n(p)|+ |gij − δij | < ǫ on Up,

then there holds i∗ > δ∗, i.e. the null radius of injectivity verifies

i∗(p, t) > min{δ∗, t(p)− t0}

for all p ∈ MI .

Let us briefly outline the idea of proof. Assume that i∗ ≤ δ∗. Let p0 ∈ MI be
a point such that i∗(p0, t) = i∗ ≤ t(p) − t0. By C1 we have s∗(p0, t) > i∗(p0, t) =
l∗(p0, t). Thus there exist two distinct past null geodesics γ1 and γ2 initiating at
p0 intersect at a point q0 with t(q0) = t(p0)− i∗. According to the definition of i∗
and [11, Lemma 3.1] γ1 and γ2 are opposite at both p0 and q0. On the other hand,
under the conditions C2 and C3, Lemma 3.2 and Lemma 3.3 in [11] imply that
such two null geodesics can not intersect in the time slab [t(p0)− i∗, t(p0)].

Theorem 4.1 provides a general framework to estimate the null radius of injec-
tivity from below. Under the condition (1.9), in [11] Klainerman and Rodnianski
showed that the conditions C1–C3 hold with a universal constant δ∗ > 0; thus
they derived a universal lower bound on the null radius of injectivity.

In the following we will describe how to verify the conditions C1–C3 under the
assumption (A1). To this end, for each p ∈ MI consider the past null cone N−(p),
let s be its affine parameter and let St = N−(p) ∩ Σt. Then St is diffeomorphic to
S
2 for each t satisfying t(p)− i∗(p, t) < t < t(p). Let γ be the restriction of g to St

and let |St| be the corresponding area. The radius of St is defined to be

(4.2) r :=
√

(4π)−1|St|

which is a function of t only.
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On N−(p, τ) \ {p} with τ < i∗(p, t) we can define a conjugate null vector L with
g(L,L) = −2 and such that L is orthogonal to the leafs St. In addition we can
choose (eA)A=1,2 tangent to St such that (eA)A=1,2, e3 = L, e4 = L form a null
frame, i.e.

g(L,L) = −2, g(L,L) = g(L,L) = g(L, eA) = g(L, eA) = 0, g(eA, eB) = δAB.

The null second fundamental forms χ, χ, the torsion ζ and the Ricci coefficient ζ
of the foliation St are then defined as follows

χAB = g(DAL, eB), χ
AB

= g(DAL, eB),

ζA =
1

2
g(DAL,L), ζ

A
=

1

2
g(eA,DLL).

In addition we define

trχ = γABχAB, χ̂AB = χAB −
1

2
trχγAB.

We can define trχ and χ̂ similarly.
We introduce the null lapse function

a−1 := g(L,T).

Then a > 0 and a(p) = 1. It is easy to see that

L = −a−1(T+N), L = −a(T−N),

where N denotes the unit inward normal to St in Σt. We also introduce the function

ν := −n−1∇Nn+ kNN

which is relevant to the estimate on a.
For any St-tangent tensor field F we define the norm ‖F‖L∞

ω L2
t (N

−(p,τ)) by

‖F‖2L∞

ω L2
t (N

−(p,τ)) := sup
ω∈S2

∫ t(p)

t(p)−τ

|F |2nadt := sup
ω∈S2

∫

Γω

|F |2nadt,

where Γω denotes the portion of a past null geodesic initiating from p contained in
N−(p, τ).

The following result is sufficient to prove the conditions C1–C3 in Theorem 4.1.

Theorem 4.2. Let the assumption (A1) hold. Then there exist universal constants
δ∗ > 0 and C∗ > 0 such that for any p ∈ MI there hold

(4.3)

∫ t(p)

t(p)−τ

|k(Φ(t))|2dt ≤ C∗

with Φ the integral curve of T through p, and

|a− 1| ≤
1

2
,

∣

∣

∣

∣

trχ−
2

s

∣

∣

∣

∣

≤ C∗, ‖χ̂‖2L∞

ω L2
t (N

−(p,τ)) ≤ C∗(4.4)

on any null cones N−(p, τ), where τ := min{i∗, δ∗}.

In fact, the estimate on trχ in (4.4) implies the condition C1, see [6, 4]. Next
we will show that the estimates in (4.4) imply the condition C2. To see this, we
recall that ds

dt = −na and d
dsγAB = 2χAB. Then

d

dt
(s−2γAB) = −na

(

−2s−3γAB + 2s−2χAB

)
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Let X ∈ TS2 be any vector field. We integrate the above equation along any null

geodesic and note that limt→t(p)− s(t)
−2γ(t) =

◦
γ,( see [13]), it follows that

∣

∣

∣s(t)−2γ(X,X)−
◦
γ (X,X)

∣

∣

∣ ≤

∫ t(p)

t

(

2|χ̂|+

∣

∣

∣

∣

trχ−
2

s(t′)

∣

∣

∣

∣

)

s(t′)−2γ(X,X)nadt′

Let

Θ := 2|χ̂|+

∣

∣

∣

∣

trχ−
2

s

∣

∣

∣

∣

.

We then have
∣

∣

∣s(t)−2γ(X,X)−
◦
γ (X,X)

∣

∣

∣ ≤

∫ t(p)

t

Θ
∣

∣

∣s(t′)−2γ(X,X)−
◦
γ (X,X)

∣

∣

∣nadt′

+
◦
γ (X,X)

∫ t(p)

t

Θ(t′)nadt′.

Therefore, it follows from the Gronwall inequality that

∣

∣

∣s(t)−2γ(X,X)−
◦
γ (X,X)

∣

∣

∣ ≤
◦
γ (X,X)

∫ t(p)

t

Θnadt′ exp

(

∫ t(p)

t

Θ(t′)nadt′

)

.

Since 0 < n ≤ 3/t2∗, the estimate (4.4) in Theorem 4.2 implies
∫ t(p)

t

Θnadt′ ≤ C
(

(t(p)− t)1/2 + (t(p)− t)
)

≤ C(t(p)− t)1/2

and consequently

(4.5)
∣

∣

∣s−2γ(X,X)−
◦
γ (X,X)

∣

∣

∣ ≤ C(t(p)− t)1/2
◦
γ (X,X)

for all t(p)−min{i∗, δ∗} ≤ t < t(p), where C is a universal constant. The condition
C2 is thus verified.

The verification of the condition C3, using the estimate (4.3), is given in the
following result.

Lemma 4.3. Let the assumption (A1) hold. For any ǫ > 0, there exists a constant
δ∗ > 0 depending only on Q0, K0, t∗ and ǫ such that for every point p ∈ MI there
exists on Up := Ip×Bδ∗(p) with Ip = [t(p)−min{i∗, δ∗}, t(p)] a system of transported
coordinates t, x = (x1, x2, x3) relative to which g is close to the Minkowski metric
m(p) = −n(p)2dt2 + δijdx

idxj, in the sense that

|gij − δij | < ǫ and |n− n(p)| < ǫ.(4.6)

Proof. It follows from Proposition 2 that there exists a constant δ0 > 0 depending
only K0, Q0, t∗ and ǫ such that every geodesic ball Bδ0(p) ⊂ Σt(p) admits a system

of harmonic coordinates x = (x1, x2, x3) under which

(4.7) (1 + ǫ/2)−1δij ≤ gij ≤ (1 + ǫ/2)δij.

Under the transported coordinates t, x = (x1, x2, x3), let p = (t(p), 0) and let q =
(t, x) be an arbitrary point in Ip×Bδ∗(p) with Ip = [t(p)−min{i∗, δ∗}, t(p)], where
0 < δ∗ ≤ δ0 is a constant to be determined. By using the equation ∂tgij = −2nkij
we have

|gij(t, x) − gij(t(p), x)| =

∣

∣

∣

∣

∣

∫ t(p)

t

∂tgij(t
′, x)dt′

∣

∣

∣

∣

∣

= 2

∫ t(p)

t

n|k|dt′.



20 QIAN WANG

Using the bound 0 < n ≤ 3/t∗, the Hölder inequality and the estimate (4.3) in
Theorem 4.2, it follows for some universal constant C1 > 0 that

|gij(t, x)− gij(t(p), x)| ≤ C1(t(p)− t)1/2 ≤ C1δ
1/2
∗ .

In view of (4.7), we thus obtain

(4.8) |gij(t, x)− δij | ≤ |gij(t, x)− gij(t(p), x)|+ |gij(t(p), x) − δij | ≤ C1δ
1/2
∗ +

ǫ

2
,

which gives the first inequality in (4.6) by letting C1δ
1/2
∗ < ǫ/2.

Next we prove the second inequality in (4.6). From Proposition 7 we have

|n(t, x) − n(t(p), x)| ≤

∫ t(p)

t

|ṅ(t′, x)|dt′ ≤ (t(p)− t)1/4‖ṅ‖
L

4/3
t L∞

x
≤ C2δ

1/4
∗ ,

while by employing Morrey’s estimate, Lemma 2.3 and Proposition 3 we have

|n(t(p), x)− n(t(p), 0)| ≤ C2δ
1/4
∗ ‖∇n‖L4(Σt(p))

≤ C2δ
1/4
∗

(

‖∇2n‖
3/4
L2 ‖∇n‖

1/4
L2 + ‖∇n‖L2

x

)

≤ C2δ
1/4
∗ ,

where C2 > 0 is a universal constant. Therefore

|n(t, x)− n(p)| ≤ 2C2δ
1/4
∗

which implies the second inequality in (4.3) by further letting 2C2δ
1/4
∗ < ǫ. �

The proof of Theorem 4.2 is based on a delicate bootstrap argument. We first
fix some notations and terminology. Related to the deformation tensor παβ of T,
we introduce the Σt-tangent tensor h

µ
αh

ν
βπµν , where

hβα = δβα +TαT
β

denotes the projection tensor. It is easy to see that kij = hµi h
ν
jπµν and thus this

tensor is an extension of k. We will denote it by the same notation k, i.e.

(4.9) kαβ = hµαh
ν
βπµν

Note that k0α = kα0 = 0.
Corresponding to the null vector L, let ∇Lk be the Σt-tangent tensor defined by

∇Lkij := hαi h
β
jDLkαβ

and let
|∇Lk|

2 = gii
′

gjj
′

∇Lkij∇Lki′j′ .

We also introduce /∇k by /∇Akij := ∇Akij and set

| /∇k|2 = γABgii
′

gjj
′

∇Akij∇Bki′j′ .

Corresponding to the second fundamental form k, then, for each p ∈ MI , we
introduce on the null cone N−(p, τ) the k-flux

(4.10) F [k](p, τ) =

∫

N−(p,τ)

(

| /∇k|2 + |∇Lk|
2
)

,

where, for each function f and τ < i∗(p, t),
∫

N−(p,τ)

f :=

∫ t(p)

t(p)−τ

∫

St

fnadµγdt.
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Corresponding to the time foliation, we recall the null components of the Rie-
mannian curvature tensor R as follows

αAB = R(L, eA, L, eB), βA =
1

2
R(eA, L, L, L),

ρ =
1

4
R(L,L, L, L), σ =

1

4
⋆R(L,L, L, L),(4.11)

β
A
=

1

2
R(eA, L, L, L), αAB = R(L, eA, L, eB).

The corresponding curvature flux R(p, τ) on the null cone N−(p, τ) is given by

R(p, τ) =

∫ t(p)

t(p)−τ

∫

St

(

|α|2 + |β|2 + |ρ|2 + |σ|2 + |β|2
)

nadµγdt.

The following result says that once the null lapse a is well controlled, then the
k-flux and the curvature flux can be bounded by a universal constant.

Theorem 4.4. Let the condition (A1) hold. Then there exists a universal constant
C∗ ≥ 1 such that for all p ∈ MI if |a− 1| ≤ 1/2 on N−(p, τ) for some 0 < τ ≤ i∗
then there holds

R(p, τ) + F [k](p, τ) ≤ C∗.

We will prove Theorem 4.4 in Section 6. This result requires 1/2 ≤ a ≤ 3/2 on
N−(p, τ) which is obvious for small τ > 0 since a(p) = 1. In order for the above
result to be applicable, we must show that there is a universal constant δ∗ > 0
such that the same bound on a holds with τ := min{i∗, δ∗}, and so does the same
bound on R(p, τ) + F [k](p, τ). We will use a bootstrap argument to achieve this
together with various estimates on trχ, χ̂ and ν. That is, we will make the following
bootstrap assumptions

|a− 1| ≤
1

2
,(BA1)

∣

∣

∣

∣

trχ−
2

s

∣

∣

∣

∣

≤ E0,(BA2)

‖χ̂‖2L∞

ω L2
t (N

−(p,τ)) ≤ E0,(BA3)

‖ν‖2L∞

ω L2
t (N

−(p,τ)) ≤ E0,(BA4)

on the null cone N−(p, τ) for all p ∈ MI , where 0 < τ ≤ i∗ and E0 ≥ 1 are two
numbers satisfying E0τ ≤ 1. Due to the continuity of the quantities involved and the
compactness of MI , the bootstrap assumptions (BA1)–(BA4) hold automatically
for sufficiently small τ > 0. Our goal is to show that we can choose universal con-
stants E0 ≥ 1 and δ∗ > 0 such that (BA1)–(BA4) hold with τ = min{i∗, δ∗}. We
will achieve this by showing that the estimates in (BA1)–(BA4) can be improved.

We will first derive various intermediate consequences of the bootstrap assump-
tions. In particular, we will derive the estimate on the important quantity N1[/π]
which is defined as follows. For any St tangent tensor field F defined on the null
cone N−(p, τ), the Sobolev norm N1[F ](p, τ) is defined by

(4.12) N1[F ](p, τ) := ‖r−1F‖L2(N−(p,τ)) + ‖∇LF‖L2(N−(p,τ)) + ‖ /∇F‖L2(N−(p,τ)).

Recall that the components of the deformation tensor π of T under transported
coordinates are given by π00 = 0, π0i = −n−1∇in and πij = kij . Let us denote by
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λ = − 1
3Trk = − 1

3 t and k̂ the traceless part of k. We decompose k̂ on each St by
introducing components

(4.13) ηAB = k̂AB , ǫA = k̂AN , δ = k̂NN

where (eA)A=1,2 is an orthonormal frame on St and N is the inward unit normal
of St in Σt. Let η̂AB be the traceless part of η. Since δABηAB = −δ, we have

η̂AB = ηAB +
1

2
δABδ.

We will denote by /̂k, /∇/̂k and /π0 the collections

/̂k = (δ, ǫ, η̂), /∇/̂k = ( /∇δ, /∇ǫ, /∇η̂), /π0 = ( /∇ logn,∇N logn)

respectively. We then define /π to be the collection

(4.14) /π = (/̂k, /π0, λ).

We define N1[/π](p, τ) according to (4.12) with F replaced by /π.
With the help of the bound on k-flux given in Theorem 4.4 and various estimates

on the lapse n given in Section 3, we will show that N1[/π](p, τ) can be bounded in
a suitable way under (A1) and the bootstrap assumptions.

Theorem 4.5. Let (A1) hold. Then there exists a universal constant C such that
under the bootstrap assumptions (BA1)–(BA3) with E0τ ≤ 1 there holds

(4.15) N1[/π](p, τ) ≤ C

for all p ∈ MI .

We will prove Theorem 4.5 in Section 8. From Theorem 4.4 and Theorem 4.5 it
follows that

(4.16) R(p, τ) +N1[/π](p, τ) ≤ C0,

where C0 ≥ 1 is a universal constant.
With the help of (4.16), we can establish the following result which enables us

to improve the estimates in the bootstrap assumptions.

Theorem 4.6. There exist two universal constants δ0 > 0 and C1 ≥ 1 such that,
under the bootstrap assumptions (BA1)–(BA4) with E0τ ≤ 1, if τ < min{i∗, δ0}
then there hold

|a− 1| ≤ C1τ
1/2,(4.17)

∣

∣

∣

∣

trχ−
2

s

∣

∣

∣

∣

≤ C1,(4.18)

‖χ̂‖2L∞

ω L2
t (N

−(p,τ)) ≤ C1,(4.19)

‖ν‖2L∞

ω L2
t (N

−(p,τ)) ≤ C1(4.20)

on the null cones N−(p, τ) for all p ∈ MI.

The significance of Theorem 4.6 lies in that it allows us to choose E0 ≥ 1 and
δ∗ > 0 universal such that (BA1)–(BA4) hold on N−(p, τ) with τ = min{i∗, δ∗}.
To see this, we choose E0 and δ∗ in the way that

(4.21) E0 := 2C1 and δ∗ = min{(4C1)
−2, δ0}.
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With such E0 and δ∗, the estimates (4.17)–(4.20) imply that the estimates (BA1)–
(BA4) can be improved as

|a− 1| ≤
1

4
,

∣

∣

∣

∣

trχ−
2

s

∣

∣

∣

∣

≤
1

2
E0, ‖χ̂‖

2
L∞

ω L2
t (N

−(p,τ)) ≤
1

2
E0, ‖ν‖

2
L∞

ω L2
t (N

−(p,τ)) ≤
1

2
E0

on N−(p, τ) if τ ≤ min{i∗, δ∗}. By repeated use of Theorem 4.4, Theorem 4.5 and
Theorem 4.6, the bootstrap principle implies that the estimates in the bootstrap
assumptions (BA1)–(BA4) hold with τ = min{i∗, δ∗}, where E0 and δ∗ are deter-
mined by (4.21) which are positive universal constants. Consequently, we obtain
(4.4) in Theorem 4.2.

We remark that the analogous results to Theorem 4.6 have been proved in [7, 13]
for the geodesic foliations where only the bound of the curvature flux is used. In
time foliations, however, the proof of Theorem 4.6 relies not only on the curvature
flux but also on N1[/π].

Assuming (4.20), the following simple argument shows how to derive (4.17) with
the help of (BA1). Recall that a−1 = g(L,T) and L = −a−1(N +T). We have

d

ds
a−1 = g(L,DLT) = a−2g(N,DTT) + a−2g(N,DNT).

SinceDTT = n−1∇n and kNN = −〈N,DNT〉we obtain d
dsa

−1 = −a−2 (π0N + kNN ).
Consequently

(4.22) L(a) =
d

ds
a = π0N + kNN .

Since ds
dt = −na, we have

d

dt
a = −na (π0N + kNN ) .

Integrating the above equation along null geodesics initiating from p and using
a(p) = 1 yields

a− 1 =

∫ t(p)

t

(π0N + kNN )nadt′ =

∫ t(p)

t

νnadt′.

Since 0 < n ≤ 3/t2∗, (BA1) and (4.20) imply

|a− 1| ≤ C1(t(p)− t)1/2 ≤ C1τ
1/2

for all t(p)− τ ≤ t ≤ t(p), where C1 could be a different but universal constant.
The derivation of (4.18)–(4.20) however is highly nontrivial and requires lengthy

calculation. The complete proof is contained in [14] where other related estimates
for Ricci coefficients are proved simultaneously.

In order to complete the proof of Theorem 4.2, it remains to prove (4.3) which
is restated in the following result.

Theorem 4.7. Assume that the condition (A1) holds. Then there exist universal
constants δ∗ > 0 and C > 0 such that

∫ t(p)

t(p)−min{i∗,δ∗}

|k(Φ(t))|2ndt ≤ C

for all p ∈ MI , where Φ denotes the integral curve of T through p.
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The proof of Theorem 4.7 forms the core part of the present paper. It is based
on the formula of ✷k given in Section 5 and a Kirchoff-Sobolev representation for k
given in Section 9 together with various estimates on null cones derived in Section
8.

5. Tensorial wave equation for the second fundamental form

In this section we will derive the formula for ✷k, where k is defined in (4.9)
whose projection to Σt is exactly the second fundamental form.

Proposition 8. The tensor k defined by (4.9) verifies the tensorial wave equation

✷kij = −n−3ṅ∇i∇jn+ n−2∇i∇j ṅ+ 2π0a
(

∇akij −∇ik
a
j −∇jk

a
i

)

− 2Trk Rij −Rkij +RTrk gij + 2(kai Raj + kajRai)− 2Rabk
abgij

+ n−1(2kai ∇a∇jn+ 2kaj∇a∇in−∆nkij − Trk∇i∇jn)

+ 2kiak
abkbj − π0aπ

a
0kij − n−1kij .(5.1)

Proof. We first recall that

✷kij = −D0D0kij + gpqDpDqkij .

By using k0α = kα0 = 0 and Diej = ∇iej − kijT, we can obtain through a
straightforward calculation that

gpqDpDqkij = △kij +TrkD0kij + 2kiak
abkbj .

By using DTT = n−1∇inei = −πi
0ei and k0α = kα0 = 0, we can obtain

D0D0kij = e0(D0kij) + kai D0kaj + kajD0kia + π0a∇
akij

+ π0iD0k0j + π0jD0ki0.

It is easy to see D0k0j = π0ak
a
j . From the equation (1.3) it also follows that

(5.2) D0kij = e0(kij) + 2kiak
a
j = −n−1∇i∇jn+Rij +Trk kij .

Consequently

D0D0kij = e0(D0kij) + π0a∇
akij − n−1

(

kai ∇a∇jn+ kaj∇a∇in
)

+
(

kai Raj + kajRai

)

+ 2Trk kiak
a
j + π0iπ0ak

a
j + π0jπ0ak

a
i .

Therefore

✷kij = −e0(D0kij)− π0a∇
akij − π0iπ0ak

a
j − π0jπ0ak

a
i

+ n−1
(

kai ∇a∇jn+ kaj∇a∇in
)

−
(

kai Raj + kajRai

)

− 2Trk kiak
a
j +△kij +TrkD0kij + 2kiak

abkbj .(5.3)

We need to compute e0(D0kij). It follows from (5.2) and Trk = t, we have

e0(D0kij) = n−3ṅ∇i∇jn− n−2∂t(∇i∇jn) + n−1∂tRij

+ n−1kij +TrkD0kij − 2Trk kiak
a
j .(5.4)

In order to compute ∂t(∇i∇jn) and ∂tRij , let Γ
a
ij denote the Christoffel symbol of

Σt. Then it follows from the equation ∂tgij = −2nkij that

Γ̇a
ij = −n

(

∇ik
a
j +∇jk

a
i −∇akij

)

−∇ink
a
j −∇jnk

a
i +∇ankij .
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Using divk = 0 and Trk = t, this in particular implies Γ̇a
aj = −Trk∇jn. Therefore,

noting that ∂t(∇i∇jn) = ∇i∇j ṅ− Γ̇a
ij∇an, we can obtain

∂t(∇i∇jn) = ∇i∇j ṅ+ n∇an
(

∇ik
a
j +∇jk

a
i −∇akij

)

+
(

∇ink
a
j +∇jnk

a
i

)

∇an− |∇n|2kij .(5.5)

Noting also that ∂tRij = ∇aΓ̇
a
ij −∇iΓ̇

a
aj and divk = 0, we have

∂tRij = ∇an
(

2∇akij −∇ik
a
j −∇jk

a
i

)

− n
(

∇a∇ik
a
j +∇a∇jk

a
i −△kij

)

+∆nkij −
(

∇a∇in · kaj +∇a∇jn · kai
)

+Trk∇i∇jn.

With the help of the commutation formula

∇a∇ik
a
j = [∇a,∇i]k

a
j = Rj

a
bik

b
a +Raik

a
j

and the curvature decomposition formula

Rj
a
bi = gjbR

a
i +Rjbδ

a
i −Rijδ

a
b − Ra

bgji −
1

2
(gjbδ

a
i − gijδ

a
b )R,

we obtain

∇a∇ik
a
j = 2Riak

a
j +Rjak

a
i − Trk Rij −Rabk

abgij −
1

2
Rkij +

1

2
RTrk gij .

Consequently

∂tRij = ∇an
(

2∇akij −∇ik
a
j −∇jk

a
i

)

−
(

∇a∇ink
a
j +∇a∇jnk

a
i

)

+ n△kij +△nkij − 3n
(

Riak
a
j +Rjak

a
i

)

+ 2nTrkRij

+ 2nRabk
abgij + nRkij − nRTrk gij +Trk∇i∇jn.(5.6)

Plugging (5.5) and (5.6) into (5.4), and using π0i = −n−1∇in, it yields

e0(D0kij) = n−3ṅ∇i∇jn− n−2∇i∇j ṅ− π0a
(

3∇akij − 2∇ik
a
j − 2∇jk

a
i

)

− π0iπ0ak
a
j

− π0jπ0ak
a
i + π0aπ

a
0kij − n−1

(

∇a∇ink
a
j +∇a∇jnk

a
i − Trk∇i∇jn

)

+△kij + n−1△n kij − 3
(

Riak
a
j +Rjak

a
i

)

+ 2Trk Rij + 2Rabk
abgij

+Rkij −RTrk gij + n−1kij +TrkD0kij − 2Trk kai kaj .

Plugging the above equation into (5.3) gives the desired equation. �

6. Proof of Theorem 4.4

In this section we will complete the proof of Theorem 4.4, i.e. we will show that
if |a− 1| ≤ 1/2 on N−(p, τ) for some 0 < τ ≤ i∗ then

R(p, τ) + F [k](p, τ) ≤ C∗,

where C∗ is a universal constant.
We will use the following result (see [5, Lemma 8.1.1]).

Lemma 6.1. Let P be a vector field defined on the domain J −(p, τ). Then
∫

N−(p,τ)

g(P,L) =

∫

J−(p,τ)

DµPµ −

∫

Σt(p)−τ∩J−(p)

g(P,T)dµg ,
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where J−(p) denotes the causal past of p, J −(p, τ) denotes the portion of J −(p)
in the slab [t(p)− τ, t(p)], and

∫

J−(p,τ)

f =

∫ t(p)

t(p)−τ

dt

(

∫

Σt∩J−(p)

fndµg

)

.

We first show the boundedness of the curvature flux R(p, τ). With the Bel-

Robinson tensor Q[R] defined in Section 2, we introduce Pµ = Q[R]µβγδT
βTγTδ.

We may apply Lemma 6.1 to obtain
∫

N−(p,τ)

g(P,L) =

∫

J−(p,τ)

DµPµ −

∫

Σt(p)−τ∩J−(p)

Q[R](T,T,T.T)dµg,

With the help of the calculations in subsection 2.1, (A1) and Lemma 2.1, it then
yields

∣

∣

∣

∣

∣

∫

N−(p,τ)

g(P,L)

∣

∣

∣

∣

∣

. C.(6.1)

Note that g(P,L) = Q[R](T,T,T, L) and T = − 1
2 (aL+a

−1L). Since |a−1| ≤ 1/2
on N−(p, τ), it follows from [5, Lemma 7.3.1] that −g(P,L) is equivalent to

|α|2 + |β|2 + |β|2 + |ρ|2 + |σ|2.

Thus, there holds, for some universal constant C > 0,

C−1R(p, τ) ≤

∣

∣

∣

∣

∣

∫

N−(p,τ)

g(P,L)

∣

∣

∣

∣

∣

≤ CR(p, τ).

By (6.1), we conclude that R(p, τ) ≤ C∗ for some universal constant C∗.
Next we will show the boundedness of the k-flux F [k](p, τ). With the help of

the projection tensor

hαβ = gαβ +TαTβ ,

for any tensor field Uα1α2···αm in TM, we define |U | as follows

|U |2 = hIJUIUJ = hα1β1 · · ·hαmβmUα1α2···αmUβ1β2···βm

hIJ = hα1β1 · · ·hαmβm , UI = Uα1α2···αm , UJ = Uβ1β2···βm .

For any Σt-tangent tensor field U in MI , we define the energy momentum tensor
Q[U ]αβ associated with the covariant wave operator acting on tensors:

Q[U ]αβ := hIJDαUIDβUJ −
1

2
gαβh

IJgµνDµUIDνUJ .

We have

DβQ[U ]αβ = hIJDαUI✷UJ + hIJ(DβDαUI −DαDβUI)D
βUJ

+DβhIJ(DαUIDβUJ −
1

2
gαβg

µνDµUIDνUJ)

It is easy to see that the last term in the above equation can be written symbolically
as π ·DU ·DU .
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Now we apply the above equation to U = k. Noting that h0α = 0 and hij = gij ,
we have

Dβ(Q[k]αβT
α) = DβTαQ[k]αβ +DβQ[k]0β

= −kijQ[k]ij − π0jQ[k]0j +D0k
ij
✷kij

+ [Da,D0]kij∇
akij + π ·Dk ·Dk.(6.2)

In view of the commutation formula

[Dm,D0]kij = Ri
b
m0kbj +Rj

b
m0kib = −ǫsibHsmk

b
j − ǫsjbHsmk

b
i ,

we derive symbolically

Dβ(Q[k]αβT
α) = −kijQ[k]ij − π0jQ[k]0j +D0k

ij
✷kij

+H · k · ∇k + π ·Dk ·Dk.(6.3)

From the definition of Q[k], it is easy to see that

Q[k]00 =
1

2
(|D0k|

2 + |∇k|2),(6.4)

Q[k]0j = D0kpq∇jk
pq,(6.5)

Q[k]ij = ∇ikpq∇jk
pq −

1

2
gij
(

−|D0k|
2 + |∇k|2

)

.(6.6)

Therefore

Dβ(Q[k]αβT
α) =

1

2
Trk

(

−|D0k|
2 + |∇k|2

)

+ k · ∇k · ∇k

+D0k · ✷k +H · k · ∇k + π ·Dk ·Dk.(6.7)

We now apply Lemma 6.1 to P β := TαQ[k]βα and obtain
∫

N−(p,τ)

Q[k](T, L) +

∫

Σt(p)−τ∩J−(p)

Q[k]00 =

∫

J−(p,τ)

Dβ(Q[k]αβT
α).(6.8)

For the null pair L and L, it is easy to see that

Q[k](L,L) = |∇Lk|
2, Q[k](L,L) = | /∇k|2.

Since T = − 1
2 (aL+ a−1L), we have

Q[k](T, L) = −
1

2

(

aQ[k](L,L) + a−1Q[k](L,L)
)

= −
1

2

(

a|∇Lk|
2 + a−1| /∇k|2

)

.

Since |a− 1| ≤ 1/2, the k-flux defined in (4.10) verifies the inequality

−

∫

N−(p,τ)

Q[k](T, L) ≤ F [k](p, τ) ≤ −4

∫

N−(p,τ)

Q[k](T, L).

Thus we derive from (6.8) and (6.4) that

(6.9) F [k](p, τ) ≤ 4

∣

∣

∣

∣

∣

∫

J−(p,τ)

Dβ(Q[k]αβT
α)

∣

∣

∣

∣

∣

+2

∫

Σt(p)−τ∩J−(p)

(

|D0k|
2 + |∇k|2

)

.

In view of (5.2), Lemma 2.2, Proposition 3 and Proposition 6, we have
∫

Σt

(

|D0k|
2 + |∇k|2

)

. ‖∇2n‖2L2(Σt)
+ ‖Ric‖2L2(Σt)

+ ‖k‖4L4(Σt)
+ ‖∇k‖2L2(Σt)

≤ C.(6.10)
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Moreover, in view of (6.7), (A1), Lemma 2.2, and the above inequality we have
∣

∣

∣

∣

∣

∫

J−(p,τ)

Dβ(Q[k]αβT
α)

∣

∣

∣

∣

∣

.

∫ t(p)

t(p)−τ

‖D0k‖L2(Σt′ )
‖✷k‖L2(Σt′ )

dt′

+

∫ t(p)

t(p)−τ

‖π‖L∞(Σt′ )

(

‖D0k‖
2
L2(Σt′ )

+ ‖∇k‖2L2(Σt′ )

)

dt′

+

∫ t(p)

t(p)−τ

‖k‖L∞(Σt′ )
‖H‖L2(Σt′ )

‖∇k‖L2(Σt′ )
dt′

.

∫ t(p)

t(p)−τ

‖✷k‖L2(Σt′ )
dt′ +

∫ t(p)

t(p)−τ

‖π‖L∞(Σt′ )
dt′

≤ C + C

∫ t(p)

t(p)−τ

‖✷k‖L2(Σt′ )
dt′.(6.11)

Therefore

(6.12) F [k](p, τ) ≤ C + C

∫ t(p)

t(p)−τ

‖✷k‖L2(Σt′ )
dt′.

We now recall the formula for ✷k given in Proposition 8 which symbolically can
be written as

✷k = −n−3ṅ∇2n+ n−2∇2ṅ+ π · π · π + k · ∇2n+ k · Ric+ π · ∇k − n−1k.

Since C−1 ≤ n ≤ C, we obtain

‖✷k‖L1
tL

2
x
. ‖ṅ‖L1

tL
∞

x
‖∇2n‖L∞

t L2
x
+ ‖∇2ṅ‖L1

tL
2
x
+ ‖π‖L1

tL
∞

x
‖π‖2L∞

t L4
x

+ ‖k‖L1
tL

∞

x
‖∇2n‖L∞

t L2
x
+ ‖k‖L1

tL
∞

x
‖Ric‖L∞

t L2
x

+ ‖k‖L1
tL

2
x
+ ‖π‖L1

tL
∞

x
‖∇k‖L∞

t L2
x
.

In view of the assumption (A1), Lemma 2.2, Proposition 3, Proposition 7 and
(6.10), it follows

‖✷k‖L1
tL

2
x
≤ C

(

1 + ‖π‖L1
tL

∞

x
+ τ
)

≤ C.

Combining the above inequality with (6.12) completes the proof of Theorem 4.4.

7. Trace estimates

For a point p ∈ MI , let s be the affine parameter on the null cone N−(p) and
let r be the radius of St := N−(p) ∩ Σt which is defined by (4.2). On each St we
introduce the ratio of area elements

(7.1) vt(ω) =

√

|γ|
√

|
◦
γ|
, ω ∈ S

2.

We will first show that all the quantities s, r, v
1/2
t and t(p)−t are comparable under

the bootstrap assumptions (BA1)–(BA3). Here we say two quantities ϕ and ψ are
comparable in the sense that C−1ψ ≤ ϕ ≤ Cψ for some universal constant C > 0.

Lemma 7.1. Under the bootstrap assumptions (BA1)–(BA3), the four quantities

s(t), r(t), v
1/2
t and t(p) − t are comparable on the null cone N−(p, τ) with τ ≤

min{i∗, δ∗}, where δ∗ > 0 is a universal constant.
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Proof. The comparability of s and t(p)− t follows from the relation ds
dt = −na and

the bootstrap assumption (BA1). Similar to the derivation of (4.5), we have under
the bootstrap assumptions (BA1)–(BA3) that

(7.2) |γ − s(t)2
◦
γ | ≤

1

2
s(t)2

◦
γ

for all t(p) − min{i∗, τ, δ∗} ≤ t < t(p), where δ∗ is a universal constant. This
implies immediately that 1

2s(t)
2 ≤ vt ≤ 3

2s(t)
2. Consequently vt and t(p) − t are

comparable. Thus for the area |St| of St there holds

C−1(t(p)− t)2 ≤ |St| ≤ C(t(p) − t)2

for some universal constant C. This together with the definition of r gives the
comparability of r and t(p)− t. �

7.1. Optical function. In this section we give a brief review of the construction
of optical functions, one may see [5] for more information.

For any point p ∈ MI , let J
−(p) be the causal past and let N−(p) and I−(p)

denote respectively the null boundary and the interior. For each 0 < τ < i∗ with i∗
defined by (4.1), let J−(p, τ), N−(p, τ) and I−(p, τ) denote the portions of J −(p),
N−(p) and I−(p) in the time slab [t(p)− τ, t(p)] respectively. Let Φ be the integral
curve of T through p with Φ(t(p)) = p. According to the definition of i∗, all the
null cones N−(Φ(t), τ + t− t(p)), with t(p)− τ ≤ t ≤ t(p) and τ < i∗, are disjoint
and their union forms N−(p, τ). We now define u to be the function, constant on
each N−(Φ(t), t+ τ − t(p)), such that

u(Φ(t)) =

∫ t

t0

n(Φ(t′))dt′.

Such u, which will be called an optical function, is a well-defined smooth function
on J −(p, τ) and satisfies the eikonal equation

gαβ∂αu∂βu = 0.

It is clear that the level sets Cu of u are the incoming null cones in the time slab
[t(p)− τ, t(p)] with vertices on Φ, and T(u) = 1 on Φ. Moreover, the null geodesic
vector L defined before can be written as

L = gαβ∂βu∂α.

For each t ∈ [t(p) − τ, t(p)], we define uM (t) and um(t) respectively to be the
largest and smallest values of u for which the part of the cone Cu that lies in the
future of Σt is contained in J −(p), i.e.

uM (t) = u(p) and um(t) = u(Φ(t)).

For each u(Φ(t(p) − τ)) ≤ u ≤ u(p), we also define tM (u) and tm(u) to be the
largest and smallest value of t for which Σt intersects Cu respectively. It is clear
that tM (u) is the value of t at the vertex of Cu and tm(u) = t(p) − τ . Note that
both uM and tm are independent of t.

We set
St,u := Cu ∩Σt

which is a smooth surface for each t(p) − τ ≤ t ≤ t(p) and uM ≤ u < um(t). The
corresponding radius function is defined as

r(t, u) :=
√

(4π)−1|St,u|,
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where |St,u| denotes the area of St,u with respect to the metric γ.
The following result follows immediately from Lemma 7.1 and the definition of

u.

Proposition 9. Under the bootstrap assumptions (BA1)–(BA3) on N−(p, τ) for
all p ∈ MI, there hold

(7.3) C−1 ≤
tM (u)− t

r(t, u)
≤ C

and

(7.4) C−1 ≤
u− um(t)

r(t, u)
≤ C

for all t(p) −min{i∗, τ, δ∗} < t < t(p), where C and δ∗ are two positive universal
constants.

In view of the above notations, it is clear that

N−(p, τ) =
⋃

t∈[t(p)−τ,t(p)]

St,uM .

Let Int(St,uM ) be the interior of St,uM in Σt, then

Int(St,uM ) =
⋃

u∈[uM ,um(t)]

St,u and J −(p, τ) =
⋃

t∈[t(p)−τ,t(p)]

Int(St,uM ).

The following simple result can be found in [5].

Lemma 7.2. For any scalar f satisfying

lim
u→um(t)

∫

St,u

fdµγ = 0,

there holds
∫

St,uM

fdµγ = −

∫ uM

um(t)

∫

St,u

(∇Nf + trθf)adµγudu,

where N denotes the unit inward normal to St,u in Σt, and θ denotes the corre-
sponding second fundamental form.

7.2. Trace estimates. We will rely on the following trace inequality.

Lemma 7.3 (Trace inequality). Under the bootstrap assumptions (BA1)–(BA3)
on N−(p, τ) with E0τ ≤ 1, for any Σt tangent tensor field F there holds

‖r−1/2F‖L2(St) . ‖∇F‖L2(Σt) + ‖F‖L2(Σt),

where St := N−(p, τ) ∩ Σt and r :=
√

(4π)−1|St|.

The proof of Lemma 7.3 can be seen in Appendix. Using Lemma 7.3, we are
able to derive the following

Proposition 10. Let the bootstrap assumptions (BA1)–(BA3) hold on N−(p, τ)
with E0τ ≤ 1. Then for any Σt tangent tensor field F there hold

‖F‖2L2(St)
. ‖F‖H1(Σt)‖F‖L2(Σt),(7.5)

‖F‖L4(St) . ‖F‖H1(Σt)(7.6)

for all t(p)− τ ≤ t < t(p).
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Proof. Let φ(u) be a smooth cut-off function verifying 0 ≤ φ ≤ 1, φ(uM ) = 1 and
supp(φ) ⊂ [um+uM

2 , uM ]. It then follows from Lemma 7.2 that

(7.7) ‖F‖2L2(St)
= −

∫

Int(St)

(

∇N |φF |2 + trθ|φF |2
)

adµγdu
′ = I1 + I2,

where

I1 = −2

∫

Int(St)

(

φ2F · ∇NF + φ∇Nφ|F |
2
)

adµγdu
′,

I2 = −

∫

Int(St)

trθ|φF |2adµγdu
′.

Since the bootstrap assumption (BA1) implies 1/2 ≤ a ≤ 3/2, it is easy to see that
∣

∣

∣

∣

∣

∫

Int(St)

φ2F · ∇NFadµγdu
′

∣

∣

∣

∣

∣

. ‖∇NF‖L2(Σt)‖F‖L2(Σt)

and
∣

∣

∣

∣

∣

∫

Int(St)

φ∇Nφ|F |
2adµγdu

′

∣

∣

∣

∣

∣

.
1

uM − um

∫ uM

um+uM
2

∫

St,u′

|F |2dµγdu
′.

It follows from Lemma 7.3 that
∫

St,u′

|F |2dµγ . ‖r−1/2F‖L2(St,u′ )‖F‖L2(St,u′ )r
1/2

. ‖F‖H1(Σt)‖F‖L2(St,u′ )r
1/2,

where r := r(t, u′). From Proposition 9 it follows that r(t, u′) . u′ − um. Thus
∣

∣

∣

∣

∣

∫

Int(St)

φ∇Nφ|F |
2adµγdu

′

∣

∣

∣

∣

∣

.
1

uM − um
‖F‖H1(Σt)‖F‖L2(Σt)

(

∫ uM

um+uM
2

(u′ − um)du′

)1/2

. ‖F‖H1(Σt)‖F‖L2(Σt).

We therefore obtain

|I1| . ‖F‖H1(Σt)‖F‖L2(Σt).

In order to estimate the term I2, we recall that trθ = −atrχ+δABkAB. Since the
bootstrap assumption (BA2) implies |trχ−2/s| ≤ E0 on each St,u′ and Proposition
9 implies that s, t(p)− t and r are comparable, we have

|I2| . (E0τ + 1)

∫ uM

um

∫

St,u′

r−1|φF |2dµγdu
′ +

∫ uM

um

∫

St,u′

|k||φF |2dµγdu
′

.

∫ uM

um

∫

St,u′

r−1|φF |2dµγdu
′ + ‖k‖L3(Σt)‖F‖

2
L3(Σt)

.

Recall that ‖k‖L3(Σt) ≤ C from Lemma 2.2 and apply Lemma 2.3 to ‖F‖2L3(Σt)
we

obtain

|I2| . ‖F‖H1(Σt)‖F‖L2(Σt) +

∫ uM

um+uM
2

∫

St,u′

r−1|F |2dµγdu
′.
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Now we use Lemma 7.3 again and note that Proposition 9 implies r(t, u′)−1 .

(u′ − um)−1, we have

∫ uM

um+uM
2

∫

St,u′

r−1|F |2dµγdu
′ . ‖F‖H1(Σt)‖F‖L2(Σt)

(

∫ uM

um+uM
2

(u′ − um)−1du′

)1/2

. ‖F‖H1(Σt)‖F‖L2(Σt).

Therefore

|I2| . ‖F‖H1(Σt)‖F‖L2(Σt).

The proof of (7.5) is complete.
Applying (7.7) with |F | replaced by |F |2, combined with Sobolev embedding, we

can obtain (7.6) in the similar fashion. �

As a consequence, we obtain

Proposition 11. Let the bootstrap assumptions (BA1)–(BA3) hold on N−(p, τ)
with E0τ ≤ 1. Let St := N−(p, τ) ∩ Σt and let r be defined by (4.2). Let π0 denote
the tensor −∇ logn.

(a) Let π denote either k , π0 or D0 logn, then for t(p)− τ ≤ t ≤ t(p)

‖π‖L4(St) ≤ C,(7.8)

‖r−1/2π‖L2(St) ≤ C.(7.9)

(b) Let F denotes either n−1∇2n or n−2∇ṅ, then

(7.10) ‖F‖L2(N−(p,τ)) ≤ C.

(c) For π0, there holds

(7.11) ‖∇Lπ0‖L2(N−(p,τ)) + ‖D0π0‖L2(N−(p,τ)) + ‖∇π0‖L2(N−(p,τ)) ≤ C

Proof. (a) From Lemma 2.2, Proposition 3 and Lemma 3.2 it follows that ‖π‖H1(Σt) ≤
C. Thus (7.8) follows from (7.6) in Proposition 10 and (7.9) follows from Lemma
7.3.

(b) For F = (n−1∇2n, n−2∇ṅ) it follows from Proposition 3, Proposition 4,
Lemma 3.2 and Proposition 7 that

‖∇F‖L1
tL

2
x(M∗) ≤ C and ‖F‖L∞

t L2
x(M∗) ≤ C.

Applying (7.5) to F yields

‖F‖2L2(N−(p,τ)) . ‖F‖L1
tH

1
x(M∗)‖F‖L∞

t L2
x(M∗) . C.

(c) By straightforward calculation, symbolically we have

D0π0 = −n−2∇ṅ+ π · π0,

∇π0 = −n−1∇2n+ π · π0,

∇Lπ0 = a−1n−2∇ṅ− a−1∇π0 − a−1π · π0.

Therefore, (7.11) follows immediately from (7.8) and (7.10). �
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8. Estimates on the null cones

8.1. Structure equations on the null cones. In Section 4 we introduced the
null pair L, L on the null cone N−(p, τ) and define the null second fundamental
forms χ, χ and the Ricci coefficients ζ and ζ. For the null frame (eA)A=1,2, e3 = L,
e4 = L, there hold

DAL = χ
AB
eB + ζAL, DAL = χABeB − ζAL,

DLL = 2ξ
A
eA + 2ωL, DLL = 2ζAeA − 2ωL,

DLL = 2ζ
A
eA, DLL = 0(8.1)

and

DBeA = /∇BeA +
1

2
χABe3 +

1

2
χ
AB
e4,(8.2)

D4eA = /∇4eA + ζ
A
e4,(8.3)

D3eA = /∇3eA + ζAe3 + ξAe4,

where /∇ denotes the covariant differentiation on St.
Let α, β, ρ and σ be the null components of R defined in (4.11). There hold the

following structure equations on null cones (see [5, p.351–360].)

dtrχ

ds
+

1

2
(trχ)2 = −|χ̂|2,(8.4)

dχ̂AB

ds
+ trχχ̂AB = αAB ,(8.5)

d

ds
ζA = −χABζB + χABζB − βA,(8.6)

d

ds
trχ+

1

2
trχtrχ = 2div ζ − χ̂ · χ̂ + 2|ζ|2 + 2ρ.(8.7)

Moreover, ζ verifies the following Hodge system

div ζ = −µ− ρ+
1

2
χ̂ · χ̂ − |ζ|2 −

1

2
aδtrχ− aλtrχ,(8.8)

curl ζ = σ −
1

2
χ̂ ∧ χ̂ ,(8.9)

where µ and µ are the mass aspect functions defined by

µ = −
1

2
D3trχ+

a2

4
(trχ)2 − ωtrχ,(8.10)

µ = D4trχ+
1

2
trχ · trχ,(8.11)

ω =
1

2
(D3 log a+ akNN − aπ0N ).(8.12)

Let N be the unit inward normal to St in Σt and let θ be the second fundamental
form of St, i.e. θAB = g(∇AN, eB). Then there hold

∇NeA = /∇NeA + a−1 /∇AaN,(8.13)

∇AN = θABeB,(8.14)

∇BeA = /∇BeA − θABN,(8.15)

∇NN = −a−1 /∇AaeA.(8.16)
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We introduce the new null pair L′ := T +N , L′ := T −N . Then L = −a−1L′

and L = −aL′. Let χ′, χ′, ζ′, ζ ′, ν be the Ricci coefficients corresponding to the null

frame (eA)A=1,2, e
′
3 = L′, e′4 = L′. Then

χ = −a−1χ′, χ = −aχ′, ζ = ζ′, ζ = ζ ′

and

χ′
AB = θAB − kAB,(8.17)

χ′
AB

= −θAB − kAB ,(8.18)

ζ′A = /∇A log a+ ǫA,(8.19)

ζ′
A
= /∇A logn− ǫA,(8.20)

ν = − /∇N logn+ δ − λ.(8.21)

8.2. Proof of Theorem 4.5. The main purpose of this subsection is to prove
Theorem 4.5 concerning the boundedness of N1[/π] under the bootstrap assumptions
(BA1)–(BA3) on N−(p, τ) with 0 < τ ≤ i∗ and E0τ ≤ 1 for any p ∈ MI , where /π
is defined by (4.14) and the Sobolev norm N1[F ] for any St tangent tensor field F
is defined by (4.12). We can restate Theorem 4.5 in the following form, since the
estimates for λ are trivial.

Proposition 12. Let /π be the St tangent tensor field defined in (4.14), and let
π̄ := (k,−∇ logn). Then, under the bootstrap assumptions (BA1)–(BA4) with
E0τ ≤ 1, there hold

‖r−1π̄‖L2(N−(p,τ)) ≤ C,(8.22)

‖ /∇/π‖L2(N−(p,τ)) ≤ C,(8.23)

‖ /∇L/π‖L2(N−(p,τ)) ≤ C.(8.24)

We have obtained in Theorem 4.4 and (7.11) that

(8.25) ‖ /∇π̄‖L2(Cu) + ‖∇Lπ̄‖L2(Cu) ≤ C.

In view of (8.14), (8.15) and (8.1), (8.3), we can symbolically write

(8.26) /∇/π = /∇π̄ + trθ · /π + θ̂ · /π

and also in view of dt
ds = −(an)−1,

(8.27) /∇L/π = ∇Lπ̄ + /π · ζ + (an)−1.

In order to show Proposition 12, we need three auxiliary lemmas. We will use
the following norms for Σt tangent tensor fields F on null cones N−(p, τ)

‖F‖q
Lq

xL
∞

t (N−(p,τ))
:=

∫

S2

sup
t∈Γω

(

vt|F |
q
g

)

dµS2 ,

‖F‖q
Lq

ωL∞

t (N−(p,τ))
:=

∫

S2

sup
t∈Γω

|F |qgdµS2 .

where vt is defined by (7.1), and Γω, ω ∈ S
2, denotes the portion of an incoming

null geodesic initiating from p in the time slab [t(p) − τ, t(p)]. In the following
argument we will suppress N−(p, τ) in these norms for simplicity.



IMPROVED BREAKDOWN CRITERION FOR EINSTEIN VACUUM EQUATIONS 35

Lemma 8.1. For any St tangent tensor field F , there hold the estimates

(8.28) ‖r−1/2F‖L2
xL

∞

t
+ ‖F‖L4

xL
∞

t
. N1[F ],

(8.29) ‖F‖2L4
xL

∞

t
.
(

‖ /∇LF‖L2 + ‖r−1F‖L2

)

‖F‖L∞

ω L2
t
.

Proof. We refer to [7, 13] for the proof of (8.28). In the following we will prove
(8.29). Let vt be defined by (7.1). We first integrate along any past null geodesic
initiating from p to get

(8.30) vt|F |
4 = lim

t→t(p)
(vt|F |

4)−

∫ t(p)

t

d

dt′
(vt′ |F |

4)dt′.

For the estimate of the first term on the right of (8.30), we proceed as follows.
Let ϕ be a smooth cut-off function defined on [t(p) − τ, t(p)] verifying 0 ≤ ϕ ≤ 1,
ϕ(t(p)) = 1 and suppϕ ⊂ [t(p)− τ/2, t(p)]. Then

(8.31) lim
t→t(p)

vt|F |
4 =

∫ t(p)

t(p)−τ

(

d

dt
(vt|F |

4)ϕ4 + 4vt|F |
4ϕ3 d

dt
ϕ

)

dt.

Since | ddtϕ| . (t(p) − t)−1, we have from Lemma 7.1 that | ddtϕ|v
1
2
t . 1. Using

0 ≤ ϕ ≤ 1, it then follows from (8.30) and (8.31) that

(8.32) ‖F‖4L4
xL

∞

t
=

∫

S2

sup
t(p)−τ≤t≤t(p)

(vt|F |
4) . I + II,

where

I =

∫

S2

∫ t(p)

t(p)−τ

∣

∣

∣

∣

d

dt
(vt|F |

4)

∣

∣

∣

∣

dt, II =

∫

S2

∫ t(p)

t(p)−τ

v
1/2
t |F |4.

Since
d

dt
(vt|F |

4) = −na
(

trχvt|F |
4 + 4vt|F |

2 /∇LF · F
)

,

we have

I .
(

‖v
1/2
t /∇LF‖L2

ωL
2
t
+ ‖trχv

1/2
t F‖L2

ωL
2
t

)

‖F‖L∞

ω L2
t
‖v

1/2
t |F |2‖L2

ωL∞

t

.
(

‖ /∇LF‖L2 + ‖trχF‖L2

)

‖F‖L∞

ω L2
t
‖F‖2L4

xL
∞

t
.

By the bootstrap assumption (BA2) and Lemma 7.1 we have

‖trχF‖L2 .

∥

∥

∥

∥

trχ−
2

s

∥

∥

∥

∥

L∞

τ‖r−1F‖L2 + ‖r−1F‖L2

. (E0τ + 1)‖r−1F‖L2 . ‖r−1F‖L2.

Therefore

I .
(

‖ /∇LF‖L2 + ‖r−1F‖L2

)

‖F‖L∞

ω L2
t
‖F‖2L4

xL
∞

t
.

It is easy to see that

|II| . ‖F‖L2
ωL

2
t
‖F‖L∞

ω L2
t
‖v

1/2
t |F |2‖L2

ωL∞

t
. ‖r−1F‖L2‖F‖L∞

ω L2
t
‖F‖2L4

xL
∞

t
.

Combining the estimates for I and II with (8.32) gives (8.29). �
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Lemma 8.2. For any St tangent tensor field F verifying

(8.33) /∇LF +
m

2
trχF = G · F +H

with m ≥ 1 an integer and G a tensor field of suitable type, if limt→t(p) r(t)
mF = 0

and supω∈S2

∫ t(p)

t(p)−τ na|G|
2dt ≤ ∆2

0, the following estimates hold

‖F‖L2
ωL

2
t
. eC∆0τ

1/2

‖H‖L2,(8.34)

‖r
1
2F‖L2

ωL∞

t
. eC∆0τ

1/2

‖H‖L2.(8.35)

Proof. In what follows, we will use Lemma 7.1 to compare v
1/2
t , r, s and t(p) − t

if necessary. Since d
dtvt = −natrχvt, along any past null geodesic initiating from p

we have

d

dt
(vmt |F |2) = −2navmt 〈H + F ·G,F 〉

With the help of the limt→t(p) r
m|F | = 0, it follows for t(p)− τ ≤ t ≤ t(p) that

vmt |F |2 = 2

∫ t(p)

t

navmt′ 〈H + F ·G,F 〉 ≤ 2

∫ t(p)

t

navmt′
(

|F ||H |+ |F |2|G|
)

.

By a simple argument we can derive

v
m/2
t |F | ≤ exp

(

∫ t(p)

t

|G|na

)

∫ t(p)

t

nav
m/2
t′ |H | exp

(

−

∫ t(p)

t′
na|G|

)

dt′.

In view of supω∈S2

∫ t(p)

t(p)−τ
na|G|2dt ≤ ∆2

0, we have exp(
∫ t(p)

t
na|G|) ≤ eC∆0τ

1/2

.

Thus by using Lemma 7.1 and m ≥ 1, we have

|F | ≤ eC∆0τ
1/2

v
−m/2
t

∫ t(p)

t

v
m/2
t′ |H |nadt′

. eC∆0τ
1/2

(t(p) − t)−1

∫ t(p)

t

r|H |dt′.(8.36)

To derive (8.34), we integrate the above inequality along a null geodesic initiating
from vertex p. By the Hardy-Littlewood inequality

∥

∥

∥

∥

1

s

∫ s

0

|f |

∥

∥

∥

∥

L2
s

. ‖f‖L2
s

it follows that

‖F‖L2
t
. eC∆0τ

1/2

∥

∥

∥

∥

∥

1

t(p)− t

∫ t(p)

t

r|H |

∥

∥

∥

∥

∥

L2
t

. eC∆0τ
1/2

‖rH‖L2
t
.(8.37)

Integrating (8.37) with respect to the angular variable ω ∈ S
2 yields (8.34).

Next we multiply (8.36) by r
1
2 to obtain

sup
t(p)−τ≤t≤t(p)

r
1
2 |F | . eC∆0τ

1/2

‖rH‖L2
t
,

which, by taking the L2
ω norm, gives (8.35). �
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In view of (8.5) and Lemma 8.2, we are able to prove the following estimates for
χ̂.

Lemma 8.3. For χ̂ there hold the estimates

(8.38) ‖r−1χ̂‖L2 + ‖r1/2χ̂‖L2
ωL

∞

t
+ ‖ /∇Lχ̂‖L2 ≤ C,

(8.39) ‖χ̂‖L4
xL

∞

t
≤ CE

1/4
0 .

Proof. We will use the transport equation (8.5), i.e.

(8.40) /∇Lχ̂+ trχχ̂ = α.

Recall that rχ̂ → 0 as t→ t(p), see [13]. Recall also that ‖α‖L2 ≤ C, see Theorem
4.4. It then follows from Lemma 8.2 that

‖r1/2χ̂‖L2
ωL∞

t
+ ‖χ̂‖L2

ωL2
t
≤ C.

Next we use (8.40) again to estimate ‖ /∇Lχ̂‖L2. With the help of the bootstrap
assumption (BA2) and the comparability of r, s and t(p)− t given in Lemma 7.1,
we have

‖trχ χ̂‖L2 .

∥

∥

∥

∥

trχ−
2

s

∥

∥

∥

∥

L∞

‖rχ̂‖L2
tL

2
ω
+ ‖r−1χ̂‖L2 ≤ C.

Thus, from (8.40) it follows

‖ /∇Lχ̂‖L2 . ‖trχχ̂‖L2 + ‖α‖L2 ≤ C.

We therefore complete the proof of (8.38).
By making use of (8.29) and (8.38) together with the bootstrap assumption

(BA3) we obtain

‖χ̂‖L4
xL

∞

t
. (‖ /∇Lχ̂‖L2 + ‖r−1χ̂‖L2)

1
2 ‖χ̂‖

1
2

L∞

ω L2
t
≤ CE

1/4
0

which gives (8.39). �

Now we are ready to complete the proof of Proposition 12.

Proof of Proposition 12. We first prove (8.22). Let |π̄| := |π̄|g. It is easy to check

/∇L(s
−1|π̄|2) + trχs−1|π̄|2 = s−1(trχ−

2

s
)|π̄|2 + s−2|π̄|2g + 2s−1∇Lπ̄ · π̄.

We integrate the above equation along the null cone N−(p, τ). By Lemma 7.1, it
is easy to see

∫

St
s−1|π̄|2 → 0 as t → t(p). Therefore, by integration by parts we

obtain
∫

N−(p,τ)

(

s−2|π̄|2 + s−1(trχ−
2

s
)|π̄|2 + 2s−1∇Lπ̄ · π̄

)

nadµγdt =

∫

St(p)−τ

s−1|π̄|2.

By Lemma 7.1 and (7.9) in Proposition 11 we have
∣

∣

∣

∣

∣

∫

St(p)−τ

s−1|π̄|2

∣

∣

∣

∣

∣

. ‖r−1/2π̄‖2L2(St(p)−τ )
≤ C.

By (BA2), Lemma 7.1 and (7.9),
∣

∣

∣

∣

∣

∫

N−(p,τ)

nas−1(trχ−
2

s
)|π̄|2dµγdt

∣

∣

∣

∣

∣

≤ CE0τ ≤ C.
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By (8.25) we have
∣

∣

∣

∣

∣

∫

N−(p,τ)

s−1∇Lπ̄ · π̄nadµγdt

∣

∣

∣

∣

∣

. ‖∇Lπ̄‖L2‖s−1π̄‖L2 ≤ C‖s−1π̄‖L2 .

Therefore

(8.41) ‖s−1π̄‖2L2 ≤ C + C‖s−1π̄‖L2

which implies ‖s−1π̄‖L2 ≤ C. Consequently, in view of Lemma 7.1, (8.22) follows.
As a byproduct, we have from (BA2) and Lemma 7.1 that

(8.42) ‖trχπ̄‖L2 . ‖s−1π̄‖L2 +

∥

∥

∥

∥

trχ−
2

s

∥

∥

∥

∥

L∞

τ‖s−1π̄‖L2 ≤ C(1 + E0τ) ≤ C.

Next we will show (8.23). we will use the equation (8.26), i.e.

(8.43) /∇/π = /∇π̄ + trθ · /π + θ̂ · /π.

Using θAB = −aχAB + kAB, we have from (7.8) and (8.39) that

‖θ̂ · /π‖L2 . ‖/π‖L4 (‖k‖L4 + ‖χ̂‖L4) ≤ C
(

E
1/4
0 + 1

)

τ1/2 ≤ C.

Since trθ = −atrχ+ δABkAB, we have from (7.8) and (8.42) that

‖trθ/π‖L2
tL

2
x
. ‖k‖L4‖/π‖L4 + ‖trχ/π‖L2 ≤ C.

Consequently, in view of (8.25) and (8.43), (8.23) follows immediately.
In view of (8.27) and (8.20), (8.24) follows immediately from (8.25) and (7.8). �

8.3. Estimates for Ricci coeffients.

Lemma 8.4. For the Ricci coefficient ζ and the null lapse a there hold

‖r
1
2 ζ‖L2

ωL∞

t
+ ‖r−1ζ‖L2 + ‖ /∇Lζ‖L2 ≤ C,(8.44)

‖r
1
2 /∇ log a‖L2

ωL∞

t
+ ‖r−1 /∇ log a‖L2 + ‖ /∇L /∇ log a‖L2 ≤ C.(8.45)

Proof. From the transport equation (8.6) we have

(8.46) /∇Lζ +
1

2
trχ · ζ = −χ̂ · ζ + χ · ζ − β.

Since (BA3) implies ‖χ̂‖L∞

ω L2
t
≤ E

1/2
0 with E0τ ≤ 1, it follows from Lemma 8.2 and

the relation χ = χ̂+ 1
2 trχγ that

‖r
1
2 ζ‖L2

ωL∞

t
+ ‖r−1ζ‖L2 . ‖β‖L2 + ‖χ̂ · ζ‖L2 + ‖trχ · ζ‖L2

From Theorem 4.4 we have ‖β‖L2 ≤ C. Recall that ζ = /∇ logn − ǫ which is a

combination of terms in /π. By (8.42) we have ‖trχ ζ‖L2 ≤ C. Therefore

‖r1/2ζ‖L2
ωL∞

t
+ ‖r−1ζ‖L2 ≤ C (E0τ + 1) + ‖χ̂ · ζ‖L2 .

In view of (7.8) in Proposition 11, (8.39) in Lemma 8.3, and E0τ ≤ 1, we have

‖r
1
2 ζ‖L2

ωL∞

t
+ ‖r−1ζ‖L2 ≤ C + τ1/2‖χ̂‖L4

xL
∞

t
‖ζ‖L∞

t L4
x
≤ C.

Consequently, it follows from (8.46), (BA2) and (BA3) that ‖ /∇Lζ‖L2 ≤ C. We
thus obtain (8.44).

In order to show (8.45), we use the relation ζ = /∇ log a+ ǫ. By Proposition 12,

‖r
1
2 ǫ‖L2

ωL
∞

t
+ ‖ǫ‖L2

ωL
2
t
+ ‖ /∇Lǫ‖L2 ≤ C.
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Thus, the estimates for /∇ log a follows. �

Lemma 8.5. For the µ defined by (8.11) there holds ‖µ‖L2 ≤ C on N−(p, τ).

Proof. Recall that by (8.7), µ = 2divζ − χ̂ · χ̂+ 2|ζ|2 + 2ρ. We have from Theorem
4.4, Proposition 11 and Theorem 4.5 that

‖µ‖L2 . ‖ /∇ζ‖L2 + ‖ζ‖2L4 + ‖ρ‖L2 + ‖χ̂ · χ̂‖L2 . C + ‖χ̂ · χ̂‖L2.

Recall also the relation χ̂ ′ = −χ̂′−2η̂, we have from (8.39) and Proposition 11 that

‖µ‖L2 . C + ‖χ̂‖L4 (‖χ̂‖L4 + ‖k‖L4) ≤ C.

The proof is thus complete. �

In the following we summarize the estimates obtained so far in this section.

Proposition 13. There exists universal constants δ0 > 0 and C∗ > 0 such that,
under the bootstrap assumptions (BA1)–(BA3) with E0τ ≤ 1, if τ < min{i∗, δ0}
then there hold

‖r−
1
2π‖L2(St,u) ≤ C,(8.47)

‖π‖L4(St,u) ≤ C,(8.48)

N1[/π](p, τ) ≤ C,(8.49)

‖n−1∇2n, n−2∇ṅ‖L2 ≤ C,(8.50)

‖r
1
2 (χ̂, π̄, ζ, /∇ log a, θ̂)‖L2

ωL∞

t
≤ C,(8.51)

‖(χ̂, π̄, ζ, /∇ log a, θ̂)‖L2
tL

2
ω
≤ C,(8.52)

‖ /∇L(χ̂, ζ, /∇ log a, θ̂)‖L2 ≤ C,(8.53)

where π = (n−1∂t log n, π̄).

The above estimates provide the intermediate steps toward the proof of Theorem
4.6. The complete proof however requires more estimates on χ̂, ζ and ζ as follows.
Since the arguments are rather lengthy, we will report them in [14].

Proposition 14. There exists universal constants δ0 > 0 and C∗ > 0 such that,
under the bootstrap assumptions (BA1)–(BA4) with E0τ ≤ 1, if τ < min{i∗, δ0}
then there hold

∥

∥

∥

∥

trχ−
2

s

∥

∥

∥

∥

L∞

≤ C∗,(8.54)

‖χ̂‖L∞

ω L2
t
+ ‖ζ‖L∞

ω L2
t
≤ C∗,(8.55)

‖ν‖L∞

ω L2
t
+ ‖ζ‖L∞

ω L2
t
≤ C∗,(8.56)

N1[χ̂, ζ, /∇ log a, θ̂](p, τ) ≤ C∗,(8.57)

‖r
1
2 ( /∇trχ, µ)‖L2

xL
∞

t
+ ‖( /∇trχ, µ)‖L2 ≤ C∗,(8.58)

on the null cone N−(p, τ) for all p ∈ MI.

The estimates in Proposition 13 and Proposition 14 gives Theorem 4.6. Thus,
we may use a bootstrap argument, as explained in Section 4, to conclude that all
the estimates in the above two propositions hold on the null cones N−(p, τ) for all
p ∈ MI with τ = min{i∗, δ∗} for some universal constant δ∗ > 0.
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We conclude this section with an application to estimate ‖π‖L2
uL

2
ω(Int(St,u))

,

where, for any Σ tangent tensor F,

‖F‖2
L2

uL
2
ω(IntSt,u)

=

∫ u

um

∫

St,u′

r′
−2

|F |2gadµγdu
′

with r′ = r(t, u′).

Proposition 15. For π = (n−1∂t logn, π̄), there holds

(8.59) ‖π‖L2
uL

2
ω(Int(St,u))

≤ C.

Proof. From (8.4), (8.10), (8.12) and (8.8), we can derive

(8.60) /∇N trχ′ +
1

2
(trχ′)2 = −

1

2
δtrχ′ + 2λtrχ′ − χ̂′(χ̂′ + η̂)− ( div ζ + |ζ|2 + ρ),

which, multiplied by |π| := |π|g, implies

∇N (trχ′|π|g
2) + trθ(trχ′|π|2g)−

1

2
|trχ′π|2g

=

{

−
3

2
δtrχ′ − χ̂′(χ̂′ + η̂)− ( div ζ + |ζ|2 + ρ)

}

|π|2 + 2trχ′∇Nπ · π,

In view of Lemma 7.2, integrating the above equation over Int(St,u) gives

1

2

∫ u

um

∫

St,u′

(trχ′)2|π|2adµγdu
′

= −

∫

St,u

trχ′|π|2 +

∫ u

um

∫

St,u′

(

−2∇Nπ · trχ′π + ρ|π|2
)

adµγdu
′

+

∫ u

um

∫

St,u′

(

3

2
δtrχ′ + |ζ|2 + χ̂′(χ̂′ + η̂)

)

|π|2adµγdu
′

+

∫ u

um

∫

St,u′

−ζ · /∇(|π|2a)dµγdu
′(8.61)

By (BA2), Lemma 7.1 and (7.9),
∣

∣

∣

∣

∣

∫

St,u

trχ′|π|2dµγ

∣

∣

∣

∣

∣

. ‖r−1/2π‖2L2(St,u)
≤ C.

By Lemma 2.2, Proposition 3 and (3.16),
∣

∣

∣

∣

∣

∫ u

um

∫

St,u′

∇Nπ · trχ′πadµγdu
′

∣

∣

∣

∣

∣

. ‖∇Nπ‖L2(Σt)‖trχ
′π‖L2(Σt) ≤ C‖trχ′π‖L2(Σt)

and
∣

∣

∣

∣

∣

∫ u′

um

∫

St,u

3

2
δtrχ′|π|2adµγdu

′

∣

∣

∣

∣

∣

. ‖k‖L6(Σt)‖π‖
2
L6(Σt)

+ ‖π‖3
L3(Int(St,u))

. (‖∇k‖L2(Σt) + ‖π‖H1(Σt))‖π‖
2
H1(Σt)

≤ C.



IMPROVED BREAKDOWN CRITERION FOR EINSTEIN VACUUM EQUATIONS 41

By Lemma 2.1 and (7.8),
∣

∣

∣

∣

∣

∫ u

um

∫

St,u′

ρ|π|2adµγdu
′

∣

∣

∣

∣

∣

. ‖ρ‖L2(Σt)‖π‖
2
L4(IntSt,u)

≤ C(u − um)1/2.

By (8.19) we have
∣

∣

∣

∣

∣

∫ u

um

∫

St,u′

ζ /∇(a|π|2)dµγdu
′

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ u

um

∫

St,u′

( /∇ log a|π|2ζ + /∇|π|2ζ)adµγdu
′

∣

∣

∣

∣

∣

. ‖ /∇π‖L2(Int(St,u))
sup

um≤u′≤u

(

‖π‖L4(St,u′ )‖ζ‖L4(St,u′ )

)

(u− um)1/2

+

∫ u

um

∫

St,u′

(|ζ|2|π|2 + |ζ||π|3)adµγdu
′.

In view of Lemma 2.2, Proposition 3 and (3.16) we derive

‖ /∇π‖L2(Int(St,u))
≤ ‖∇π‖L2(Σt) ≤ C,

while in view of (8.57), (8.28) and (7.8) we have

sup
um≤u′≤u

‖ζ‖L4(St,u′ ) ≤ C, sup
um≤u′≤u

‖π‖L4(St,u′ ) ≤ C.

Consequently,
∫ u

um

∫

St,u′

(

|ζ|2|π|2 + |ζ||π|3
)

adµγdu
′ . sup

um≤u′≤u

(

‖ζ‖2L4(St,u′ )‖π‖
2
L4(St,u′ )

)

(u − um)

+ sup
um≤u′≤u

(

‖ζ‖L4(St,u′ )‖π‖
3
L4(St,u′ )

)

(u− um)

≤ C(u− um).

Therefore, we obtain
∣

∣

∣

∣

∣

∫ u

um

∫

St,u′

ζ /∇(a|π|2g)dµγdu
′

∣

∣

∣

∣

∣

≤ C(1 + (u − um)1/2)(u− um)1/2.

In view of (8.57), (8.28) and (7.8), by a similar argument we obtain
∣

∣

∣

∣

∣

∫ u

um

∫

St,u′

(|ζ|2 + χ̂′(χ̂′ + η̂))|π|2adµγdu
′

∣

∣

∣

∣

∣

.

∫ u

um

∫

St,u′

(|π|2(|χ̂|2 + |ζ|2) + |χ̂| · |π|3)dµγdu
′

≤ C(u − um)

Combining all the above estimates with (8.61) and noting that u− um . τ . 1, it
yields

‖trχπ‖2
L2(Int(St,u))

≤ C + C‖trχπ‖L2(Int(St,u))

which implies ‖trχπ‖L2(Int(St,u))
≤ C. This together with (BA2) implies the

desired inequality. �



42 QIAN WANG

9. Proof of Theorem 4.7

In this section we will complete the proof of Theorem 4.7. For any p ∈ MI , let
Φ(t) be the integral curve of T through p with Φ(t(p)) = p. For each pt := Φ(t),
we will represent k(pt) in terms of a Kirchoff-Sobolev formula over a past null cone
with vertex pt. We then use the estimates established in the previous section to

obtain
∫ t(p)

t(p)−τ |k(Φ(t))|
2ndt ≤ C for some universal constant C.

9.1. Derivation of Kirchoff Parametrix. We first revisit the formulation of
Kirchoff Parametrix in [10]. We define A to be a Σt tangent 2-tensor verifying

(9.1) (DLA)ij +
1

2
trχAij = 0 on N−(p, τ), lim

t→t(p)−
(t(p)− t)Aij = Jij ,

where J ∈ TpΣt(p) and |J |g = 1. This A is similar to the one defined in [12] but
with the modification that A is Σt tangent. Since we have obtained in Propositions
13 and 14 the estimates on
∥

∥

∥

∥

trχ−
2

s

∥

∥

∥

∥

L∞

, ‖ /∇trχ‖L2, ‖r
1
2 /∇trχ‖L2

xL
∞

t
, ‖r−1(ζ + ζ)‖L2 , ‖χ̂, ν, ζ‖L∞

ω L2
t
, R(p, τ)

on the null cone N−(p, τ), we may adapt the proof in [12] to obtain the following
estimates on A.

Proposition 16. For the tensor A defined by (9.1) there hold

(9.2) ‖ /∇A‖L2(N−(p,τ)) + ‖r
1
2 /∇A‖L2

xL
∞

t (N−(p,τ)) + ‖rA‖L∞(N−(p,τ)) ≤ C,

where C is a universal constant.

Now we revisit the Kirchoff-Sobolev formula for any Σt tangent 2-tensor ΨI ,
I = {µ, ν}, see [10, 15]. According to the definition of ✷ΨI , we have under the null
frame (eA)A=1,2, e3 = L, e4 = L that

✷ΨI = −
1

2
D43ΨI −

1

2
D34ΨI + δABDABΨI .

By (8.1),

(9.3) D43ΨI = D4(D3Ψ)I − 2ζADAΨI .

It is easy to see

D34ΨI −D43ΨI = Rµ
α
34Ψαν +Rν

α
34Ψµα.

By (8.2), we obtain

δABDABΨI = δAB /∇A /∇BΨI −
1

2
trχD4ΨI −

1

2
trχD3ΨI .

Therefore

✷ΨI = −D4(D3Ψ)I + 2ζADAΨI −
1

2
trχD4ΨI −

1

2
trχD3ΨI

+ δAB /∇A /∇BΨI −
1

2
Rµ

α
34Ψαν −

1

2
Rν

α
34Ψµα.
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We multiply the above equation by AI and integrate over N−(p, τ) to obtain
∫

N−(p,τ)

✷ΨIA
I = Ξ1 + Ξ2 +

∫

N−(p,τ)

(

2ζADAΨI ·A
I + δAB /∇A /∇BΨI ·A

I
)

−
1

2

∫

N−(p,τ)

(Rµ
α
34Ψαν +Rν

α
34Ψµα)A

µν .(9.4)

where

Ξ1 =

∫

N−(p,τ)

(

−D4(D3Ψ)I ·A
I −

1

2
trχD3ΨI ·A

I

)

,

Ξ2 = −
1

2

∫

N−(p,τ)

trχD4ΨI ·A
I .

For Ξ1, integrating by parts gives

Ξ1 =

∫

N−(p,τ)

(

−D4(D3Ψ)I ·A
I − trχD3ΨI ·A

I +
1

2
trχD3ΨI ·A

I

)

= −

∫

St(p)−τ

D3ΨI ·A
I + lim

t→t(p)

∫

St

D3ΨI ·A
I

+

∫

N−(p,τ)

(

D4A
I +

1

2
trχAI

)

·D3ΨI

Since limt→t(p)(t(p)− t)2A = 0, we have in view of (9.1) that

Ξ1 = −

∫

St(p)−τ

D3ΨI ·A
I +

∫

N−(p,τ)

Ω1(Ψ),

where

Ω1(Ψ) = D4A
0i ·D3Ψ0i +D4A

i0 ·D3Ψi0.

For the term Ξ2, in view of (9.1) and the fact that Ψ is Σt tangent, we first have

−
1

2
trχD4ΨI ·A

I = −
1

2

(

D4(ΨI ·A
Itrχ)−D4A

I · trχ ·ΨI −D4trχ ·ΨI ·A
I
)

= −
1

2

(

D4(ΨI ·A
Itrχ) +

1

2
trχtrχAI ·ΨI −D4trχ ·ΨI ·A

I

)

,

thus integration by parts yields

Ξ2 =

∫

N−(p,τ)

1

2
µAI ·ΨI −

1

2

(

∫

St(p)−τ

ΨI ·A
Itrχ− lim

t→t(p)

∫

St

ΨI ·A
Itrχ

)

,

where µ is defined in (8.11).

In view of trχ′ = −trχ′ − 2δABkAB , we have

lim
t→t(p)

1

2

∫

St

ΨI ·A
Itrχ = −4πn(p)〈Ψ, J〉,

Hence

Ξ2 =

∫

N−(p,τ)

1

2
µAI ·ΨI −

1

2

∫

St(p)−τ

ΨI ·A
Itrχ− 4πn(p)〈Ψ, J〉.
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Therefore we derive

4πn(p)〈Ψ, J〉 =

∫

N−(p,τ)

(

−✷ΨI ·A
I +

1

2
µΨI ·A

I +Ω1(Ψ)

)

−

∫

St(p)−τ

(

D3ΨI ·A
I +

1

2
trχΨI ·A

I

)

+

∫

N−(p,τ)

(

2ζBDBΨI ·A
I − /∇BΨI · /∇

B
AI
)

−
1

2

∫

N−(p,τ)

(Ri
α
34Ψαj +Rj

α
34Ψiα)A

ij .(9.5)

We apply (9.5) to the tensor field Ψ = k and obtain

Theorem 9.1. Let p ∈ MI , let Φ(t) be the integral curve of T through p with
Φ(t(p)) = p, and let pt = Φ(t). Let A be a Σt tangent 2-tensor on J −(p, τ) verifying

(9.1) on each null cone Cu := N−(pt, t− t(p) + τ), where u = u(t) =
∫ t

t0
n|Φdt for

tm := t(p)− τ ≤ t ≤ t(p). Then there holds

4πn(pt)〈k(pt), J〉 = I(pt) + J(pt) +K(pt) + L(pt) + E(pt) +

∫

Cu

Ω1(k),(9.6)

where

I(pt) = −

∫

Cu

A ·✷k,

J(pt) = −
1

2

∫

Cu

A ·R(·, ·, L, L) · k,

K(pt) =

∫

Cu

(

− /∇
B
A · /∇Bk + 2ζB · /∇Bk ·A

)

,

L(pt) =
1

2

∫

Cu

µA · k,

E(pt) = −

∫

Stm,u

(

D3k ·A+
1

2
trχk ·A

)

.

9.2. Main estimates. In the following we will use the representation formula given
in Theorem 9.1 to show that

∫ t(p)

t(p)−τ

|k(pt)|
2ndt ≤ C

for some universal constant C. We proceed as follows.
• Estimate on I(pt): We will use the expression of ✷k given in Proposition 8,

which symbolically can be written as

✷k = −n−3ṅ∇2n+ n−2∇2ṅ+ π · π · π + k · ∇2n+ k · Ric+ π · ∇k − n−1k.



IMPROVED BREAKDOWN CRITERION FOR EINSTEIN VACUUM EQUATIONS 45

It then follows from Proposition 16 that

|I(pt)| .

∫

Cu

r−1
(

|ṅ∇2n|+ |∇2ṅ|+ |π|3 + |k||∇2n|+ |k||Ric|+ |π||∇k|+ |k|
)

. ‖∇2n‖L2(Cu)‖r
−1ṅ‖L2(Cu) + ‖r−1∇2ṅ‖L1(Cu) +

∫

Cu

r−1|π|3

+ ‖r−1k‖L2(Cu)‖∇
2n‖L2(Cu) + ‖Ric‖L2(Cu)‖r

−1k‖L2(Cu)

+ ‖r−1π‖L2(Cu)‖∇k‖L2(Cu) + ‖r−1k‖L1(Cu).

Therefore, with the help of Proposition 11 and Proposition 12, we have

|I(pt)| . ‖r−1ṅ‖L2(Cu) + ‖r−1∇2ṅ‖L1(Cu) +

∫

Cu

r−1|π|3

+ ‖Ric‖L2(Cu) + ‖∇k‖L2(Cu) + C.

Now we consider
∫ t(p)

tm
|I(pt)|2dt. Using du

dt = n, we have from Proposition 15

that
∫ t(p)

tm

‖r−1ṅ‖2L2(Cu(t))
ndt =

∫ u(t(p))

u(tm)

‖r−1ṅ‖2L2(Cu)
du

=

∫ u(t(p))

u(tm)

∫ tM (u)

tm

∫

St′,u

r−2|ṅ|2nadµγdt
′du

=

∫ t(p)

tm

∫ u(t(p))

u(t′)

∫

St′,u

r−2|ṅ|2nadµγdudt
′

.

∫ t(p)

tm

‖r−1ṅ‖2L2(Int(St′,u(t(p))))
dt′

≤ Cτ.

By similar argument, we have from Lemma 2.2 that
∫ t(p)

tm

(

‖Ric‖2L2(Cu)
+ ‖∇k‖2L2(Cu)

)

ndt ≤ Cτ.

Therefore
∫ t(p)

tm

|I(pt)|
2ndt . Cτ +

∫ t(p)

tm

‖r−1∇2ṅ‖2L1(Cu)
ndt+

∫ t(p)

tm

(∫

Cu

r−1|π|3
)2

ndt.

By using the Minkowski inequality and Proposition 7 we have
(

∫ t(p)

tm

‖r−1∇2ṅ‖2L1(Cu)
ndt

)1/2

=





∫ u(t(p))

u(tm)

(

∫ tM (u)

tm

r−1‖an∇2ṅ‖L1(St′,u)
dt′

)2

du





1/2

≤

∫ t(p)

tm

(

∫ u(t(p))

u(t′)

r−2‖an∇2ṅ‖2L1(St′,u)
du

)1/2

dt′

.

∫ t(p)

tm

‖∇2ṅ‖L2(Int(St′,u(t(p))))
dt′ ≤ C.
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Finally, we have from Proposition 11 and (8.22) that
∫

Cu

r−1|π|3 .

∫ tM (u)

tm

‖r−1π‖L2(St′,u)
‖π‖2L4(St′,u)

dt′ ≤ C(tM (u)− tm)1/2.

Thus, by Lemma 7.1 we obtain
∫ t(p)

tm

(∫

Cu

r−1|π|3
)2

ndt ≤ Cτ2.

Combining the above estimates we therefore obtain
∫ t(p)

tm

|I(pt)|
2ndt ≤ C + Cτ2 . C.

• Estimate on J(pt): It follows from Proposition 16, Theorem 4.4 and Proposi-
tion 12 that

|J(pt)| . ‖rA‖L∞(Cu)‖r
−1k‖L2(Cu)R(pt, τ + t− t(p)) ≤ C.

Thus
∫ t(p)

tm

|J(pt)|
2ndt ≤ C(t(p)− tm) ≤ Cτ ≤ C.

• Estimate on K(pt): It follows from the Hölder inequality that

|K(pt)| . ‖ /∇A‖L2(Cu)‖ /∇k‖L2(Cu) + ‖rA‖L∞(Cu)‖r
−1ζ‖L2(Cu)‖ /∇k‖L2(Cu).

Thus, we obtain from Proposition 16, Theorem 4.4, and Proposition 12 that |K(pt)| ≤
C which gives

∫ t(p)

tm

|K(pt)|
2ndt ≤ C(t(p) − tm) ≤ Cτ ≤ C.

• Estimate on L(pt): It follows from Proposition 16 and Proposition 12 that

|L(pt)| ≤ ‖rA‖L∞(Cu)‖r
−1π̄‖L2(Cu)‖µ‖L2(Cu) . ‖µ‖L2(Cu).

From Lemma 8.5 we then obtain |L(pt)| ≤ C. Therefore
∫ t(p)

tm

|L(pt)|
2ndt ≤ C(t(p) − tm) ≤ Cτ ≤ C.

• Estimate on E(pt): We first have from Proposition 16 that

|E(pt)| . r−1‖D3k‖L1(Stm,u) + r−1‖trχk‖L1(Stm,u).

Using the definition of r we then obtain

|E(pt)| . ‖D3k‖L2(Stm,u) + r−1‖trχk‖L1(Stm,u).

Recall

trχ′ = −trχ′ − 2δABkAB.

Since (BA1) implies 1/2 ≤ a ≤ 3/2. Thus, with the help of (BA2), it yields

‖trχk‖L1(Stm,u) .

∥

∥

∥

∥

trχ−
2

s

∥

∥

∥

∥

L∞(Cu)

‖k‖L1(Stm,u) + r−1‖k‖L1(Stm,u) + ‖k‖2L2(Stm,u)

. r−1‖k‖L1(Stm,u) + ‖k‖2L2(Stm,u)

. ‖k‖L2(Stm,u) + r‖k‖2L4(Stm,u)
.
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Consequently

|E(pt)| . ‖D3k‖L2(Stm,u) + r−1‖k‖L2(Stm,u) + ‖k‖2L4(Stm,u)
.

Therefore, using du
dt = n, we have

∫ t(p)

tm

|E(pt)|
2dt .

∫ u(t(p))

u(tm)

|E(pt)|
2du

. ‖D3k‖
2
L2(Σtm ) + ‖r−1k‖2L2(Int(Stm,u))

+ ‖k‖4L4(Σtm )

It follows from Lemma 2.2 and Proposition 15 that
∫ t(p)

tm

|E(pt)|
2dt . ‖D3k‖

2
L2(Σtm ) + C.

Recall that L = −a(T −N). So D3k = −a(D0k −∇Nk). Recall also that D0k =
−n−1∇2n+Ric+ kTrk. Thus

‖D3k‖L2(Σtm ) . ‖∇2n‖L2(Σtm ) + ‖Ric‖L2(Σtm ) + ‖k‖2L4(Σtm ) + ‖∇k‖L2(Σtm ).

It follows from Lemma 2.2 and Proposition 3 that ‖D3k‖L2(Σtm ) ≤ C. Therefore

∫ t(p)

tm

|E(pt)|
2ndt ≤ C.

• Estimate on
∫

Cu
Ω1(k): By straightforward calculation we have Ω1(k) = A ·

π̄ · π̄ · π̄. It follows from Proposition 16 that

|Ω1(k)| .

∫

Cu

r−1|π̄|3.

Therefore, one can use the similar argument in the estimate of I(pt) to get
∫ t(p)

tm

|Ω1(k)|
2ndt .

∫ t(p)

tm

∣

∣

∣

∣

∫

Cu

r−1|π̄|3
∣

∣

∣

∣

2

ndt ≤ Cτ2 ≤ C.

10. Proof of main theorem I

In this section, based on Theorem 1.2, we will follow the idea in [12] to give
the proof of Theorem 1.1. According to the local existence theorem given in [12,
Proposition 6.1], see also [5, Theorem 10.2.1], it suffices to show that the quantity

R∗ := ‖Ric‖H2(Σt) + ‖k‖H3(Σt)(10.1)

on each slice Σt with t0 ≤ t < t∗ is uniformly bounded.
Since (M,g) is a vacuum space-time, by virtue of the Bianchi identity R verifies

a wave equation of the form

(10.2) ✷R = R ⋆R,

Based on higher energy estimates it is standard to show that

(10.3) ‖DR(t)‖2L2 . ‖DR(t1)‖
2
L2 +

∫ t

t1

‖R(t′)‖2L∞dt′

and

(10.4) ‖D2R(t)‖2L2 . ‖D2R(t1)‖
2
L2 +

∫ t

t1

‖DR(t′)‖2L2‖R(t′)‖2L∞dt′
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for all t0 ≤ t1 ≤ t < t∗. The derivation has been given in [12] under the assumption
(1.9), the argument however depends only on the condition (A1).

Thus, the derivation of the L∞ bound of R is a crucial step. As in [10] one can
represent R(p), for each p ∈ M∗, by a Kirchoff-Sobolev formula over the null cone
N−(p, τ), where τ > 0 is a universal constant such that i∗(p, t) ≥ τ whose existence
is guaranteed by Theorem 1.2. One can then follow the delicate argument in [12]
to derive that

(10.5) ‖R(t)‖L∞ . τ−1 sup
t′∈[t−2τ,t−τ/2]

(

‖R(t′)‖L2 + ‖DR(t′)‖L2 + ‖D2R(t′)‖L2

)

.

The derivation of (10.5) requires the estimates on

R(p, τ),

∥

∥

∥

∥

trχ−
2

s

∥

∥

∥

∥

L∞(N−(p,τ))

, ‖χ̂, ν, ζ, ζ‖L∞

ω L2
t(N

−(p,τ)),

‖µ, /∇trχ‖L2(N−(p,τ)), ‖r1/2 /∇trχ‖L2
xL

∞

t (N−(p,τ)), ‖r−1(ζ + ζ)‖L2(N−(p,τ))

which are provided by Proposition 13 and Proposition 14 under the condition (A1).
Combining the estimates (10.3)–(10.5) gives

‖R(t)‖H2 . τ−1 sup
t′∈[t−τ,t−τ/2]

‖R(t′)‖H2 .

Iterating this estimate as many times as needed, in steps of size τ/2, yields

(10.6) sup
t∈[t0,t∗)

‖R(t)‖H2 ≤ C,

where C is a positive constant depending only on Q0, K0, |Σ0|, t∗, I0 and the initial
data ‖R(t0)‖H2 .

Now we are ready to show that the quantity R∗ defined by (10.1) is uniformly
bounded for all t0 ≤ t < t∗. Although the argument is standard, we will include
the details for completeness.

We have defined in (2.5) the electric and magnetic parts E, H of the curvature
tensor R. It is known that

∇ikjm −∇jkim = ǫij
lHlm,(10.7)

Rij − kiak
aj +Trk kij = Eij .(10.8)

From Lemma 2.1 and Lemma 2.2 it follows that

(10.9) ‖Ric‖L2 + ‖k‖H1 + ‖E‖L2 + ‖H‖L2 ≤ C,

where and in the following all the norms are taken over a fixed slice Σt which is
suppressed for simplicity.

In order to obtain the derivative estimates, by straightforward calculation we
have symbolically

∇mEij = DmR0i0j − k ·H,(10.10)

∇mHij = Dm
⋆R0i0j − k · E,(10.11)

∇2
mnEij = D2

mnR0i0j − kmnD0R0i0j −∇(k ·H),(10.12)

∇2
mnHij = D2

mn
⋆R0i0j − kmnD0

⋆R0i0j −∇(k ·E).(10.13)
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From (10.10) and (10.11) it follows that

‖∇E‖L2 ≤ ‖DR‖L2 + ‖k‖L6‖H‖L3

‖∇H‖L2 ≤ ‖DR‖L2 + ‖k‖L6‖E‖L3

Applying Lemma 2.3 to ‖E‖L3 and ‖H‖L3, and using (10.6) and (10.9), we obtain

‖∇E‖L2 + ‖∇H‖L2 ≤ C + C
(

‖∇E‖
1/2
L2 + ‖∇H‖

1/2
L2

)

which implies

(10.14) ‖∇E‖L2 + ‖∇H‖L2 ≤ C.

Next we will derive the estimate for ‖∇2k‖L2. It follows from divk = 0 and
(10.7) that △k = Ric · k +∇H . Differentiating it and commuting ∇ with ∆ gives

△∇k = Ric · ∇k +∇Ric · k +∇2H

which together with (10.8) implies

(10.15) △∇k = k · k · ∇k + E · ∇k +∇E · k +∇2H.

Multiplying (10.15) by ∇k and integrating over Σt yields
∫

Σt

|∇2k|2 .

∫

Σt

(

|k|2|∇k|2 + |E||∇k|2 + |∇E||k||∇k|+ |∇H ||∇2k|
)

. ‖k‖2L6‖∇k‖2L3 + ‖E‖L6‖∇k‖2L12/5 + ‖∇E‖L2‖∇k‖L3‖k‖L6

+ ‖∇H‖L2‖∇2k‖L2 .

With the help of Lemma 2.3, (10.9) and (10.14), we have

‖∇2k‖2L2 ≤ C
(

‖∇2k‖L2 + ‖∇2k‖
1/2
L2

)

which implies ‖∇2k‖L2 ≤ C. By the Sobolev embedding we obtain

(10.16) ‖k‖L∞ + ‖k‖H2 ≤ C.

Using (10.16) and (10.6), it follows easily from (10.8), (10.12) and (10.13) that

‖∇Ric‖L2 + ‖∇2Ric‖L2 + ‖∇2E‖L2 + ‖∇2H‖L2 ≤ C.

Finally we derive the estimate on ‖∇3k‖L2. By differentiating (10.15), commut-
ing ∇ with △ and using (10.8) we obtain

△∇2k = k · k · ∇2k + k · ∇k · ∇k + E · ∇2k +∇E · ∇k +∇2E · k +∇3H.

Multiplying this equation by ∇2k and integrating over Σt it follows
∫

Σt

|∇3k|2 .

∫

Σt

(

|k|2|∇2k|2 + |k||∇k|2|∇2k|+ |E||∇2k|2 + |∇E||∇k||∇2k|
)

+

∫

Σt

(

|k||∇2E||∇2k|+ |∇2H ||∇3k|
)

. ‖k‖2L∞‖∇2k‖2L2 + ‖k‖L∞‖∇k‖2L4‖∇2k‖L2 + ‖E‖L∞‖∇2k‖2L2

+ ‖∇E‖L4‖∇k‖L4‖∇2k‖L2 + ‖k‖L∞‖∇2E‖L2‖∇2k‖L2

+ ‖∇2H‖L2‖∇3k‖L2

≤ C + C‖∇3k‖L2.

Therefore ‖∇3k‖L2 ≤ C. The proof is thus complete.
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11. Appendix

In this appendix we give the proof of Lemma 7.3. It suffices to consider the case
that F is an arbitrary smooth function on Σt.

On IntSt,uM (t) = ∪um(t)≤u≤uM (t)St,u, we have the family of diffeomorphisms

Ψu,t : S
2 → St,u, Ψu,t(ω) = GΦ(tM (u))(t, ω),

where G is defined in (1.13). Relative to this radial foliation, the metric g on
IntSt,uM can be written as

a2du2 + γABdωAdωB,

where γ is the restriction of g on St,u. By Lemma 7.1, γSt,u ≈ r(t, u)2γS2 . Moreover,
F (x), x ∈ St,u, can be reparametrized by

F (x) = F (u, ω) := F ◦Ψu,t(ω), ω ∈ S
2.

Due to Lemma 7.1 and (7.4), for a scalar function f ,

(11.1) ‖f‖2L2(St,u)
≈

∫

S2

|f |2(u − um)2dµS2 .

For a fixed leaf St,u0 with um(t) < u0 ≤ uM (t) and any x ∈ St,u0 , F (x) =
F (u0, ω) with ω ∈ S

2, we define with um := um(t)

m(x) :=
2

u0 − um

∫

u0−um
2

0

F (−z + u0, ω)dz

G(x) := m(x) − F (x).

Lemma 7.3 can be proved by establishing the following estimates

r−1/2‖G‖L2(St,u0 )
. ‖∇F‖L2(Σt)(11.2)

r−1/2‖m‖L2(St,u0 )
. ‖F‖H1(Σt),(11.3)

where r = r(t, u0).
To see (11.2), according to definition, we have

G(x) =
2

u0 − um

∫

u0−um
2

0

∫ 1

0

d

dℓ
F (u0 − ℓz, ω)dℓdz.(11.4)

It is easy to see

d

dℓ
F (u0 − ℓz, ω) = −z · ∂uF (u0 − ℓz, ω).

In view of (BA1) and N = −a−1∂u, it follows that

(11.5)

∣

∣

∣

∣

d

dℓ
F (u0 − ℓz, ω)

∣

∣

∣

∣

. z|∇NF |(u0 − ℓz, ω).

Since 0 < z ≤ u0−um

2 , we have from (7.4) that z . r′, where r′ = r(t, u0 − ℓz).
Thus, by combining (11.4) with (11.5) and setting v(y) := ‖r′∇F (−y+ u0, ·)‖L2

ω
it
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yields

r−1/2‖G‖L2(St,u0 )
. r−1/2

∫ 1

0

dℓ

∫
u0−um

2

0

r′‖|∇F (−ℓz + u0, ·)|g‖L2
ω
dz

. r−1/2

∫ 1

0

ℓ−1

∫

ℓ(u0−um)
2

0

v(y)dydℓ

. r−1/2

∫

u0−um
2

0

∫ 1

2y
u0−um

ℓ−1dℓv(y)dy

. (u0 − um)−
1
2

∫

u0−um
2

0

ln

(

u0 − um
2y

)

v(y)dy.

By Hölder inequality,

r−1/2‖G‖L2(St,u0 )
.

(∫ 1

0

(lnσ)2dσ

)1/2
(

∫
u0−um

2

0

|v(y)|2dy

)1/2

. ‖∇F‖L2(IntSt,u0)
.

This proves (11.2). Using (7.4), with r′′ := r(t, u0 − z) ≈ u0 − um − z,

‖m‖L2(St,u0 )
.

∫
u0−um

2

0

‖r′′
1/3
F‖L6

ω
r′′

− 1
3 du′ . r

1
2 ‖F‖L6(IntSt,u0 )

.

By Sobolev embedding, (11.3) follows.
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