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Abstract

Let My = Ute[to,z*) 3; be a part of vacuum globally hyperbolic space-time
(M, g), foliated by constant mean curvature hypersurfaces X; with 79 < #sx <
0. We improve the existing breakdown criteria for Einstein vacuum equations
by showing that the foliation can be extended beyond 7« provided the second
fundamental form k and the lapse function n satisfy the weaker condition

tx
/t (kllpooqz,) + IV lognlloo(s,y)di < oc.
0

The proof of this result relies on the second main result of the paper, which gives
a uniform lower bound on the null radius of injectivity. © 2011 Wiley Periodi-
cals, Inc.

1 Introduction

Let (M, g) be a (3+1)—dimensional vacuum globally hyperbolic space-time, i.e.,
g is a Lorentz metric of signature (—, +, +, +) satisfying the Einstein vacuum
equations

Ric(g) =0,

and every causal curve intersects a Cauchy surface at precisely one point. If (M, g)
has a compact, constant mean curvature (CMC) Cauchy surface ¥ with mean
curvature tg < 0, then there exists a foliation of a neighborhood of 3¢ by compact
CMC surfaces, and the mean curvature varies monotonically from slice to slice.
The CMC conjecture states that there is a foliation in M of CMC Cauchy surfaces
with mean curvatures taking on all allowable values; i.e., the mean curvatures take
all values in (—o0, 0) if X is of Yamabe type —1 or 0, while the mean curvatures
take on all values in (—o0, 00) if X is of Yamabe type +1. Some progress has
been made [3]; the CMC conjecture, however, remains open. An important step to
attack the CMC conjecture is to provide a reasonable breakdown criterion to detect
what may happen when the CMC foliation cannot be extended.

In order to set up the framework, in this paper we assume that M is a part of
the space-time (M, g) foliated by CMC hypersurfaces ¥; with mean curvature ¢
satisfying 7o < ¢ < 14 for some 79 < tx < 0. We shall refer to X := X, as the
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initial slice. Thus, My = UtE[to,t*) s with £, < 0 and there is a time function ¢
defined on M, monotonically increasing toward the future, such that each X; is
a level hypersurface of ¢ with the lapse function n and the second fundamental
form k defined by

n:=(—gD:,Dr))"V? and k(X,Y):= —gDxT.Y),

where T denotes the future directed unit normal to X;, D denotes the space-time
covariant differentiation associated with g, and X and Y are vector fields tangent to
3;. Let g be the induced Riemannian metric on X;, and let V be the correspond-
ing covariant differentiation. For any coordinate chart O C X with coordinates
x = (x',x2,x3),let x® =1, x!, x2, x3 be the transported coordinates on [tg, ?x)
x O obtained by following the integral curves of T. Under these coordinates the
metric g takes the form

(1.1) g = —n?dt* + gij dx' dx’.
Moreover, relative to these coordinates there hold the evolution equations

(1.2) 0:8ij = —2nkij,

(1.3) dtkij = =ViVin +n(R;j + Trkk;; — 2k,~ak}’),
and the constraint equations

(1.4) R — |k|? 4+ (Trk)? = 0,

(1.5) V/kj; —V; Trk =0,

on each X, where R;; and R denote the Ricci curvature and the scalar curvature
of the induced metric g on X;, and Tr k denotes the trace of k, i.e., Trk = g" k;;.
Since Trk = t on X, it follows from the above equations that

(1.6) divk =0
and

(1.7) —An+kPPn=1
on each X;.

The first important breakdown criterion was given by Anderson [2], who showed
that if
(1.8) sup ”R”Loo(zt) = Ay <
tE[to,t+)
for all t, < 0, then the CMC foliation exists for all values in [tg,0), where R
denotes the Riemannian curvature tensor of the space-time (M, g).
Recently Klainerman and Rodnianski [12] provided a new breakdown criterion

which shows that the CMC foliation can be extended beyond any value 7, < O for
which

(1.9) sup  ([kllLee(z,) + IVIogn|Le(s,)) = Ao < o0.
t€[to,tx)
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This condition refers only to the second fundamental form k and the lapse func-
tion n, which requires one degree less of differentiability, in contrast to the break-
down criterion of Anderson. Moreover, (1.8) implies (1.9) by purely elliptic esti-
mates. Therefore, the result in [12] is a significant improvement. The argument
in [12] relies heavily on the tools from the theory of hyperbolic equations. The
analogous result has been extended to nonvacuum space-time in [13].

If we consider the Einstein equation expressed relative to the wave coordinates,
by energy estimates one can see that the breakdown does not occur unless

[
(1.10) / 19g]| oo d = o0.
11

0

This condition, however, is not geometric since it depends on the choice of a full
coordinate system. Observe that the components of the second fundamental form k
and Vn can be viewed as part of the components of dg. It is natural to ask if we
have an integral form of breakdown criterion involving k and n only. The first main
result of the present paper confirms this and provides a geometric counterpart of
(1.10), which can be viewed as an improved version of the breakdown criterion of
Klainerman and Rodnianski.

THEOREM 1.1 (Main Theorem I'). Let (M, g) be a globally hyperbolic develop-
ment of X foliated by the CMC level hypersurfaces of a time function t < 0. Then
the space-time together with the foliation ¥; can be extended beyond any value
t« < 0 for which

Ly
(1.11) (”k”LOO(Ez) + ||VlOgI’l||Loo(Et))dl =Koy < o0.

to
More precisely, the CMC foliation of the space-time can be extended to [tg, t« + 6x)
for some 0 < 8, < —tx depending only on Ky, | o/, to, and t« and suitable norms
of the initial data.

We fix the convention for the deformation tensor of T, expressed relative to an
orthonormal frame {eg = T, e1, €2, €3}, as

7gp = —8De,T.eg), a,f=0,1,2,3.
It is easy to check that
(1.12) moo =0, mo; =—Vilogn, mio=0, my=kyj, i, j=1223.

Consequently, condition (1.11) can be formulated as

[
(A1) el = | Ielscspds = Ko < .
to

To see the difficulties posed by the weaker condition (1.11), let us review the
mechanism in the proof of [12]. In order to continue the foliation, according to the

! Our method applies equally well to the case where the X, are asymptotically flat and maximal,
i.e., Trk = 0, and can also be extended to Einstein space-time with matters.
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local existence theorem given in [5, theorem 10.2.1], one must establish a global
uniform bound for the curvature tensor R and LZ-bounds for its first two covariant
derivatives. Since (M, g) is a vacuum space-time, by virtue of the Bianchi identity,
R verifies a wave equation of the form

(1.13) O,R = R * R,

where [J denotes the covariant wave operator 1 = D*D,,. Based on higher en-
ergy estimates, it is standard to show that the Z2-bounds for DR and DR can be
bounded in terms of the L°°-norm of R. Thus, the derivation of the L°°-bound
of R is a crucial step. In order to achieve this goal, Klainerman and Rodnianski
[10] succeeded in representing R(p), for each p € M., by a Kirchhoff-Sobolev
formula of the form

R(p) = — / A - (R x R) + other terms
N=(p,7)

where A is a 4-covariant tensor defined as a solution of a transport equation along
N~ (p, ) with appropriate initial data at the vertex p, and N~ (p, T) denotes the
portion of the null boundary N/~ (p) in the time interval [t (p) — 7, ¢(p)]. The past
null cone A/~ (p) is in general an achronal Lipschitz hypersurface ruled by the set
of past null geodesics from p. In order to derive all necessary estimates, one must
show that '~ (p) remains a smooth hypersurface in the time slab [t(p) — 7, 7(p))
for some universal constant T > 0. Therefore, it is necessary to provide a uniform
lower bound for the past null radius of injectivity at all p € M.

Let us recall briefly the definition of the past null radius of injectivity at p; one
may consult [11] for more details. We parametrize the set of past null vectors
in T,M in terms of w € S2, the standard sphere in R3. Then, for each w € S2, let
I, be the null vector in 7, M normalized with respect to the future, unit, timelike
vector T, by

g(ly. Tp) =1,

and let 'y, (s) be the past null geodesic with initial data I',,(0) = p and %Fw 0) =
l. We define the null vector field L on N~ (p) by

d
L(Ty(s)) = 2= Tu(s)

which may only be smooth almost everywhere on N~ (p) and can be multivalued
on a set of exceptional points. We can choose the parameter s with s(p) = 0 so
that

DL =0 and L(s)=1.

This s is called the affine parameter.
The past null radius of injectivity i«(p) at p is then defined to be the supremum
over all the values 5o > 0 for which the exponential map

gp : (s,0) = Ty(s)



BREAKDOWN CRITERION FOR EINSTEIN EQUATIONS 25

is a global diffeomorphism from (0, s9) x S? to its image in AN/ (p). It is known
that i«(p) > 0 for each p, N~ (p) is smooth within the null radius of injectivity,
and
ix(p) = min{s«(p). l«(p)}.

where s«(p), the past null radius of conjugacy at p, is defined to be the supremum
over all values so > 0 such that the exponential map g, is a local diffeomorphism
from (0, s9) x S? to its image in N~ (p), and /. (p), the past cut locus radius at
p, is defined to be the smallest value of 5o for which there exist two distinct null
geodesics 'y and I'; from p with I'; (sg) = ['2(so).

For the CMC foliation, it is convenient to introduce the past null radius of in-
jectivity ix(p,t) at each p with respect to the global time function . We define
i«(p,t) to be the supremum over all the values t > 0 for which the exponential
map

(1.14) Gp 1 (t,0) => Tp(s(1))

is a global diffeomorphism from (¢(p) — z,1(p)) x S? to its image in N~ (p). We
remark that s is a function not only depending on # but also on w; we suppress
just for convenience. It is known that

ix(p,t) = min{s«(p, 1), lx(p, 1)},

where s (p, t) is defined to be the supremum over all values ¢ > 0 such that the
map G, is a local diffeomorphism from (¢(p) — 7,1(p)) x S? to its image, and
l«(p,t) is defined to be the smallest value of ¢ > 0 for which there exist two
distinct null geodesics "1 (s(¢)) and T2 (s(¢)) from p that intersect at a point with
t=t(p) —rt.

In [11] Klainerman and Rodnianski provided a uniform lower bound on the null
radius of injectivity under the assumption (1.9). In order to complete the proof of
Theorem 1.1, we provide a uniform lower bound on the null radius of injectivity
under the weaker condition (1.11), which is contained in the second main result of
the present paper.

THEOREM 1.2 (Main Theorem II). Assume that M is a globally hyperbolic de-
velopment of X satisfying condition (1.11). Then for all p € My there holds
(1.15) ix«(p,t) > min{S«, t(p) — to},

where 8+ > 0 is a universal constant.”

In order to prove this result, it is useful to review the essential steps in the work
of Klainerman and Rodnianski in [11]. The first step is to show that

(1.16) Sx(p,t) > min{l«(p, 1), 6«}

2 A universal constant always means a constant depending only on Qg, Ko, |Xo|, tx, and the
number /o > 0 such that [ 1 < (gij) < Io on the initial slice X, where Q¢ denotes the Bel-
Robinson energy on the initial slice £¢, which will be defined in Section 2. Throughout this paper
C always denotes a universal constant.
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for some universal constant §, > 0. This can be achieved by showing that

<C

) 2
r —_——
IO
with T := min{/«(p, 1), 8« }, where y is the null second fundamental form y4p =
g(D4L,ep) of the two-dimensional spacelike surface S; := N~ (p) N X; with
(e4)4=1,2 being a frame field tangent to S;. The analogue has been carried out
in [7, 8, 9, 14] for geodesic foliations under the boundedness assumption of the
curvature flux. In order to adapt those arguments to prove (1.17) for the time
foliations, one needs to show that 7(p) — ¢ and s are comparable and the geodesic
curvature flux (see [11]) is bounded, both of which rely on the relation

(1.17) sup
N=(p,7)

(1.18) la—1| < % on N7 (p, 1),

where a, the null lapse function, is defined by a~! := g(T, L) with a(p) = 1.
Note that along a null geodesic
dt da

I —(an)™!, 7= v, v:=knny — Vylogn,

where N is the unit inward normal of S; in X;. If (1.9) is satisfied, one can see that
(1.18) holds for z(p) — 8« <t < t(p) for some universal §x > 0, and consequently
s and ¢(p) — t are comparable. However, under the weaker condition (1.11) only,
it is highly nontrivial to obtain (1.18). We observe that (1.18) can be achieved by
establishing
(1.19) = sup /an|v|2dt <C

weS2
w

2 .
IMIZee 200 pory

where I'y, is the portion of a past null geodesic that initiates from p and is contained
in N7 (p, t) for some universal constant §x > 0.

How to obtain such an estimate on v is the first difficulty we encounter. Under
the assumption (1.11) only, it relies crucially on the following two ingredients:?

(1) there holds for Yv the decomposition
(1.20) Yv=VLP +Q

with P and Q appropriate S; tangent tensors;
(2) there holds

(1.21) 1Y (v, P L2(nv—(p,ey) + IV, P2 (v-(p,2y) = C-

As one of the important observations in our work, the decomposition of the form
(1.20) is derived in [15, 16]. How to obtain the estimate for v in (1.21) still poses a
substantial difficulty due to the weaker assumption. The estimate for V logn of

3 Y denotes the connection with respect to the induced metric y on S;.
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the form (1.21) can be obtained by elliptic estimates and the trace inequality. By
an elliptic estimate, in view of

(1.22) divk =0, curlk = H,

where H denotes the magnetic part of R, we can only derive ||k || e = C,
which, by the classic trace theorem, loses a half derivative if restricted to the null
cone. However, (1.21) requires the L? control of one derivative of kK on null
cones. Hence we must adopt a novel approach, which significantly surpasses the
one via an elliptic estimate and the trace inequality. This motivates the application
of the tensorial wave equation for k, which symbolically is given by

(1.23) Ok = k-Ric+n"2V%i+7n-Vk—n"aVn+n-n-n+k-Vn—n"'k.
We then prove by the energy method that the k-flux satisfies

(1.24) IVEI L2 (p.0y) + VLK L2 (0= (pory) < C

which schematically gives the desired control on k.

The treatment for P and Q in (1.20) has to be coupled with the proof of a series
of estimates for the Ricci coefficients on the null hypersurface N~ (p, t) including
(1.17) by a delicate bootstrap argument. Hence, under condition (1.11) only, (1.17),
(1.18), and (1.19) should be proved simultaneously. The proof, though close to the
spirit of the works [7, 8, 9, 14], is very involved and entails new observations on
the delicate structures of Ricci coefficients. We refer the reader to [15, 16] for full
details.

The next step is to find a good system of local space-time coordinates under
which g is comparable to the Minkowski metric. More precisely, for a sufficiently
small constant € > 0, one needs to show that there exists a constant §, > O,
depending only on € and some universal constants, for which each geodesic ball
Bs, (p) with p € X, admits local coordinates x = (x!, x2, x3) such that under
the corresponding transport coordinates x® = ¢, x!, x2?, x3 the metric g has the
expression (1.1) with

(1.25) In —n(p)| <€ and |[gi; —dij| <€

on Bs_ (p) x [t(p) — 8+.t(p)]. The existence of such local coordinates together
with (1.17) will enable us to show that N~ (p, 8«) is close to the flat cone and
consequently [y (p, 1) > Ox.

The part on 7 in (1.25) can be established by elliptic estimates on # and d;n. The
derivation of the result for g under the weaker condition (1.11), however, presents
one of the core difficulties, which invokes new methods and a second application
of (1.23).

By the Bel-Robinson energy bound Q(¢) < C and a result of Anderson [1],
one can control the lower bound of the harmonic radius on X; such that with the
coordinates x = (x!, x2, x3) on Bs (p) C %,

1
|gij (x,1(p)) — 8ij| < S
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The challenge is to control the time evolution of g. Using (1.2), one has*

t(p)
(1.26) lgij (x,2(p)) — gij (x,0)| £ f k(x.t")ldt'.
t

If (1.9) holds, or more generally, if

t(p)
(1.27) [ ) s,y = Ao <0
t
for some ¢ > 1, then with &4 sufficiently small

1
(1.28) 1217 (¥, 1(p)) — gij (x, 1) < Ayt (p) — 1)~V < 5 €

Without a uniform positive lower bound on the null radius of injectivity, deriv-
ing (1.27) only under assumption (1.11) is essentially to attack the L? curvature
conjecture, which is still an open and extremely hard problem. Under assumption
(1.11), our strategy is to establish directly that

t(p)
(1.29) sup/ lk(x,t)|?>dt’ < C.
t

X€EX
This together with (1.26) gives

t(p) 1/2
|gi,~<x,z<p)>—g,-,-<x,z)|s(/t |k(x,z'>|2dr’) (t(p) = 1)1/

S t(p) -0/,
which implies |g;; (x,1(p))—gij(x,1)| < %e as long as §4 is appropriately chosen.
The major part of the present paper is therefore to establish (1.29) under the
weaker condition (1.11). To this end, we will use the Kirchhoff parametrix to
represent k as
—Ann(p)k(p)-J = / Ok - A + other terms
N=(p,)

for any § < i«(p.t), where J is any 2-covariant tensor at p tangent to X;(,) and
A is the X-tangent tensor defined by

1

DrA;j + -tryA;; =0 on N~ (p. 1), lim (t(p) —t)Aiy; = J.
2 t—t(p)

It can be shown that |[r Al co(n—(p,r)) < 1 together with other estimates on A,
where r = /(47)71|S;| and |S;| denotes the area of S;. Thus

n(p)lk(p)| < / r~1|0k| + other terms.
N=(p,7)

4 We use ®; < &, to mean that &; < C P, for some universal constant C.
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Next we let p move along an integral curve ®(¢) of T to get the representations
of k at all points on this curve. Then we can reduce the proof of (1.29) to showing

t(p)
(1.30) /
t(p)—t

In view of (1.23), we have to employ various estimates of k and »n on the null
cones, which will be established by delicate analysis. We emphasize that due to
the severe loss of derivatives arising from the restriction from space-time to null
cones, under the assumption of (1.11) only, the Kirchhoff parametrix is not pow-
erful enough to establish the Strichartz estimate in (1.27). One of the key inno-
vations of our approach lies in using (1.30) to prove (1.29), which is sufficient
for the purpose of controlling the evolution of metrics. As seen in (1.30), inte-
grating n(p)?|k(p)|? with p moving along the time axis leads to an integral over
Ute(t(p)_t’t(p)) N~ (®(t),t —t(p) + 1), which tackles the difficulty coming from
restriction and enables us to obtain the sharp estimate in (1.29).

2
Ok + -] dr S 1.

N=(2@),t—t(p)+7)

This paper is organized as follows. In Section 2 we collect some preliminary
results that will be used frequently. In Section 3 we establish various elliptic esti-
mates on the lapse function #n; in particular, we show that n can be bounded from
below and above by positive universal constants. In Section 4 we provide the sketch
of the proof of Theorem 1.2. We describe how to use the bootstrap argument to es-
tablish (1.17) and other related estimates on the null cones. We then show how to
use estimate (1.29) to obtain a good system of local space-time coordinates, which
is crucial for completing the proof of Theorem 1.2. The proof of (1.29) occupies
the next five sections. In Section 5 we derive a tensorial wave equation for & and
in Section 6 we provide the estimate for the so-called k-flux, which will be defined
later. In Section 7 we provide some trace estimates on the surfaces S;. We then use
these results in Section 8 to establish various estimates for k, n, and y on the null
cones. In Section 9 we adapt the Kirchhoff-Sobolev formula in [10] to represent
the second fundamental form k, through which we give the proof of (1.29) under
condition (1.11) and thus complete the proof of Theorem 1.2. Finally, in Section 10
we complete the proof of Theorem 1.1.

2 Preliminaries

For the lapse function 7, by using the elliptic equation —An + |k|?n = 1 and
the maximum principle it easily follows that

1
@1 —— <n<

on Et.
Ikl oo cs))

Dl w

In the next section, by virtue of condition (A1) on k, we will show that n in fact
can be bounded from below by a positive constant uniformly for all ¢ € [to, ).
Thus C~! < n < C on M for some universal constant C > 0.
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For each slice X;, we use |X/| to denote its volume. Then, by using 9,g;; =
—2nk;j and Trk =t on X; we have

d
E(|t|3|2t|) = /tz(tzn —3)dug <0.
P
This implies that | |3 |X¢| is decreasing with respect to . Consequently,

|to]? |t

2.2) B = Bl = 5Bl Vi st <
%

2.1 Bel-Robinson Energy

We start with a brief review of Bel-Robinson energy; one may consult [5] for
more details. Associated to the Weyl tensor R, the Bel-Robinson tensor is the full
symmetric, traceless tensor defined by

(2.3) Q[R]aﬁyS = Rot)Ly,uRBASM + *RaAyM*RB)LSlLy
where *R denotes the Hodge dual of R. On each leaf ¥; we introduce the Bel-
Robinson energy

Q) = [ QIR T T. D)y,
z;
Since Ryg = 0, an integration by parts shows for 79 <7 < 7, that

t
Q) = Qo) =3 [ [ 1QIRlugoon® dius, dr'.
05,
Let E and H denote the electric and magnetic parts of the curvature tensor R
defined by
24  EXY)=gRXDTLY) HXY)=g('RXTDTLY).
It is well-known that £ and H are traceless symmetric 2-tensors tangent to X;
with

IRI> = |EI>+|H*, |QIR]| <4(E”+|H|?)
and

Q(T,T,T,T) = |E|* + |H|*.

Therefore

t
Q(r) = Q(r) + 12[ In7 )| Loo(s, ) Q)L
to

By the Gronwall inequality it follows that

t
1) < Qo) exp (12 ||nn||Loo<z,,)dz/)

o
for all ¢t € [tg,t«). Therefore, in view of condition (A1), we obtain the uniform
boundedness of the Bel-Robinson energy.
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LEMMA 2.1. Under condition (Al), there exists a constant C depending only
on Ko and ty such that
Q1) < CQ;
forallt € [ty, tx), where Q(Z) = Q(t).
Consequently, we have the following:

LEMMA 2.2. Let condition (Al) hold. Then on any CMC leaf ¥; C My there
holds

1
(2.5) f (|Vk|2 + Z|k|4) + / IRic|? < Q3.
)2

t

PROOF. The inequality on k follows from [12, prop. 8.4] and Lemma 2.1. The
inequality on Ric then follows from the identity R;; —kik% +Trk k;j = E;;. 0O

2.2 Harmonic Coordinates

For any coordinate chart O C X with local coordinates x = (xl,xz, x3), we

denote by x0 = ¢, x!, x2,x3 the transported coordinates on [tg, zx) X O obtained
by transporting along the integral curves of T. The following is an immediate
consequence of (Al) and (1.2).

PROPOSITION 2.3. Let assumption (A1) hold. There exists a positive constant Cy
depending only on Kq such that, relative to the induced transported coordinates
x0 =1, x1, x2 x3in [to, t+) x O we have

(2.6) Co 617 < gij (1. X)E'ET < Col€.
PROOF. This is [12, prop. 2.4], which was stated under the stronger condition
(1.9); the proof, however, requires only the weaker assumption (A1). U

Using Proposition 2.3, one can derive a uniform lower bound on the volume
radius for all the slices X;; see [11, prop. 4.4]. In view of |Ric|lz2(z,) < C
in Lemma 2.2 and (2.2) on |X;|, we may apply [1, theorem 3.5] to obtain the
following results on the existence of harmonic coordinates.

PROPOSITION 2.4. Let assumption (Al) hold. For any € > 0, there exists ro > 0
depending on €, Qo, Ko, |Zo|, and t« such that every geodesic ball B;(p) C X;

with r < ro admits a system of harmonic coordinates x = (xl,xz,x3) under
which
(2.7) (146718 < gij < (1 + )8y,
(2.8) r / 0% |* dug < e.
Br(p)

We will not use the full strength of this result. The crucial part in our applica-
tions is the existence of local coordinates x = (x!, x2, x®) on each B,,(p) C %,
satisfying (2.7) with ro > 0 depending only on €, Qg, Ko, | o], and 7.
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2.3 Sobolev-Type Inequalities

We will give several Sobolev-type inequalities under assumption (A1l). These
inequalities are useful in establishing various estimates.

LEMMA 2.5. Let assumption (A1) hold on M. Then for any smooth tensor field F
onX; C My and any 2 < p < 6 there holds

3/2)—(3 3/p)—(1/2
@9 FlLees) = CUVFIER I PUFIZIES Y +1F | 2s,).
where C is a constant depending only on K¢y and p.

PROOF. Thisis [12, cor. 2.7]. O

The following inequality is useful in deriving L°°-bounds of certain quantities.

LEMMA 2.6. Let assumption (A1) hold on M. Then for any smooth tensor field F
onX; C Myand3 < p < 6 there holds

3/2)—(@3 3 —(1/2
|Fllees,y < CUVAEIER P IV F RS
+ IVF 2z, + 1 FllL2cs,))-
where C is a constant depending only on Ko and p.

PROOF. By using a partition of unity, the Sobolev embedding W17 (R3)
L>®(R3) with p > 3, and (2.6) in Proposition 2.3, it is easy to derive for any scalar
function f on X; that

[fllLeezy = CUV fllLrsy + 1 f lLrs))-
Now we take f = | F|? in the above inequality. It yields
1F I oos,y < CUVIFPllecm,y + IIFPlLecs,)
=CUVFILrzy + 1FllLr)IIF ooz,

This implies for p > 3 that

[Fllpeos) < CUVFlLrcs,) + 1 FllLrz))-

The desired inequality then follows from Lemma 2.5. O

3 Elliptic Estimates for the Lapse Function »

In this section, we establish a series of elliptic estimates on the lapse function n
together with n~! and 7 := d,n under assumption (Al). These results will be
repeatedly used in later sections. Throughout this paper we will use C to denote a
universal constant.
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3.1 Estimates on n
PROPOSITION 3.1. On each X; C My there holds
IV2nll2s,) + IVal2,) < C.

PROOF. By multiplying equation (1.7) by n and integrating over X;, we obtain
Iz, (|Vn|? + |k|?*n?) = [x, n-Inview of (2.1) and (2.2), this gives || Vn||> < C.
In order to obtain the bound on || Vx| L2(x,)> We use the Bochner identity

/|V2n|2 :/(|An|2—RijViann).
P PP

It then follows from equation (1.7), Lemma 2.2, and the Holder inequality that
IV2nllz2 S NG + 126"/ + IRicl 221 VnllLs < 1+ |Vl
With the help of Lemma 2.2, we have

3/4 1/4
19202 < 1+ V2n]254 V) 5+ V0] o

which together with the bound on || Vn| ;2 implies | V2n |2 < C. g
In order to derive further estimates, we need the following inequality:

LEMMA 3.2. For any 1-form F on X; C M there holds

(3.1 IV?Fll2es,) < CUAF 2,y + IVF 2wy + 1 Fl2s,)-

PROOF. It is well-known that for any 1-form F' on X; there holds the Bochner
identity

1
[ 1882 = [1v2FP =3 [ Risac Rmiac Fa
s P

(3.2) e

+ / RaaVaFiVaFi — / RigacVeFgVakFi.
)P p
Since X; is three-dimensional, the Riemannian curvature tensor is completely de-

termined by its Ricci curvature. Thus, we may use (3.2), the Holder inequality,
Lemma 2.2, Lemma 2.5, and Lemma 2.6 to obtain the estimate

. n1/2 .
IV2FllL2 S IAF L2 + IRicl IV Fllpa + | F ol Ric] 2

L2
3/4 1/4
SIAF|L2 + (IVFIRIVFIS + IVFIlL2).
With the help of Young’s inequality, inequality (3.1) follows immediately. O

PROPOSITION 3.3. On each X; C My there hold

B33) IVl < CUVRlgi(z,) + Ikl (z,):

BG4 IVnle) = C(IVllg e, + RIS DIV RS ),
where 3 < p < 6.
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PROOF. A simple application of Lemma 3.2 to F' = Vn gives
(3.5) IV3nllL2 S IAVAllL2 + V20l + | Va2
By (1.7) and the commutation formula AV;n = V; An + R;; V;n, we can estimate
1AVRll> < IkIZ6IVRlLes + Ikl IVEIL2 + [RiclL2]|VR] Loo.
Plugging this into (3.5) and using Lemma 2.2 and Lemma 2.5 gives
IV3nllz2 S 1VallLee + [Valgr + [lkllze.
Using Lemma 2.6 for the term || Vn|| Lo with p = 4, we then obtain

3/4 1/4
1932 < IVl 20 05 + IVl g1 + Ik oo

This implies (3.3). Inequality (3.4) follows from (3.3) and Lemma 2.6. U
By integrating (3.3) and (3.4) in time, in view of (A1) and Proposition 3.1 we
obtain the following mixed norm estimates.
PROPOSITION 3.4. Let 1 < b < 2. Then there hold
||V3n||L}L§(M*) <C and ||Vn||L¢L§O(M* <C.

3.2 Estimates on n~!

We now show that » is bounded below by a positive constant uniformly for all
to <t < t«. We achieve this by establishing the following estimates.
PROPOSITION 3.5. On each X; C My there hold

V2Dl L2z, + In~Hlpee(s,y < C-

PROOF. We first have from the Bochner identity that

(3.6) IV2( =172 < 1AMz + IRicl 2V~ DI 4

From (1.7) we can derive A(n~1') = 2n73|Vn|?> + n=2 — |k|?>n~!. Consequently,
it follows from the Holder inequality that

1Az S 107 Vala Ve s + klZolln™ s + 2717 4
Combining this inequality with (3.6) and using the Sobolev embedding H! (%) —
LP(X) with 2 < p < 6, which is a consequence of Lemma 2.5, we obtain

IV~ Dle S In7 ' Vnl sV s

3.7) + (I g + k12 ln ™ g
. 1 —
+ [IRic| )7 V(™) s

We need to estimate |[n~1Vn|| 4. To this end, we multiply equation (1.7) by
n~" for some positive integer / and then integrate by parts over X to obtain

(3.8) /(ln_l_1|Vn|2+n_l) = /n—’+1|k|2.

E[ Et
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By using (3.8) with [ = 7 we obtain

1/8 1/8
||n_1Vn||L4§(/ ”‘8|vn|2) (/ 'Vn'G) S o e A N

%y X

In view of Lemma 2.5 and Proposition 3.1 we have ||Vn| ;s < C. In view of
Lemma 2.5 and (3.8) with [ = 5 we also have

1/2
In=2lps S In2lg < (f n_4|k|2) +ln 7 2e S A+ kllzo)lln ™ 70

t
Therefore

_ 3/8 1/4,,. —1,3/4
It nll e < (1 + KIS KD 2,

Combining this inequality with (3.7) and using Lemma 2.2 to bound ||k || 4, ||k |16,
and ||Ric||; 2 yields
V2™ Hl2 <
I~ IV D s + A g + DI g + V0l ga.

Applying Lemma 2.5 to the term ||V (n~!)| 4 and then using Young’s inequality,
we obtain

(3.9 IV Dle < I i + In i

In order to estimate ||[n ™| ;71, we use (3.8) with / = 3 to obtain |[V(n™ )| 2 <
Ikl zalln" 4. Applying Lemma 2.5 to |[n~!||; 4 and using Young’s inequality
we derive

(3.10) IV lr2 S (lklips + kN7 12 2 S Il ige.
The combination of (3.9) and (3.10) gives
IV2( ™Dz + IVG Dz S I Higs + lIn e

Note that (3.8) with [ = 2 gives ||n_1||1242 < ||k||1%4||n_1||L2, which implies
Iln= Y2 < ||k||24 < C. Consequently, [n~!|z2 < C. With the help of
Lemma 2.6 the estimate ||n 7|10 < C follows immediately. O

3.3 Estimatesonn := d;n

With the help of (1.2), (1.3), (1.6), and (1.7) and the fact Trk = ¢, we derive
that

Ai = —4nk Vi Vin + |k|%i — 2kEV nVan + Trk|Vn|?

3.11) - 5
+ 211Rijkl] + 2n|k| Trk.
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Now we multiply equation (3.11) by 7 and integrate over X;. By using the bound-
edness of n and the Holder inequality we obtain

/(IWI2 +k21n%) < (IV2rllL2 + 1VRIZ s + [IRicl g2) 1kl s [17] Lo
e + kN6 172 2.
In view of Lemma 2.2 and Proposition 3.1 we have
/(IWI2 + k210 %) < llallps + lilge < 1Vl + Il
by
Recall that |k|? = |k|? + ¢2/3 and |¢| > |t«| > 0. Thus
IVl + 1121172 < IVAllL> + [AllL2-
We therefore obtain the following:
LEMMA 3.6. On each X; C My, there holds
(3.12) IVillpzs,y + 172,y < C.
Now we are ready to give some mixed-norm estimates on 7.
PROPOSITION 3.7. Let 1 < b < 2. Then there hold
”Vzﬁ”LtlL}C(/\/Lk <C and ”ﬁHL?Lgo(M*) <C.

PROOF. In view of (A1), it suffices to establish on each X; the inequalities

(3.13) IV2illL2cs,) S Iklipeecs,) + 1.
. < k 3/2—3/p 1
(314) ”n”LOO(Et) ~ ” ||L°°(E,) + 1,

forany 3 < p <6.
By the Bochner identity and the fact |Ric|[;2 < C, we have

2112 112 12
IVZillz. < [ARlZ2 + IVAlZs-

Applying Lemma 2.5 to ||V#i||;4 and using Young’s inequality and (3.12), it fol-
lows that

(3.15) IV2illL> < ARl + lIll2 < 1 AR] L2 + 1.

By virtue of the estimates in Lemma 2.2, Proposition 3.1, and (3.12), it follows
from (3.11) that ||Art]| 2 < ||k|lze + 1. Thus |V ;2 < |lk|lLee + 1, which is
exactly (3.13). Inequality (3.14) follows from Lemma 2.6, (3.13), and (3.12). [
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4 Null Radius of Injectivity: Proof of Main Theorem I1

In this section we sketch the proof of Theorem 1.2. The complete proof is rather
involved and requires a delicate bootstrap argument. For any #9 < f; < tx we
consider the slab My = | J,c; X with I = [to, 11]. We set, for each p € My,

400 ifix(p,t) > t(p) —to,

T(p.t) =
*(p.1) i«(p,t) otherwise,

and define
4.1 i ;= min{is(p.1) : p € My}

Due to the compactness of My, we have i, > 0. In order to complete the proof of
Theorem 1.2, it suffices to show that i, > &« for some universal constant 6 > 0.

We will use the following result concerning the lower bound on the null radius of
injectivity of a globally hyperbolic space-time, which has essentially been proved
in [11].

THEOREM 4.1. Let C™Y <n < C on My for some constant C > 0. Then there
exists a small constant € > 0 depending only on C such that if, for some constant
8« > 0, the three conditions stated below hold for all p € Mj, then there holds
ix > Ox; L.e., the null radius of injectivity satisfies
ix(p.1) > min{d«.1(p) — to}
for all p € M. Those conditions are:
(C1) the null radius of conjugacy satisfies

Sx(p,t) > min{ix, 8x};
(C2) for each t satisfying
0 <t(p)—t <min{ix, 8},

the metric y; on S?, obtained by restricting the metric g on %; to Sy 1=
N~(p) N2, and then pulling it back to S? by the exponential map G(t,-),
satisfies

ly: (X, X) —p(X, X)| < ey(X,X) VX eTS?,

where )3 is the standard metric on S?;

(C3) onUy := I, x Bs, (p) with I, := [t(p) —min{ix, 8+}.t(p)] and Bs, (p) C
X (p) a geodesic ball, there is a system of coordinates x* with x0 =¢
relative to which the metric g is close to the Minkowski metric myg =
—n(p)di? + §;; dx' dx/ in the sense that

|n —n(p)| + |gij —8ij| <€ only.
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Theorem 4.1 provides a general framework to estimate the null radius of in-
jectivity from below. Under condition (1.9), in [11] Klainerman and Rodnianski
showed that conditions (C1)—(C3) hold with a universal constant §« > 0; thus they
derived a universal lower bound on the null radius of injectivity.

In the following we will describe how to verify conditions (C1)—(C3) under as-
sumption (A1). To this end, for each p € M consider the past null cone N~ (p),
let s be its affine parameter, and let S; = N~ (p) N ;. Then S; is diffeomorphic
to S? for each ¢ satisfying t(p) —ix(p.t) <t < t(p). Let y be the restriction of g
to S;, and let |S;| be the corresponding area. The radius of S; is defined to be

4.2) ri=4/@n)71 Sy,

which is a function of ¢ only.

On N~ (p,7) \ {p} with T < ix(p,t) we can define a conjugate null vector L
with g(L, L) = —2 and such that L is orthogonal to the leaves S;. In addition,
we can choose (e4)4=1,2 tangent to S; such that (eq)4=1,2,e3 = L,and ey = L
form a null frame. The null second fundamental forms y and y, the torsion ¢, and
the Ricci coefficient ¢ of the foliation S; are then defined as follows:

xaB =8MDyL.ep), x,. =8D4L,ep),
1 1

In addition, we define tr y = )/AB)(AB and Y4B = XAB — %tr)()/AB. We can
define tr y and ¥ similarly.
We introduce the null lapse function

a l:=g(L,T).
Thena > 0 and a(p) = 1. Itis easy to see that
L=—-a T+ N), L=—-a(T—-N),

where N denotes the unit inward normal to S; in X;. We also introduce the func-
tion
V= —n_IVNn + kNN,

which is relevant to the estimate on a.
For any S;-tangent tensor field F' we define the norm || F ||L2)OL%(N_(I, o) by

weS2 Jt(p)—t weS?2

t(p)
”F”i(%OL%(N_(p,t)) = sup/ |F|?nadt := sup /|F|2nadz,
Ty

where I, denotes the portion of a past null geodesic from p contained in N~ (p, 7).
The following result is sufficient to prove conditions (C1)—(C3) in Theorem 4.1.
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THEOREM 4.2. Let assumption (A1) hold. Then there exist universal constants
8« > 0 and Cyx > 0 such that for any p € M there holds

t(p)
4.3) / |k(®(1))|? dt < Cx
t(p)—t

with © the integral curve of T through p, and

1

2
try ——
s

112
12 L20v-pooyy = C
on any null cones N~ (p, T), where T := min{ix, 8x}.

In fact, the estimate on tr y in (4.4) implies condition (C1); see [4, 6]. Next we

will show that the estimates in (4.4) imply condition (C2). To see this, recall that

% = —na and dis vAaB = 2x4B- Then

d _ _ _
E(S 2yag) = —na(—=2syap + 25 2 yaB).

Let X € T'S? be any vector field. We integrate the above equation along any null
geodesic and note lim;_,;(,)- s()2y() = )3 (see [14]); it follows that

Is()2p(X, X) — p(X, X)| <

t(p) R
/ (2|x| i
t

Let © :=2|y| + |tr x — 2/s|. We then have

tr y —

2 nN—2 /

S0 )s(t) y(X, X)nadt'.
o t(p) o

() 2y (X X) — p(X. X)| < / Ols(t) 2y (X. X) — Y(X. X)na df’

o t(p)
+ y(X, X)/ O(tnadt’.
t

Therefore, it follows from the Gronwall inequality that
Is() 72y (X, X) — y(X. X)| <

o t(p) t(p)
y(X, X)/ Ona dt’ exp (/ O na dt’).
t t

Since 0 < n < 3/t2, estimate (4.4) in Theorem 4.2 implies

1(p)
/ Onadt’ < C((t(p) =)/ + (t(p) = 1)) = C(t(p) = 1)/?
t
and consequently

(4.5) Is72y(X. X) — y(X, X)| < C(t(p) — )/*p(X. X)
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for all #(p) — min{ix, 6«} <t < t(p), where C is a universal constant. Condition
(C2) is thus verified.

The verification of condition (C3), using estimate (4.3), is given in the following
result:

LEMMA 4.3. Let assumption (Al) hold. For any € > 0, there exists a constant
8x > 0 depending only on Qq, Ko, t«, and € such that for every point p € My
there exists on Up := I, x B, (p) with I, = [t(p) — min{ix,dx},t(p)] a system
of transported coordinates t,x = (x',x?, x3) relative to which g is close to the
Minkowski metric m(p) = —n(p)? dt? + 8;; dx' dx’ in the sense that

(4.6) lgij —8ij| <€ and |n—n(p)| <e.

PROOF. It follows from Proposition 2.4 that there exists a constant §og > 0
depending only Ko, Qo, t«, and € such that every geodesic ball Bs,(p) C Zy(p)
admits a system of harmonic coordinates x = (x!, x2, x3) under which

4.7 (1+¢€/2)718; < gij < (1+€/2)8i;.

Under the transported coordinates ¢, x = (x!,x2,x3), let p = (¢(p),0) and let
g = (t, x) be an arbitrary pointin I, x Bs_(p) with I, = [t(p)—min{ix, 6«},1(p)],
where 0 < 84 < 8o is a constant to be determined. By using the equation 0,g;; =
—2nk;j we have

t(p)
< 2/ nlk|dt'.
t

Using the bound 0 < n < 3/, the Holder inequality, and estimate (4.3) in Theo-
rem 4.2, it follows for some universal constant C; > 0 that

t(p)
lgij (t.x) — gij (t(p).x)| = ‘/ drgij (', x)dt'
t

181 (1, %) — g1 (t(p). X)| < C1(1(p) —1)/% < 18,/
In view of (4.7), we thus obtain
lgij (¢, x) = 8ij| < |gij(t.x) — gij (t(p), x)| + |gij (¢ (p). x) — &ij|

€
<87 + 5

4.8)

which gives the first inequality in (4.6) by letting C 18,1/ 2ce /2.
Next we prove the second inequality in (4.6). From Proposition 3.7 we have

t(p)
n(t, x) — n(t(p).x)| < / (e x)ldt’

< (t(p) = )il ar3 o = Ca84",
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while by employing Morrey’s estimate, Lemma 2.5, and Proposition 3.1, we have
[n(t(p), x) = n(t(p).0)] = G284Vl oz, )
= G (192135 1Vl 5+ 191 2)
< 8,

where C, > 0 is a universal constant. Therefore |n(z, x) — n(p)| < 2C28i/4,
which implies the second inequality in (4.3) by further letting 2C28i/ t<e 0

The proof of Theorem 4.2 is based on a delicate bootstrap argument. We first fix
some notation and terminology. Related to the deformation tensor o of T, we

introduce the X;-tangent tensor Ak h“f}n,w, where hg = 85 + T4 T# denotes the

projection tensor. It is easy to see that k;; = h!' h} 7y, and thus this tensor is an
extension of k. We will denote it by the same notation £, i.e.,

(4.9) kap = hEhy .

Note that koo, = koo = 0.
Corresponding to the null vector L, let V7 k be the X;-tangent tensor defined by

VLk,'j = h?thLkaﬂ and let
VLk|? = g g/ "V LkijVikirjr.
We also introduce Yk by ¥ 4kij := V4ki; and set
Vk|? = yAB gl /'Y gki; Vigkisjr.

Corresponding to the second fundamental form k, then, for each p € My, we
introduce on the null cone N'~(p, t) the k-flux

4.10) Fikl(p. ) = / (VK2 + [Tk ).

N=(p,7)

where, for each function f and T < i«(p,1),

t(p)
/ f ;:/ fnadu, dt.
t(p)—7 JS;

N=(p,7)

Corresponding to the time foliation, we recall the null components of the Rie-
mannian curvature tensor R as follows:

QAB =R(L,€A,L,€B), QAB =R(L,€A,L,€B),
1 1
(411) ﬁA = ER(6A7L,Lv L)? éA = ER(eAa£7£, L)a

1 1
p=7RL.L.LL. o= "RLLLL),
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The corresponding curvature flux R(p, t) on the null cone N~ (p, 1) is given by

t(p)
R(p.7) = / (el? + 1812 + 1P + |02 + |BP)na dpy dr.
t(p)—tJS:

The following result says that once the null lapse a is well controlled, then the
k-flux and the curvature flux can be bounded by a universal constant.

THEOREM 4.4. Let condition (Al) hold. Then there exists a universal constant
Cy« > 1 such that forall p € My ifla—1| < %on./\/_(p,r)forsomeo < T <y,
then there holds

R(p.7) + Flkl(p. 1) < Cx.

3
< < =
<a <=3

=

We will prove Theorem 4.4 in Section 6. This result requires
on N~ (p, ), which is obvious for small T > 0 since a(p) = 1. In order for
the above result to be applicable, we must show that there is a universal constant
8« > 0 such that the same bound on a holds with T := min{i., §«}, and so does the
same bound on R(p, t) + F[k](p, t). We will use a bootstrap argument to achieve
this together with various estimates on tr y, ¥, and v. That is, we will make the
following bootstrap assumptions:

1
(BA) a—11=3.
2
(BA2) try ——| = <o,
N
112
(BA3) Itz 200 .oy = €00

(BA4) &o,

2 <
VIZee 20 (oo =

on the null cone N~ (p, 1) forall p € My, where 0 < 7 < i, and & > 1 are two
numbers satisfying £y < 1. Due to the continuity of the quantities involved and
the compactness of M, the bootstrap assumptions (BA1)—(BA4) hold automati-
cally for sufficiently small z > 0. Our goal is to show that we can choose universal
constants & > 1 and 8« > 0 such that (BA1)—(BA4) hold with T = min{ix, §«}.
We will achieve this by showing that the estimates in (BA1)-(BA4) can be im-
proved.

We will first derive various intermediate consequences of the bootstrap assump-
tions. In particular, we will derive the estimate on the important quantity N7 [#],
which is defined as follows. For any S; tangent tensor field F' defined on the null
cone N~ (p, 1), the Sobolev norm N1[F](p, t) is defined by

“12) MIFI(p.7) = Ir ' Flleaiv=p.oy + IVLF lL2(v=(p.0))
+ IV F 27— (p.0))-

Now we introduce j, related to the deformation tensor 7 of T whose components,
under transported coordinates, are given in (1.12). We set A = —Trk/3 = —t/3
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and let k be the traceless part of k. We decompose k on each S ¢ by introducing
components

(4.13) nAB = kap. €4 =kan. 8=knn.

where (e4)4=1,2 is an orthonormal frame on S; and N is the inward unit normal
of S; in X;. Let fi4p be the traceless part of 7. Since §48n4p = —§, we have
NAB = NAB + %SABS. We denote by lg, Yk and 7o the collections

k= (8. €.1), W% = (V8,Ye, V), #to= (Vlogn,Vylogn),

respectively. We define 7 to be the collection

(4.14) #=F 0. 1).

We then define N1[#](p, T) according to (4.12) with F replaced by #.

With the help of the bound on k-flux given in Theorem 4.4 and various estimates
on the lapse n given in Section 3, we will show that N7 [#](p, ) can be bounded
in a suitable way under (A1) and the bootstrap assumptions.

THEOREM 4.5. Let (A1) hold. Then there exists a universal constant C such that
under the bootstrap assumptions (BA1)—(BA3) with Egt < 1 there holds

(4.15) Ml#l(p, 1) <C
forall p € Mj.

We will prove Theorem 4.5 in Section 8. From Theorem 4.4 and Theorem 4.5 it
follows that

(4.16) R(p,7t) + MNi[#](p. 1) < Co,

where Cop > 1 is a universal constant.
With the help of (4.16), we can establish the following result, which enables us
to improve the estimates in the bootstrap assumptions.

THEOREM 4.6. There exist two universal constants 8o > 0 and C1 > 1 such that,
under the bootstrap assumptions (BA1)—-(BA4) with Egt < 1, if T < min{ix, o}
then there hold

(4.17) ja—1] < Ci7'/2,
2
4.18) try ——| < Ci,
S
an2
(4.19) XN Zee L2(v(p,yy = €1
2
(4.20) VIZee 20y = €1

on the null cones N~ (p, t) for all p € Mj.
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The significance of Theorem 4.6 lies in that it allows us to choose & > 1 and
8+« > 0 universal such that (BA1)—(BA4) hold on N~ (p, t) with T = min{i, 84}.
To see this, we choose £y and §, in the way that

4.21) E:=2C; and &8s = min{(4C;)" 2,80}

With such &y and 64, estimates (4.17)—(4.20) imply that estimates (BA1)—(BA4)
can be improved as

try ——| = 5o,

1
4 s 2

2 ‘ 1
1

1 2
oo Wiz =3

=012
s 2 0-pon = 3 &

on N~ (p, 1) if T < min{ix, §+}. By repeated use of Theorem 4.4, Theorem 4.5,
and Theorem 4.6, the bootstrap principle implies that the estimates in the bootstrap
assumptions (BA1)—(BA4) hold with t = min{ix, §«}, where & and 8 are deter-
mined by (4.21), which are positive universal constants. Consequently, we obtain
(4.4) in Theorem 4.2.

We remark that results analogous to Theorem 4.6 have been proved in [7, 14]
for the geodesic foliations where only the bound of the curvature flux is used. In
time foliations, however, the proof of Theorem 4.6 relies not only on the curvature
flux but also on N7 [#].

Assuming (4.20), the following simple argument shows how to derive (4.17)
from (BA1). Recall thata=! = g(L,T) and L = —a~'(N + T). We have

d
—a ' =g(L,D.T) = a2g(N.DrT) + a g(N.DyT).

ds
Recall also that DyT = n~!Vn and kyy = —(N,DxT); we obtain %a‘l =
—a~2(mon + knn). Consequently,
d
4.22) L(a) = %aZTKON'FkNN'
Since % = —na, we have %a = —na(mony + knyn). Integrating the above

equation along null geodesics initiating from p and using a(p) = 1 yields

t(p) t(p)
a—1= / (mon + knn)nadt' = / vnadt'.
t t

From (BA1) and (4.20) it then follows that |a — 1| < C(t(p) — 1)}/? < C<'/2 for
allt(p) —t <t <t(p).

The derivation of (4.18)—(4.20), however, is highly nontrivial. The complete
proof is contained in [15, 16], where other related estimates for Ricci coefficients
are proved simultaneously.

In order to complete the proof of Theorem 4.2, it remains to prove (4.3), which
is restated in the following result:
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THEOREM 4.7. Assume that condition (A1) holds. Then there exist universal con-
stants 84« > 0 and C > 0 such that

t(p)
/ lk(®(1))|*ndt <C
t(p)—min{i,8x}

for all p € My, where ® denotes the integral curve of T through p.

The proof of Theorem 4.7 forms the core part of the present paper. It is based
on the formula of Ok given in Section 5 and a Kirchhoff-Sobolev representation
for k given in Section 9 together with various estimates on null cones derived in
Section 8.

5 Tensorial Wave Equation for the Second Fundamental Form

In this section we will derive the formula for (lk, where k is defined in (4.9),
whose projection to X is exactly the second fundamental form.

PROPOSITION 5.1. The tensor k defined by (4.9) satisfies the tensorial wave equa-
tion
Oki; = —n_3ﬁV,- Vin + n_ZV,- Vin + 2n0a(V"k,-.,- — Viqu — ijl‘-z)

—2TrkR;j — Rk;ij + RTrkg;;

(5.1) +2(k{ Raj + k% Rai) — 2Rapk“P gij
+n" 2k Vin 4 2kE Vo Vin — Ank;j — TrkV;Vin)
+ 2kiakabkbj — nOaJTgkij — n_lk,-j.

PROOF. We first recall that
Ok;j = —DoDok;; + gququkij.

By using ko = koo = 0 and D;e; = V;e; — k;; T, we can obtain through a
straightforward calculation that

gPID,D k;; = Akij 4 TrkDokij + 2k;qk®hy; .

By using D1T = n~!Vine; = —née,— and koo = koo = 0, we can obtain
DoDok;j = eo(Dokij) + ki'Dokaj + kjDokia + w0a Vkij
+ moiDokoj + mo;Dok;o.
It is easy to see Doko; = moq kj‘?. From equation (1.3) it also follows that
(52)  Dokij = eo(kij) + 2kiak$ = —n""V;Vin + Rij + Trk ki;.
Consequently,
DoDok;; = eo(Dokij) + m0a Vokij —n~ 1 (k¥V,Vn + kiVgVin)
+ (ki Raj + ki Rai) + 2 Trk kiak{ + moimoak] + mo; woaks'-
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Therefore
Okij = —eo(Dokij) — m0a Vkij — moimoak] — moj moaky
(5.3) +n (kN Vin 4+ k§VaVin) — (kf Raj + k§ Ra;)
— 2Trkkiak? + Akij + TrkDok;; + 2kiak“Cky;.

We need to compute eq(Dok;;). It follows from (5.2) and Trk = ¢ that
(5.4) eo(Dok;j) = n_3ﬁV,-an — n_zat(V,-an) + n_lE),R,-j

' +n""kij + TrkDok;j — 2 Trkkiqk?.

In order to compute d,(V;V;n) and 9, R;;, let Ffj denote the Christoffel symbol
of ;. Then it follows from the equation d;g;; = —2nk;; that

I = —n(Vik$ + Vjki —Vkij) — Vink? — Vink + Vnk;.

Using divk = 0 and Trk = ¢, this in particular implies f‘gj = —TrkV;n. There-
fore, noting that 9,(V;V;n) = V;V;n — Flf’j V,n, we can obtain

(Vi Vin) = ViVji + nVan(Viki + Viki — V@k;;)
©:2) + (Vink$ + Vink{)Van — |Vn|*ki;.
Noting also that d; R;j = Vj, I‘Z —-V; f‘gj and divk = 0, we have

0t Rij = Van(2Vekij — Vik{ = Vjki') —n(VaVik{ + Vo Vjikit — Akij)

+ Ankij — (VaVin - ki + Vo Vin - ki) + Trk V; Vjn.

With the help of the commutation formula
VaViké = [Va, Vilké = R;%pikl + Raik?

and the curvature decomposition formula

1
Ri%; = gjpb R} + Rjp6! — R;j8y — Ry, gji — E(gjb&q — 8ij8p)R,

we obtain
VaVik? = 2R;ak? + Rjak{ — TrkRij — Rapk®gi
- % Rkij + % RTrkg;j.
Consequently,
0 Rij = Van(2Vkij — Viki — Vjki') — (VaVink]‘-’ + Vo Vjink{)
(5.6) +nlkij + Ankij —3n(Rigki + Rjaki') +2n TrkR;;

+ 2nRabkabg,-j +nRkjj —nRTrkg;j + TrkV;V;n.
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Plugging (5.5) and (5.6) into (5.4) and using wo; = —n~1V;n yields
eo(Dokij) = n>iViVin —n">V;Vji — w04 (3V%kij — 2Vik$ —2V;k{)
— m0i 0ak} — 70 ook + woaT(kij
—n" N (VaVink$ + Vo Vink{ —TrkV;Vin) + Ak;;
+ 07 Ankij — 3(Riak® + Rjak{) + 2TrkRij + 2Rapk gi;
+ Rkij — RTrkgij +n" ‘kij + TrkDokij — 2 Trkk{ka;.

Plugging the above equation into (5.3) gives the desired equation. U

6 Proof of Theorem 4.4

In this section we will complete the proof of Theorem 4.4; i.e., we will show
that if |a — 1| < % on N~ (p, t) for some 0 < T < iy, then

R(p.7) + Flkl(p.7) < Cx.,

where C is a universal constant.
We will use the following result (see [5, lemma 8.1.1]):

LEMMA 6.1. Let P be a vector field defined on the domain 7~ (p, t). Then

/ g(P.L) = / D¥P, — / g(P,T)du,,

N=(p,7) J~(p,7) Z(p)—cNIT ()

where J ~(p) denotes the causal past of p, J~ (p, t) denotes the portion of 7~ (p)
in the slab [t (p) — 7, t(p)], and

t(p)
/ f =/ dt( / fn dug).
t(p)—t
J~(p,7) :NJT~(p)

We first show the boundedness of the curvature flux R(p,t). We introduce
Py, = O[R],8ys TAT?T? with the Bel-Robinson tensor Q[R] defined in Section 2.
We may apply Lemma 6.1 to obtain

f g(P, L) = f D' P, — / Q[R|(T. T, T, T)d .
N=(p,7) J~(p,0) Zi(p—NT~(P)
Since Ryg = 0, a direct calculation shows D* P, = —379%h Q[R]epys TYT%. With
the help of (A1) and Lemma 2.1, the above identity implies

6.1 ' / g(P, L) <C.

N=(p,7)
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Note that g(P, L) = Q[R|(T, T, T,L)and T = —%(aL +a~'L). Since |a — 1| <
% on N~ (p, 1), it follows from [5, lemma 7.3.1] that —g(P, L) is equivalent to

o> + 181> + B> + |pI* + lo|>.
Thus, there holds, for some universal constant C > 0,

| e

N=(p,7)

C™'R(p,7) < < CR(p, 7).

By (6.1), we conclude that R(p, t) < C for some universal constant Ci.
Next we will show the boundedness of the k-flux F[k](p, t). With the help of
the projection tensor

heB = g*f 4 ToTh,
for any tensor field Uy, ,-a,, in T M, we define |U| as follows:
|U|2 = hIJUIUJ = po1h ---hamﬂmUalaz...amUﬂlﬂz...ﬂm,
hIJ — hOélﬂl ...hamﬂm, UI = U(¥1(12"'am’ UJ = UB]ﬁZBm

For any ¥;-tangent tensor field U in M, we define the energy momentum tensor
Q[U]yp associated with the covariant wave operator acting on tensors as follows:

1
O[Ulgp == h'"DUiDgU; — 5 g.ph’’ gD, UID,U,.
We have
D? 0[Ulep = W'/ DeUrOU; + h17 (DD U — DD Ur)DP U,

1
+DAnt’ (DaUIDlg Us -3 ga,gg”“”DMUIDvUJ)

It is easy to see that the last term can be written symbolically as 7 - DU - DU.
We apply the above equation to U = k. Since 1°% = 0 and h¥/ = g%, we have

D? (Q[klup T*) = D’ T Q[klup + DF Qlklop
(6.2) = —k" Q[kl;j — =% Q[kloj + Dok Ok;;
+ [Dg. Dolk;; Vk" + 7 - Dk - Dk.
In view of the commutation formula

[Dy, Dolkij = Ribmokbj + ijmokib = _Efvasmk]l'7 - EJS-bHsmkb

i°
we derive symbolically
D’ (Q[klap T%) = —k" Q[k];j — 7 Qlklo; + Dok” Dki;
+H -k-Vk + 7Dk -Dk.
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From the definition of Q[k], it is easy to see that

63 Qlkloo = 5(Dok[” + [VAP?)

(6.4) Qlkloj = DokpqVik?4,

65 OIKliy = Vikpg VikP? — 3 2ij (~IDok P + VK[,
Therefore

1
DA (Q[k]up T*) = 5Trk(—|1)0k|2 + |VKk|?) + k- Vk - Vk
+ Dok - Ok + H -k - Vk + 7 - Dk - Dk.

(6.6)

We now apply Lemma 6.1 to P := T* Q[k]g and obtain

cn [ oman+ [ oMw= [ DQIL,T.
N=(p,7) Zi(p—cNT~(p) I~ (p,7)
For the null pair L and L, it is easy to see that

QIKI(L, L) = |Vek|*, QIKI(L, L) = |Vk[*.

Since T = —1(aL +a~'L), we have
QIKI(T, L) = ~5 @OKI(L. L) + ™ OIKI(L. L)
= @Yk + a VK.
Since |a — 1] < 1, the k-flux defined in (4.10) satisfies the inequality
- [ ewmervsrmpo<-+ [ oo

N—(p,7) N=(p,7)
Thus we derive from (6.7) and (6.3) that

FIK(p. ) < 4] [ Dk
J~(p,7)
+2 / (IDok|* + |VEK|?).
21— NIT~(p)

In view of (5.2), Lemma 2.2, Proposition 3.1, and Proposition 3.5, we have

(6.8)

(6.9) / (IDok|* + |VK|?) <

b)) .
LIVl + IRiCI sy F IRy VR 22,y < C.
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Moreover, in view of (6.6), (A1), Lemma 2.2, and the above inequality we have

[ D (Q[K]as T)

J~(p,7v)

t(p) ,
< / IDokll2(s, ) 1T (s, dt
t(p)—t

t(p)
- / o Ve (DK s, + IV s, )
p)—1T

t(p)
4 / el 1 lz2s, ) IVl L2,
t(p)—rt

t(p) , t(p) ,
< / |02 s, yd + / 17l Lo,y d1
t(p)—t t(p)—t

t(p)
<C + C/ ||Dk||Lz(Et,)dt’.
t(p)—t

Therefore

t(p)
(6.10) Flkl(p,7t) <C + C/ ||Dk||Lz(Et,)dt’.
t(p)—t

Recall the formula for Ok given in Proposition 5.1, which symbolically can be
written as

Ok = —n3aVen+n2V¥%i+na-7-n+k-Vn
+k-Ric+n-Vk —n" k.
Since C~! <n < C, we obtain
10Kl 112 5 il 1o 1920l oz + 1920112 + Dl 1712
+ ”k”L}L§° ||V2n||L<;°L)ZC + ||k||L,1L§° ”RiC”L;OL)ZC
+ ”k”L}L§ + ||7T||L}L;° ”Vk”L;’OL}('

In view of assumption (Al), Lemma 2.2, Proposition 3.1, Proposition 3.7, and
(6.9), it follows that

|0Kl1 72 < C( 4 o0 +7) < C.

Combining the above inequality with (6.10) completes the proof of Theorem 4.4.

7 Trace Estimates

For a point p € My, let s be the affine parameter on the null cone N~ (p), and
let r be the radius of S; := N~ (p) N Z;, which is defined by (4.2). On each S;
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we introduce the ratio of area elements

Vil

(7.1) vi(w) = Y=, weS%
Vvl
1/2

We will first show that all the quantities s, r, v,”~, and ¢ (p) —t are comparable un-
der the bootstrap assumptions (BA1)-(BA3). Here we say two quantities ¢ and
are comparable in the sense that C ™1y < ¢ < Cy for some universal constant
C >0.

LEMMA 7.1. Under the bootstrap assumptions (BA1)—(BA3), the four quantities

s(t), r(t), vtl/z, and t(p) — t are comparable on the null cone N~ (p,t) with
T < min{ix, 8x}, where 8« > 0 is a universal constant.

.- . ds __
PROOF. The comparability of s and #(p) — ¢ follows from the relation d—i =

—na and the bootstrap assumption (BA1). Similar to the derivation of (4.5), we
have under the bootstrap assumptions (BA1)—(BA3) that

(o] 1 (o]
(7.2) ly —s()?y| < 5 s(1)*y

for all #(p) — min{ix, 7,8+«} < t < t(p), where 84 is a universal constant. This
implies immediately that %s([)2 < v < %S(I)Z. Consequently, v; and t(p) — ¢
are comparable. Thus for the area |S;| of S; there holds

Cl(t(p) —1)* < |S:| < C(t(p) —1)?

for some universal constant C. This together with the definition of r gives the
comparability of r and ¢(p) — ¢. O

7.1 Optical Function

In this section we give a brief review of the construction of optical functions;
one may see [5] for more information.

For any point p € My, let J~(p) be the causal past, and let N~ (p) and Z~(p)
denote, respectively, the null boundary and the interior. For each 0 < t < iy with
i« defined by (4.1), let 7~ (p,t), N~ (p, 1), and Z~ (p, 7) denote the portions of
J(p), N~ (p),and Z~ (p) in the time slab [t (p) —z, 1(p)], respectively. Let ® be
the integral curve of T through p with ®(z(p)) = p. According to the definition
of i, all the null cones N~ (®(z),t +t — t(p)), with1(p) —t <t < t(p) and
T < i, are disjoint, and their union forms N~ (p, t). We now define u to be the
function, constant on each N~ (®(¢), ¢t + t — t(p)), such that

t

w(d(t)) = / n(®(t'))dt’.

to
Such u, which will be called an optical function, is a well-defined smooth function
on J (p, t) and satisfies the eikonal equation

go‘ﬂaauaﬁu =0.
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It is clear that the level sets C,, of u are the incoming null cones in the time slab
[t(p) — t,t(p)] with vertices on ®, and T(u) = 1 on ®. Moreover, the null
geodesic vector L defined before can be written as L = g“ﬂ dgUdy.

For each ¢t € [t(p) — t,t(p)], we define ups () and u,(¢), respectively, to be
the largest and smallest values of u for which the part of the cone C,, that lies in
the future of X; is contained in 7~ (p), i.e.,

um () =u(p) and upm(t) = u(P()).
For each u(®(t(p) — t)) < u < u(p), we also define 57 (1) and t,, (1) to be the
largest and smallest value of ¢ for which X; intersects Cy, respectively. It is clear
that 757 (1) is the value of ¢ at the vertex of Cy, and t,,(u) = t(p) — t. Note that
both ups and ¢, are independent of 7.
We set
St,u = Cy N Xy,

which is a smooth surface for each t(p) —t <t < t(p) and upsr < u < Uy ().
The corresponding radius function is defined as

r(t u) i=/(4m) 7Sl

where |S; ;| denotes the area of S;,, with respect to the metric y.
The following result follows readily from Lemma 7.1 and the definition of u.

PROPOSITION 7.2. Under the bootstrap assumptions (BA1)-(BA3) on N~ (p, 1)
forall p € My, there hold
() —t u—um(t) _

r(t,u) r(t,u) —
forallt(p)—min{iy, 7,8+} <t < t(p), where C and b are two positive universal
constants.

<C and C7'<

cl<

In view of the above notation, it is clear that
N (p.1) = U St
telt(p)—t.t(p)]
Let Int(Sy,y,,) be the interior of S; 4,, in X;; then
Int(S;u,,) = U Siw and J (p,7) = U Int(Ssu,,)-
u€luns um(t)] te[t(p)—z,t(p)]
The following result can be found in [5], which is crucial in deriving trace esti-

mates.

LEMMA 7.3. For any scalar f satisfying limy_,,, () fSlu fdu, = 0, there
holds ’

um
/ fduy =—/ o /(VNf+tr0f)adpLyu du,
Um
S[ upg Sl‘,u
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where N denotes the unit inward normal to Sy, in X, and 0 denotes the corre-
sponding second fundamental form.

7.2 Trace Estimates

We will rely on the following trace inequality:

LEMMA 7.4. Under the bootstrap assumptions (BA1)—(BA3) on N~ (p, t) with
Eot < 1, for any X-tangent tensor field F there holds

Ir =2 Fllpags,) S UVF N2,y + IFl2cs,)s
where Sy ;== N~ (p,t) N Z; and r := /(4m)~1|S;].

In Section 4 we have verified condition (C2). Therefore Lemma 7.4 can be
proved by the standard procedure. Using Lemma 7.4, we can derive the following
result.

PROPOSITION 7.5. Let the bootstrap assumptions (BA1)—(BA3) hold on N~ (p, t)
with Egt < 1. Then for any ¥;-tangent tensor field F there hold

(7.3) 11225, < IF a1 oIl Fll2s,)s
(7.4) IFllas,) S N Fm1(z,)s
forallt(p) —t <t <t(p).

PROOF. Let ¢(u) be a smooth cutoff function satisfying ¢ (ups) = 1,0 < ¢ <
1, and supp(¢p) C [W, up]. It then follows from Lemma 7.3 that

05 NFlasy == [ (INIBFP+wOlgFPraduy du' =1 + 1,
Int(S;)
where
I =2 / (p>F -VNF + ¢VnNo|F[Padp, du',
Int(St)
I, = — / tr0|¢F|%a du, du’.
Int(S;)

Since the bootstrap assumption (BA1) implies % <a< %, it is easy to see that

/ ¢*F -VyFadu, du'
Int(S,)

SIVNFllezis) 1F 2,

and

| ovnlFPaduy v
Int(S;)

1 1M 2 /
L |F)?duy du'.
UM — Uy Jumtum
2
St
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It follows from Lemma 7.4 that

[ 1F R Ay £ 1 s, ) 1F s, o

S
SIFla ) ||F||L2(St_u,)rl/2,

where r := r(¢,u’). From Proposition 7.2 it follows that r (¢, u’) < u’ — u,. Thus

‘ / VNG| F|adpy du'
Int(St)

Um

S et Pl s ([ o ~ )

SIFlgiv ) 1F L2,
We therefore obtain
Ll < 1 Fla ) 1Fll2s)-
In order to estimate the term /5, we recall that tr = —atr y + §AB kqp. Since
the bootstrap assumption (BA2) implies |tr y —2/s| < & on each S; 4 and Propo-
sition 7.2 implies that s, (p) — ¢, and r are comparable, we have

UM up
IIz|5(8or+1)/ /r_llnglzduydu/Jr/ /|k||¢F|2du,,du’
m Um
! t/ St
M 1 2 2
S [ R dy did WKy IF s,
Um
St

Recall that ||k[|3(s,) < C from Lemma 2.2 and apply Lemma 2.5 to || F |75 g ,:
we obtain

Il S 1Pl cs VPl + [y, e [ ey
Sy w

Now we use Lemma 7.4 again and note that Proposition 7.2 implies r (¢, u’) !
(' —um)~L; we have

o 1 g2
— !
[leruM /r |F|=dupy, du
2

t.u/

A

Um

1/2
SIFla ) ||F||L2(E,)(/;m+uM W —um)~! dM')
um iy

SIFgis) 1F 2,
Therefore
Ll S 1 Flav @) 1F 2,
The proof of (7.3) is complete.
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Applying (7.5) with | F| replaced by | F |? and using Sobolev embedding, we can
obtain (7.4) in a similar fashion. O

As a consequence, we obtain the following:

PROPOSITION 7.6. Let the bootstrap assumptions (BA1)—(BA3) hold on N~ (p, t)
with Egt < 1. Let S; :== N~ (p,t) N X; and let r be defined by (4.2). Let g
denote the tensor —V log n.

(1) Let & denote either k , wo, or Dglogn; then fort(p) —t <t <t(p)
(7.6) IzllLacs,) = C.
(7.7) I 2l s,y < C.

(i) Let F denote either n='V?n or n=2Vn; then
(7.8) IFllL2v—(p,e)) = C-

(ii1) For mg, there holds

(7.9)  IVLmollL2(v—(p,0)) + IPomollL2(v—(p,e)) + IVl 200 (p, 1)) = C-
PROOF.

(i) It follows that ||z|lg1(x,) < C from Lemma 2.2, Proposition 3.1, and
Lemma 3.6. Thus (7.6) follows from (7.4) in Proposition 7.5 and (7.7) follows
from Lemma 7.4.

(i) For F = (n~'V?n,n=2V#) it follows from Proposition 3.1, Proposi-
tion 3.4, Lemma 3.6, and Proposition 3.7 that

”VF”L;L}((M*) <C and ”F”L?"L%(M*) <C.
Applying (7.3) to F yields
2
||F||L2(N_(p,t)) < ||F||L}H}(M*)”F”L;X’L%(M*) < C.
(iii) By straightforward calculation, symbolically we have
Domo = —n"2Vn +x-m9, Vmy = —n~ V2 + 7 - mo,

1

Vimg =a~ n2Vn — a_IVno — a_ll-no.

Therefore, (7.9) follows immediately from (7.6) and (7.8).

8 Estimates on the Null Cones

8.1 Structure Equations on the Null Cones

In Section 4 we introduced the null pair L, L on the null cone N~ (p, 7) and
defined the null second fundamental forms ,  and the Ricci coefficients ¢, {. We
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also introduced in (4.11) the null components «, 8, p, and o of the curvature tensor
R. There hold on null cones the following structure equations:

diry 1 5 I
8.1 Z(t = —|73.
(8.1) 7, Tt | x|
djaB .
(8.2) + 1t YX4B = @4B,
d
(8.3) 7, 54 =—XaBSB + 1Bl g — Pa.
s >
d 1 . ~ =~
(8.4) %trl—i-Etr)(tr1:2d1v§—x-l+2|£|2+2,o.
Moreover, ( satisfies the following Hodge system:
1 1
(8.5) div{:—,u—p—i-E)?-Z—Klz—EaStr)(—aktrx,
1
(8.6) curl ¢ =0—5)'(\/\Z,

where 1 and p are the mass aspect functions defined by

1 a? 5
8.7) p=-z Dstry + T(tr)() —wtry,
1
(8.8) &:D4trl+§tr)(-trl,
1
(8.9 w = §(D3 loga + aknyy — amon).

These equations can be found in [5, pp. 351-360], where more structure equations
have been derived.

8.2 Proof of Theorem 4.5

The main purpose of this subsection is to prove Theorem 4.5 concerning the
boundedness of N [#] under the bootstrap assumptions (BA1)~(BA3) on N~ (p, 1)
with 0 < t < iy and £yt < 1 for any p € M, where # is defined by (4.14) and
the Sobolev norm A/ [F] for any S;-tangent tensor field F is defined by (4.12). We
can restate Theorem 4.5 in the following form:

PROPOSITION 8.1. Let jt be the S;-tangent tensor field defined in (4.14), and let
7 := (k,—Vlogn). Then, under the bootstrap assumptions (BA1)—~(BA4) with
Eot < 1, there hold

(8.10) Ir ' Tl 2o,y = C

8.11) IY# 20— p.oyy < €.

(8.12) 1YL 20— (p.0y) = C-
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We have obtained in Theorem 4.4 and (7.9) that
(8.13) Y7l L2c,) + IVLT N L2(c,) < C.

Let N be the unit inward normal to S; in X;, and let 6 be the second fundamental
form of Sy, i.e., 04 = g(V4N, ep). Then there hold

V4N = 04pep, Vpesg = Ypeg —O4pN.

This enables us to derive symbolically that

(8.14) YVt =VT+ta0-%+0- %
Recall also that D L = 0, D L = 2§AeA, and Dyegq = Yaeyq + EAe4. We have,

I dt -1
in view of 7= = —(an)™", that

(8.15) Yot =Viw + -+ (an)”.

In order to show Proposition 8.1, we need three auxiliary lemmas. We will use
the following norms for X;-tangent tensor fields F on null cones N~ (p, 7):

“F”‘lIJ%L?O(N_(p,‘E)) ::[ sup (vt|F|g)d/~'L§29

) tel’y,

q . q
”F”LZ)L?O(N'_(p,t)) T /tsel'}_‘l:; |F|g d,ugz.
SZ
where v; is defined by (7.1), and 'y, 0 € S2, denotes the portion of an incoming

null geodesic initiating from p in the time slab [¢(p) — 7,#(p)]. In the following
argument we will suppress N/~ (p, t) in these norms for simplicity.

LEMMA 8.2. For any S;-tangent tensor field F, there hold the estimates
(8.16) Ir =2 Fllpapoo + I1F Nl poo S NILFI,
(8.17) IIFlliiL?o SUYLFll2 + Ir  FllL2)IFllee 2

PROOF. We refer to [7, 14] for the proof of (8.16). In the following we will
prove (8.17). Let v; be defined by (7.1). We first integrate along any past null
geodesic initiating from p to get

t(p) 4
(8.18) v |F|* = lim (v,|F|4)—/ — (v |FIYdr'.
t—t(p) ¢ dt

For the estimate of the first term on the right of (8.18), we proceed as follows:
Let ¢ be a smooth cutoff function defined on [t (p) — 7, t(p)] satisfying 0 < ¢ < 1,

¢(t(p)) = 1, and suppg C [t(p) — 7/2,t(p)]. Then

v 4 d
(8.19) lim v,|F|]* = / (—(v;|F|4)<p4 + 4v; |F|*@3 — (p)dt.
t1—1(p) t(p)—t \dI dt
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1
Since |%<p| < (t(p) —t)~!, we have from Lemma 7.1 that |%(p|v,2
0 < ¢ < 1, it then follows from (8.18) and (8.19) that

(8.20) IFN7 4,00 = [ sup (| F|*) ST+1L
v | t(p)—t=<t=t(p)
where
t(p) t(p)
I—// II_// w21 F 8,
t(p)—t t(p)—t
Since
d
E(vt|F|4) = —na(tr yv;|F|* 4+ 4v,|F|>’YLF - F),
we have

< 1. Using

1/2 1/2 1/2 2
1S (Il 2YLFll 2 12 + o Fll gz 2) 1l oo 2 0721 F 2 2 1o

SUVLF 2 + I X F ) Fll g2 1F 124 oo

By the bootstrap assumption (BA2) and Lemma 7.1 we have

tlr = Fllge + lIr e
Lo°

St + DIr g2 S I Flge.

2
ltr xFllp2 < |try — =
S

Therefore

LS (YLF 2 +Ir  FlL) I Fllpesp2 IIFlliiL?o-

It is easy to see that
1/2
I} < ||F||L5)L% ||F||Lg)°L% ”vt/ |F|2”L§,L§’°
S F 2 I F llpee 2 IIFlliﬁL?o-
Combining the estimates for I and II with (8.20) gives (8.17).

LEMMA 8.3. For any S;-tangent tensor field F satisfying

(8.21) Y7LF+%tr)(F=G-F+H

withm > 1 an integer and G a tensor field of suitable type, if lim; _;p) r (1) F =

0 and sup,,es2 ft(p) . na|G|?dt < AZ, the following estimates hold:

1/2
(8.22) IF 22 S €C27 TN H| L2,

1/2
(8.23) P2 F 2 poe S €80 H 2.
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PROOF. Because % vy = —natr yvs, along any past null geodesic initiating
from p we have

d
E(UT|F|2) = —2nav"(H + F -G, F).
With the help of the lim;_,;(,) r™|F| = 0, it follows for z(p) — t <t < t(p) that

t(p)
v;"|F|2:2/ navy/(H + F - G, F)
t
1(p) )
<2 naw(FIIH| +IFPIG).
t
By a simple argument we can derive

= t(p) t(p) /2 1(p)
v | F| < exp (/t |G|na)/t nav?,’ | H| exp (—/ﬂ na|G|)dt/.

In view of sup,,cg> fttg))_t na|G|*dt < A2, we have

t(p)
exp(/ na|G|) < ¢Clot!/?
t

Thus by using Lemma 7.1 and m > 1, we have

t(p)
1/2 _—
|F| < eCBoT 7y, m/2/ v;r,'/2|H|na dt’
t

t(p)
(8.24) 5eCA0f”2(z(p)—z)—1[ r|H|dt'.
t

To derive (8.22), we integrate the above inequality along a null geodesic initiat-
ing from vertex p. By the Hardy-Littlewood inequality we obtain

1 /I(P) | |‘
r|H
t(p)—tJs

Integrating (8.25) with respect to the angular variable w € S? yields (8.22).
Next we multiply (8.24) by r 1/2 to obtain

(8.25)  |[Flp < et

1/2
< eChot |rH ”L%
L?

1/2
sup 2P| < eCRT T IrH | 12,
t(p)—t<t=<t(p)

which, by taking the L2 -norm, gives (8.23). U
LEMMA 8.4. For ¥ there hold the estimates

(8.26) Ir =" Zllzz + 172 Rl 12 oo + 1VLRlL2 < C,

(8.27) 170300 < CE™.
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PROOF. We will use the transport equation (8.2), i.e.,
(8.28) Voi+tyi=a
Recall that ry — 0 ast — (p); see [14]. Recall also that ||a|;2 < C; see
Theorem 4.4. It then follows from Lemma 8.3 that
12 R 2 oo + 1212 12 < C.

Next we use (8.28) again to estimate || ¥z ¥||z2. In view of the bootstrap assump-
tion (BA2) and the comparability of r, s, and ¢(p) — ¢ given in Lemma 7.1, we
have

R 2
[t xxliz2 < rx =

||r)/{\||L2L2 + ””_1)’(\”L2 =<C.
tLw
Loe

Thus, from (8.28) it follows that ||V xllz2 S | tr xXliz2 + lellz2 < C. We there-
fore complete the proof of (8.26).

By making use of (8.17) and (8.26) together with the bootstrap assumption
(BA3), we obtain

A~ A -1 ~n1/2 1/4
128250 < VLR + 1 212 170 e o < €&,

which gives (8.27). Il
Now we are ready to complete the proof of Proposition 8.1.

PROOF OF PROPOSITION 8.1. We first prove (8.10). Let || := |7|g. Itis easy
to check that

— 1= _ 2\, - o= e — —
Vi Nz +trys HrP = 1(tr)(—§)|n|2+s 2|J‘[|§+25 V7 7.

We integrate the above equation along the null cone N~ (p, 7). By Lemma 7.1, it
is easy to see that '[St s717|? = 0ast — t(p). Thus, by integration by parts we
obtain

/ sTHEP =
St(p— 5
[ 7P +s71 (trx - —)|rr|2 + 257V 7 - T)nadp, dt.
s
N=(p,7)
By Lemma 7.1 and (7.7) in Proposition 7.6 we have

/ S_1|ﬁ|2

St(p)—
By (BA2), Lemma 7.1, and (7.7),

2
‘ / nas™! (tr)(— —)|7_r|2duy dt
s

N=(p,7)

o L C.

2 <
”Lz(Sl(p)—t) -

<Cé&rt <C.
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By (8.13) we have

/ sTIVLT - wnadpy, dt| S ||VLw| 2 s 7l < Clls™' 7| 2.
N=(p,7)
Therefore
(8.29) Is7 772 < C + Clls™ 7|l 2,

which implies ||s~!7||;2 < C. Consequently, in view of Lemma 7.1, (8.10) fol-
lows. As a byproduct, we have from (BA2) and Lemma 7.1 that

tls 17 2 < C(1+Eo7) < C.
LOO

Next we will show (8.11) by using equation (8.14). Using 645 = —ayap +
kg, we have from (7.6) and (8.27) that

10 72 < 7 lLalkllLe + 171L0) < €&/ + D2 < C.
Since trf = —atry + §4B [ 45, we have from (7.6) and (8.30) that

IOl 222 < Iklipa l# s + e x#ll2 < C.

Consequently, in view of (8.13) and (8.14), (8.11) follows immediately.
Usingg = YV logn — € and (8.15), we can derive (8.12) easily from (8.13) and
(7.6). O

_ 11— 2
(830) [l xlz2 S s Fllp2 + |try—=

8.3 Estimates for Ricci Coefficients
LEMMA 8.5. For the Ricci coefficient ¢ and the null lapse a there hold

(8.31) ||r1/2§||L30L;>0 +1r el + 1YLl 2 < C,
(8.32) ||r1/2Y710ga||L3)L}>o + Ir 'Y logall2 + VLY logal» < C.

PROOF. From the transport equation (8.3) we have
1 o
(8.33) Y7L§+§trx-éz—x-é+x-§—ﬂ-

Since (BA3) implies ||)?||L2)OL% < 53/2 with &gt < 1, it follows from Lemma 8.3
and the relation y = y + % tr yy that
IIVI/ZEIILgDLgo F el S Bl + 17 -Elee + o - Elize

From Theorem 4.4 we have |82 < C. Recall that { = Y logn — €, which is a
combination of terms in . By (8.30) we have |[tr y {|| > < C. Therefore

IIFI/ZZIILguLgo +1r 7 ele < CEr+ D+ 17 L2
In view of (7.6) in Proposition 7.6, (8.27) in Lemma 8.4, and £yt < 1, we have

1/2 -1 1/2) 2o
128l oo + lF 7 elL2 < € 4+ 2R L oo 1Ll oot < C
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Consequently, it follows from (8.33), (BA2), and (BA3) that |V ¢|;2 < C. We
thus obtain (8.31).
In order to show (8.32), we use the relation { = Y loga + €. By Proposition 8.1,

||7’1/2

€||L(2UL;>° + ”‘f”Lﬁ)L% + ||Y7L€||L2 <C.
Thus, the estimates for Y log a follow. O

LEMMA 8.6. For the | defined by (8.8) there holds ||ji|| > < C on N=(p, 7).

PROOF. Recall that by (8.4), u = 2divi—x- ¥ + 2|§|2 + 2p. We have from
Theorem 4.4, Proposition 7.6, and Theorem 4.5 that

e UVl +UEI7a + lpllLe + 117 - Zle < C + 117 - Rl e

Recall also that Xup = —ClzXAB + 2akp; we have from (8.27) and Proposi-
tion 7.6 that [|u]lz2 < C + [ Xl Xllzs + IklLe) < C. O

Using ayap = —04B + kap again, we can summarize the estimates obtained
so far in this section as follows:

PROPOSITION 8.7. There exist universal constants 69 > 0 and Cx > 0 such that,
under the bootstrap assumptions (BA1)-(BA3) with Egt < 1, if T < min{ix, 8o},
then there hold

(8.34) I~ xllL2s,, < C
(8.35) Izl zacs, .0 = €
(8.36) M#l(p.7) < C,
(8.37) In~tV2n,n "2Vl 2 < C,
(8.38) IF1/2(3, 7%, ¢, Vioga, )] 12 oo < C,
(8.39) (7. 7.¢, Y loga, 0)l| 2,2 < C,
(8.40) IVL(%.¢.Vloga. )2 < C.

where t = (n=19; logn, 7).

The above estimates provide the intermediate steps toward the proof of Theo-
rem 4.6. The complete proof, however, requires more estimates on ¥, ¢, and  as
follows. Since the arguments are rather lengthy, we will report them in [15, 16].

PROPOSITION 8.8. There exist universal constants 69 > 0 and Cx > 0 such that,
under the bootstrap assumptions (BA1)-(BA4) with Egt < 1, if T < min{ix, 8o},
then there hold

2
try — - =< Cx,
S Loo

(8.42) 17l g2 + 18l g2 < C.

(8.41)
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(8.43) Illpeor2 + 0l o2 < Ca.
(8.44) MI7.¢. Yloga,0)(p.t) < Cx,
(8.45) P2V g )l g2 poe + 1V g, )2 < Co,

on the null cone N~ (p, t) for all p € Mj.

The estimates in Proposition 8.7 and Proposition 8.8 give Theorem 4.6. Thus,
we may use a bootstrap argument, as explained in Section 4, to conclude that all
the estimates in the above two propositions hold on the null cones N~ (p, t) for all
p € Mj with T = min{ix, 6«} for some universal constant §x > 0.

We conclude this section with an application to estimate ||z || L2 L2 (1nt(S; 1))’
where, for any X-tangent tensor F',

u
-2
11 s = | [ 7 1P Badiy au
"8y w
with r’ = r(t,u’).
PROPOSITION 8.9. For w =(n"'9; logn, ), there holds 17l 22 22 (necs, ) = C-
PROOF. It is convenient to introduce the new null pair L' := T + N, L' :=
T—N.Lety', x',¢,and { " denote the Ricci coefficients corresponding to the null
frame (e4)a=1,2,€5 = L', e}, = L'. Since L = —a~!L’and L = —aL/, itis easy
to see
¥ = _a_l)(/’ l — _al/’ é. — é./’ £: E/'

From (8.1), (8.7), (8.9), and (8.5), we can derive

1 1 A A .
(8.46) Yy tr)(’Jrz(tr)(’)2 =—58ux+22 tr ' =7 (X' + M —(div ¢ +]¢1>+p),
which, multiplied by || := |r|¢, implies

|
Vv (tr ) |zlg?) + tr O i |zfg) — Sl 'z =

3 o .
=58 =@ 40— dive + 1£1% + p)¢lz|? + 2t Y Vr - 7.



64 Q. WANG

In view of Lemma 7.3, integrating the above equation over Int(S; ;) gives

/ / (tr x")?|z|a duy du’
Um

tou

u
= - / try'|z|? +/ / (—2Vnz-try'm + plz|*)a dp, du’
Um
S

t.u t.au’
u 3

+ [ [ (3owr + 6P+ 7 + ) )ixPadiey
um

/

/ / ¢ V(xPaydpy du'.

tu’

By (BA2), Lemma 7.1, and (7.7),

/ try'|z|* dpsy

Stu

By Lemma 2.2, Proposition 3.1, and (3.12),

u
/ / Vyz-trx'ma duy, du’
Um

7

(8.47)

—1/2

< I =C

n”LZ(St )

SIVNzles) I ' zles,)
t.u
<CloyzlLes,

and

/ / —8tr)(|n|2aduydu
Um

l.u

< Mkllzoen Iz2ecs,y + 1203 50mcs, )
< (VK2 + Izl @ )zl s,

<C.
By Lemma 2.1 and (7.6),

u
| [ plaPadu, av
Um

t.u’

< lplizep Il agus, .y < Ct—um) /2,

Since {4 = V4loga + €4, we have
u
| [ evaizPian, a
S

u
/ (Yloga|x|*¢ + V|x|*)adu, du'|n <
Um
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S IVl L2 angs,. 0 SUP (lzllzaes, NI Lacs, W) — m)/?

u<u
4 f / (P + [Ellm ) dy d
Um
S,’u/

In view of Lemma 2.2 and Propositions 3.1 and (3.12), we derive

1Yzl L2aus, o) =< IVEIL2E,) = C,
while in view of (8.44), (8.16), and (7.6) we have

sup  [I¢llLas, ,p =€ sup zllpacs, ) = C.

Um<u'<u Up=<u’'<u

Consequently,

[ [ 0P + lizpadn, a

< sup (||§||i4(st,u/)||E”i4(st,u’))(u — Um)

Um<u'<u

+osup (Welzas, plziags, )@ = tm)
U <u’ <u ’ '"
<Cu—um).

Therefore, we obtain

[ ] vk, au
mSl.u’

In view of (8.44), (8.16), and (7.6), by a similar argument we obtain

< C(1+ (U —um)?) (u —um) /2.

~

/ / WP + 7@ + lalPaduy di'| <
um

[ [ (2Pazr + 1)+ 171 iy i = Cu= )
Um
t.u
Combining all the above estimates with (8.47), using ¥’ = —ay and (BAl), and
noting U — U, St < 1 yields
| er XE”IZJ(Im(S,,u)) < C+ Cllr x|l L2 ne(s; )

which implies |fr Y| 12qns,,)) = €. This together with (BA2) implies the
desired inequality. O
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9 Proof of Theorem 4.7

In this section we will complete the proof of Theorem 4.7. For any p € My, let
®(¢) be the integral curve of T through p with ®(¢(p)) = p. For each p; := &(¢),
we will represent k(p;) in terms of a Kirchhoff-Sobolev formula over a past null
cone with vertex p;. We then use the estimates established in the previous sections

to obtain [ tt((;)))—r |k(®(t))|?>n dt < C for some universal constant C.

9.1 Derivation of the Kirchhoff Parametrix

We first revisit the formulation of the Kirchhoff parametrix in [10]. We define A
to be a X;-tangent 2-tensor satisfying

1 _ .
9.1) (DLA);; + EtrXAij =0 on N (p, 1), lim (t(p) —t)Aij = Jij,
t—>t(p)—

where J € T, X;(p) and |J|g = 1. This A is similar to the one defined in [12]
but with the modification that A is X;-tangent. Since we have obtained in Propo-
sitions 8.7 and 8.8 the estimates on

1/2
) A e 'S Py
LOO

Ir='E+Olles 17 Lllpeer2. R(p ),

2
try ——
s

on the null cone N~ (p, t), we may adapt the proof in [12] to obtain the following
estimates on A.

PROPOSITION 9.1. For the tensor A defined by (9.1) there hold
92) IVAllL2v-(p.e + 172V AN 12 Lo (prryy F IPA 2o 0= (pay) = €
where C is a universal constant.

Now we derive the Kirchhoff-Sobolev formula for any ¥;-tangent 2-tensor ¥y,
I = {i, j}; see [10, 13]. According to the definition of W7, we have under the
null frame (e4)4=1,2, €3 = L, e4 = L, that

1 1 AB

Recallthat D L = 0, D L = 2§A€A, and Dgey = Ypgeq + % xapes + %KAB€4.
‘We can obtain

D43y = Dy(D3W); — 204DV,

1 1
SABDAB‘IJ[ = 8ABWAWB\IJI — 5 trlD4‘IJ1 — 5 tr D3 Wy.
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Noting the commutation formula D34 Wy —Da43W¥; = R;¥34 Wy +R;j%33Wiq, we
obtain

1 1
Ov; = —Dy(D3V); + 2£ADA\I’1 3 trlD4\IJI —5 tr YDz Wy
1 1
+ 648y, Y p Wy — 3 R;i%34Wyj — 3 %34 Viq.
We multiply the above equation by A; and integrate over N/~ (p, ) to obtain

OwAl = 2, + B,

N=(p,7) . / (2§ADA‘I’1 Al 4+ 54BY, Y50, . AT
9.3) N—(p.)
- % / (Ri%34Wg; + R;%34W;0)AY .
N=(p,7)

where

g = (—D4(D3\I!)1 Al - %trnylI] -A’),

N=(p,7)
- 1 I
dz:_i / trlD4\I!1-A .
N=(p,7)

For 21, integration by parts gives

[a]

| =— / D39 -Al + lim /D3\IJI-AI
t—>t(p)
St(p)—7 Sy

1
+ / (D4AI—|—§tr)(AI)-D3\I!1.
N=(p,7)

Since lim;_,;()(t(p) — 1)>A = 0, we have in view of (9.1) that

(1]

1=— / D3y - Al + / Q1(¥),

St(p)—t N=(p,7)

where Q1 (¥) = D4A% - D3Wy; + D4A0 - D3 ;.
For 5, in view of (9.1) and the fact that ¥ is X;-tangent, we first have

1
trlD4\IJ1~AI =D4(\IJI'AItrl)—l—Etr)(trlAIJlfI—Durl-\IJI-AI;
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thus integration by parts yields

- —  t—t(p)
N=(p,7) St(p)—t Sy

1 1
By = / E/LAI-\IJI—E(/ ‘III-AItr)(— lim \III-AItrl),

where I3 is defined in (8.8).
In view of tr y = —a?tr y +2a848k,p and a(p) = 1, we have

1
lim —/\111 Altry = —4an(p) (W, J).
t—t(p) 2 -

St

o]

N

Il
—
| =

1
pAT Wy — 5 / Wy Al ey — dn(p) (W, J).

N=(p,7) St(p)—

Therefore we derive

sy = | (—D%-Aw%gw,-yml(m)

N=(p,7)
1
— / (D3\111 AT + Etrl\l’] ~A1)
(9.4) Stpr—
+ / 20°DpY; - Al — VY - yPAl)
N=(p,7)
1 ..
~5 / (Ri%34Wqj + R;%34W;0)AY.
N=(p,7)

We apply (9.4) to the tensor field W = k and obtain the following:

THEOREM 9.2. Let p € My, let O(t) be the integral curve of T through p with
®d(t(p)) = p, and let py = D(t). Let A be a X;-tangent 2-tensor on J~ (p, T)
satisfying (9.1) on each null cone C,, :== N~ (ps,t —t(p) + ), whereu = u(t) =
ftton|q>dtfor tm :=1(p) — 1 <t < 1(p). Then there holds

4mn(p)(k(pe). J) = I(ps) + J(pe) + K(pe) + L(ps)

9.5) + &(py) + / Q1(k),

Cy
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where Q1 (k) = D4A% - D3ko; + D4A' - D3kio and

I(pt)z—/A-Dk, J(pr)=—%/A-R(-,-,L,L)-k,

Cu Cy
Kpo =35 [uack Lo = [ YA Yok + 2% Vak-A),
Cy Cy
E(ps) = — / (D3k-A+%trlk-A).

9.2 Main Estimates

In the following we will use the representation formula given in Theorem 9.2 to
show that

t(p)
/ k(po)Pndi < C
t(p)—t

for some universal constant C. We proceed as follows.
e Estimate on I(p;). We use the expression of [k given in Proposition 5.1,
which symbolically can be written as

Ok = —n3aV2n+nV¥i+7-7-n+k-Vn
+k-Ric+ 7w -Vk —n"k.
It then follows from Proposition 9.1 that
[1(pe)| < /r_l(lﬁvznl + V2| + |7 |> + [k|[V?n] + [k|[Ric|

Cu
+ ||| VK| + [k])

< 192l 2 IF Yl 2y + P Vil e, + [ )’
Cy
+ Ir 'kl L2y 1IV2lL2(c,y + IRiCl 2 7 KDl L2(cy)

+ Ir ' 7li2ep IVE L2,y + Ilr KL ey
Therefore, with the help of Proposition 7.6 and Proposition 8.1, we have
101 % I il + 17 Vil + [ 71l

Cy
+ ”RiC”LZ(Cu) + ||Vk”L2(Cu) + C.
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Now we consider || ttngp ) |I(p:)|*dt. Using ‘fl—’: = n and Proposition 8.9 we have

/t(P) Lo u(t(p)) Lain
lr— A ndt 2/ lr— A du
tm LZ(Cu(t)) u(tm) Lz(Cu)

u(p) ptm W)
/ / [ ~2151’na duy, dt' du
u(tm) Im

’u

t(p) pu@(p)
/ / / —21a)? nadp, dudt
tm u(t’)

[.M

t
< [ e i’ = Ca
~ ¢ Lz(lnt(St’,u(t(p)))) B ’

m

By a similar argument, we have from Lemma 2.2 that

t(p)
/ (IRic22 ¢,y + I VKI22(, ) )ndt < Cr.
Im

Therefore

t(p)
/ [(po)Prdi <
tm

t(p) t(p) 2
cf+/ Ir=1V20013 )ndt+/ (/ r_1|n|3) ndt.
tm " tm
C,

u

By using the Minkowski inequality and Proposition 3.7 we have

t(p) e 1/2
(/ |r—"V ””LI(C X dt)
Im
u(t(p)) tr (u) 2 1/2
= (/ (/ r_1||anV2ﬁ||L1(S/ )dt/) du)
u(tm) tn v

/t(p) (/u(t(p)) 5 b 1o 1/2 )
< r—“llanV<on|| du) dt
m u(t’) LI(SZ’.M)

- t(p) V2, g <
~ . || n”Lz(Int(St/'u(t(p)))) t — N

Finally, we have from Proposition 7.6 and (8.10) that

~1,_3 ) 2 / 1/2
[t s [ i s, W, e < Clarta = )2
Cy
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Thus, by Lemma 7.1 we obtain

1(p) 2
/ (/I‘_1|ﬂ|3) ndt < Ct2.
tm

u

Combining the above estimates we therefore obtain
t(p)
[ lwopnarsc e sc
tm

e Estimate on J(p;). It follows from Proposition 9.1, Theorem 4.4, and Propo-
sition 8.1 that

17 (po)l < lIrAllzesc,y 7 kllL2c ) R(pr. T + 1 —1(p)) < C.
Thus
t(p)
| WoPar < o) -m = co=c.
Im
e Estimate on K(p;). It follows from Proposition 9.1 and Proposition 8.1 that

[K(po)l = IrAllLee(c, I Tl Itlae < 1812

From Lemma 8.6 we then obtain |K(p;)| < C. Therefore

t(p)
f |K(p:)|*ndt < C(t(p) —tm) <Ct < C.
t,

m

e Estimate on L(py). It follows from the Holder inequality that

IL(p)| S IYAlL2ic IVK L2 + IFAllLoo ey 17 el L2 IVK |2 (c,-

Therefore, we obtain from Proposition 9.1, Theorem 4.4, and Proposition 8.1 that
|L(p:)| < C, which gives

t(p)
/ \L(po)Pndt < C(t(p) —tm) < C1 < C.
tm

e Estimate on €(p;). We first have from Proposition 9.1 that
€(pl < 7 D3kl Ligs,, ) + I K lL1Gs,, 0
Using the definition of » we then obtain

|€(p)| S ID3kllr2gs,,, ) + 7l xkliLics,, -
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Since tr y = —a?tr y + 2a848Bk4 g, we have, with the help of (BA1) and (BA2),
that

ltr xkllz1cs,, .0 S

2
try ——
s

kL1 (1000 + 7 KN LIS, 0
L (Cy)

+ 1K1z 20,

< r_1||k||L1(s,m,u) + ||k||i2(s,m,u)

< & lz2cs,, .0 + ’“k”i“(szm,u)'

Consequently,
|€(p0)| < ID3klL2cs,,, ) + 77 KDLz, o + 1K, -

Therefore, using ‘ZJ—'; = n, we have

t(p) ) u(t(p)) 5
/ |€(pr) drs/ |€(ps)|? du
tm u

Im
S I3kl Z2cs, 5 + 1 Kl 2 s,y + 1Kl z4cz, )
It follows from Lemma 2.2 and Proposition 8.9 that

t(p)
2 2
[ e0R dr £ sk, + C

Recall that L = —a(T — N). So D3k = —a(Dok — Vyk). Recall also that
Dok = —n~'V?n 4 Ric + k Trk. Thus

ID3k|z2(s,,) < ”V2n”L2(Z[m) + [IRicllz 2z, )
+ ||k||i4(>;tm) + IVkllz2(,,)-

It follows from Lemma 2.2 and Proposition 3.1 that ||D3k||L2(E,m) < C. There-
fore

t(p)
/ |€(py)|?ndt < C.
tm

e Estimate on fCu Q1(k). By straightforward calculation we have Q1(k) =
A -7 -7 - 7. It follows from Proposition 9.1 that

Q10| < /r-wﬁP.
Cy

Therefore, one can use the similar argument in the estimate of /(p;) to get

t(p) t(p)
/ Q1K) P di < / /r-1|ﬁ|3
tm tm

u

2
ndt < Ct? < C.
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10 Proof of Main Theorem I

In this section, based on Theorem 1.2, we will follow the idea in [12] to give
the proof of Theorem 1.1. According to the local existence theorem given in [12,
prop. 6.1] (see also [5, theorem 10.2.1]), it suffices to show that the quantity

(10.1) Ry = |Ricllg2cs,y + Ikllm3cs,)

on each slice X; with 79 <t < #, is uniformly bounded.

Since (M, g) is a vacuum space-time, by virtue of the Bianchi identity, R satis-
fies a wave equation of the form [JR = R » R. Based on higher-energy estimates
it is standard to show that

t
(102) IDR()|2, < [DR(11)|25 + / IR( |2 o0 df”
5]
and
t
(103)  [D*R()[2> < [D2R()|2, + [ IDR() 12, [R() 20 d’
5]

forall 79 < t; <t < t«. The derivation has been given in [12] under assumption
(1.9); the argument, however, depends only on condition (Al).

Thus, the derivation of the L°°-bound of R is a crucial step. As in [10] one
can represent R(p), for each p € M., by a Kirchhoff-Sobolev formula over the
null cone N~ (p, t), where T > 0 is a universal constant such that ix(p,?) > t
whose existence is guaranteed by Theorem 1.2. One can then follow the delicate
argument in [12] to derive that

(10.4) |R(@)[L> <

! sup (IR 2 + IDR(E) |12 + [D*R(E)||2).
t'e[t—2t,t—1/2]

The derivation of (10.4) requires the estimates on

2
try — -
s

R(p, 1),

o X 8l e 2= pony)
LW (p,1)) ) 1( (p,7)

”/’L’WtrXHLz(N_(p,t))’ ||r1/2WtrX”L)ZCL?O(‘/\/_(p,t))’
171 + Dl L2 v (p.o))-

which are provided by Proposition 8.7 and Proposition 8.8 under condition (A1).
Combining estimates (10.2)—(10.4) gives

IROIgz =" sup IR g2
t'e[t—t,t—1/2]

Iterating this estimate as many times as needed, in steps of size t/2, yields

(10.5) sup |R(@®)||g2 < C,

t€fto,t+)
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where C is a positive constant depending only on Qg, Ko, |Zol, x, {0, and the
initial data ||R(%) || g2-

Now we are ready to show that the quantity R, defined by (10.1) is uniformly
bounded for all #9 < ¢ < t«. Although the argument is standard, we include it here
for completeness.

In view of the well-known equations

(10.6) Vikjm — Vikim = €ij' Him,

(10.7) Rij — kigk® + Trkk;; = Ej;.

We derive from Lemma 2.1 and Lemma 2.2 that

(10.8) IRicll> + Ikllgt + 1 Ell2 + I1Hl|L> < C.

where here and below all norms are taken over a fixed slice ¥;, which is sup-
pressed.

In order to obtain the derivative estimates, by straightforward calculation we
have symbolically

(10.9) VmEij = DmRoio; —k - H,

(10.10) VmHij =D, *Rojo; —k - E,

(10.11) V2 .Eij = D2, Roioj — kmnDoRoio; — V(k - H),
(10.12) V2 Hi; = D2, *Roioj — kmnDo*Roio; — V(k - E).

From (10.9) and (10.10) it follows that
IVElL2 + IVH g2 = [[DR|[2 + [[kllze | H s + [1kliLs [ EllL3-

Applying Lemma 2.5 to || E| ;3 and || H || 1.3, and using (10.5), (10.8), and Young’s
inequality, we obtain

(10.13) IVE|z2 + |[VH|l 2 < C.

Next we estimate || V2k||;2. From divk = 0 and (10.6) it follows Ak = Ric -
k + V H. Differentiating it, commuting V with A, and using (10.7) yields

(10.14) AVk =k -k-Vk + E-Vk +VE -k + V?H.

Multiplying (10.14) by Vk, integrating over X;, and using the Holder inequality
gives

IV2kl|7> S klZ6 IVENTs + 1 Ellzs VAN 125
+ IVEl 2 I VKl L3 [klls + IVH |2 VK] 2.
By virtue of Lemma 2.5, (10.8), and (10.13), we have |[V2k |2, < 1 + [[V2k]| 2,
which implies ||V2k||;2 < C. By the Sobolev embedding we obtain
(10.15) lkllzoe + |kl g2 < C.
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Using (10.15) and (10.5), it follows easily from (10.7), (10.11), and (10.12) that
[VRic|z2 + [[V2Ric |2 + [|[VZE| 2 + |V*H] 12 < C.

Finally, by differentiating (10.14), commuting V with A, and using (10.7) we
have

AV?k =k -k-V?k +k-Vk-Vk + E-V* +VE -Vk
+ V2E -k + V3H.
Multiplying this equation by V2k and integrating over X, yields
IVKIZ2 S koo IV2kIZ2 + IkliLoe IVEIZ 4 V2] L2
+IVElLs IVElLa 1V2kll2 + 1 E Lo IV2KIZ
+ IklLee IVZE L2 V2Kl 2 + V2 H | L2 VK 2
< C + C|[V3k| 2.
Therefore || V3k|| ;2 < C. The proof is thus complete.
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