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Building on an insight due to Avramidi, we provide a system of transport equations for determin-
ing key fundamental bi-tensors, including derivatives of the world-function, σ (x, x′), the square root

of the Van Vleck determinant, ∆1/2 (x, x′), and the tail-term, V (x, x′), appearing in the Hadamard
form of the Green function. These bi-tensors are central to a broad range of problems from radiation
reaction to quantum field theory in curved spacetime and quantum gravity. Their transport equa-
tions may be used either in a semi-recursive approach to determining their covariant Taylor series
expansions, or as the basis of numerical calculations. To illustrate the power of the semi-recursive
approach, we present an implementation in Mathematica which computes very high order covariant
series expansions of these objects. Using this code, a moderate laptop can, for example, calculate
the coincidence limit [a7(x, x)] and V (x, x′) to order (σa)20 in a matter of minutes. Results may be
output in either a compact notation or in xTensor form. In a second application of the approach,
we present a scheme for numerically integrating the transport equations as a system of coupled
ordinary differential equations. As an example application of the scheme, we integrate along null
geodesics to solve for V (x, x′) in Nariai and Schwarzschild spacetimes.

I. INTRODUCTION

In a recent paper [1] we presented methods for obtaining coordinate expansions for the (tail part of the) retarded
Green function in spherically symmetric spacetimes. By using computer algebra to obtain high order Taylor series
(of order (∆xα)50), and applying the theory of Padé approximants we were able to obtain accurate expressions in
remarkably large regions. Using these expressions, we were able to present the first complete matched expansion
calculation of the self-force in a model ‘black hole’ spacetime, the Nariai spacetime [2], and are currently applying
the method to Schwarzschild spacetime. Our ultimate goal in this programme is to work in more general spacetimes,
especially Kerr spacetime. A key component of the matched expansion approach is knowledge of the Green function
for points close together (i.e., in a quasilocal region). As we move away from specific symmetry conditions, we can no
longer rely on methods based on a special choice of coordinates in the construction of our quasilocal solution and are
led instead to consider other techniques such as transport equations and covariant expansion methods.

Covariant methods for calculating the Green function of the wave operator and the corresponding heat kernel, briefly
reviewed in Sec. II below, are central to a broad range of problems from radiation reaction to quantum field theory in
curved spacetime and quantum gravity. There is an extremely extensive literature on this topic; here we provide only
a very brief overview referring the reader to the reviews by Vassilevich [3] and Poisson [4] and references therein for a
more complete discussion. These methods have evolved from pioneering work by Hadamard [5] on the classical theory
and DeWitt [6, 7] on the quantum theory. The central objects in the Hadamard and DeWitt covariant expansions are

geometrical bi-tensor coefficients aAB
′

n (x, x′) which are commonly called DeWitt1 coefficients in the physics literature.
These coefficients are closely related to the short proper-time asymptotic expansion of the heat kernel of an elliptic
operator in a Riemannian space and so are commonly called heat kernel coefficients in the mathematics literature.
Traditionally most attention has focused on the diagonal value of the heat kernel KA

A(x, x; s), since the coincidence
limits aAnA(x, x) play a central role in the classical theory of spectral invariants [9] and in the quantum theory of the
effective action and trace anomalies [10]. By contrast, for the quasilocal part of the matched expansion approach to
radiation reaction [11, 12] we seek expansions valid for x and x′ as far apart as geometrical methods permit.

∗ adrian.ottewill@ucd.ie
† barry.wardell@aei.mpg.de
1 The Hadamard and DeWitt coefficients also appear in the literature under several other guises. They may be called DeWitt, Gilkey,

Minakshisundaram, Schwinger or Seeley coefficients, or any combination thereof (yielding acronyms such as DWSC, DWSG and HDMS).
In the coincidence limit, it has been proposed that they be called Hadamard-Minakshisundaram-DeWitt (HaMiDeW) [8] coefficients.
For the remainder of this paper, we will refer to them as either DeWitt (for the coefficients ak

A
B′ ) or Hadamard (for the coefficients

VrAB′ ) coefficients.
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The classical approach to the calculation of these coefficients in the physics literature was to use a recursive
approach developed by DeWitt [7] in the 1960s. Although these recursive methods work well for the first few terms in
the expansion [13, 14], and may be implemented in a tensor software package [15], the amount of calculation required
to compute subsequent terms quickly becomes prohibitively long, even when implemented as a computer program.
An alternative approach, more common in the mathematics literature, is to use pseudo-differential operators and
invariance theory [9], where a basis of curvature invariants of the appropriate structure is constructed [16] and then
their coefficients determined by explicit evaluation in simple spacetimes. However, here too, the size of the basis grows
rapidly and there seems little prospect of reaching orders comparable to those we obtained in the highly symmetric
configurations previously studied.

An extremely elegant, non-recursive approach to the calculation of DeWitt coefficients has been given by
Avramidi [17, 18]. As his motivation was to study the effective action in quantum gravity he was primarily in-
terested in the coincidence limit of the DeWitt coefficients, while in the self-force problem, as noted above, we require
point-separated expressions. In addition, Avramidi introduced his method in the language of quantum mechanics,
quite distinct from the language of transport equations, such as the Raychaudhuri equation, more familiar to dis-
cussions of geodesics among relativists. In this paper we present Avramidi’s approach in the language of transport
equations and show that it is ideal for numerical and symbolic computation. In so doing we are building on the work
of Décanini and Folacci [19] who wrote many of the equations we present (we indicate below where we deviate from
their approach) and implemented them explicitly by hand. However, calculations by hand are long and inevitably
prone to error, particularly for higher spin and for higher order terms in the series and are quite impractical for the
very high order expansions we would like for radiation reaction calculations. Instead, we use the transport equations
as the basis for Mathematica code for algebraic calculations and C code for numerical calculations. Rather than
presenting our higher order results in excessively long equations (our non-canonical expression for a7(x, x) for a scalar
field contains 2 987 366 terms!), we have made these codes freely available online [20, 21].

In Sec. II, we provide a brief review of Green functions, bi-tensors and covariant expansions, outlining the relations
between the classical and quantum theories.

In Sec. III, we detail the principles that we consider to encapsulate the key insights of the Avramidi approach and
use these to write down a set of transport equations for the key bi-tensors of the theory. These provide an adaptation
of the Avramidi approach which is ideally suited to implementation on a computer either numerically or symbolically.

In Sec. IV, we describe a semi-recursive approach to solving for covariant expansions and briefly describe our
Mathematica implementation of it and its interface with the tensor software package xTensor [22].

In Sec. V, we present a numerical implementation of the transport equation approach to the calculation of the
bi-scalar V (x, x′) appearing in the Hadamard form of the Green function along null geodesics.

In the Appendix, we give canonical expressions for the coincidence limits of the first five terms in the Hadamard
expansion of V (x, x′).

Given our motivation in studying the radiation reaction problem we shall phrase all the discussion of this paper
in 4-dimensional spacetime. The reader is referred to work by Décanini and Folacci [19] for a discussion of the
corresponding situation in spacetimes of more general (integer) dimension. We do note, however, that the DeWitt
coefficients are purely geometric bi-tensors, formally independent of the spacetime dimension.

Throughout this paper, we use units in which G = c = 1 and adopt the sign conventions of [23]. We denote
symmetrization of indices using brackets (e.g. (αβ)) and exclude indices from symmetrization by surrounding them
by vertical bars (e.g. (α|β|γ)). Roman letters are used for free indices and Greek letters for indices summed over all
spacetime dimensions. Capital letters are used to denote the spinorial/tensorial indices appropriate to the field being
considered.

II. A BRIEF REVIEW OF GREEN FUNCTIONS, BI-TENSORS AND COVARIANT EXPANSIONS

A. Classical Green functions

We take an arbitrary field ϕA(x), and consider wave operators which are second order partial differential operators
of the form [18]

DAB = δAB(�−m2)− PAB (2.1)

where � ≡ gαβ∇α∇β , gαβ is the (contravariant) metric tensor, ∇α is the covariant derivative defined by a connection
AABα: ∇αϕA = ∂αϕ

A +AABαϕB , m is the mass of the field and PAB(x) is a possible potential term.
In the classical theory of wave propagation in curved spacetime, a fundamental object is the retarded Green function,

Gret
B
C′ (x, x

′). It is a solution of the inhomogeneous wave equation,

DABGret
B
C′ (x, x

′) = −4πδAC′δ (x, x′) , (2.2)
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with support on and within the past light-cone of the field point. (The factor of 4π is a matter of convention,
our choice here is consistent with Ref. [4].) Finding the retarded Green function globally can be extremely hard.
However, provided x and x′ are sufficiently close (within a normal neighborhood2), we can use the Hadamard form
for the retarded Green function solution [5, 24], which in 4 spacetime dimensions takes the form

Gret
A
B′ (x, x

′) = θ− (x, x′)
{
UAB′ (x, x

′) δ (σ (x, x′))− V AB′ (x, x′) θ (−σ (x, x′))
}
, (2.3)

where θ− (x, x′) is analogous to the Heaviside step-function, being 1 when x′ is in the causal past of x, and 0

otherwise, δ (σ (x, x′)) is the covariant form of the Dirac delta function, UAB
′
(x, x′) and V AB

′
(x, x′) are symmetric

bi-spinors/tensors and are regular for x′ → x. The bi-scalar σ (x, x′) is the Synge [4] world function, which is equal
to one half of the squared geodesic distance between x and x′. The first term, involving UAB′ (x, x

′), in Eq. (2.3)
represents the direct part of the Green function while the second term, involving V AB′ (x, x

′), is known as the tail
part of the Green function. This tail term represents back-scattering off the spacetime geometry and is, for example,
responsible for the quasilocal contribution to the self-force.

Within the Hadamard approach, the symmetric bi-scalar V AB
′
(x, x′) is expressed in terms of a formal expansion

in increasing powers of σ [19]:

V AB
′
(x, x′) =

∞∑
r=0

Vr
AB′ (x, x′)σr (x, x′) (2.4)

The coefficients UAB
′

and Vr
AB′ are determined by imposing the wave equation, using the identity σ;ασ

;α = 2σ =

σ;α′σ
;α′ , and setting the coefficient of each manifest power of σ equal to zero. Since V AB′ is symmetric for self-adjoint

wave operators we are free to apply the wave equation either at x or at x′; here we choose to apply it at x′. We find
that UAB

′
(x, x′) = ∆1/2 (x, x′) gAB

′
(x, x′), where ∆ (x, x′) is the Van Vleck-Morette determinant defined as [4]

∆ (x, x′) = − [−g (x)]
−1/2

det (−σ;αβ′ (x, x′)) [−g (x′)]
−1/2

= det
(
−gα

′

α (x, x′)σ;α
β′ (x, x

′)
)

(2.5)

with gα
′
α (x, x′) being the bi-vector of parallel transport (defined fully below) and where gAB

′
is the bi-tensor of

parallel transport appropriate to the tensorial nature of the field, eg.

gAB
′

=


1 (scalar)

gab
′

(electromagnetic)

ga
′(agb)b

′
(gravitational),

(2.6)

where the higher spin fields are taken in Lorentz gauge. In making this identification we have used the transport
equation for the Van Vleck-Morette determinant:

σ;α∇α ln ∆ = (4−�σ). (2.7)

The coefficients V AB
′

r (x, x′) satisfy the recursion relations

σ;α′(∆−1/2V AB
′

r );α′ + (r + 1) ∆−1/2V AB
′

r +
1

2r
∆−1/2DB

′

C′V
AC′

r−1 = 0 (2.8a)

for r ∈ N along with the ‘initial condition’

σ;α′(∆−1/2V AB
′

0 );α′ + ∆−1/2V AB
′

0 +
1

2
∆−1/2DB

′

C′(∆
1/2gAC

′
) = 0. (2.8b)

These are transport equations which may be solved in principle within a normal neighborhood by direct integration
along the geodesic from x to x′. The complication is that the calculation of V AB

′

r requires the calculation of second

derivatives of V AB
′

r−1 in directions off the geodesic; we address this issue below.
Finally we emphasize that the Hadamard expansion (2.4) is an ansatz not a Taylor series. For example, in deSitter

spacetime for a conformally invariant scalar theory all the Vr’s are non-zero while V ≡ 0.

2 More precisely, the Hadamard form requires that x and x′ lie within a causal domain – a convex normal neighborhood with causality
condition attached. This effectively requires that x and x′ be connected by at most one non-spacelike geodesic which stays within the
causal domain. However, as we expect the term normal neighborhood to be more familiar to the reader, we will use it throughout this
paper, with implied assumptions of convexity and a causality condition.
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B. The quantum theory

In curved spacetime a fundamental object of interest is the Feynman Green function defined for a quantum field
ϕ̂A(x) in the state |Ψ〉 by

GAB
′

f (x, x′) = i〈Ψ|T
[
ϕ̂A(x)ϕ̂B

′
(x′)

]
|Ψ〉. (2.9)

where T denotes time-ordering. The Feynman Green function may be related to the advanced and retarded Green
functions of the classical theory by the covariant commutation relations [7]

Gf
AB′(x, x′) =

1

8π

(
GAB

′

adv (x, x′) +GAB
′

ret (x, x′)
)

+
i

2
〈Ψ|ϕ̂A(x)ϕ̂B

′
(x′) + ϕ̂B

′
(x′)ϕ̂A(x)|Ψ〉. (2.10)

The anticommutator function 〈Ψ|ϕ̂A(x)ϕ̂B
′
(x′) + ϕ̂B

′
(x′)ϕ̂A(x)|Ψ〉 clearly satisfies the homogeneous wave equation

so that the Feynman Green function satisfies the equation

DABGf
B
C′ (x, x

′) = −δAC′δ(x, x′). (2.11)

Using the proper-time formalism [7], the identity

i

∞∫
0

ds e−εs exp(isx) = − 1

x+ iε
, (ε > 0), (2.12)

allows the causal properties of the Feynman function to be encapsulated in the formal expression

Gf
A
C′ (x, x

′) = i

∞∫
0

ds e−εs exp(isD)ABδ
B
C′δ(x, x

′) (2.13)

where the limit ε→ 0+ is understood. The integrand

KA
C′(x, x

′; s) = exp(isD)ABδ
B
C′δ(x, x

′) (2.14)

clearly satisfies the Schrödinger/heat equation

1

i

∂KA
C′

∂s
(x, x′; s) = DABKB

C′(x, x
′; s) (2.15)

together with the initial condition KA
B′(x, x

′; 0) = δAB′(x, x
′). The trivial way in which the mass m enters these

equations allows it to be eliminated through the prescription

KA
C′(x, x

′; s) = e−im
2sK0

A
C′(x, x

′; s), (2.16)

with the massless heat kernel satisfying the equation

1

i

∂K0
A
C′

∂s
(x, x′; s) = (δAB�− PAB)K0

B
C′(x, x

′; s) (2.17)

together with the ‘initial condition’ K0
A
B′(x, x

′; 0) = δAB′δ(x, x
′).

In 4-dimensional Minkowski spacetime without potential, the massless heat kernel is readily obtained as

K0
A
B′(x, x

′; s) =
1

(4πs)2
exp

(
− σ

2is

)
δAB′ (flat spacetime). (2.18)

This motivates the ansatz [7] that in general the massless heat kernel allows the representation

K0
A
B′(x, x

′; s) ∼ 1

(4πs)2
exp

(
− σ

2is

)
∆1/2 (x, x′) Ω0

A
B′(x, x

′; s) , (2.19)



5

where ΩAB′(x, x
′; s) possesses the following asymptotic expansion as s→ 0+:

ΩAB′(x, x
′; s) ∼

∞∑
r=0

aAr B′(x, x
′)(is)r , (2.20)

where a0
A
B′(x, x) = δAB′ and ar

A
B′(x, x

′) has dimension (length)−2r. The inclusion of the explicit factor of ∆1/2 is
simply a matter of convention; by including it we are following DeWitt, but many authors, including Décanini and
Folacci, choose instead to include it in the series coefficients

Ar
A
B′(x, x

′) = ∆1/2ar
A
B′(x, x

′). (2.21)

It is clearly trivial to convert between the two conventions and, in any case, the coincidence limits agree.
Now, requiring our expansion to satisfy Eq. (2.17) and using the symmetry of ΩAB′(x, x

′; s) to allow operators to
act at x′, we find that ΩAB′(x, x

′; s) must satisfy

1

i

∂ΩAB
′

∂s
+

1

is
σ;α′ΩAB

′

;α′ = ∆−1/2(δB
′

C′�− PB
′

C′)
(

∆1/2ΩAC
′
(x, x′; s)

)
. (2.22)

Inserting the expansion Eq. (2.20), the coefficients aAB
′

n (x, x′) satisfy the recursion relations

σ;α′a AB′

r+1 ;α′ + (r + 1) a AB′

r+1 −∆−1/2(δB
′

C′�− PB
′

C′)
(

∆1/2ar
AC′
)

= 0 (2.23a)

for r ∈ N along with the ‘initial condition’

σ;α′a0
AB′

;α′ = 0, (2.23b)

with the implicit requirement that they be regular as x′ → x.
To compare the DeWitt approach to the Hadamard approach we may start by rewriting the Hadamard recursion

relations (2.8) as

σ;α′((−2)r+1r!∆−1/2V AB
′

r );α′ + (r + 1) ((−2)r+1r!∆−1/2V AB
′

r )

−∆−1/2
(
δB
′

C′�
′ − PB

′

C′
)(

∆1/2 (−2)r(r − 1)!∆−1/2V AC
′

r−1
)

+m2
(

(−2)r(r − 1)!∆−1/2V AB
′

r−1
)

= 0 (2.24)

which can be taken to include r = 0 with the formal identification (−1)!∆−1/2V AB
′

−1 = gAB
′

= a0
AB′ . Comparing

(2.24) and (2.23a), one can see that the massless Hadamard and (mass-independent) DeWitt coefficients are related
by

ar+1
A
B′(x, x

′) = (−2)r+1r!∆−1/2(x, x′)V (m2=0)
r

A
B′(x, x

′), (2.25a)

V (m2=0)
r

A
B′(x, x

′) = (−1)r+1 ∆1/2 (x, x′)

2r+1r!
ar+1

A
B′(x, x

′). (2.25b)

We can also relate the Hadamard coefficients for a theory of mass m and the (mass-independent) DeWitt coefficients.
We start by noting that from (2.16), (2.19) and (2.20) the massive heat kernel has the asymptotic expansion

KA
B′(x, x

′; s) ∼ 1

(4πs)2
exp

(
− σ

2is

)
∆1/2 (x, x′)

∞∑
r=0

(
r∑

k=0

(−m2)r−k

(r − k)!
aAk B′(x, x

′)

)
(is)r. (2.26)

It follows from linearity that the massive Hadamard coefficients may be obtained from (2.25b) with the replacement

ar
A
B′(x, x

′)→
r∑

k=0

(−m2)r−k

(r − k)!
ar
A
B′(x, x

′) (2.27)

yielding

Vr
A
B′(x, x

′) = (−1)r+1 ∆1/2 (x, x′)

2r+1r!

r+1∑
k=0

(−m2)r+1−k

(r + 1− k)!
ak
A
B′(x, x

′) (2.28)
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with inverse

ar+1
A
B′(x, x

′) = ∆−1/2
r∑

k=0

(−2)k+1 k!

(r − k)!
(m2)r−kVk

A
B′(x, x

′) +
(m2)r+1

(r + 1)!
. (2.29)

These relations enable us to relate the ‘tail term’ of the massive theory to that of the massless theory by

V (x, x′)AB′ =

∞∑
r=0

V (m2=0)
r

A
B′(x, x

′)
(2σ)

r
r!Jr

(
(−2m2σ)1/2

)
(−2m2σ)r/2

+m2∆1/2 J1
(
(−2m2σ)1/2

)
(−2m2σ)1/2

δAB′ . (2.30)

where Jr(x) are Bessel functions of the first kind. This last expression is obtained by using (2.25a) in (2.28), sub-
stituting the result into (2.4) and interchanging the order of summation (upon doing so, the sum over k yields the
Bessel functions).

C. Classical Approach to Covariant Expansion Calculations

The Synge world-function, σ(x, x′) is a bi-scalar (i.e., a scalar at x and at x′) defined to be equal to half the square
of the geodesic distance between x and x′. The world-function is defined through the fundamental identity

σασ
α = 2σ = σα′σ

α′ , (2.31)

together with the ‘initial’ conditions lim
x′→x

σ(x, x′) = 0 and lim
x′→x

σab(x, x
′) = gab(x). Here, we indicate derivatives at

the (un-)primed point by (un-)primed indices:

σa ≡ ∇aσ σa ≡ ∇aσ σa
′
≡ ∇a

′
σ σa′ ≡ ∇a′σ. (2.32)

σa is a vector at x of length equal to the geodesic distance between x and x′, tangent to the geodesic at x and oriented
in the direction x′ → x while σa

′
is a vector at x′ of length equal to the geodesic distance between x and x′, tangent

to the geodesic at x′ and oriented in the opposite direction.
The covariant derivatives of σ may be written as

σa(x, x′) = (s− s′)ua σa
′
(x, x′) = (s′ − s)ua

′
(2.33)

where s is an affine parameter and ua is tangent to the geodesic. For time-like geodesics, s may be taken as the proper
time along the geodesic while ua is the 4-velocity tangent to the geodesic and

σ(x, x′) = −1

2
(s− s′)2. (2.34)

Similarly, for space-like geodesics, s may be taken as the spatial geodesic distance along the geodesic and

σ(x, x′) = +
1

2
(s− s′)2. (2.35)

For null geodesics, ua is null and σ(x, x′) = 0.
Another bi-tensor of frequent interest is the bi-vector of parallel transport, gab′ defined by the transport equation

σαgab′;α = 0 = σα
′
gab′;α′ (2.36)

with initial condition lim
x′→x

gab′(x, x
′) = gab(x). From the definition of a geodesic it follows that

gaα′σ
α′ = −σa and gαa′σ

α = −σa′ . (2.37)

Given a bi-tensor Ta at x, the parallel transport bi-vector allows us define T̄a′ , a bi-tensor at x′, obtained by parallel
transporting Ta along the geodesic from x to x′ and vice-versa,

Tαg
α
a′ = T̄a′ T̄α′g

α′

a = Ta. (2.38)

These are consistent as gaα′gb
α′ = δab and gα

a′gαb′ = δa
′
b′ .
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Any sufficiently smooth bi-tensor Ta1···ama′1···a′n may be expanded in a local covariant Taylor series about the point
x. To do so it is convenient and conventional to first use the bi-vector of parallel transport to transport all tensor
indices to x, for example:

gb1
b′1 · · · gbnb

′
nTa1···amb′1···b′n(x, x′) =

∞∑
k=0

(−1)k

k!
ta1···amb1···bn α1···αk

(x)σα1 · · ·σαk =

∞∑
k=0

(−1)k

k!
Ta1···amb1···bn (k) (2.39)

where the ta1···amb1···bn α1···αk
are the coefficients of the series and are local tensors at x and Ta1···amb1···bn (k) is defined

as this coefficient contracted with the corresponding σαi . Similarly, we can also expand about x′:

ga1a′1 · · · g
am

a′m
Ta1···amb′1···b′n(x, x′) =

∞∑
k=0

(−1)k

k!
ta′1···a′mb′1···b′n α′1···α′k(x′)σα

′
1 · · ·σα

′
k . (2.40)

For many fundamental bi-tensors, one would typically use the DeWitt approach [6] to determine the coefficients in
these expansions as follows:

1. Take covariant derivatives of the defining equation for the bi-tensor (the number of derivatives required depends
on the order of the term to be found).

2. Replace all known terms with their coincidence limit, x→ x′.

3. Sort covariant derivatives, introducing Riemann tensor terms in the process.

4. Take the coincidence limit x′ → x of the result.

This method allows all coefficients to be determined recursively in terms of lower order coefficients and Riemann
tensor polynomials. Although this method proves effective for determining the lowest few order terms by hand and
can be readily implemented in software, it does not scale well and it is not long before the computation time required
to calculate the next term is prohibitively large. This issue can be understood from the fact that the calculation
yields extremely large intermediate expressions which simplify tremendously in the end. It is therefore desirable to
find an alternative approach which is more efficient and better suited to implementation in software. In the following
sections, we will describe one such approach which proves to be highly efficient.

III. AVRAMIDI APPROACH TO COVARIANT EXPANSION CALCULATIONS

The traditional DeWitt [6] approach to the calculation of covariant expansions of fundamental bi-tensors is to derive
a set of recursion relations for the coefficients of the series. Avramidi [17] has proposed an alternative, extremely
elegant non-recursive method for the calculation of these coefficients. Translated into the language of transport
equations, this approach emphasizes two fundamental principles when doing calculations:

1. When expanding about x, always try to take derivatives at x′. The result is that derivatives only act on the
σa’s and not on the coefficients.

2. Where possible, whenever taking a covariant derivative, ∇a′ , contract the derivative with σa
′
.

Applying these two principles, Avramidi has derived non-recursive3 expressions for the coefficients of covariant ex-
pansions of several bi-tensors. As Avramidi’s derivations use a rather abstract notation, we will now briefly review
his technique in a more explicit notation. We will also extend the derivation to include several other bi-tensors and
note that Eqs. (3.11), (3.13), (3.15), (3.17), (3.34), (3.35), (3.46) and (3.49) were previously written down and used
by Décanini and Folacci [19].

Throughout this section, we fix the base point x and allow it to be connected to any other point x′ by a geodesic.
In all cases, we expand about the fixed point, x.

Defining the transport operators D and D′ as

D ≡ σα∇α D′ ≡ σα
′
∇α′ , (3.1)

3 Avramidi retains the recurrence relations for the DeWitt coefficients, ak (and hence the Hadamard coefficients, Vr). However, all other
relations are non-recursive.
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we can rewrite Eq. (2.31) as

(D − 2)σ = 0 (D′ − 2)σ = 0. (3.2)

Differentiating these equations at x and at x′, we get

(D − 1)σa = 0 (D − 1)σa
′

= 0 (D′ − 1)σa = 0 (D′ − 1)σa
′

= 0. (3.3)

Defining

ηab′ ≡ σab′ ξa
′

b′ ≡ σ
a′

b′ , (3.4)

the second pair of these equations can be rewritten as

σa = ηaα′σ
α′ σa

′
= ξa

′

α′σ
α′ . (3.5)

Finally, we define γa
′

b
, the inverse of ηab′ ,

γa
′

b ≡ (ηba′)
−1. (3.6)

and also introduce the definition

λab ≡ σab. (3.7)

We will now derive transport equations for each of these newly introduced quantities along with some others which
will be defined as required. Many of these derivations involve considerable index manipulations and are most easily
(and accurately) done using a tensor software package such as xTensor [22].

The transport equations of this section may be derived in a recursive manner, making use of the identities

D′(σa′1...a′na′n+1
) = ∇a′n+1

(D′σa′1...a′n)− ξα
′

a′n+1
∇α′σa′1...a′n + σα

′
Rc
′

a′1a
′
n+1α

′σc′...a′n + · · ·+ σα
′
Rc
′

a′na
′
n+1α

′σa′1...c′

(3.8)

D′(σba′1...a′n) = ∇b(D′σa′1...a′n)− ηbα′∇α
′
σa′1...a′n . (3.9)

and its generalisation, given below. This method is naturally algorithmic and well suited to implementation on a
computer, thus allowing for the automated derivation of a transport equation for an arbitrary number of derivatives
of a bi-tensor.

A. Transport equation for ξa
′

b′

Taking a primed derivative of the second equation in (3.5), we obtain

ξa
′

b′ = ξa
′

α′b′σ
α′ + ξa

′

α′ξ
α′

b′ . (3.10)

We now commute the last two covariant derivatives in the first term on the right hand side of this equation and
rearrange to obtain:

D′ξa
′

b′ + ξa
′

α′ξ
α′

b′ − ξ
a′

b′ +Ra
′

α′b′β′σ
α′σβ

′
= 0 (3.11)

B. Transport equation for ηab′

Taking a primed derivative of the first equation in (3.5), we obtain

ηab′ = ηaα′b′σ
α′ + ηaα′ξ

α′

b′ (3.12)

In this case, since σa is a scalar at x′, we can commute the two primed covariant derivatives in the first term on
the right hand side of this equation without introducing a Riemann term. Rearranging, we obtain:

D′ηab′ + ηaα′ξ
α′

b′ − η
a
b′ = 0 (3.13)
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C. Transport equation for γa
′
b

Solving Eq. (3.13) for ξa
′

b′
and using (3.6), we obtain

ξa
′

b′ = δa
′

b′ − γ
a′

α

(
D′ηα b′

)
= δa

′

b′ +
(
D′γa

′

α

)
ηα b′ , (3.14)

Next, substituting Eq. (3.14) into Eq. (3.11) and rearranging, we obtain a transport equation for γa
′

b
:

(D′)2γa
′

b +D′γa
′

b +Ra
′

α′γ′β′γ
γ′

b
σα
′
σβ
′

= 0. (3.15)

D. Equation for λab

Differentiating Eq. (2.31) at x and x′, we obtain

ηab′ = λaαη
α
b′ +Dηab′ (3.16)

which is easily rearranged to give an equation for λab:

λab = δab − (Dηaα′)γ
α′

b. (3.17)

E. Transport equation for σa
′

b′c′

Applying the identity (3.8) to (3.11) and simplifying the resulting expression, we obtain

(D′ − 1)σa
′

b′c′ + σα
′

c′σ
a
α′b′ + σα

′

b′σ
a′

α′c′ + σa
′

α′σ
α′

b′c′ +Ra
′

α′b′β′;c′σ
α′σβ

′

−Ra
′

α′β′b′σ
β′σα

′

c′ −R
a′

α′β′c′σ
β′σα

′

b′ +Rα
′

b′β′c′σ
β′σa

′

α′ = 0 (3.18)

F. Transport equation for σab′c′

Applying the identity (3.9) to (3.11) and simplifying the resulting expression, we obtain

(D′ − 1)σab′c′ + σα
′

b′σ
a
α′c′ + σα

′

c′σ
a
α′b′ + σaα′σ

α′

b′c′ +Rα
′

b′β′c′σ
a
α′σ

β′ = 0 (3.19)

G. Transport equation for σa
′

b′c′d′

Applying the identity (3.8) to (3.18) and simplifying the resulting expression, we obtain

(D′ − 1)σa
′

b′c′d′ + σa
′

α′b′c′σ
α′

d′ + σa
′

α′b′d′σ
α′

c′ + σa
′

α′c′d′σ
α′

b′ + σa
′

α′b′σ
α′

c′d′ + σa
′

α′c′σ
α′

b′d′ + σa
′

α′d′σ
α′

b′c′

+ σa
′

α′σ
α′

b′c′d′ +Ra
′

α′β′c′R
α′

d′γ′b′σ
β′σγ

′
+Ra

′

α′β′b′R
α′

d′γ′c′σ
β′σγ

′
+Ra

′

α′β′d′R
α′

c′γ′b′σ
β′σγ

′

−Ra
′

β′α′d′R
α′

b′γ′c′σ
β′σγ

′
−Ra

′

β′α′c′R
α′

b′γ′d′σ
β′σγ

′
+Ra

′

β′b′γ′;c′d′σ
β′σγ

′
+Rα

′

b′β′c′;d′σ
β′σa

′

α′

−Ra
′

α′β′c′;d′σ
β′σα

′

b′ −R
a′

α′β′b′;d′σ
β′σα

′

c′ −R
a′

α′β′b′;c′σ
β′σα

′

d′ +Rα
′

c′β′d′σ
β′σa

′

b′α′ +Rα
′

b′β′d′σ
β′σa

′

c′α′

+Rα
′

b′β′c′σ
β′σa

′

d′α′ −R
a′

α′β′d′σ
β′σα

′

b′c′ −R
a′

α′β′c′σ
β′σα

′

b′d′ −R
a′

α′β′b′σ
β′σα

′

c′d′ = 0 (3.20)

H. Transport equation for σab′c′d′

Applying the identity (3.9) to (3.18) and simplifying the resulting expression, we obtain

(D′ − 1)σab′c′d′ + σaα′b′c′σ
α′

d′ + σaα′b′d′σ
α′

c′ + σaα′c′d′σ
α′

b′ + σaα′b′σ
α′

c′d′ + σaα′c′σ
α′

b′d′ + σaα′d′σ
α′

b′c′

+ σaα′σ
α′

b′c′d′ +Rα
′

b′β′c′;d′σ
β′σaα′ +Rα

′

b′β′c′σ
β′σad′α′ +Rα

′

b′β′d′σ
β′σac′α′ +Rα

′

c′β′d′σ
β′σab′α′ = 0 (3.21)
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I. Transport equation for g b
a′

The bi-vector of parallel transport is defined by the transport equation

D′g b
a′ = σα

′
g b
a′ ;α′ ≡ 0. (3.22)

J. Transport equation for gab′;c′

Let

Aabc = g α′

b g β′

c gaα′;β′ (3.23)

Applying D′ and commuting covariant derivatives, we obtain a transport equation for Aabc:

D′Aabc +Aabαξ
β′

γ′
g α
β′ g

γ′

c + g α′

a g β′

b g γ′

c Rα′β′γ′δ′σ
δ′ = 0 (3.24)

K. Transport equation for gab′;c

Let

Babc = g β′

b gaβ′;c (3.25)

Applying D′ and rearranging, we obtain a transport equation for Bαβγ :

D′Babc = −Aabαηαβ′g β′

c (3.26)

L. Transport equation for g b′

a ;c′d′

Applying D′ to g b′

a ;c′d′
, we obtain

D′g b′

a ;c′d′ = σα
′
g b′

a ;c′d′α′ . (3.27)

Commuting covariant derivatives on the right hand side, this becomes

D′g b′

a ;c′d′ = σβ
′
(
g b′

a ;β′c′d′ +Rb
′

α′β′d′g
α′

a ;c′ +Rb
′

α′β′c′g
α′

a ;d′ −R
α′

c′β′d′g
b′

a ;α′ +Rb
′

α′β′c′;d′g
α′

a

)
. (3.28)

Bringing σβ
′

inside the derivative in the first time on the right hand side, and noting that σβ
′
g b′

a ;β′
= 0, this then

yields a transport equation for g b′

a ;c′d′
:

D′g b′

a ;c′d′ = −σβ
′

c′
g b′

a ;β′d′ − σ
β′

d′
g b′

a ;β′c′ − σ
β′

c′d′
g b′

a ;β′

+Rb
′

α′β′d′σ
β′g α′

a ;c′ +Rb
′

α′β′c′σ
β′g α′

a ;d′ −R
α′

c′β′d′σ
β′g b′

a ;α′ +Rb
′

α′β′c′;d′σ
β′g α′

a . (3.29)

M. Transport equation for ζ = ln ∆1/2

The Van Vleck-Morette determinant, ∆ is a bi-scalar defined by

∆ (x, x′) ≡ det
[
∆α′

β′

]
, ∆α′

β′ ≡ −g
α′

ασ
α
β′ = −gα

′

αη
α
β′ (3.30)

By Eq. (3.13), we can write the second equation here as:

∆α′

β′ = −gα
′

α

(
D′ηαβ′ + ηαγ′ξ

γ′

β′

)
(3.31)
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Since D′gα
′

α
= gα

′

α;β′
σβ
′

= 0, we can rewrite this as

∆α′

β′ = D′∆α′

β′ + ∆α′

γ′ξ
γ′

β′
(3.32)

Introducing the inverse (∆−1)α
′

β′
and multiplying it by the above, we obtain

4 = ξα
′

α′ +D′(ln ∆) (3.33)

where we have used the matrix identity δ ln detM = TrM−1δM to convert the trace to a determinant. This can also
be written in terms of ∆1/2:

D′ζ =
1

2

(
4− ξα

′

α′

)
(3.34)

N. Transport equation for the Van Vleck-Morette determinant, ∆1/2

By the definition of ζ, the Van Vleck-Morette determinant is given by

∆1/2 = eζ , (3.35)

and so satisfies the transport equation

D′∆1/2 =
1

2
∆1/2

(
4− ξα

′

α′

)
. (3.36)

O. Equation for ∆−1/2D(∆1/2)

Defining τ = ∆−1/2D(∆1/2), it is immediately clear that

τ = ∆−1/2D(∆1/2) = Dζ. (3.37)

P. Equation for ∆−1/2D′(∆1/2)

Defining τ ′ = ∆−1/2D′(∆1/2), it is immediately clear that

τ ′ = ∆−1/2D′(∆1/2) = D′ζ. (3.38)

Q. Equation for ∇a′∆

To derive an equation for ∇a′∆, we note that

∆ ≡ det
[
−ga

′

αη
α
b′

]
= − det [ηab′ ] det

[
g a′

a

]
, (3.39)

and make use of Jacobi’s matrix identity

d (detA) = tr (adj (A) dA)

= (detA) tr
(
A−1dA

)
(3.40)

where the operator d indicates a derivative. Applying (3.40) to (3.39), we obtain an equation for ∇a′∆:

∇a′∆ = −∆
[
g α
α′ g

α′

α ;a′ + γα
′

ασ
α
α′a′

]
. (3.41)

As a consistency check we note that contracting with σa
′

and using Eq. (3.13) we recover Eq. (3.33).
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R. Equation for �′∆

Applying Jacobi’s identity twice, together with d(A−1) = −A−1(dA)A−1, we find an identity for the second
derivative of the determinant of a matrix:

d2 (detA) = (detA)
(
tr
(
A−1dA

)
tr
(
A−1dA

)
− tr

(
A−1dAA−1dA

)
+ tr

(
A−1d2A

))
. (3.42)

Using this identity in Eq. (3.39), we obtain an equation for �′∆,

�′∆ = ∆
[(
g α
α′ g

α′

α ;µ′ + γα
′

ασ
α
α′µ′

)(
g β
β′ g

β′;µ′

β
+ γβ

′

β
σβ µ′

β′

)
−
(
g α
α′ g

β′

α ;µ′
g β
β′ g

α′;µ′

β

)
−
(
γα
′

ασ
α
β′µ′γ

β′

β
σβ µ′

α′

)
+
(
g α
α′ g

α′ µ′

α ;µ′

)
+
(
γα
′

ασ
α µ′

α′ µ′

)]
. (3.43)

S. Equation for �′∆1/2

Noting that

�′∆1/2 =

(
1

2
∆−1/2∆;µ′

);µ′

=
1

2
∆−1/2�′∆− 1

4
∆−3/2∆;µ′∆;µ′ , (3.44)

it is straightforward to use Eqs. (3.41) and (3.43) to find an equation for �′∆1/2:

�′∆1/2 =
1

2
∆1/2

[
1

2

(
g α
α′ g

α′

α ;µ′ + γα
′

ασ
α
α′µ′

)(
g α
α′ g

α′;µ′

α + γα
′

ασ
α ;µ′

α′

)
−
(
g α
α′ g

β′

α ;µ′
g β
β′ g

α′;µ′

β

)
−
(
γα
′

ασ
α
β′µ′γ

β′

β
σβ µ′

α′

)
+
(
g α
α′ g

α′ µ′

α ;µ′

)
+
(
γα
′

ασ
α µ′

α′ µ′

)]
. (3.45)

T. Transport equation for V0

As is given in Eq. (2.8b), V0 satisfies the transport equation

(D′ + 1)V AB
′

0 +
1

2
V AB

′

0

(
ξµ
′

µ′
− 4
)

+
1

2
DB

′

C′(∆
1/2gAC

′
) = 0, (3.46)

or equivalently

(D′ + 1)
(

∆−1/2V AB
′

0

)
+

1

2
∆−1/2DB

′

C′(∆
1/2gAC

′
) = 0. (3.47)

In particular, for a scalar field:

(D′ + 1)V0 +
1

2
V0

(
ξµ
′

µ′
− 4
)

+
1

2
(�′ −m2 − P ′)∆1/2 = 0, (3.48)

where P ′ ≡ P (x′) is frequently taken to be proportional to the Ricci scalar: P = ξR.

U. Transport equations for Vr

As is given in Eq. (2.8a), Vr satisfies the transport equation

(D′ + r + 1)V AB
′

r +
1

2
V AB

′

r

(
ξµ
′

µ′
− 4
)

+
1

2r
DB

′

C′V
AC′

r−1 = 0, (3.49)

or equivalently

(D′ + r + 1)
(

∆−1/2V AB
′

r

)
+

1

2r
∆−1/2DB

′

C′V
AC′

r−1 = 0. (3.50)
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Comparing with Eq. (3.47), it is clear that Eq. (3.50) may be taken to include r = 0 if we replace V AC
′

r−1 /r by ∆1/2gAC
′
.

In particular, for a scalar field:

(D′ + r + 1)Vr +
1

2
Vr

(
ξµ
′

µ′
− 4
)

+
1

2r
(�′ −m2 − P ′)Vr−1 = 0. (3.51)

Together with the earlier equations, the transport equation Eq. (3.46) allows us to immediately solve for V AB
′

0

along a geodesic. To obtain the higher order Vr we also need to determine �′V AB
′

r−1 . At first sight this appears to
require integrating along a family of neighbouring geodesics but, in fact, again we can write transport equations for
it. First we note the identity

∇a′(D′TAB
′

a′1...a
′
n
) = D′(∇a′TAB

′

a′1...a
′
n
) + ξα

′

a′∇α′TAB
′

a′1...a
′
n

+ σα
′
RB

′

C′a′α′T
AC′

a′1...a
′
n

− σα
′
Rc
′

a′1a
′α′T

AC′
c′...a′n

− · · · − σα
′
Rc
′

a′na
′α′T

AC′

a′1...c
′ (3.52)

where RABcd = ∂cAABd−∂cAABd+AACdACBc−AACdACBc. Working with Ṽ AB
′

r = ∆−1/2V AB
′

r , on differentiating

Eq. (3.50) we obtain a transport equation for the first derivative of V AB
′

r

(D′ + r + 1)(Ṽ AB
′

r ;a′) + ξα
′

a′ Ṽ
AB′

r ;α′ + σα
′
RB

′

C′a′α′ Ṽ
AC′

r +
1

2r

(
∆−1/2DB

′

C′

(
∆1/2Ṽ AC

′

r−1

))
;a′

= 0. (3.53)

As noted above, this equation also includes r = 0 if we replace Ṽ AC
′

r−1 /r in this case by gAC
′
:

(D′ + 1)(Ṽ AB
′

0 ;a′) + ξα
′

a′ Ṽ
AB′

0 ;α′ + σα
′
RB

′

C′a′α′ Ṽ
AC′

0 +
1

2

(
∆−1/2DB

′

C′

(
∆1/2gAC

′
))

;a′
= 0. (3.54)

Repeating the process

(D′ + r + 1)(Ṽ AB
′

r ;a′b′) + ξα
′

b′ Ṽ
AB′

r ;a′α′ + ξα
′

a′ Ṽ
AB′

r ;α′b′

+ σα
′
RB

′

C′b′α′V
AC′

r ;a′ + σα
′
RB

′

C′a′α′ Ṽ
AC′

r ;b′ + ξα
′

a′;b′ Ṽ
AB′

r ;α′ − σα
′
Rβ
′

a′b′α′ Ṽ
AC′

r ;β′

+ ξα
′

b′RB
′

C′a′α′ Ṽ
AC′

r + σα
′
RB

′

C′a′α′;b′ Ṽ
AC′

r +
1

2r

(
∆−1/2DB

′

C′

(
∆1/2Ṽ AC

′

r−1

))
;a′b′

= 0, (3.55)

with the Ṽ AB
′

0 ;a′b′ equation given by the same replacement as above.
Clearly, this process may be repeated as many times as necessary. At each stage, we require two more derivatives on

Ṽ AC
′

r−1 than on Ṽ AC
′

r , but this may be obtained by a bootstrap process grounded by the Ṽ AC
′

0 equation which involves

only the fundamental objects ∆1/2 and gAC
′
, which we have explored above. As with our previous equations, while

this process quickly becomes too tedious to follow by hand, it is straightforward to programme.
For example, to determine V1 for a scalar field we first need to solve the two transport equations

(D′ + 1)(Ṽ0;a′) + ξc
′

a′ Ṽ0;c′ +
1

2

(
∆−1/2

(
�′ −m2 − P ′

)
∆1/2

)
;a′

= 0, (3.56)

and

(D′ + 1)(Ṽ0;a′b′) + ξc
′

b′ Ṽ0;a′c′ + ξc
′

a′ Ṽ0;c′b′+

+ ξc
′

a′;b′ Ṽ0;c′ − σc
′
Rd
′

a′b′c′ Ṽ0;d′ +
1

2

(
∆−1/2

(
�′ −m2 − P ′

)
∆1/2

)
;a′b′

= 0. (3.57)

In the next two sections we show how the above system of transport equations can be solved either as a series
expansion or numerically. For sufficiently simple spacetimes, it is also possible to find closed form solutions which
provide a useful check on our results.

IV. SEMI-RECURSIVE APPROACH TO COVARIANT EXPANSIONS

In this section, we will investigate solutions to the transport equations of Sec. III in the form of covariant series
expansions. The goal is to find covariant series expressions for the Hadamard and DeWitt coefficients. Several methods
have been previously applied for doing such calculations, both by hand and using computer algebra [25–44]. However,
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this effort has been focused primarily on the calculation of the diagonal coefficients. To our knowledge, only the work
of Décanini and Folacci [19], upon which our method is based, has been concerned with the off-diagonal coefficients.

Before proceeding further, it is helpful to see how covariant expansions behave under certain operations. First,
applying the operator D′ to the covariant expansion of any bi-tensor Ta1···amb′1···b′n about the point x, we obtain

gb1
b′1 · · ·gbnb

′
nD′Ta1···amb′1···b′n(x, x′) = D′gb1

b′1 · · · gbnb
′
nTa1···amb′1···b′n(x, x′)

=

∞∑
k=0

(−1)k

k!
k ta1···amb1···bn β1···βk

(x)σβ1 · · ·σβk

α′σ
α′ =

∞∑
k=0

(−1)k

k!
k ta1···amb1···bn β1···βk

(x)σβ1 · · ·σβk (4.1)

where the last equality is obtained by applying Eq. (3.5). In other words, applying D′ to the k-th term in the series
is equivalent to multiplying that term by k:

(D′T )(k) = kT(k).

Next we consider applying the operator D to the covariant expansion of any bi-tensor Ta1···ama′1···a′n about the point
x. In this case, there will also be a term involving the derivative of the series coefficient, giving

gb1
b′1 · · ·gbnb

′
nDTa1···amb′1···b′n(x, x′) = Dgb1

b′1 · · · gbnb
′
nTa1···amb′1···b′n(x, x′)

=

∞∑
k=0

(−1)k

k!

[
k ta1···amb1···bn β1···βk

(x)σβ1 · · ·σβk

ασ
α + ta1···amb1···bn β1···βk;α(x)σβ1 · · ·σβkσα

]
=

∞∑
k=0

(−1)k

k!

[
k ta1···amb1···bn β1···βk

(x)σβ1 · · ·σβk + ta1···amb1···bn β1···βk;α(x)σβ1 · · ·σβkσα
]
. (4.2)

We can also consider multiplication of covariant expansions. For example, for any two tensors, Sab and T ab, with
product Uab ≡ SaαTαb, say, we can relate their covariant expansions by

∞∑
n=0

(−1)n

n!
uab β1···βn

σβ1 · · ·σβn =

( ∞∑
k=0

(−1)k

k!
saαβ1···βk

σβ1 · · ·σβk

)( ∞∑
l=0

(−1)l

l!
tαb β1···βl

σβ1 · · ·σβl

)

=

∞∑
n=0

(−1)n

n!

n∑
k=0

(
n

k

)
saαβ1···βk

tαb βk+1···βn
σβ1 · · ·σβn , (4.3)

or equivalently

U(n) =

n∑
k=0

(
n

k

)
S(k)T(n−k).

Finally, many of the equations derived in the previous section contain terms involving the Riemann tensor at x′,
Ra
′

b′c′d′
. As all other quantities are expanded about x rather than x′, we will also need to rewrite these Riemann

terms in terms of their expansion about x:

gaa′gb
b′Ra

′

α′b′β′σ
α′σβ

′
=

∞∑
k=0

(−1)k

k!
Ra(α|b|β;γ1···γk)σ

ασβσγ1 · · ·σγk

=

∞∑
k=2

(−1)k

(k − 2)!
Kab (k), (4.4)

where we follow Avramidi [17] in introducing the definition

Kab (n) ≡ R
a
(α1|b|α2;α3···αn)

σα1 · · ·σαn

≡ K̄ab (n)σ
α1 · · ·σαn . (4.5)

These four considerations will now allow us to rewrite the transport equations of Sec. III as recursion relations for
the coefficients of the covariant expansions of the tensors involved.
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A. Recursion relation for coefficients of the covariant expansion of γa
′
b

Rewriting Eq. (3.15) in terms of covariant expansions, we find

∞∑
n=0

(−1)n

n!
(n2 + n) gaa′γ

a′

b α1···αn
(x)σα1 · · ·σαn

+

( ∞∑
k=2

(−1)k

(k − 2)!
Kaβ (k)

)( ∞∑
l=0

(−1)l

l!
gββ′γ

β′

b α1···αl
(x)σα1 · · ·σαl

)
= 0. (4.6)

From this, the n-th term in the covariant series expansion of gaa′γ
a′

b,

gaa′γ
a′

b =

∞∑
n=0

(−1)n

n!
γab (n),

can be written recursively in terms of products of lower order terms in the series with K:

γab (0) =− δab, γab (1) = 0, γab (n) =−
(
n− 1

n+ 1

) n−2∑
k=0

(
n− 2

k

)
Kaα (n−k)γ

α
b (k). (4.7)

Many of the following recursion relations will make use of these coefficients; to illustrate their structure we write the
next five explicitly,

γab (2) =
1

3
Kab (2), γab (3) =

1

2
Kab (3), γab (4) =

3

5
Kab (4) −

1

5
Kaα (2)K

α
b (2),

γab (5) =
2

3
Kab (5) −

2

3
Kaα (3)K

α
b (2) −

1

3
Kaα (2)K

α
b (3),

γab (6) =
5

7
Kab (6) −

10

7
Kaα (4)K

α
b (2) −

10

7
Kaα (3)K

α
b (3) −

3

7
Kaα (2)K

α
b (4) +

1

7
Kaα (2)K

α
β (2)K

β
b (2).

While one can give a closed form combinatoric expression, the recursive formula (4.7) is best suited to our needs.

B. Recursion relation for coefficients of the covariant expansion of ηab′

Since γa
′

b
is the inverse of ηab′ , we have

(gaa′γ
a′

α)(gb
b′ηαb′) = δab. (4.8)

Substituting in covariant expansion expressions for gaa′γ
a′

α
and gb

b′ηαb′ , we find, using our standard notation, that

the n-th term in the covariant series expansion of gb
b′ηab′ is

ηab (0) = −δab, ηab (1) = 0, ηab (n) =

n∑
k=2

(
n

k

)
γαβ (k)η

β
b (n−k). (4.9)

Again, to illustrate their structure we write the next five explicitly,

ηab (2) = −1

3
Kab (2), ηab (3) = −1

2
Kab (3), ηab (4) = −3

5
Kab (4) −

7

15
Kaα (2)K

α
b (2),

ηab (5) = −2

3
Kab (5) −K

a
α (3)K

α
b (2) −

4

3
Kaα (2)K

α
b (3),

ηab (6) = −5

7
Kab (6) −

11

7
Kaα (4)K

α
b (2) −

25

7
Kaα (3)K

α
b (3) −

18

7
Kaα (2)K

α
b (4) −

31

21
Kaα (2)K

α
β (2)K

β
b (2).
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C. Recursion relation for coefficients of the covariant expansion of ξa
′
b′

Writing Eq. (3.14) in terms of covariant series, it is immediately apparent that the n-th term in the covariant

expansion of gaa′gb
b′ξa

′

b′
is

ξab (0) = δab, ξab (1) = 0

ξab (n) = n ηab (n) −
n−2∑
k=2

(
n

k

)
k γaα (n−k)η

α
b (k). (4.10)

Once more, to illustrate their structure we write the next five explicitly,

ξab (2) = −2

3
Kab (2), ξab (3) = −3

2
Kab (3), ξab (4) = −12

5
Kab (4) −

8

15
Kaα (2)K

α
b (2),

ξab (5) = −10

3
Kab (5) −

5

3
Kaα (3)K

α
b (2) −

5

3
Kaα (2)K

α
b (3),

ξab (6) = −30

7
Kab (6) −

24

7
Kaα (4)K

α
b (2) −

45

7
Kaα (3)K

α
b (3) −

24

7
Kaα (2)K

α
b (4) −

32

21
Kaα (2)K

α
β (2)K

β
b (2).

D. Recursion relation for coefficients of the covariant expansion of λab

Using Eq. (3.17), λab = δab − (Dηaα′)γ
α′

b
, we can write an equation for the n-th order coefficient of the covariant

expansion of λab. However, the expression involves the operator D acting on the covariant series expansion of gb
b′ηab′ ,

so we will first need to find an expression for that. As discussed in the beginning of this section, the derivative in D
will affect both the coefficient and the σa’s. When acting on the σa’s, it has the effect of multiplying the term by n as
was previously the case with D′. When acting on the coefficient, it will add a derivative to it and increase the order
of the term (since we will then be adding a σa). In particular, given our definition (4.5)

Kab (n) ≡ R
a
(α1|b|α2;α3···αn)

σα1 · · ·σαn

we have

DKab (n) = σαn+1∇αn+1
(Ra(α1|b|α2;α3···αn)

σα1 · · ·σαn)

= Ra(α1|b|α2;α3···αn)αn+1
σα1 · · ·σαnσαn+1 + nRa(α1|b|α2;α3···αn)

σα1 · · ·σαn

= Kab (n+1) + nKab (n).

Here the first term is one order higher while the second keeps the order the same.
We now appeal to the fact that, from Eqs. (4.7) and (IV C), the terms in the expansion of gb

b′ηab′ consist solely of
products of Kab (n). This means that we can apply the preceding rules when D acts on Kab (n), and when encountering

compound expressions (i.e., consisting of more than a single Kab (n)), use the normal rules for differentiation (product

rule, distributivity, etc.). To illustrate this explicitly

gb
b′Dηab′ = D(gb

b′ηab′) = D

(
ηab (0) − η

a
b (1) +

1

2!
ηab (2) −

1

3!
ηab (3) +

1

4!
ηab (4) + · · ·

)
= D

(
−δab +

1

2!
(−1

3
Kab (2))−

1

3!
(−1

2
Kab (3)) +

1

4!
(−3

5
Kab (4) −

7

15
Kaα (2)K

α
b (2)) + · · ·

)
=

1

2!

(
−1

3

)
(Kab (3) + 2Kab (2))−

1

3!

(
−1

2

)
(Kab (4) + 3Kab (3)) +

1

4!

(
−3

5

)
(Kab (5) + 4Kab (4))

+
1

4!

(
− 7

15

)(
(Kaα (3) + 2Kaα (2))K

α
b (2) +Kaα (2)(K

α
b (3) + 2Kαb (2))

)
+ · · ·

=
1

2!

(
−2

3
Kab (2)

)
− 1

3!

(
−1

2
Kab (3)

)
+

1

4!

(
−2

5
Kab (4) −

28

15
Kaα (2)K

α
b (2)

)
+ · · ·

We can then write the general n-th term in the covariant series expansion of gb
b′Dηab′ symbolically as

(Dηab)(n) = D0ηab (n) − nD
+ηab (n−1) (4.11)
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where D+ signifies the contribution that raises the order by one and D0 signifies the contribution that keeps the order
the same. For example,

D+ηab (2) = −1

3
Kαb (3), D

0ηab (3) = −3

2
Kαb (3)

and so

(Dηab)(3) = −3

2
Kαb (3) − 3

(
−1

3
Kαb (3)

)
= −1

2
Kαb (3).

It is then straightforward to write an expression for the n-th term in the covariant series expansion of λab:

λab (0) = δab, λab (1) = 0

λab (n) = −
n−2∑
k=0

(
n

k

)(
D0ηaα (n−k) − (n− k)D+ηaα (n−k−1)

)
γα b (k). (4.12)

The next five terms are given explicitly by

λab (2) = −2

3
Kab (2), λab (3) = −1

2
Kab (3), λab (4) = −2

5
Kab (4) −

8

15
Kaα (2)K

α
b (2),

λab (5) = −1

3
Kab (5) −K

a
α (3)K

α
b (2) −K

a
α (2)K

α
b (3),

λab (6) = −2

7
Kab (6) −

10

7
Kaα (4)K

α
b (2) −

17

7
Kaα (3)K

α
b (3) −

10

7
Kaα (2)K

α
b (4) −

32

21
Kaα (2)K

α
β (2)K

β
b (2).

E. Recursion relation for coefficients of the covariant expansion of Aabc

We can rewrite Eq. (3.24) as

(D′ + 1)(Aabαg
α
α′γ

α′

c) + ga
α′gb

β′Rα′β′αβσ
αγβc = 0, (4.13)

which when rewritten in terms of covariant series becomes

Aabc (k) = − 1

n+ 1

n∑
k=0

(
n

k

)
kRabα (k)γ

α
c (n−k) +

n−2∑
k=0

(
n

k

)
Aabα (k)γ

α
c (n−k) (4.14)

where we follow Avramidi [17, 18] in defining

Rabc (n) ≡ Rab(α1|c|;α2···αn)σ
α1 · · ·σαn . (4.15)

Alternatively, writing Eq. (3.24) directly in terms of covariant series, we obtain

Aabc (k) =
n

n+ 1
Rabc (n) −

1

n+ 1

n−2∑
k=0

(
n

k

)
Aabα (k)ξ

α
c (n−k), (4.16)

which has the benefit of requiring half as much computation as the previous expression.

F. Recursion relation for coefficients of the covariant expansion of Babc

By Eq. (3.26), we can immediately write an equation for the coefficients of the covariant expansion of Babc:

Babc (n) =
1

n

n∑
k=0

(
n

k

)
Aabα (k)η

α
c (n−k). (4.17)
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G. Covariant expansion of ζ

From Eq. (3.34) we immediately obtain expressions for the coefficients of the covariant series of ζ:

ζ(0) = 0 ζ(1) = 0 ζ(n) = − 1

2n
ξρρ (n) (4.18)

H. Recursion relation for ∆1/2, ∆−1/2

Since ζ = ln ∆1/2, we can write

∆1/2D′ζ = D′∆1/2. (4.19)

This allows us to write down a recursive equation for the coefficients of the covariant series expansion of ∆1/2,

∆
1/2
(n) =

1

n

n∑
k=2

(
n

k

)
k ζ(k)∆

1/2
(n−k). (4.20)

Similarly, the equation

−∆−1/2D′ζ = D′∆−1/2. (4.21)

allows us to write down a recursive equation for the coefficients of the covariant series expansion of ∆−1/2,

∆
−1/2
(n) = − 1

n

n∑
k=2

(
n

k

)
k ζ(k)∆

−1/2
(n−k). (4.22)

I. Covariant expansion of τ and τ ′

Equations (3.37) and (3.38) may be immediately written as covariant series equations,

τ(n) = D0ζ(n) − nD+ζ(n−1), τ ′(n) = nζ(n). (4.23)

J. Covariant expansion of covariant derivative at x′ of a bi-scalar

Let T (x, x′) be a general bi-scalar. Writing T as a covariant series,

T (x, x′) =
∞∑
n=0

(−1)n

n!
T(n) =

∞∑
n=0

(−1)n

n!
tα1···αn

(x)σα1 · · ·σαn , (4.24)

and applying a covariant derivative at x′, we obtain

ga
α′T;α′ =

∞∑
n=0

(−1)n

n!
ga
α′T(n);α′

=

∞∑
n=0

(−1)n

n!
n t(α1···αn)σ

α1 · · ·σαn−1ga
α′σαn

α′

=

∞∑
n=0

(−1)n

n!
n t(α1···αn−1ρ)σ

α1 · · ·σαn−1ga
α′ηρα′

= −
∞∑
n=0

(−1)n

n!

n∑
k=0

(
n

k

)
(T(k+1))(−1) ρη

ρ
a (n−k) (4.25)

where we have introduced the notation

(T(n))(−k)α(n−k+1)···αn
≡ t(α1···α(n−k)α(n−k+1)···αn)σ

α1 · · ·σαn−k . (4.26)
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K. Covariant expansion of d’Alembertian at x′ of a bi-scalar

Let T (x, x′) be a general bi-scalar as in the previous section. Applying (4.25) twice and taking care to include the

term involving ga
b′ , we can then write the d’Alembertian, �′T (x, x′) at x′ in terms of covariant series,

(�′T )(n) = −
n∑
k=0

(
n

k

)
((gα

α′T;α′)(k+1))(−1) ρη
ρα

(n−k) −
n∑
k=1

(
n

k

)
Aαρρ (k)(gα

α′T;α′)(n−k), (4.27)

where Aabc (n) is the n-th term in the covariant series of the tensor defined in (3.24).

L. Covariant expansion of ∇a′∆1/2

Applying Eq. (4.25) to the case T = ∆1/2, we obtain

(ga
a′∆

1/2
;a′ )(n) = −

n∑
k=0

(
n

k

)
(∆

1/2
(k+1))(−1) ρη

ρ
a (n−k). (4.28)

M. Covariant expansion of �′∆1/2

Applying Eq. (4.27) to the case T = ∆1/2, we obtain

(�′∆1/2)(n) = −
n∑
k=0

(
n

k

)
((gα

α′∆
1/2
;α′ )(k+1))(−1)η

ρα
(n−k) −

n∑
k=1

(
n

k

)
Aαρρ (k)(gα

α′∆
1/2
;α′ )(n−k) (4.29)

N. Covariant expansion of V0

The transport equation for V0, Eq. (3.46), can be written in the alternative form

(D′ + 1)V0 − V0τ ′ +
1

2
(�′ −m2 − P ′)∆1/2 = 0. (4.30)

This equation is then easily written in terms of covariant expansion coefficients,

V0 (n) =
1

n+ 1

(
n−2∑
k=0

(
n

k

)
V0(k)τ

′
(n−k) −

1

2

(
(�′∆1/2)(n) −m2∆

1/2
(n) −

n∑
k=0

(
n

k

)
P(k)∆

1/2
(n−k)

))
(4.31)

O. Covariant expansion of Vr

The transport equation for Vr, Eq. (3.49) can also be written in the alternative form

(D′ + r + 1)Vr − Vrτ ′ +
1

2r
(�′ −m2 − P ′)Vr−1 = 0. (4.32)

Again, this is easily written in terms of covariant expansion coefficients,

Vr (n) =
1

r + n+ 1

(
n−2∑
k=0

(
n

k

)
Vr (k)τ

′
(n−k) −

1

2r

(
(�′Vr−1)(n) −m2Vr−1 (n) −

n∑
k=0

(
n

k

)
P(k)Vr−1 (n−k)

))
. (4.33)
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P. Results

We have implemented the semi-recursive algorithm as a Mathematica package which we are making freely available
online [20]. It serves as an efficient tool for easily computing high order covariant expansions. The high level of
efficiency is illustrated in Tables I and II, where we show the performance of our implementation when run on a
desktop computer (2.4GHz processor). For each coefficient, we list the time, number of terms and memory consumed
in the calculation of that term. We also list the number of terms after reduction to canonical form by the Invar
[45, 46] package. Note that Invar currently only supports canonicalization of scalar invariants up to order 6. We have
therefore not canonicalized our expressions for a7, a8 and a9, nor our expressions for the non-diagonal coefficients
given in Table II. We have also not canonicalized our expression for a6, primarily due to memory constraints.

The expressions for the DeWitt coefficients produced by our code are valid for any spacetime of any dimension.
These may in turn be used to construct the Hadamard coefficients in any dimension, although we have limited
ourselves to the 4-dimensional case here. Given our motivation to study massless fields in vacuum spacetimes such
as Schwarzschild and Kerr, it is possible to make further assumptions in order to reduce the number of terms which
appear. It is straightforward to impose the fact that the field is massless and the Ricci tensor vanishes with the
requirements

Kαα (n) = 0, Raββ (n) = 0, m=0. (4.34)

This is a conservative requirement: terms such as tr
((
Kab (3)

)
(−2)

)
will yield some terms involving a Ricci tensor

after the symmetrization is explicitly expanded. However, as is shown in Tables I and II, it is sufficient to significantly
reduce the number of terms in the expansions.

DeWitt General Vacuum
Coefficient Time Terms Memory Canonical Canonical (P=0) Time Terms Memory Canonical

a0 0 1 16 B 1 1 0 1 16 B 1
a1 0 2 432 B 2 1 0 0 16 B 0
a2 0.003 10 5 kB 7 4 0 2 536 B 1
a3 0.02 91 63 kB 26 15 0.003 7 5 kB 2
a4 0.2 1 058 949 kB 113 68 0.015 56 51 kB 5
a5 3.6 13 972 15 MB 611 380 0.1 507 559 kB 14
a6 76 199 264 254 MB - - 1.1 4 988 6.3 MB −
a7 1489 2 987 366 4.4 GB - - 17 51 700 75 MB −
a8 - - - - - 254 554 715 910 MB −
a9 - - - - - 3373 6 098 069 10.9 GB −

TABLE I. Calculation performance of our semi-recursive implementation of the Avramidi method for computing the coincident
(diagonal) DeWitt coefficients, ar (0) for both general and vacuum spacetimes. In each case, we list the computation time (in
seconds), number of terms, memory consumed and number of terms after canonicalization. In the general case, we also list
the number of canonical terms when the potential P is set to 0. This would be the case, for example, for a minimally coupled
scalar field.

The relative compactness of our expressions after canonicalization means that they may be readily computed for a
given choice of spacetime. For example, evaluating the expressions for the coincidence limits, Vr(x, x) = Vr(0)(x), of
the first five Hadamard coefficients given in the Appendix for Schwarzschild spacetime gives:

V0(0) = 0, V1(0) =
M2

15r6
, V2(0) =

M2

1008r9
(194M − 81r), V3(0) =

M2

3150r12
(210r2 − 1125rM + 1454M2),

V4(0) =
−M2

1663200r15
(78750r3 − 1746182M3 + 1932801rM2 − 689775Mr2). (4.35)

A similar calculation can be done for spacetimes with less symmetry (such as Kerr) without any additional difficulty
other than the fact that the results are somewhat less compact.

V. NUMERICAL SOLUTION OF TRANSPORT EQUATIONS

In this section, we describe the implementation of the numerical solution of the transport equations of Sec. III. We
use the analytic results for σ, ∆1/2, ga

b′ and V0 for a scalar field in Nariai spacetime from Refs. [47] and [48] as a
check on our numerical code.
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Order
General Vacuum, massless

Time Terms Memory Time Terms Memory

0 0.001 3 760 B 0.001 0 16 B
1 0.001 2 288 B 0.001 0 16 B
2 0.002 10 3.8 kB 0.001 2 432 B
3 0.003 15 6.1 kB 0.002 2 432 B
4 0.005 47 22.0 kB 0.003 5 2.5 kB
5 0.007 81 40.7 kB 0.004 7 3.6 kB
6 0.014 206 112 kB 0.009 22 12 kB
7 0.024 383 221 kB 0.015 39 23 kB
8 0.047 856 526 kB 0.019 94 59 kB
9 0.084 1 641 1.03 MB 0.03 177 115 kB
10 0.16 3 414 2.25 MB 0.05 384 260 kB
11 0.30 6 547 4.51 MB 0.1 729 515 kB
12 0.58 13 064 9.34 MB 0.19 1480 1.1 MB
13 1.1 24 870 18.5 MB 0.33 2811 2.1 MB
14 2.1 48 167 37.1 MB 0.61 5485 4.2 MB
15 4.1 90 808 72.3 MB 1.1 10 320 8.3 MB
16 7.8 172 214 141 MB 2.1 19 637 16 MB
17 15 321 145 271 MB 3.7 36 556 30 MB
18 28 599 460 522 MB 6.8 68 295 58 MB
19 53 1 106 459 987 MB 12 125 852 110 MB
20 99 2 039 285 1.81 GB 23 231 837 208 MB

TABLE II. Calculation performance of the Avramidi method for computing the terms V0 (n) of order n in the covariant series
expansion of V0 for both general (4 dimensional) and vacuum spacetimes. In each case, we list the computation time (in
seconds), number of terms and memory consumed.

For the purposes of numerical calculations, the operator D′ acting on a general bi-tensor T a
′...
b′...

can be written as

D′T a
′...
b′... = (s′ − s)

(
d

ds′
T a
′...
b′... + Tα

′...
b′...Γ

a′

α′β′u
β′ + · · · − T a

′...
α′...Γ

α′

b′β′u
β′ − · · ·

)
, (5.1)

where s′ is the affine parameter, Γa
′

b′c′ are the Christoffel symbols at x′ and ua
′

is the four velocity at x′. Additionally,
we make use of the fact that

σa
′

= (s′ − s)ua
′
. (5.2)

which allows us to write Eqs. (3.11), (3.13), (3.18), (3.19), (3.20), (3.21), (3.22), (3.24), (3.29), (3.34), (3.45) and
(3.46) as a system of coupled, tensor ordinary differential equations. These equations all have the general form:

d

ds′
T a
′...
b′... = (s′)−1Aa

′...
b′... +Ba

′...
b′... + s′Ca

′...
b′... − T

α′...
b′...Γ

a′

α′β′u
β′ − · · ·+ T a

′...
α′...Γ

α′

b′β′u
β′ + · · · , (5.3)

where we have set s = 0 without loss of generality and where Aa
′...
b′...

= 0 initially (i.e., at s′ = 0). It is not necessarily

true, however, that the derivative of Aα
′...
b′...

is zero initially. This fact is important when considering initial data for
the numerical scheme.

Solving this system of equations along with the geodesic equations for the spacetime of interest will then yield a
numerical value for V0. Moreover, since V = V0 along a null geodesic, the transport equation for V0 will effectively
give the full value of V on the light-cone. We have implemented this numerical integration scheme for geodesics in
Nariai and Schwarzschild spacetimes using the Runge-Kutta-Fehlberg method (with adaptive time stepping) provided
by the GNU Scientific Library [49]. The source code of our implementation is available online [21].

A. Initial Conditions

Numerical integration of the transport equations requires initial conditions for each of the bi-tensors involved. These
initial conditions are readily obtained by considering the covariant series expansions of V0, ∆1/2, ξa

′

b′
, ηab′ and g b′

a

and their covariant derivatives at x′. Initial conditions for all bi-tensors used for calculating V0 are given in Table III,
where we list the transport equation for the bi-tensor, the bi-tensor itself and its initial value.
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Additionally, as is indicated in Eq. (5.3), many of the transport equations will contain terms involving (s′)−1. These
terms must obviously be treated with care in any numerical implementation. Then, for the initial time step (s′ = 0),
we require analytic expressions for

lim
s′→0

(s′)−1Aα
′...
b′... (5.4)

which may then be used to numerically compute an accurate initial value for the derivative. This limit can be
computed from the first order term in the covariant series of Aα

′...
b′...

, which is found most easily by considering the
covariant series of its constituent bi-tensors. For this reason, we also list in Table III the limit as s′ → 0 of all required
constituent bi-tensors multiplied by (s′)−1. In Table IV we list the terms (s′)−1Aα

′...
b′...

for each transport equation

involving (s′)−1, along with their limit as s′ → 0.

Equation Bi-tensor Initial Condition (s′)−1 Initial Condition

(3.11) ξa
′

b′ δab 0

(3.13) ηab′ −δab 0

(3.18) σa
′

b′c′ 0 − 2
3
Ra(α|b|c)u

α

(3.19) σab′c′ 0 1
2
Rabαcu

α − 1
3
Ra(α|b|c)u

α

(3.20) σa
′

b′c′d′ − 2
3
Ra(c|b|d)

1
2
Ra(c|b|d;α)u

α − 2
3
Ra(α|b|d);cu

α − 2
3
Ra(α|b|c);du

α

(3.21) σab′c′d′ − 1
3
Ra(c|b|d) − 1

2
Rabcd − 1

2
Ra(c|b|d;α)u

α + 2
3
Ra(α|b|d);cu

α

(3.22) g b
a′ δ b

a 0

(3.24) g b′

a ;c′ 0 1
2
Rbaαcu

α

(3.29) g b′

a ;c′d′ − 1
2
Rbacd − 2

3
Rbac(d;α)u

α

(3.34) ∆1/2 1 0

(3.46) V0
1
2
m2 + 1

2

(
ξ − 1

6

)
R − 1

4

(
ξ − 1

6

)
R;αu

α

TABLE III. Initial conditions for tensors used in the numerical calculation of V0 with P = ξR.

B. Results

The accuracy of our numerical code may be verified by comparing with the results of Refs. [47] and [48], which give
analytic expressions for many of the bi-tensors used in this paper in Nariai spacetime. In Figs. 1 and 2, we compare
analytic and numerical expressions for ∆1/2 and V0, respectively. We consider the null geodesic which starts at ρ = 0.5
and moves inwards to ρ = 0.25 before turning around and going out to ρ = 0.789, where it reaches the edge of the
normal neighborhood. The affine parameter, s′, has been scaled so that it is equal to the angle coordinate, φ. We
find that the numerical results faithfully match the analytic solution up to the boundary of the normal neighborhood.
For the case of ∆1/2, Fig. 1, the error remains less than one part in 10−6 to within a short distance of the normal
neighborhood boundary. The results for V0(x, x′) are less accurate, but nonetheless the relative error remains less
than 1%.

In Fig. 3, we use our numerical code to illustrate how ∆1/2 varies over the whole light-cone in Schwarzschild
spacetime. We find that it remains close to its initial value of 1 far away from the caustic. As geodesics get close
to the caustic, ∆1/2 grows and is eventually singular at the caustic. This is exactly as expected: ∆1/2 is a measure
of the strength of focusing of geodesics, where values greater than 1 correspond to focusing and values less than 1
correspond to de-focusing. At the caustic, geodesics are focused to a point and correspondingly ∆1/2 is singular there.

In Fig. 4, we give a similar plot (again calculated from our numerical code) which indicates how V (x, x′) varies over
the light-cone in Schwarzschild spacetime. In this case there is considerably more structure than was previously the
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FIG. 1. Comparison of numerical and exact analytic calculations of ∆1/2 as a function of the angle, φ, along an orbiting null
geodesic in Nariai spacetime. Left: The numerical calculation (blue dots) is a close match with the analytic expression (red
line). Right: With parameters so that the code completes in 1 minute, the relative error is within 0.0001% up to the boundary
of the normal neighborhood (at φ = π).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-2.0

-1.5

-1.0

-0.5

0.0

Φ

V
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10-7

10-5

0.001

0.1

Φ

R
el

at
iv

e
E

rr
or

FIG. 2. Comparison of numerical and exact analytic calculations of V0 for a massless, minimally coupled scalar field as a
function of the angle, φ, along an orbiting null geodesic in Nariai spacetime. Left: The numerical calculation (blue dots) is a
close match with the analytic expression (red line). The coincidence value is V0(x, x) = 1

2
(ξ − 1

6
)R = − 1

3
, as expected. Right:

With parameters so that the code completes in 1 minute, the relative error in the numerical calculation is within 1% up to the
boundary of the normal neighborhood (at φ = π).

FIG. 3. (Colour online) ∆1/2 along the light-cone in Schwarzschild spacetime. The point x at the vertex of the cone is fixed at

r = 10M . ∆1/2 increases along a geodesic up to the caustic where it is singular.
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Equation Terms involving (s′)−1 Initial condition for (s′)−1 terms

(3.11) −(s′)−1
(
ξa
′

α′ξ
α′

b′ − ξ
a′

b′

)
0

(3.13) −(s′)−1
(
ηaα′ξ

α′

b′ − η
a
b′

)
0

(3.18) (s′)−1
(
σa
′

b′c′ − ξ
a′

α′σ
α′

b′c′ − ξ
α′

b′σ
a′

α′c′ − ξ
α′

c′σ
a′

α′b′

)
− 2

3
Ra(b|α|c)u

α

(3.19) (s′)−1
(
σab′c′ − ηaα′σα

′

b′c′ − ξ
α′

b′σ
a
α′c′ − ξα

′

c′σ
a
α′b′

)
− 1

2
Raαbcu

α − 1
3
Ra(b|α|c)u

α

(3.20) (s′)−1
(
σa
′

b′c′d′ − σ
a′

α′b′σ
α′

c′d′ − σ
a′

α′c′σ
α′

b′d′ − σ
a′

α′d′σ
α′

b′c′ − 3
2
Ra(b|α|c;d)u

α

−σa
′

α′b′c′ξ
α′

d′ − σ
a′

α′b′d′ξ
α′

c′ − σ
a′

α′c′d′ξ
α′

b′ − σ
α′

b′c′d′ξ
a′

α′

)
(3.21) (s′)−1

(
σab′c′d′ − σaα′b′σα

′

c′d′ − σ
a
α′c′σ

α′

b′d′ − σ
a
α′d′σ

α′

b′c′
1
2
Ra(c|α|d);bu

α − 5
6
Rabα(c;d)u

α + 7
6
Ra(d|αb|;c)u

α

−σaα′b′c′ξα
′

d′ − σ
a
α′b′d′ξ

α′

c′ − σ
a
α′c′d′ξ

α′

b′ − σ
α′

b′c′d′η
a
α′

)
(3.22) 0 0

(3.24) −(s′)−1g b′

a ;α′ξ
α′

c′ − 1
2
Rbaαcu

α

(3.29) −(s′)−1
(
g b′

a ;α′d′ξ
α′

c′ + g b′

a ;α′c′ξ
α′

d′ + g b′

a ;α′σ
α′

c′d′

)
− 2

3
Rbaα(c;d)u

α

(3.34) −(s′)−1∆1/2
(
ξa
′

a′ − δ
a′

a′

)
0

(3.46) −(s′)−1
[(
ξa
′

a′ − δ
a′

a′

)
V0 + 2V0 + (�′ −m2 − ξR)∆1/2

]
1
4

(
ξ − 1

6

)
R;αu

α

TABLE IV. Initial conditions for transport equations required for the numerical calculation of V0 with P = ξR.

FIG. 4. (Colour online) V (x, x′) for a massless, scalar field along the light-cone in Schwarzschild spacetime. The point x (the
vertex of the cone) is fixed at r = 6M . V (x, x′) is 0 initially, then, travelling along a geodesic, it goes negative for a period
before turning positive and eventually becoming singular at the caustic. (Note that V coincides with V0 on the light cone.)

case with ∆1/2. There is the expected singularity at the caustic. However, travelling along a geodesic, V (x, x′) also
becomes negative for a period before turning positive and eventually becoming singular at the caustic.

The transport equations may also be applied to calculate Vr(x, x
′) along a timelike geodesic. In Fig. 5, we apply

our numerical code to the calculation of V0(x, x′) along the timelike circular orbit at r = 10M in Schwarzschild.
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FIG. 5. (Colour online) V0(x, x′) (solid blue line) and ∆1/2 (dashed purple line) for a massless, scalar field along the timelike
circular orbit at r = 10M in Schwarzschild spacetime as a function of the angle, φ through which the geodesic has passed. In
the logarithmic plot, the absolute value of V0(x, x′) is plotted to illustrate the divergence close to the caustic. (Since V0(x, x′)
passes through 0 at φ ∼ 0.6 and φ ∼ 2.6 there are corresponding features in the logarithmic plot.)

VI. DISCUSSION

Several of the covariant expansion expressions computed by our code using the Avramidi method have been pre-
viously given in Ref. [19], albeit to considerably lower order (for example, in their paper Décanini and Folacci give

V (x, x′) to order (σa)
4

compared to order (σa)
20

here). Comparison between the two results gives exact agreement,
providing a reassuring confirmation of the accuracy of both our expressions and those of Ref. [19] (and confirming the
error in Ref. [50] found by Décanini and Folacci). Furthermore, several of the expansions not given by Décanini and
Folacci may be compared with those found by Christensen [13, 14]. Again, we have found that our code is in exact
agreement with Christensen’s results.

Our Mathematica implementation of the semi-recursive approach (Sec. IV) is given as a practical tool for computing
high order covariant expansions. While it already exhibits a high level of efficiency, we believe that further improvement
could be achieved, particularly in the limiting area of memory requirements. The initial expressions for the DeWitt
coefficients as computed by our code are very general. However, they are not necessarily given as a minimal set. For
example, with P = 0 the DeWitt coefficient a3 may be written as a sum of four terms, yet our code produces a sum
of seven equivalent terms. It is possible, however, to use a set of transformation rules to reduce our expression to a
canonical basis such as that of Ref. [16]. As our code is already written in Mathematica [51] and has the ability to
output into the xTensor [22] notation used by Invar [45, 46], we were able to quickly canonicalize the scalar invariants
appearing in our coincidence limit expressions. An extension of the Invar package to allow for the canonicalization
of tensor invariants would allow our non-diagonal coefficients to also be immediately canonicalized with no further
effort.

In Sec. V, we discussed a numerical implementation of the transport equation approach to the calculation of V0.
This implementation is capable of computing V0 for any spacetime, although we have chosen Nariai and Schwarzschild
spacetimes as examples. The choice of Nariai spacetime has the benefit that an expression for V0 is known exactly
[47]. This makes it possible to compare our numerical results with the analytic expressions to determine both the
validity of the approach and the accuracy of the numerical calculation. Given parameters allowing the code to run in
under a minute, we find that the numerical implementation is accurate to less than 1% out as far as the location of
the singularity of V0 at the edge of the normal neighborhood.

In integrating the transport equations along a specific geodesic, we are not limited to the normal neighborhood. The
only difficulty arises at caustics, where some bi-tensors such as ∆1/2 and V0 become singular. However, this is not an
insurmountable problem. The singular components may be separated out and methods of complex analysis employed
to integrate through the caustics, beyond which the bi-tensors once more become regular (but not necessarily real-
valued) [2]. This is highlighted in Fig. 5, where our plot of ∆1/2 and V0 extends outside the normal neighborhood, the
boundary of which is at φ ≈ 1.25, where the first null geodesic re-intersects the orbit. It does not necessarily follow,
however, that the Green function outside the normal neighborhood is given by this value for V (x, x′). Instead, one
might expect to obtain the Green function by considering the sum of the contributions obtained by integrating along
all geodesics connecting x and x′ (there will be a discrete number of such geodesics except at caustics).
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Appendix A: Canonical form of Hadamard and DeWitt coefficients

In this Appendix, we present expressions for the diagonal DeWitt coefficients a0 (0), a1 (0), a2 (0), a3 (0), a4 (0) and
a5 (0) (where ar(x, x) = ar(0)(x)) in the canonical form produced by Invar [45, 46]. These have previously been given
in various forms in the literature: a1 and a2 by DeWitt [7], a3 by Sakai [52] and by Gilkey [53], a4 by Amsterdamski,
Berkin and O’Connor [54] and by Avramidi [55, 56] and a5 by Van den Ven [36]. However, to our knowledge, this
is the first time that they have all been given in a simplified canonical form. We also note that our code is capable
of producing expressions for a6 and a7 and for the off-diagonal coefficients (in non-canonical form) in a matter of
minutes on a laptop computer.

During the canonicalization process, we have allowed Invar to use identities which are valid only in four spacetime
dimensions, as our primary motivation is to study black hole spacetimes such as Schwarzschild and Kerr. This
additional simplification is not essential, but does lead to more compact expressions.

Although our code is also capable of producing expressions for the off-diagonal coefficients, support for canonical-
ization of such expressions involving free indices is not yet available in Invar. For this reason, we restrict ourselves here
to only the diagonal coefficients. We have also made these expressions, along with the corresponding (non-canonical)
off-diagonal coefficients available online as Mathematica code [20].

We also note that Eq. (2.28) allows us to directly relate the Hadamard coefficients V0 (0), V1 (0), V2 (0), V3 (0) and
V4 (0) to these DeWitt coefficients:

V0 (0) =
1

2

(
m2a0 (0) − a1 (0)

)
, V1 (0) =

1

8

(
m4a0 (0) − 2m2a1 (0) + 2a2 (0)

)
,

V2 (0) =
1

96

(
m6a0 (0) − 3m4a1 (0) + 6m2a2 (0) − 6a3 (0)

)
,

V3 (0) =
1

2304

(
m8a0 (0) − 4m6a1 (0) + 12m4a2 (0) − 24m2a3 (0) + 24a4 (0)

)
,

V4 (0) =
1

92160

(
m10a0 (0) − 5m8a1 (0) + 20m6a2 (0) − 60m4a3 (0) + 120m2a4 (0) − 120a5 (0)

)
. (A1)

Finally, we note that our expressions for the coefficients V0 (0), V1 (0) and V2 (0) are in agreement with Ref. [19], after
canonicalization. In addition our expressions for the coefficients a3 (0) and a4 (0) are in agreement with Ref. [44].

In the following we group the expressions in powers of ξ and denote by a
(k)
r the term involving the k-th power of ξ

in the diagonal DeWitt coefficient, ar (0), so that

ar (0) =

r+1∑
k=0

a(k)r ξk. (A2)

In this notation, the diagonal DeWitt coefficients are:

a
(0)
0 = 1, (A3)

a
(0)
1 =

1

6
R, a

(1)
1 = −R, (A4)

a
(0)
2 =

1

360
(−2RαβR

αβ + 5R2 + 2RαβγδR
αβγδ + 12R;α

α), a
(1)
2 =

1

6
(−R2 −R;α

α), a
(2)
2 =

1

2
R2, (A5)
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a
(0)
3 =

1

15120
(584Rα

γRαβRβγ − 654RαβR
αβR+ 99R3 + 456RαβRγδRαγβδ + 72RRαβγδR

αβγδ

−80Rαβ
ερRαβγδRγδερ + 51R;αR

;α − 12Rαγ ;βR
αβ ;γ − 6Rαβ ;γR

αβ ;γ + 27Rαβγδ ;εR
αβγδ ;ε

+84RR;α
α + 36RαβR

;αβ − 24RαβRαβ
;γ
γ + 144RαγβδR

αβ ;γδ + 54R;α
α
β
β), (A6a)

a
(1)
3 =

1

360
(2RαβR

αβR− 5R3 − 2RRαβγδR
αβγδ − 12R;αR

;α − 22RR;α
α − 4RαβR

;αβ − 6R;α
α
β
β), (A6b)

a
(2)
3 =

1

12
(R3 +R;αR

;α + 2RR;α
α), a

(3)
3 =− 1

6
R3, (A6c)

a
(0)
4 =

1

1814400
(−32736Rα

γRαβRβ
δRγδ + 8436RαβR

αβRγδR
γδ + 59136Rα

γRαβRβγR− 43518RαβR
αβR2

+5743R4 + 13944RαβRγδRRαγβδ + 3618R2RαβγδR
αβγδ + 168RαβRγδRαγ

ερRβδερ − 4480RRαβ
ερRαβγδRγδερ

+14832RαβRγδRα
ε
β
ρRγεδρ − 3282RαβR

αβRγδερR
γδερ − 2496Rαβ

ερRαβγδRγε
στRδρστ

+1248Rαβ
ερRαβγδRγδ

στRερστ + 696RαβγδR
αβγδRερστR

ερστ − 65040RβγRβγ ;αR
;α + 13740RR;αR

;α

+6960RβγδεRβγδε;αR
;α + 1440RαβRγδ ;αRγδ ;β − 1560RαβR

;αR;β + 2880RβγR;αRαβ ;γ − 2160RRαγ ;βR
αβ ;γ

−5760Rα
δερRγδερ;βR

αβ ;γ − 28920RRαβ ;γR
αβ ;γ + 27840RαδβεR

δε
;γR

αβ ;γ − 7680RαβRγδ ;βRα
γ ;δ

+4800RαβRβδ ;γRα
γ ;δ + 85440RαβRβγ ;δRα

γ ;δ − 1920RαβγδR
;αRβγ ;δ − 1920RβγδεR

αβ ;γRα
δ ;ε

−7680RαδβεR
αβ ;γRγ

δ ;ε + 14400RαβRαγβε;δR
γδ ;ε + 34080RαβRαγβδ ;εR

γδ ;ε + 2700RRαβγδ ;εR
αβγδ ;ε

+12960RαβRβδγρ;εRα
γδε;ρ − 10800RαβγδRγδερ;σRαβ

ερ;σ − 9792RβγR
βγR;α

α + 4608R2R;α
α

+1296RβγδεR
βγδεR;α

α + 432RαβRR
;αβ + 1632RγδRαγβδR

;αβ + 936R;αβR
;αβ − 11136RαβRγδRαγ ;βδ

+1008R;α
αR

;β
β + 10464RαβRγδRαβ ;γδ − 18000RαβRRαβ

;γ
γ + 624R;αβRαβ

;γ
γ + 8352RRαγβδR

αβ ;γδ

−14016Rαγ
ερRβδερR

αβ ;γδ + 384Rα
ε
β
ρRγεδρR

αβ ;γδ + 1872Rγδ ;αβR
αβ ;γδ − 4032Rαγ ;βδR

αβ ;γδ

+1872Rαβ ;γδR
αβ ;γδ + 2304RαβRγδερRαγβε;δρ − 216Rαβ ;γγRαβ

;δ
δ + 23904Rα

γRαβRβγ
;δ
δ

+8448RαβRβδγεRα
γ ;δε + 12288RαβRαγβδR

γδ ;ε
ε + 576Rαβγδ ;ερR

αβγδ ;ερ + 2640R;αR;α
β
β

+960Rαβ ;γR
;αβγ − 480Rαβ ;γRαγ ;β

δ
δ − 240Rαβ ;γRαβ ;γ

δ
δ + 5760Rαγβδ ;εR

αβ ;γδε

+1080RR;α
α
β
β + 960RαβR

;αβγ
γ − 240RαβRαβ

;γ
γ
δ
δ + 1920RαγβδR

αβ ;γδε
ε + 480R;α

α
β
β
γ
γ), (A7a)

a
(1)
4 =

1

15120
(−584Rα

γRαβRβγR+ 654RαβR
αβR2 − 99R4 − 456RαβRγδRRαγβδ − 72R2RαβγδR

αβγδ

+80RRαβ
ερRαβγδRγδερ + 12RβγRβγ ;αR

;α − 135RR;αR
;α − 36RβγδεRβγδε;αR

;α + 102RαβR
;αR;β

+24RβγR;αRαβ ;γ + 12RRαγ ;βR
αβ ;γ + 6RRαβ ;γR

αβ ;γ + 24RαβγδR
;αRβγ ;δ − 27RRαβγδ ;εR

αβγδ ;ε

+30RβγR
βγR;α

α − 123R2R;α
α − 18RβγδεR

βγδεR;α
α − 48RαβRR

;αβ − 72RγδRαγβδR
;αβ

−72R;αβR
;αβ − 84R;α

αR
;β
β + 24RαβRRαβ

;γ
γ − 24R;αβRαβ

;γ
γ − 144RRαγβδR

αβ ;γδ

−210R;αR;α
β
β − 36Rαβ ;γR

;αβγ − 96RR;α
α
β
β − 36RαβR

;αβγ
γ − 18R;α

α
β
β
γ
γ), (A7b)

a
(2)
4 =

1

720
(−2RαβR

αβR2 + 5R4 + 2R2RαβγδR
αβγδ + 34RR;αR

;α − 12RαβR
;αR;β + 32R2R;α

α

+8RαβRR
;αβ + 8R;αβR

;αβ + 10R;α
αR

;β
β + 24R;αR;α

β
β + 12RR;α

α
β
β), (A7c)

a
(3)
4 =

1

36
(−R4 − 3RR;αR

;α − 3R2R;α
α), a

(4)
4 =

1

24
R4, (A7d)

a
(0)
5 =

1

119750400
(−900736RαβR

αβRγ
εRγδRδε − 1297920Rα

γRαβRβ
δRγδR+ 1367004RαβR

αβRγδR
γδR

+1858640Rα
γRαβRβγR

2 − 1332402RαβR
αβR3 + 152693R5 + 219000RαβRγδR2Rαγβδ + 89530R3RαβγδR

αβγδ

+156312RαβRγδRRαγ
ερRβδερ − 107800R2Rαβ

ερRαβγδRγδερ − 1021632Rα
γRαβRβ

δRερRγεδρ

−471360RαβR
αβRγδRερRγεδρ + 438768RαβRγδRRα

ε
β
ρRγεδρ − 332262RαβR

αβRRγδερR
γδερ

−142656Rα
γRαβRδεRβ

ρ
γ
σRδρεσ + 165312RαβRγδRαγ

ερRβε
στRδρστ + 16512RαβRγδRα

ε
β
ρRγε

στRδρστ
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−122400RRαβ
ερRαβγδRγε

στRδρστ + 188288Rα
γRαβRβγRδερσR

δερσ − 82656RαβRγδRαγ
ερRβδ

στRερστ

+61200RRαβ
ερRαβγδRγδ

στRερστ + 159136RαβR
αβRγδ

στRγδερRερστ + 77376RαβRγδRαγβδRερστR
ερστ

+39984RRαβγδR
αβγδRερστR

ερστ + 91392Rαβ
ερRαβγδRγδ

στRεσ
κλRρτ κλ

−45696Rαβ
ερRαβγδRγδ

στRερ
κλRστκλ − 34368RαβγδR

αβγδRερ
κλRερστRστκλ + 19558344RβγRRβγ ;αR

;α

−21437712Rβ
δRβγRγδ ;αR

;α − 4124208RβγRβδγεR
δε

;αR
;α + 5396424RβγR

βγR;αR
;α − 4045236R2R;αR

;α

+241398RβγδεR
βγδεR;αR

;α − 836028RRβγδεRβγδε;αR
;α − 3149568RβγRδεRβδγε;αR

;α

−326592Rβγ
ρσRβγδεRδερσ ;αR

;α + 807696RαβRRγδ ;αRγδ ;β − 1932624Rα
βRγδR;αRγδ ;β

−5280RβγRαδγεR
;αRδε;β + 807072RαβRγδRερ;αRγεδρ;β − 526200Rα

γRβγR
;αR;β

+191772RαβRR
;αR;β − 736536RγδRαγβδR

;αR;β + 6856176RβγRR;αRαβ ;γ

+241992Rα
γRαβRδε;βRδε;γ + 4805376RαβRβεδρR

γδ
;αR

ερ
;γ + 4684080R2Rαγ ;βR

αβ ;γ

+155208RδερσR
δερσRαγ ;βR

αβ ;γ − 806304RRα
δερRγδερ;βR

αβ ;γ − 763296Rα
δερRερ

στRγδστ ;βR
αβ ;γ

+2580132R2Rαβ ;γR
αβ ;γ − 487944RδερσR

δερσRαβ ;γR
αβ ;γ + 1798176RRαδβεR

δε
;γR

αβ ;γ

−1507920Rαδ
ρσRβερσR

δε
;γR

αβ ;γ + 2898720Rα
ρ
β
σRδρεσR

δε
;γR

αβ ;γ − 6241920Rβ
δRβγR;αRαγ ;δ

+1822080Rα
βRγδR;αRβγ ;δ + 2472096RαβRγδRα

ε
;γRβε;δ − 1651104RαβRγδRα

ε
;βRγε;δ

−10000416RαβRRγδ ;βRα
γ ;δ − 9098544RαβRRβδ ;γRα

γ ;δ − 10746912RαβRRβγ ;δRα
γ ;δ

−859920RRαβγδR
;αRβγ ;δ − 349824Rα

ε
δ
ρRβεγρR

;αRβγ ;δ − 470544Rαβ
ερRγδερR

;αRβγ ;δ

+356832Rαβ
ερRαβγδRρστ κ;δRγ

στκ
;ε − 5862720RαβRγδRγε;δRαβ

;ε − 8640336RαβRγδRγδ ;εRαβ
;ε

+5012928RαβRγδRβε;δRαγ
;ε + 8810064RαβRγδRβδ ;εRαγ

;ε − 2592384RβγRβδγεR
;αRα

δ ;ε

−3291264RRβγδεR
αβ ;γRα

δ ;ε + 33120Rβε
ρσRγδρσR

αβ ;γRα
δ ;ε − 33120Rβδ

ρσRγερσR
αβ ;γRα

δ ;ε

+134880Rβγ
ρσRδερσR

αβ ;γRα
δ ;ε − 89472Rβ

ρ
γ
σRδρεσR

αβ ;γRα
δ ;ε − 3247104RβγRαδγεR

;αRβ
δ ;ε

+2323680RβγRαεγδR
;αRβ

δ ;ε + 8320800Rα
γRαβRδε;γRβ

δ ;ε + 9750384Rα
γRαβRγε;δRβ

δ ;ε

+11572176Rα
γRαβRγδ ;εRβ

δ ;ε − 7426464RRαδβεR
αβ ;γRγ

δ ;ε + 493920Rαδ
ρσRβερσR

αβ ;γRγ
δ ;ε

+912000Rα
ρ
β
σRδρεσR

αβ ;γRγ
δ ;ε + 5089056RαβRαδβρRε

ρ
;γR

γδ ;ε − 7634784RαβR
αβRγε;δR

γδ ;ε

−4831872RαβRRαγβε;δR
γδ ;ε + 89856RαβRγ

ρ
ε
σRαρβσ ;δR

γδ ;ε + 3264960RαβRα
ρ
γ
σRβρεσ ;δR

γδ ;ε

+1777152RαβRα
ρ
ε
σRβσγρ;δR

γδ ;ε − 4651392RαβRα
ρ
γ
σRβσερ;δR

γδ ;ε + 3936192RαβRα
ρ
β
σRγρεσ ;δR

γδ ;ε

−1655496RαβR
αβRγδ ;εR

γδ ;ε − 6984576RαβRαδβρRγ
ρ
;εR

γδ ;ε − 3366432RαβRRαγβδ ;εR
γδ ;ε

−6791232RαβRγ
ρ
δ
σRαρβσ ;εR

γδ ;ε + 23185728RαβRα
ρ
γ
σRβρδσ ;εR

γδ ;ε − 10610304RαβRα
ρ
γ
σRβσδρ;εR

γδ ;ε

−2938176RαβRα
ρ
β
σRγρδσ ;εR

γδ ;ε + 171594R2Rαβγδ ;εR
αβγδ ;ε + 314160RαβγδRερστRερστ ;κRαβγδ

;κ

−2461824Rα
ε
γ
ρRαβγδRεσρτ ;κRβ

σ
δ
τ ;κ + 35856Rαβ

ερRαβγδRερστ ;κRγδ
στ ;κ

+202356RαβγδR
αβγδRερστ ;κR

ερστ ;κ − 1522176RβγRβ
δερR;αRαδγε;ρ − 39168Rγ

δερRδ
σ
ε
τRαβ ;γRασβτ ;ρ

+341952Rα
βRγδερR;αRβγδε;ρ − 356832Rαβ

ερRαβγδRγ
στκ

;εRδστ κ;ρ + 356832Rαβ
ερRαβγδRγ

στκ
;δRεστ κ;ρ

+116160RαβRγδRγεδρ;βRα
ε;ρ − 791424RαβRγδRβγδρ;εRα

ε;ρ + 1156512RαβRγεδρRα
γ ;δRβ

ε;ρ

+1855296RαβRαεβρR
γδ ;εRγδ

;ρ + 1174080RαβRαδβρR
γδ ;εRγε

;ρ − 5450112RαβRβδερRα
γ ;δRγ

ε;ρ

+5065152RαβRβεδρRα
γ ;δRγ

ε;ρ − 1258752RαβRβγερRα
γ ;δRδ

ε;ρ + 5230464RαβRβεγρRα
γ ;δRδ

ε;ρ

+1191168RαβRγδερRα
γ
;βR

δε;ρ − 1375296RαβRγδερRαβ
;γRδε;ρ + 7328064Rα

γRαβRβδγρ;εR
δε;ρ

−1192224Rα
γRαβRβδγε;ρR

δε;ρ − 1588704RαβRRβδγρ;εRα
γδε;ρ + 3409920RαβRγε

ρσRγδ ;εRαδβρ;σ

+1821696RαβRα
ρ
γ
σRγδ ;εRβδερ;σ − 474864RRαβγδRγδερ;σRαβ

ερ;σ + 361008RαβRγδRβδερ;σRαγ
ερ;σ

−838176RαβRγδRγεδρ;σRα
ε
β
ρ;σ + 3496512Rα

γRαβRγεδσ ;ρRβ
δερ;σ − 293028RαβR

αβRγδερ;σR
γδερ;σ

+1459200Rαγ
δεRβ

ρστRαβ ;γRδερσ ;τ + 4167936RαβRγδερRδερτ ;σRαγβ
σ ;τ − 2542848RαβRα

γδεRγρετ ;σRβδ
ρσ ;τ

+1998912RαβRα
γ
β
δRδρετ ;σRγ

ερσ ;τ + 193920Rαβ ;γRγ
δ ;εRδε;αβ − 96192RαβRγδRγεδρR

ερ
;αβ

+357672R;αR;βR;αβ + 74016R;αRβγ ;δRβδ ;αγ − 1763424R;αRβγ ;δRβγ ;αδ + 1029888Rαβ ;γRβγδρ;εR
δε

;α
ρ

−103488Rβ
δRβγRγδR

;α
α + 193776RβγR

βγRR;α
α − 15620R3R;α

α − 129696RβγRδεRβδγεR
;α
α

+29580RRβγδεR
βγδεR;α

α − 46216Rβγ
ρσRβγδεRδερσR

;α
α + 211152Rβδ ;γR

βγ ;δR;α
α − 124176Rβγ ;δR

βγ ;δR;α
α

+25560Rβγδε;ρR
βγδε;ρR;α

α + 667392Rα
γRβ

δRγδR
;αβ − 310128RαβRγδR

γδR;αβ − 651168Rα
γRβγRR

;αβ

+274008RαβR
2R;αβ − 179904RγδRRαγβδR

;αβ + 359040Rβ
γRδεRαδγεR

;αβ + 142656RγδRα
ε
γ
ρRβεδρR

;αβ
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−167424RγδRα
ε
β
ρRγεδρR

;αβ + 27408RαβRγδερR
γδερR;αβ − 908832Rγδ ;αRγδ ;βR

;αβ

+125064Rγδερ;αRγδερ;βR
;αβ + 4992Rγδ ;βRα

γ ;δR;αβ − 21120Rβδ ;γRα
γ ;δR;αβ + 6528Rβγ ;δRα

γ ;δR;αβ

+43776Rαγδε;βR
γδ ;εR;αβ + 23616Rαγβδ ;εR

γδ ;εR;αβ − 1028256RγδRγδ ;αβR
;αβ + 210696RR;αβR

;αβ

+119040RγδερRγδερ;αβR
;αβ − 382080R;αRβγ ;δRαδ ;βγ − 221376RαβRγδRRαγ ;βδ − 197568Rαβ ;γRγ

δ ;εRαε;βδ

+792000Rαβ ;γRα
δ ;εRγε;βδ − 194112Rαβ ;γRγ

δ ;εRαδ ;βε + 32832RαβRγδ ;α
εRγδ ;βε + 2748R;αR

;αR;β
β

+44568RR;α
αR

;β
β + 25920Rβγ ;αR

;αR;βγ − 29088R;αRαβ ;γR
;βγ + 7200RβγR

;α
αR

;βγ

+173280RαβRγδRRαβ ;γδ + 145056R;αRβγ ;δRαβ ;γδ + 24480RγδR;αβRαβ ;γδ − 153792Rαβ ;γRα
δ ;εRβε;γδ

+86016Rα
γRαβRδεRβδ ;γε + 2651328Rαβ ;γRα

δ ;εRβδ ;γε + 643680Rαβ ;γRδε;ρRαδβε;γρ

+1569024Rαβ ;γRαδβε;ρR
δε

;γ
ρ − 31104RαγR

;αβR;γ
β − 208080RαβR2Rαβ

;γ
γ − 39456RαβRδερσR

δερσRαβ
;γ
γ

+84960R;αR;βRαβ
;γ
γ + 1680RR;αβRαβ

;γ
γ − 56664Rδερσ ;αRδερσ ;βR

αβ ;γ
γ + 6528RδερσRδερσ ;αβR

αβ ;γ
γ

+215712R2RαγβδR
αβ ;γδ − 426240RRαγ

ερRβδερR
αβ ;γδ − 19584RRα

ε
β
ρRγεδρR

αβ ;γδ

−43008Rα
ερσRβ

τ
ρσRγεδτR

αβ ;γδ − 246528Rαγ
ερRβε

στRδρστR
αβ ;γδ + 123264Rαγ

ερRβδ
στRερστR

αβ ;γδ

+81216RαγβδRερστR
ερστRαβ ;γδ − 482112Rα

ερσ
;βRγερσ ;δR

αβ ;γδ + 6912Rγεδρ;σRα
ε
β
ρ;σRαβ ;γδ

+31056RRγδ ;αβR
αβ ;γδ − 172224RRαγ ;βδR

αβ ;γδ − 251904Rα
ερσRγερσ ;βδR

αβ ;γδ − 358128RRαβ ;γδR
αβ ;γδ

+494208RαεβρR
ερ

;γδR
αβ ;γδ + 42336RαγβδR

;αβR;γδ + 5376RγδR;αβRαγ ;δβ − 15648Rδε;γR
αβ ;γRαβ ;δε

+95424Rαβ ;γRγ
δ ;εRαβ ;δε − 39552Rα

γRαβRδεRβγ ;δε − 341952Rαβ ;γRα
δ ;εRβγ ;δε + 960Rαβ ;γRδε;ρRαγβρ;δε

+16128RαβRRγδερRαγβε;δρ + 17280Rαβ ;γRγ
δερ;σRαεβσ ;δρ + 345600Rαβ ;γRα

δερ;σRβεγσ ;δρ

−69384RRαβ ;γγRαβ
;δ
δ + 301824Rα

γRαβRRβγ
;δ
δ + 48288Rβγ ;αR

;αRβγ
;δ
δ − 108672R;αRα

β ;γRβγ
;δ
δ

−178848RβγR;α
αRβγ

;δ
δ + 6528Rα

γR;αβRβγ
;δ
δ − 10368RαβRRβδγεRα

γ ;δε + 63360RαβRδε;βγRα
γ ;δε

−195840RαβRγδ ;βεRα
γ ;δε + 161664RαβRβδ ;γεRα

γ ;δε + 1341120RαβRβγ ;δεRα
γ ;δε + 146592R;αRαδβε;γR

βγ ;δε

−101664R;αRαβγδ ;εR
βγ ;δε + 119808RβδγεR

;α
αR

βγ ;δε + 653760R;αRβγδε;ρRαβγδ ;ερ

+26496RαβRγδRερRαγβδ ;ερ − 139200Rαβ ;γRδε;ρRαγβδ ;ερ + 253440Rα
γRαβRδερσRβδγρ;εσ

−36864RαγδεR
;αβRγδ ;εβ + 211776RαβRα

γ ;δ
δRβγ

;ε
ε − 418560Rγ

δ
;αR

αβ ;γRβδ
;ε
ε + 229152Rα

δ
;γR

αβ ;γRβδ
;ε
ε

+198336Rαβ ;γRαγ
;δRβδ

;ε
ε + 960Rα

γRαβRβ
δRγδ

;ε
ε − 206976RαβR

αβRγδRγδ
;ε
ε − 388368Rαβ ;γRαβ

;δRγδ
;ε
ε

+81696RαβRγδ ;αβRγδ
;ε
ε − 192000RαβRα

γ
;β
δRγδ

;ε
ε + 93408RαβRαβ

;γδRγδ
;ε
ε + 12960RαβRRαγβδR

γδ ;ε
ε

+378048RαβRα
ρ
γ
σRβρδσR

γδ ;ε
ε + 36096RαβRα

ρ
β
σRγρδσR

γδ ;ε
ε + 14400RαγβδR

;αβRγδ ;εε

+86976RαβRγδRγεδρRαβ
;ερ + 126720Rαβ ;γRβεγρ;δRα

δ ;ερ − 668160Rαβ ;γRβγδε;ρRα
δ ;ερ

−260352Rαβ ;γRβδγε;ρRα
δ ;ερ + 540672Rα

γRαβRγεδρRβ
δ ;ερ − 9216RαεβρR

αβ ;γδRγδ
;ερ

+590400Rαβ ;γRαεβρ;δRγ
δ ;ερ − 140544Rαβ ;γRαδβε;ρRγ

δ ;ερ + 388608RαβRαγδ
σRβερσR

γδ ;ερ

+99840RαβRαγε
σRβσδρR

γδ ;ερ − 278976RαβR
αβRγεδρR

γδ ;ερ − 367872RαβRαγβ
σRδρεσR

γδ ;ερ

+32256RαβRαεβρ;γδR
γδ ;ερ + 486912RαβRαγβε;δρR

γδ ;ερ + 360960RαβRαγβδ ;ερR
γδ ;ερ

+27264RRαβγδ ;ερR
αβγδ ;ερ + 293760Rαβ ;γRα

δερ;σRβγδε;ρσ + 116736RαβRα
γδεRγ

ρστRβδεσ ;ρτ

−98304RαβRα
γδεRβ

ρστRγδεσ ;ρτ − 12288RαβRα
γ
β
δRερστRγεδσ ;ρτ + 176256RβγερR

αβ ;γδRδ
ε;ρ

α

−28800RβεγρR
αβ ;γδRδ

ε;ρ
α + 81024RβδερR

αβ ;γ
γR

δε;ρ
α − 120576RαβRγδRγεδρRα

ε;ρ
β

+188928RαβRγδRβδερRα
ε;ρ

γ + 768RαβRγδRβεδρRα
ε;ρ

γ − 205056RβγερR
αβ ;γδRα

ε;ρ
δ

−96000RαεβρR
αβ ;γδRγ

ε;ρ
δ − 768RαβRγδRβγδεRα

ε;ρ
ρ − 302400Rαδβε;γR

αβ ;γRδε;ρρ

+1066560Rαβ ;γRαγβδ ;εR
δε;ρ

ρ + 75744RαδβεR
αβ ;γ

γR
δε;ρ

ρ + 396288RαβRβδγρ;εσRα
γδε;ρσ

+453600Rαβγδ ;εRαβ
ρσ ;τRγδερ;στ − 156672RαβγδRγδερ;στRαβ

ερ;στ − 36864RαβγδRβσδτ ;ερRα
ε
γ
ρ;στ

+9600RδερσRαβ ;γRδερσ ;αβγ + 40320RαβRγδ ;εRγε;αβδ + 442176RαβRγδ ;εRγδ ;αβε + 281568RR;αR;α
β
β

−634560RβγR;αRβγ ;α
δ
δ + 171840RαβRβεγρ;δR

γδ
;α
ερ − 88608RβδγεR

αβ ;γRδε;α
ρ
ρ − 642144RγδRγδ ;αR

;αβ
β

+68760RγδερRγδερ;αR
;αβ

β + 33888RγδRαγ ;δR
;αβ

β − 18912RαγδεR
γδ ;εR;αβ

β + 7872RRαβ ;γR
;αβγ

−11712Rα
δRβδ ;γR

;αβγ + 30144RαδβεR
δε

;γR
;αβγ + 26880RδεRαδβε;γR

;αβγ + 1056Rα
δRβγ ;δR

;αβγ

+61824RαδβεRγ
δ ;εR;αβγ + 7104R;αβγR

;αβγ − 42240RαβRγδ ;εRαε;βγδ + 18864R;α
α
βR;β

γ
γ

−931584RαβRγδ ;εRαγ ;βδε − 10560RRαβ ;γRαγ ;β
δ
δ + 23976RαβRγδ ;αRγδ ;β

ε
ε − 42768RαβRα

γ ;δRγδ ;β
ε
ε

+6240RβγR
;αR;βγ

α − 21120RαβR
;αR;βγ

γ + 467328RαβRγδ ;εRαβ ;γδε + 10560RβγR;αRαβ ;γ
δ
δ



30

−607680RRαβ ;γRαβ ;γ
δ
δ + 10656R;αβγRαβ ;γ

δ
δ + 26352RαβRα

γ ;δRβδ ;γ
ε
ε + 522048RαδβεR

αβ ;γRδε;γ
ρ
ρ

−2736Rαδ ;β
ε
εR

αβ ;γ
γ
δ − 47616Rα

ερσRγερσ ;βR
αβ ;γδ

δ − 1536Rα
ρ
γ
σRδρεσ ;βR

αβ ;γδε + 273984RRαγβδ ;εR
αβ ;γδε

−747648Rαγ
ρσRβδρσ ;εR

αβ ;γδε + 16896Rα
ρ
β
σRγρδσ ;εR

αβ ;γδε + 42624Rγδ ;αβεR
αβ ;γδε − 87552Rαγ ;βδεR

αβ ;γδε

+43008Rαβ ;γδεR
αβ ;γδε − 1368Rαβ ;γγ

δRαβ ;δ
ε
ε − 91632RαβRγδ ;αRβγ ;δ

ε
ε + 1728624RαβRα

γ ;δRβγ ;δ
ε
ε

+48000RαβRγδερ;σRαγβε;δρσ + 301248RβδγεR
;αRβγ ;δεα − 16416RαβγδR

;αRβγ ;δεε + 32448RαβRβδγε;ρRα
γ ;δερ

+2304RβεδρR
αβ ;γRγ

δ ;ερ
α − 27936RβγδεR

αβ ;γRα
δ ;ερ

ρ − 43008RαδβεR
αβ ;γRγ

δ ;ερ
ρ + 93888RαβRαγβε;δR

γδ ;ερ
ρ

+379392RαβRαγβδ ;εR
γδ ;ερ

ρ + 4800Rαβγδ ;ερσR
αβγδ ;ερσ − 2304RγδερR

αβ ;γRδε;ραβ + 172800RβδερR
αβ ;γRδε;ραγ

+27648R;αβR;αβ
γ
γ + 27648Rαβ ;γδRγδ ;αβ

ε
ε + 34560RαβRγεδρR

γδ
;αβ

ερ − 58824RγδR
γδR;α

α
β
β

+27900R2R;α
α
β
β + 8640RγδερR

γδερR;α
α
β
β + 6336RαβRR

;αβγ
γ + 24192RδεRαδβεR

;αβγ
γ

+9216Rαβ
;δ
δR

;αβγ
γ + 2400RαβRγδR

;αβγδ + 1920Rα
ε
β
ρRγεδρR

;αβγδ + 8640Rαβ ;γδR
;αβγδ

−60672RαβRγδRαγ ;βδ
ε
ε − 62208Rαβ ;γδRαγ ;βδ

ε
ε + 14256R;α

αR
;β
β
γ
γ + 51072RαβRγδRαβ ;γδ

ε
ε

+27648Rαβ ;γδRαβ ;γδ
ε
ε − 99984RαβRRαβ

;γ
γ
δ
δ + 3456R;αβRαβ

;γ
γ
δ
δ + 48576RRαγβδR

αβ ;γδε
ε

−76032Rαγ
ρσRβδρσR

αβ ;γδε
ε + 6144Rα

ρ
β
σRγρδσR

αβ ;γδε
ε + 69120Rαγβδ ;ερR

αβ ;γδερ − 2448Rαβ ;γγRαβ
;δ
δ
ε
ε

+132288Rα
γRαβRβγ

;δ
δ
ε
ε + 69888RαβRβδγεRα

γ ;δερ
ρ + 67488RαβRαγβδR

γδ ;ε
ε
ρ
ρ + 19440R;αR;α

β
β
γ
γ

+14400Rαβ ;γR
;αβγδ

δ − 2880Rαβ ;γRαγ ;β
δ
δ
ε
ε − 1440Rαβ ;γRαβ ;γ

δ
δ
ε
ε + 43200Rαγβδ ;εR

αβ ;γδερ
ρ

+5280RR;α
α
β
β
γ
γ + 7200RαβR

;αβγ
γ
δ
δ − 960RαβRαβ

;γ
γ
δ
δ
ε
ε + 9600RαγβδR

αβ ;γδε
ε
ρ
ρ

+1800R;α
α
β
β
γ
γ
δ
δ), (A8a)

a
(1)
5 =

1

1814400
(32736Rα

γRαβRβ
δRγδR− 8436RαβR

αβRγδR
γδR− 59136Rα

γRαβRβγR
2 + 43518RαβR

αβR3

−5743R5 − 13944RαβRγδR2Rαγβδ − 3618R3RαβγδR
αβγδ − 168RαβRγδRRαγ

ερRβδερ

+4480R2Rαβ
ερRαβγδRγδερ − 14832RαβRγδRRα

ε
β
ρRγεδρ + 3282RαβR

αβRRγδερR
γδερ

+2496RRαβ
ερRαβγδRγε

στRδρστ − 1248RRαβ
ερRαβγδRγδ

στRερστ − 696RRαβγδR
αβγδRερστR

ερστ

+100256RβγRRβγ ;αR
;α − 47648Rβ

δRβγRγδ ;αR
;α − 25664RβγRβδγεR

δε
;αR

;α + 19152RβγR
βγR;αR

;α

−22052R2R;αR
;α − 2272RβγδεR

βγδεR;αR
;α − 11240RRβγδεRβγδε;αR

;α − 14560RβγRδεRβδγε;αR
;α

+7824Rβγ
ρσRβγδεRδερσ ;αR

;α − 1440RαβRRγδ ;αRγδ ;β + 7520Rα
βRγδR;αRγδ ;β

−2640RβγRαδγεR
;αRδε;β − 360Rα

γRβγR
;αR;β + 1240RαβRR

;αR;β + 2640RγδRαγβδR
;αR;β

+2864RβγRR;αRαβ ;γ + 2160R2Rαγ ;βR
αβ ;γ + 5760RRα

δερRγδερ;βR
αβ ;γ + 28920R2Rαβ ;γR

αβ ;γ

−27840RRαδβεR
δε

;γR
αβ ;γ − 3840Rβ

δRβγR;αRαγ ;δ − 8480Rα
βRγδR;αRβγ ;δ + 7680RαβRRγδ ;βRα

γ ;δ

−4800RαβRRβδ ;γRα
γ ;δ − 85440RαβRRβγ ;δRα

γ ;δ − 1600RRαβγδR
;αRβγ ;δ

−4800Rα
ε
δ
ρRβεγρR

;αRβγ ;δ + 1440Rαβ
ερRγδερR

;αRβγ ;δ − 6112RβγRβδγεR
;αRα

δ ;ε

+1920RRβγδεR
αβ ;γRα

δ ;ε + 11840RβγRαδγεR
;αRβ

δ ;ε + 1600RβγRαεγδR
;αRβ

δ ;ε

+7680RRαδβεR
αβ ;γRγ

δ ;ε − 14400RαβRRαγβε;δR
γδ ;ε − 34080RαβRRαγβδ ;εR

γδ ;ε

−2700R2Rαβγδ ;εR
αβγδ ;ε + 3136RβγRβ

δερR;αRαδγε;ρ − 960Rα
βRγδερR;αRβγδε;ρ

−12960RαβRRβδγρ;εRα
γδε;ρ + 10800RRαβγδRγδερ;σRαβ

ερ;σ − 3880R;αR;βR;αβ

+960R;αRβγ ;δRβδ ;αγ − 480R;αRβγ ;δRβγ ;αδ − 8608Rβ
δRβγRγδR

;α
α + 16440RβγR

βγRR;α
α

−5064R3R;α
α − 7680RβγRδεRβδγεR

;α
α − 2484RRβγδεR

βγδεR;α
α + 1912Rβγ

ρσRβγδεRδερσR
;α
α

+240Rβδ ;γR
βγ ;δR;α

α + 600Rβγ ;δR
βγ ;δR;α

α − 660Rβγδε;ρR
βγδε;ρR;α

α − 12352Rα
γRβ

δRγδR
;αβ

+7056RαβRγδR
γδR;αβ + 13888Rα

γRβγRR
;αβ − 6696RαβR

2R;αβ + 1184RγδRRαγβδR
;αβ

−2240Rβ
γRδεRαδγεR

;αβ − 6912RγδRα
ε
γ
ρRβεδρR

;αβ + 4544RγδRα
ε
β
ρRγεδρR

;αβ

−816RαβRγδερR
γδερR;αβ − 80Rγδ ;αRγδ ;βR

;αβ − 600Rγδερ;αRγδερ;βR
;αβ − 640Rγδ ;βRα

γ ;δR;αβ

+1440Rβδ ;γRα
γ ;δR;αβ − 480Rβγ ;δRα

γ ;δR;αβ + 640Rαγδε;βR
γδ ;εR;αβ − 1920Rαγβδ ;εR

γδ ;εR;αβ

−1728RγδRγδ ;αβR
;αβ − 2376RR;αβR

;αβ − 640RγδερRγδερ;αβR
;αβ − 480R;αRβγ ;δRαδ ;βγ

+11136RαβRγδRRαγ ;βδ − 3156R;αR
;αR;β

β − 2880RR;α
αR

;β
β − 3840Rβγ ;αR

;αR;βγ

+7952R;αRαβ ;γR
;βγ − 1008RβγR

;α
αR

;βγ − 10464RαβRγδRRαβ ;γδ + 960R;αRβγ ;δRαβ ;γδ

−1728RγδR;αβRαβ ;γδ + 3328RαγR
;αβR;γ

β + 18000RαβR2Rαβ
;γ
γ + 1800R;αR;βRαβ

;γ
γ

−720RR;αβRαβ
;γ
γ − 8352R2RαγβδR

αβ ;γδ + 14016RRαγ
ερRβδερR

αβ ;γδ − 384RRα
ε
β
ρRγεδρR

αβ ;γδ
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−1872RRγδ ;αβR
αβ ;γδ + 4032RRαγ ;βδR

αβ ;γδ − 1872RRαβ ;γδR
αβ ;γδ − 5856RαγβδR

;αβR;γδ

+4096RγδR;αβRαγ ;δβ − 2304RαβRRγδερRαγβε;δρ + 216RRαβ ;γγRαβ
;δ
δ − 23904Rα

γRαβRRβγ
;δ
δ

+240Rβγ ;αR
;αRβγ

;δ
δ + 384R;αRα

β ;γRβγ
;δ
δ + 1248RβγR;α

αRβγ
;δ
δ − 480Rα

γR;αβRβγ
;δ
δ

−8448RαβRRβδγεRα
γ ;δε − 3744R;αRαδβε;γR

βγ ;δε + 4320R;αRαβγδ ;εR
βγ ;δε − 3648RβδγεR

;α
αR

βγ ;δε

−5760R;αRβγδε;ρRαβγδ ;ερ + 512RαγδεR
;αβRγδ ;εβ − 12288RαβRRαγβδR

γδ ;ε
ε − 1440RαγβδR

;αβRγδ ;εε

−576RRαβγδ ;ερR
αβγδ ;ερ − 7080RR;αR;α

β
β + 240RβγR;αRβγ ;α

δ
δ + 1200RγδRγδ ;αR

;αβ
β

−1120RγδερRγδερ;αR
;αβ

β + 640RγδRαγ ;δR
;αβ

β + 640RαγδεR
γδ ;εR;αβ

β − 1200RRαβ ;γR
;αβγ

+800Rα
δRβδ ;γR

;αβγ − 2080RαδβεR
δε

;γR
;αβγ − 2400RδεRαδβε;γR

;αβγ − 80Rα
δRβγ ;δR

;αβγ

−4160RαδβεRγ
δ ;εR;αβγ − 960R;αβγR

;αβγ − 2640R;α
α
βR;β

γ
γ + 480RRαβ ;γRαγ ;β

δ
δ

−1360RβγR
;αR;βγ

α + 2480RαβR
;αR;βγ

γ + 480RβγR;αRαβ ;γ
δ
δ + 240RRαβ ;γRαβ ;γ

δ
δ

−720R;αβγRαβ ;γ
δ
δ − 5760RRαγβδ ;εR

αβ ;γδε − 3840RβδγεR
;αRβγ ;δεα + 480RαβγδR

;αRβγ ;δεε

−3792R;αβR;αβ
γ
γ + 584RγδR

γδR;α
α
β
β − 1604R2R;α

α
β
β − 272RγδερR

γδερR;α
α
β
β

−1264RαβRR
;αβγ

γ − 1888RδεRαδβεR
;αβγ

γ − 624Rαβ
;δ
δR

;αβγ
γ − 160RαβRγδR

;αβγδ

−128Rα
ε
β
ρRγεδρR

;αβγδ − 576Rαβ ;γδR
;αβγδ − 2088R;α

αR
;β
β
γ
γ + 240RαβRRαβ

;γ
γ
δ
δ

−240R;αβRαβ
;γ
γ
δ
δ − 1920RRαγβδR

αβ ;γδε
ε − 2760R;αR;α

β
β
γ
γ − 960Rαβ ;γR

;αβγδ
δ

−840RR;α
α
β
β
γ
γ − 480RαβR

;αβγ
γ
δ
δ − 120R;α

α
β
β
γ
γ
δ
δ), (A8b)

a
(2)
5 =

1

30240
(584Rα

γRαβRβγR
2 − 654RαβR

αβR3 + 99R5 + 456RαβRγδR2Rαγβδ + 72R3RαβγδR
αβγδ

−80R2Rαβ
ερRαβγδRγδερ − 24RβγRRβγ ;αR

;α − 26RβγR
βγR;αR

;α + 257R2R;αR
;α

+17RβγδεR
βγδεR;αR

;α + 72RRβγδεRβγδε;αR
;α + 90Rα

γRβγR
;αR;β − 300RαβRR

;αR;β

+48RγδRαγβδR
;αR;β − 48RβγRR;αRαβ ;γ − 12R2Rαγ ;βR

αβ ;γ − 6R2Rαβ ;γR
αβ ;γ

−48RRαβγδR
;αRβγ ;δ + 27R2Rαβγδ ;εR

αβγδ ;ε + 312R;αR;βR;αβ − 60RβγR
βγRR;α

α + 162R3R;α
α

+36RRβγδεR
βγδεR;α

α + 60RαβR
2R;αβ + 144RγδRRαγβδR

;αβ + 200RR;αβR
;αβ + 252R;αR

;αR;β
β

+238RR;α
αR

;β
β + 168Rβγ ;αR

;αR;βγ − 312R;αRαβ ;γR
;βγ + 56RβγR

;α
αR

;βγ − 128RαγR
;αβR;γ

β

−24RαβR2Rαβ
;γ
γ − 72R;αR;βRαβ

;γ
γ + 48RR;αβRαβ

;γ
γ + 144R2RαγβδR

αβ ;γδ + 224RαγβδR
;αβR;γδ

+588RR;αR;α
β
β + 72RRαβ ;γR

;αβγ + 36R;αβγR
;αβγ + 102R;α

α
βR;β

γ
γ + 72RβγR

;αR;βγ
α

−102RαβR
;αR;βγ

γ + 144R;αβR;αβ
γ
γ + 138R2R;α

α
β
β + 72RαβRR

;αβγ
γ + 84R;α

αR
;β
β
γ
γ

+108R;αR;α
β
β
γ
γ + 36RR;α

α
β
β
γ
γ), (A8c)

a
(3)
5 =

1

2160
(2RαβR

αβR3 − 5R5 − 2R3RαβγδR
αβγδ − 66R2R;αR

;α + 36RαβRR
;αR;β − 36R;αR;βR;αβ

−42R3R;α
α − 12RαβR

2R;αβ − 24RR;αβR
;αβ − 30R;αR

;αR;β
β − 30RR;α

αR
;β
β − 72RR;αR;α

β
β

−18R2R;α
α
β
β), (A8d)

a
(4)
5 =

1

144
(R5 + 6R2R;αR

;α + 4R3R;α
α), a

(5)
5 = − 1

120
R5, (A8e)
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