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Building on an insight due to Avramidi, we provide a system of transport equations for determining key
fundamental bitensors, including derivatives of the world function, o(x, x’), the square root of the
Van Vleck determinant, A'/2(x, x'), and the tail term, V(x, x), appearing in the Hadamard form of the
Green function. These bitensors are central to a broad range of problems from radiation reaction to
quantum field theory in curved spacetime and quantum gravity. Their transport equations may be used
either in a semi-recursive approach to determining their covariant Taylor series expansions, or as the basis
of numerical calculations. To illustrate the power of the semi-recursive approach, we present an
implementation in MATHEMATICA, which computes very high order covariant series expansions of these
objects. Using this code, a moderate laptop can, for example, calculate the coincidence limit [a;(x, x)] and
V(x, x') to order (0*)* in a matter of minutes. Results may be output in either a compact notation or in
XTENSOR form. In a second application of the approach, we present a scheme for numerically integrating
the transport equations as a system of coupled ordinary differential equations. As an example application
of the scheme, we integrate along null geodesics to solve for V(x, x’) in Nariai and Schwarzschild

spacetimes.
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L. INTRODUCTION

In a recent paper [1], we presented methods for obtain-
ing coordinate expansions for the (tail part of the) retarded
Green function in spherically symmetric spacetimes. By
using computer algebra to obtain high order Taylor series
[of order (Ax*)*°] and applying the theory of Padé approx-
imants we were able to obtain accurate expressions in
remarkably large regions. Using these expressions, we
were able to present the first complete matched expansion
calculation of the self-force in a model “black hole”
spacetime, the Nariai spacetime [2], and are currently
applying the method to Schwarzschild spacetime. Our
ultimate goal in this program is to work in more general
spacetimes, especially Kerr spacetime. A key component
of the matched expansion approach is knowledge of the
Green function for points close together (i.e., in a quasilo-
cal region). As we move away from specific symmetry
conditions, we can no longer rely on methods based on a
special choice of coordinates in the construction of our
quasilocal solution and are led instead to consider other
techniques such as transport equations and covariant ex-
pansion methods.

Covariant methods for calculating the Green function of
the wave operator and the corresponding heat kernel,
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briefly reviewed in Sec. Il below, are central to a broad
range of problems from radiation reaction to quantum field
theory in curved spacetime and quantum gravity. There is
extremely extensive literature on this topic; here, we pro-
vide only a very brief overview referring the reader to the
reviews by Vassilevich [3] and Poisson [4] and references
therein for a more complete discussion. These methods
have evolved from pioneering work by Hadamard [5] on
the classical theory and DeWitt [6,7] on the quantum
theory. The central objects in the Hadamard and DeWitt
covariant expansions are geometrical bitensor coefficients
a® (x, x') which are commonly called DeWitt' coeffi-
cients in the physics literature. These coefficients are
closely related to the short proper-time asymptotic expan-
sion of the heat kernel of an elliptic operator in a
Riemannian space and so are commonly called heat kernel
coefficients in the mathematics literature. Traditionally,
most attention has focused on the diagonal value of the
heat kernel K% ,(x, x;s), since the coincidence limits

'The Hadamard and DeWitt coefficients also appear in the
literature under several other guises. They may be called DeWitt,
Gilkey, Minakshisundaram, Schwinger, or Seeley coefficients, or
any combination thereof (yielding acronyms such as DWSC,
DWSG and HDMS). In the coincidence limit, it has been
proposed that they be called Hadamard-Minakshisundaram-
DeWitt (HaMiDeW) [8] coefficients. For the remainder of this
paper, we will refer to them as either DeWitt (for the coefficients
akA ) or Hadamard (for the coefficients VA ) coefficients.
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a? ,(x,x) play a central role in the classical theory of
spectral invariants [9] and in the quantum theory of the
effective action and trace anomalies [10]. By contrast, for
the quasilocal part of the matched expansion approach to
radiation reaction [11,12], we seek expansions valid for x
and x' as far apart as geometrical methods permit.

The classical approach to the calculation of these coef-
ficients in the physics literature was to use a recursive
approach developed by DeWitt [7] in the 1960s.
Although these recursive methods work well for the first
few terms in the expansion [13,14], and may be imple-
mented in a tensor software package [15], the amount of
calculation required to compute subsequent terms quickly
becomes prohibitively long, even when implemented as a
computer program. An alternative approach, more com-
mon in the mathematics literature, is to use pseudodiffer-
ential operators and invariance theory [9], where a basis of
curvature invariants of the appropriate structure is con-
structed [16] and then their coefficients determined by
explicit evaluation in simple spacetimes. However, here
too, the size of the basis grows rapidly and there seems
little prospect of reaching orders comparable to those we
obtained in the highly symmetric configurations previously
studied.

An extremely elegant, nonrecursive approach to the
calculation of DeWitt coefficients has been given by
Avramidi [17,18]. As his motivation was to study the
effective action in quantum gravity he was primarily inter-
ested in the coincidence limit of the DeWitt coefficients,
while in the self-force problem, as noted above, we require
point-separated expressions. In addition, Avramidi intro-
duced his method in the language of quantum mechanics,
quite distinct from the language of transport equations,
such as the Raychaudhuri equation, more familiar to dis-
cussions of geodesics among relativists. In this paper, we
present Avramidi’s approach in the language of transport
equations and show that it is ideal for numerical and
symbolic computation. In so doing, we are building on
the work of Décanini and Folacci [19] who wrote many of
the equations we present (we indicate below where we
deviate from their approach) and implemented them ex-
plicitly by hand. However, calculations by hand are long
and inevitably prone to error, particularly for higher spin
and for higher order terms in the series and are quite
impractical for the very high order expansions we would
like for radiation reaction calculations. Instead, we use the
transport equations as the basis for MATHEMATICA code for
algebraic calculations and C code for numerical calcula-
tions. Rather than presenting our higher order results in
excessively long equations [our noncanonical expression
for a;(x, x) for a scalar field contains 2 987 366 terms], we
have made these codes freely available online [20,21].

In Sec. II, we provide a brief review of Green functions,
bitensors and covariant expansions, outlining the relations
between the classical and quantum theories.
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In Sec. III, we detail the principles that we consider
to encapsulate the key insights of the Avramidi approach
and use these to write down a set of transport equations
for the key bitensors of the theory. These provide an
adaptation of the Avramidi approach, which is ideally
suited to implementation on a computer either numerically
or symbolically.

In Sec. IV, we describe a semirecursive approach to
solving for covariant expansions and briefly describe our
MATHEMATICA implementation of it and its interface with
the tensor software package XTENSOR [22].

In Sec. V, we present a numerical implementation of
the transport equation approach to the calculation of the
biscalar V(x, x') appearing in the Hadamard form of the
Green function along null geodesics.

In the Appendix, we give canonical expressions for the
coincidence limits of the first five terms in the Hadamard
expansion of V(x, x').

Given our motivation in studying the radiation reaction
problem, we shall phrase all the discussion of this paper in
4-dimensional spacetime. The reader is referred to the
work by Décanini and Folacci [19] for a discussion of
the corresponding situation in spacetimes of more general
(integer) dimension. We do note, however, that the DeWitt
coefficients are purely geometric bitensors, formally inde-
pendent of the spacetime dimension.

Throughout this paper, we use units in whichG = ¢ = 1
and adopt the sign conventions of [23]. We denote sym-
metrization of indices using brackets [e.g., (aB)] and
exclude indices from symmetrization by surrounding
them by vertical bars [e.g., (@|B]y)]. Roman letters are
used for free indices and Greek letters for indices summed
over all spacetime dimensions. Capital letters are used to
denote the spinorial/tensorial indices appropriate to the
field being considered.

I1. A BRIEF REVIEW OF GREEN FUNCTIONS,
BITENSORS, AND COVARIANT EXPANSIONS

A. Classical Green functions

We take an arbitrary field ¢“(x) and consider wave
operators, which are second order partial differential op-
erators of the form [18]

DA, = 64,0 — m?) — P4y, (2.1)
where [ = g*fV,V;, g% is the (contravariant) metric
tensor, V, is the covariant derivative defined by a connec-
tion Aty Voo = 9,04 + A%, @8, m is the mass of
the field and P4 4(x) is a possible potential term.

In the classical theory of wave propagation in curved
spacetime, a fundamental object is the retarded Green
function, G,® - (x, x’). It is a solution of the inhomoge-

neous wave equation,

DA3Gre® o (x, X) = =474, 6(x, X'), (2.2)
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with support on and within the past light cone of the field
point. (The factor of 47 is a matter of convention, our
choice here is consistent with Ref. [4].) Finding the re-
tarded Green function globally can be extremely hard.
However, provided x and x’ are sufficiently close (within
a normal neighborhood?), we can use the Hadamard form
for the retarded Green function solution [5,24], which in 4
spacetime dimensions takes the form

Gt ¥1) = 0 (3, ¥){UA  (x, )8 (0r(x, x'))

— VAL (x, xXN8(—o(x, X))}, (2.3)

where 6_(x, x') is analogous to the Heaviside step func-
tion, being 1 when x' is in the causal past of x, and 0
otherwise; 8(o(x, x')) is the covariant form of the Dirac
delta function, and UA%'(x, x') and VAP (x, x’) are symmet-
ric bispinors/tensors and are regular for x’ — x. The bisca-
lar o (x, x') is the Synge [4] world function, which is equal
to one half of the squared geodesic distance between x and
x'. The first term, involving U4 » (X, '), in Eq. (2.3) repre-
sents the direct part of the Green function, while the second
term, involving V4 »(x, x'), is known as the tail part of the
Green function. This tail term represents backscattering off
the spacetime geometry and is, for example, responsible
for the quasilocal contribution to the self-force.

Within the Hadamard approach, the symmetric biscalar
VAB'(x, x') is expressed in terms of a formal expansion in
increasing powers of o [19]:

VAB (x, x') = Z VA (x, x') o (x, x').
r=0

(2.4)

The coefficients U4 and V,A?" are determined by impos-
ing the wave equation, using the identity o.,0°% = 20 =
0. o | and setting the coefficient of each manifest power
of o equal to zero. Since V4 p 18 symmetric for self-adjoint
wave operators, we are free to apply the wave equation
either at x or at x’; here we choose to apply it at x’. We find
that UAP'(x, x') = AY2(x, x") g% (x, x'), where A(x, x') is
the Van Vleck-Morette determinant defined as [4]

Ax, ') = =[—gW)] /2 det(— 00 (x, X)) —g ()] /2

= det(— g%, (x, x’)a;aﬁ, (x, x')), (2.5)

with g% ,(x, x') being the bivector of parallel transport
(defined fully below) and where g% is the bitensor of

*More precisely, the Hadamard form requires that x and x’ lie
within a causal domain, a convex normal neighborhood with a
causality condition attached. This effectively requires that x and
x' be connected by at most one nonspacelike geodesic, which
stays within the causal domain. However, as we expect the term
normal neighborhood to be more familiar to the reader, we will
use it throughout this paper, with implied assumptions of con-
vexity and a causality condition.
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parallel transport appropriate to the tensorial nature of the
field, e.g.,

1 (scalar)
gt = {g“bl (electromagnetic) (2.6)
g@ g (gravitational),

where the higher spin fields are taken in Lorentz gauge. In
making this identification, we have used the transport
equation for the Van Vleck-Morette determinant:

o*V,InA = (4 — Oo). 2.7
The coefficients VAP (x, x') satisfy the recursion relations

@ (ATV2VABY o+ (r + DATI2YAR

1 — ! !
5 12DF vAC =0 (2.82)
for r € N along with the ““initial condition”
o (ATV2VAE) o+ ATV
+ IATI2DE (A12gAC) = 0. (2.8b)

These are transport equations which may be solved in
principle within a normal neighborhood by direct integra-
tion along the geodesic from x to x’'. The complication is
that the calculation of VA5 requires the calculation of
second derivatives of VA2, in directions off the geodesic;
we address this issue below.

Finally, we emphasize that the Hadamard expansion
(2.4) is an ansatz not a Taylor series. For example, in
de Sitter spacetime for a conformally invariant scalar
theory all the V,’s are nonzero while V = 0.

B. The quantum theory

In curved spacetime, a fundamental object of interest is
the Feynman Green function defined for a quantum field
@*(x) in the state |¥) by

G¥ (x, %) = (WIT[@* (x) @7 ()W),

where T denotes time ordering. The Feynman Green func-
tion may be related to the advanced and retarded Green
functions of the classical theory by the covariant commu-
tation relations [7]

(2.9)

/ 1 / /
GAB(x, x') = g(GAB (x, x') + GAP'(x, x'))

adv

LA (W) + ¢ ()PAWI)
(2.10)

The anticommutator function (W¥|¢A(x)@8 (X)) +
&P (x) @A (x)| W) clearly satisfies the homogeneous wave
equation so that the Feynman Green function satisfies the
equation
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DABGfBC,(x, x') = —(SAC,5(x,x’). (2.11)

Using the proper-time formalism [7], the identity

1

ifoo dse”® exp(isx) = — —,
0

>0),
x + ie (E )

(2.12)

allows the causal properties of the Feynman function to be
encapsulated in the formal expression

GfAC,(x, x') = i/:o dse™ = exp(isD)* ;6% ., 6(x, x),
2.13)

where the limit € — 0+ is understood. The integrand

K2 o (x, x'55) = exp(isD)* 5 6% ., 8(x, x') (2.14)
clearly satisfies the Schrodinger/heat equation
aK*
1 S (x,x's5) = DAKB . (x, s 5) (2.15)

Jas

together with the initial condition K* (% x'50) =
54 B (x, x). The trivial way in which the mass m enters
these equations allows it to be eliminated through the

prescription
KA o (x, x5 s) = e*"’"stOAC,(x, X'y ), (2.16)

with the massless heat kernel satisfying the equation

laKOAC’( /. )_(5A []— pA )KB ( /. )
7Tx,x,s— B Ko o, X'ss

2.17)
together with the initial condition KOA g% x'50) =
845 6(x, x').

In 4-dimensional Minkowski spacetime without poten-
tial, the massless heat kernel is readily obtained as

1 o
KOAB’(X’ x/; S) = W eXp(— %>8AB,

(flat spacetime). (2.18)

This motivates the ansatz [7] that in general the massless
heat kernel allows the representation

1 o
Ko 5 (x, x'5) ~ Gy exp(— Z—is>Al/2(x, x')

X Qo (x, x'59), (2.19)
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where Q4 (x, x';5) possesses the following asymptotic
expansion as s — 0 + :

Q4 (x x'ys) ~ Z a5 (x, x')(is)", (2.20)
r=0

A
r B!

(length) ~2". The inclusion of the explicit factor of A2 is
simply a matter of convention; by including it we are
following DeWitt, but many authors, including Décanini
and Folacci, choose instead to include it in the series
coefficients

where ay?, (x, x) = 84, and a,”,(x, x') has dimension

AL (x x!) = Al/za,AB,(x, x). 2.21)

It is clearly trivial to convert between the two conventions
and, in any case, the coincidence limits agree.

Now, requiring our expansion to satisfy Eq. (2.17) and
using the symmetry of Q4 (x, x'; 5) to allow operators to
act at x’, we find that Q4 (X, x'; s) must satisfy

1oQA 1, .
- + _—U;a QAB
i Js s

= A*1/2(5B/C,D - PB'C,)(Al/ZQAC/(x, x5 ).

!
a

(2.22)

Inserting the expansion Eq. (2.20), the coefficients
a’¥¥'(x, x') satisfy the recursion relations

sal AB' AB'
ocva, A+ (r+ Da,y,

— A28 .0 - PF )(A2a,AC) =0 (2.23a)
for r € N along with the initial condition
o@afB =0, (2.23b)

with the implicit requirement that they be regular
as x' — x.

To compare the DeWitt approach to the Hadamard ap-
proach we may start by rewriting the Hadamard recursion
relations (2.8) as

(=2 T IATI2VAEY o (r + D((=2) T IATI2YAR) — AT2(8F O — PP )(AV2(=2)"(r — 1D)IATI2VAC)

+ m*((=2)"(r — 1)1A™1/2V48)) =,

(2.24)

which can be taken to include » = 0 with the formal identification (—1)!A~1/2VAB" = g4B" — g AB' Comparing (2.24) and
(2.23a), one can see that the massless Hadamard and (mass-independent) DeWitt coefficients are related by
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@, () = (227 PAT 200 XV (),

(2.25a)

_ A
sz—O)AB/(x’ xl) — (_I)V‘H

(2.25b)

We can also relate the Hadamard coefficients for a
theory of mass m and the (mass-independent) DeWitt
coefficients. We start by noting that from (2.16), (2.19), and
(2.20) the massive heat kernel has the asymptotic expan-
sion

1
K B,(x,x’;s)fvmexp( 5 )Al/z(x x')

mZ)r k

X Z(Z Wak B,(x, x’))(is)’.
(2.26)

It follows from linearity that the massive Hadamard coef-
ficients may be obtained from (2.25b) with the replacement

r—k
a, B,(x x') Z( n ) a, B,(x x') 2.27)
yielding
AY2(x, x')
V,AB,(x, K) = (=1 Tt
L ()1

Z( +1 k)!akAB/(x’x/) (2.28)

with inverse

k!
a., B/(x x/)—A 1/2 Z( 2k+1( _k)'
B (mZ)r+l
2\r—ky, A !
X(m) Vk B,(X,x)+m.

(2.29)

These relations enable us to relate the “tail term” of the
massive theory to that of the massless theory by

Qo) P, ((—2m2o)'/?)

Vix, x') Vrm2 =04 5 (X
( Z ) (_2m20.)r/2
J((=2m2a)'/?)
2417271 A
+ m2AY (2mZo) 2 o g (2.30)

where J,(x) are Bessel functions of the first kind. This last
expression is obtained by using (2.25a) in (2.28), substitut-
ing the result into (2.4) and interchanging the order of
summation (upon doing so, the sum over k yields the
Bessel functions).
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C. Classical approach to covariant
expansion calculations

The Synge world function, o(x, x') is a biscalar (i.e., a
scalar at x and at x") defined to be equal to half the square of
the geodesic distance between x and x'. The world function
is defined through the fundamental identity

0,0 =20=0,0%, (2.31)

together with the initial conditions lim,_,,o(x, x') = 0 and
limy_,,0,4,(x, x') = g,,(x). Here, we indicate derivatives
at the (un-)primed point by (un-)primed indices:

o' =Vig o, =V,o

/ (2.32)
ov =Vio oy =Vyo.

o“ is a vector at x of length equal to the geodesic distance

between x and x’, tangent to the geodesic at x and oriented

in the direction x’ — x, while ¢ is a vector at x’ of length

equal to the geodesic distance between x and x’, tangent to

the geodesic at x’ and oriented in the opposite direction.
The covariant derivatives of o may be written as

o (x, x') = (s' — s)u?,

(2.33)

g(x, x") = (s — s")u?

where s is an affine parameter and u® is tangent to the
geodesic. For timelike geodesics, s may be taken as the
proper time along the geodesic, while u“ is the 4-velocity
tangent to the geodesic and

o(x, x') = —3(s — s")% (2.34)

Similarly, for spacelike geodesics, s may be taken as the
spatial geodesic distance along the geodesic and

o(x, x') = +i(s — ")~ (2.35)
For null geodesics, u“ is null and o(x, x') = 0.

Another bitensor of frequent interest is the bivector of
parallel transport, g, defined by the transport equation

T8y = 0= 0% g (2.36)
with initial condition lim,_,, g, (x, x') = g,,(x). From the
definition of a geodesic, it follows that

!
o =
8aa/ T = g,

and g, 0% = —0y,. (2.37)

Given a bitensor 7, at x, the parallel transport bivector
allows us to define T/, a bitensor at x’, obtained by parallel
transporting T, along the geodesic from x to x’ and vice
versa,

To8%, =Ty Tyg%, =T, (2.38)

. !
These are consistent as g“ g,* =8  and

gaalgah/ = 8(1/}7/-
Any sufficiently smooth bitensor Ty, ...a,d)-a, MAY be

expanded in a local covariant Taylor series about the
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point x. To do so, it is convenient and conventional to first
use the bivector of parallel transport to transport all tensor
indices to x, for example:

b, b, /
8o, 8, Tayay by, (6 X)

0 (_l)k ) )
:Z o laranby e o, ()T o
k=0
00 (_1)/(
=& T (2.39)
k=0

where the 7,...4 p-b,a,a are the coefficients of the
series and are local tensors at x, and T, ..., p,--p,(k) 18
defined as this coefficient contracted with the correspond-
ing o%. Similarly, we can also expand about x':

ay ... gl /
4 d| 8 ’"al, Tal---a,,,b/l---b;(xrx)

= (—1)k ’ /
Z( ) eedlyb! ..b;,a/l...ai(x’)a“l <o 0%, (2.40)

For many fundamental bitensors, one would typically
use the DeWitt approach [6] to determine the coefficients
in these expansions as follows:

(1) Take covariant derivatives of the defining equation
for the bitensor (the number of derivatives required
depends on the order of the term to be found).

(2) Replace all known terms with their coincidence
limit, x — x'.

(3) Sort covariant derivatives,
tensor terms in the process.

(4) Take the coincidence limit x’ — x of the result.

introducing Riemann

This method allows all coefficients to be determined re-
cursively in terms of lower order coefficients and Riemann
tensor polynomials. Although this method proves effective
for determining the lowest few order terms by hand and can
be readily implemented in software, it does not scale well
and it is not long before the computation time required to
calculate the next term is prohibitively large. This issue can
be understood from the fact that the calculation yields
extremely large intermediate expressions, which simplify
tremendously in the end. It is therefore desirable to find an
alternative approach, which is more efficient and better
suited to implementation in software. In the following
sections, we will describe one such approach, which proves
to be highly efficient.

III. AVRAMIDI APPROACH TO COVARIANT
EXPANSION CALCULATIONS

The traditional DeWitt [6] approach to the calculation of
covariant expansions of fundamental bitensors is to derive
a set of recursion relations for the coefficients of the series.
Avramidi [17] has proposed an alternative, extremely
elegant nonrecursive method for the calculation of these
coefficients. Translated into the language of transport

PHYSICAL REVIEW D 84, 104039 (2011)

equations, this approach emphasizes two fundamental
principles when doing calculations:

(1) When expanding about x, always try to take deriva-
tives at x’. The result is that derivatives only act on
the 0“’s and not on the coefficients.

(2) Where possible, whenever taking a covariant deriva-
tive, V, contract the derivative with o’

Applying these two principles, Avramidi has derived non-
recursive” expressions for the coefficients of covariant
expansions of several bitensors. As Avramidi’s derivations
use a rather abstract notation, we will now briefly review
his technique in a more explicit notation. We will also
extend the derivation to include several other bitensors
and note that Egs. (3.11), (3.13), (3.15), (3.17), (3.34),
(3.35), (3.46), and (3.49) were previously written down
and used by Décanini and Folacci [19].

Throughout this section, we fix the base point x and
allow it to be connected to any other point x’ by a geodesic.
In all cases, we expand about the fixed point, x.

Defining the transport operators D and D’ as

D=0V, D =g¥V,, (3.1
we can rewrite Eq. (2.31) as
(D—=2)0=0 (D' —2)o=0. (3.2)
Differentiating these equations at x and at x’, we get
D-Do*=0 (D—1o" =0
(D' = 1o = (D' — 1)o“ = G-
Defining
n, =09, &, =07, (3.4)

the second pair of these equations can be rewritten as

/

ot = 0% o = f“/a,a". 3.5)
Finally, we define y* »» the inverse of n“,,,
Yy, =), (3.6)
and also introduce the definition
A, =09y, (3.7)

We will now derive transport equations for each of these
newly introduced quantities along with some others, which
will be defined as required. Many of these derivations
involve considerable index manipulations and are most
easily (and accurately) done using a tensor software pack-
age such as XTENSOR [22].

3Avramidi retains the recurrence relations for the DeWitt
coefficients, a; (and hence the Hadamard coefficients, V,).
However, all other relations are nonrecursive.
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The transport equations of this section may be derived in
a recursive manner, making use of the identities

D/(O'a/ aa

1y 1

!
) = va;H(Dla-a’]...a{,) - fa u:’+lva’a-a’]...a£,

! /
+ R, ,

a4

! !

a C
+0*R° , , Oy
Andy & 1

WO a, T

¢! (38)

Do’ )=V Doy )= V0 4 (39

and its generalization, given below. This method is natu-
rally algorithmic and well suited to implementation on
a computer, thus allowing for the automated derivation of
a transport equation for an arbitrary number of derivatives
of a bitensor.

A. Transport equation for £,

Taking a primed derivative of the second equation in
(3.5), we obtain

é';a’b/ — é‘:a’a/blo.a’ + é:a/a’fa’b"

We now commute the last two covariant derivatives in
the first term on the right-hand side of this equation and
rearrange to obtain

(3.10)

Dlé‘:a’b, + é_—a’a/é‘:a’h/ _ é:a’b/ + Ra’a/blﬁlo.a'o-ﬁ' =0,
3.11)

B. Transport equation for n*,,

Taking a primed derivative of the first equation in (3.5),

we obtain
|
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n°, = 0% + 0 £, (3.12)

In this case, since o is a scalar at x/, we can commute
the two primed covariant derivatives in the first term on the
right-hand side of this equation without introducing a
Riemann term. Rearranging, we obtain

D'n®, + 0%, — 0%, =0. (3.13)
C. Transport equation for *y"/b
Solving Eq. (3.13) for f“'b, and using (3.6), we obtain
& =08 — vy a(D'n®,) = 8%, + (D'y" ).
(3.14)

Next, substituting Eq. (3.14) into Eq. (3.11) and rearrang-
ing, we obtain a transport equation for y* b

(D'P2y", + D'y, + RY gy 0@ 0P = 0. (3.15)
D. Equation for A%,
Differentiating Eq. (2.31) at x and x’, we obtain
N, = Aen®, + Dn?,, (3.16)
which is easily rearranged to give an equation for A“:
A4, =89 — (Dn° )vY,. (3.17)
E. Transport equation for o, ,

Applying the identity (3.8) to (3.11) and simplifying the
resulting expression, we obtain

! ! ! ! ! ! ! ! ! / ! / !
(D o 1)0-a b'c’ + o c/a-ao/b/ + o b’a-a a'c! + o a/a-a b'c! + R? o/b’,B"c/a-a of — R a/,B/b’a-lB o !

! / ! ! / !
— R4 0P o%,, + R” b,ﬂ,c,a'ﬁ o, =0.

a'Blc

(3.18)

F. Transport equation for o, ,

Applying the identity (3.9) to (3.11) and simplifying the resulting expression, we obtain

(D' = 1)o*,,,

! !
+ o¢ b,a“a,c, + o® C,O'“

+ O'aalo'a/b,c, + Ra/b/ﬂlc/a-aa/a-’g/ = 0. (319)

G. Transport equation for ¢ bed

Applying the identity (3.8) to (3.18) and simplifying the resulting expression, we obtain

(D' = Do, .,

! ! ! ! /! ! !
+ O-G a/a-a b/c/d/ + Ra alBlclRa d/,ylhla.ﬁ O'y + Ra

a/ﬁ/b/

! ! / /! / ! / ! ! / /! ! /
- Ra ,B/O(/d/Ra b/,y/CIO-'B 0-7 - Ra B!a/C!Ra b/,y!d/O-'B 0—'}/ + Ra B/b/,y/.c/dla-ﬁ 0-7 + RO( b/B/C!.d/O-'B 0’“

! / ! !
— R4 D/,B/c"d/o-ﬁ o » R? a' By

/ / / / / /
+ R¢ b’ﬁ’c/a-ﬁ o’ da — R¢ a’ﬁ’d’a-ﬁ o bl

! ! ! ! ! ! ! !
+o0? 0y T g0 O 0", T o

! / ! !
R“ d,y,c,a'ﬁ o? + R¢

/ ! ! / ! ! / ! ! /
2P0 = R gy 00 Ty + R P o+ RY 0P T

/ / /
— R¢ a/ﬁ/c’a-ﬂ ag® b'd

! ! ! !
g T O a0 g T T T

! ! !
a/B/lea C/,ylb/ O-B 0-7
!
a/
!

ca

— R gy =0 (3.20)
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H. Transport equation for o

PHYSICAL REVIEW D 84, 104039 (2011)

bc'd

Applying the identity (3.9) to (3.18) and simplifying the resulting expression, we obtain

/ ! ! ! ! ! !
(D =10 yg + 0y a0 g+ 0 g0 o 0 g Ty T Oy 0 g F T 0yt O g0,

! ! ! ! ! ! / ! /
+ 00 g TR g g0 0y + R 0P+ RY 0P 0+ R g 0P

I. Transport equation for g a,b

The bivector of parallel transport is defined by the
transport equation

D'g,t=0o"g,’ =0 (3.22)

a Ga

J. Transport equation for g,

Let
Aabc = gbalgcﬁlgaa’;ﬁ" (323)

Applying D’ and commuting covariant derivatives, we
obtain a transport equation for A,
D/Aabc + Aabaf'g/y/glg/agcy/
+8,48,P 8. Rypy50° = 0. (3.24)

/ b/ _ / h/ b/ ! b/ !
D 8a .oqg = a-ﬁ (gu Bleld +R a/'g/d/gaa ! +R a/ﬁ/clgaa d

3¢

!LJ

=0. (3.21)

b'a'

K. Transport equation for g,

Let
Babc = gbB/gaB’;C' (325)

Applying D' and rearranging, we obtain a transport equa-
tion for B

apy
D/Babc = _Aaba ﬂaﬁ/gcﬁ/. (326)
L. Transport equation for g, b',c, Z
Applying D' to g,” . ,» We obtain
Dlgub,~c/d/ = Ualgab/.cld/ah (327)

Commuting covariant derivatives on the right-hand side,
this becomes

~ R g8 TR g 8a®): (3.28)

Bringing o#' inside the derivative in the first time on the right-hand side, and noting that o#'g,,*" g = 0, this then yields a

. b’ .
transport equation for g,”. -
Iy b — _ B ' — ! ' —
D 8. ld O'B C/ga Bld O'E d/gu B!

!/

! /
— R« opd 0.,8 gab

M. Transport equation for = InA'/2

The Van Vleck-Morette determinant, A is a biscalar
defined by

Alx, x) = det[A"‘/B,], (3.30)

!

A« g = _ga’ao.aﬁ/ = _ga’anaﬂl‘

By Eq. (3.13), we can write the second equation here as

!

AY = =g (D' g + 1 EY ). (3.31)

. ! ! / . .
Since D'g® , = g¢ @ p o# = 0, we can rewrite this as

A = DAY+ A8 (3.32)

Introducing the inverse (A~1)®' p and multiplying it by
the above, we obtain

/! b/ bl !
O-B c'd’gﬂ ;ﬁ/ + R a/ﬁ/d/o-ﬁ gaa

b’ / /
o +R D/B’C’;d/a-ﬁ gaa'

! !

b’ [
! + R a,B,C,O'B 8a d'
(3.29)

4=¢Y 4+ D'(Ind), (3.33)

where we have used the matrix identity o In detM =
TrM~16M to convert the trace to a determinant. This
can also be written in terms of A!/2:

D'l =14 - ¢ ). (3.34)

N. Transport equation for the Van Vleck-Morette
determinant, A'/2

By the definition of /, the Van Vleck-Morette determi-
nant is given by

A2 = ef, (3.35)
and so satisfies the transport equation
D/AVZ = IAV2(4 — g2 ). (3.36)
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0. Equation for A~1/2D(A1/2)
Defining 7 = A~/2D(A'/2), it is immediately clear that
7= A"12D(AY?) = D¢{. (3.37)

P. Equation for A "1/2D/(A1/2)

Defining 7 = A~'2D/(A'/2), it is immediately clear
that

7 = A"12DI(AV?) = D'L. (3.38)
Q. Equation for V, A
To derive an equation for VA, we note that
A =det[—g”, 0%, 1= —det[n*, ]det[g,"] (3.39)
and make use of Jacobi’s matrix identity
d (detA) = tr(adj(A)dA) = (detA)tr(A~'dA), (3.40)

PHYSICAL REVIEW D 84, 104039 (2011)

where the operator d indicates a derivative. Applying (3.40)
to (3.39), we obtain an equation for V /A:

VoA = —Alg,“8a® 0 + 7 a0y (3.41)

As a consistency check, we note that contracting with o
and using Eq. (3.13) we recover Eq. (3.33).

R. Equation for [1'A
Applying Jacobi’s identity twice, together with
d(A™") = —A"!(dA)A ™', we find an identity for the sec-
ond derivative of the determinant of a matrix:
d?(detA) = (detA)(tr(A"'dA) tr(A~'dA)
—tr(A"'dAA'dA) + tr(A~'d2A)).
(3.42)

Using this identity in Eq. (3.39), we obtain an equation
for LA,

D/A = A[(galagaa/;,u/ + »yalao.aa/’u/><ga,agaa/;,u/ + ,ya’aa_aa/,u,l) - (galagaﬂl;ﬂlglglﬁglgal;#,)

- (va’a«f‘”ﬁ/#rv"',ﬂfﬂw“’) + (ga/“ga“’;

/ ! U
Al )

(3.43)

S. Equation for [1'A1/2

Noting that

VA2 = QA12A, ) = IAT1200A — IA32AW A,

(3.44)

it is straightforward to use Egs. (3.41) and (3.43) to find an equation for VA2

D/Al/2 — %A]/z[%<ga’agaa/;lu/ + 'yalaa'aa/ﬂ/)(ga/agaal;’u/ + Va/atf“aﬁ") . (ga/agalgl;ﬂ/gﬁ/ﬁgﬁm;'ul)

T. Transport equation for V,

As is given in Eq. (2.8b), V| satisfies the transport
equation

(D' + V¥ +3V57 (€, =9 +3D" (A 2gh ) =0,
(3.46)
or equivalently
(D' + 1)(A~12v48) + %A’I/ZDB'C,(AI/ZgAC') = 0.
(3.47)
In particular, for a scalar field
(D' + 1)Vy+3Ve(é* , —4) + 30 —m? = PHA2 =0,
(3.48)

where P/ = P(x') is frequently taken to be proportional to
the Ricci scalar: P = £R.

(3.45)

|
U. Transport equations for V,

As is given in Eq. (2.8a), V, satisfies the transport
equation

/ 1 ! ! 1 /! !

(D' +r+ I)VIrAB +§V;'48 (&H o —4) +5DB C/V}q_c1 =0,
(3.49)

or equivalently

! 1 / !
(D' + 7+ ATV + ZATI2DY VIS = 0.
r

(3.50)

Comparing with Eq. (3.47), it is clear that Eq. (3.50)
may be taken to include r =0 if we replace VAC/r
by A!/2gAC,

104039-9
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In particular, for a scalar field,
1 , 1
(D' +r+ 1)V, +-V(&*  —4)+—(0O —m?>—P)V,_,
2 w 2r
=0. (3.51)

Together with the earlier equations, the transport equa-

tion Eq. (3.46) allows us to immediately solve for V4
J

AB' — AB' o
VDT )= DIV )+ €9

! / !
o R¢ TAC
alaa! c..a
| ..al,

! ! ! !
T, +o*RE,, TAC
1%n

/! / U
_ _ o pc AC
= . —o0*RE LTS L
n

PHYSICAL REVIEW D 84, 104039 (2011)

along a geodesic. To obtain the higher order V,, we also
need to determine [/ foi. At first sight, this appears to
require integrating along a family of neighboring geodesics
but, in fact, again we can write transport equations for it.
First, we note the identity

! !
a\..ay

(3.52)

s
1€

where R4, , = 0. Ay, — 9, Alp, + AL A, — A, AC,. . Working with V4B = A~1/2VAF on differentiat-
ing Eq. (3.50) we obtain a transport equation for the first derivative of 1%

~ / / ~ / / / ~ i 1 _ ! ~ !
(D' + 74 DA )+ € VI8 0 R (VIS + (AT 1PDF (A7) = 0. (3.53)
As noted above, this equation also includes r = 0 if we replace VAC| /r in this case by gA¢":
(D' + 1) (V4 o)t ga’a,Vg}B’;a, + a“/’RB/C,a,a,VéC' + %(A‘I/ZDB’C,(Al/ngC/));a/ = 0. (3.54)
Repeating the process
(D' +r+ DV )+ &4 VB L+ & VL
! Bl AC/ ! B/ ~AC/ ! "‘AB/ _ ! / "‘AC! ! Bl ~AC/
+ o¢ R C’b'a/vr . + o“ R C'a/a/vr b/ + é‘:a al;blvr ! ag® RB u’h’a'vr B + é‘:a b/R C’a'a’vr
~ / 1 _ ~ /
+ ¥ RE Caaw Vi€ + ;(A 12DE (AV2VAC). = 0, (3.55)
|
. "‘ABI . . ~ / ~ / ~
Z&;lt;lbgi V" .4y equation given by the same replacement (D' + D(Vo) + € Voo + € Vo
) . . / > _ ' pd' ~
Clearly, this process may be repeated as many times as +é aw Vo =0 Ry Vo
necessary. At each stage, we require two more derivatives + %( A~V2( — m? — PHA! /2);a’b’ —0. (3.57)

on VA€ than on VAT, but this may be obtained by a
bootstrap process grounded by the \76‘0 equation, which
involves only the fundamental objects A'/2 and gAC,
which we have explored above. As with our previous
equations, while this process quickly becomes too tedious
to follow by hand, it is straightforward to program.

For example, to determine V| for a scalar field, we first
need to solve the two transport equations

(Dl + 1)(‘70;(1’) + gC/aIVO;C/

+ XAV - m? - PHAY?),, =0,  (3.56)

and

In the next two sections, we show how the above system
of transport equations can be solved either as a series
expansion or numerically. For sufficiently simple space-
times, it is also possible to find closed form solutions,
which provide a useful check on our results.

IV. SEMIRECURSIVE APPROACH
TO COVARIANT EXPANSIONS

In this section, we will investigate solutions to the
transport equations of Sec. III in the form of covariant
series expansions. The goal is to find covariant series
expressions for the Hadamard and DeWitt coefficients.
Several methods have been previously applied for doing
such calculations, both by hand and using computer
algebra [25-44]. However, this effort has been focused
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primarily on the calculation of the diagonal coefficients.
To our knowledge, only the work of Décanini and Folacci
[19], upon which our method is based, has been concerned
with the off-diagonal coefficients.

Before proceeding further, it is helpful to see how co-
variant expansions behave under certain operations. First,
applying the operator D’ to the covariant expansion of any
bitensor 7, Ly bl b about the point x, we obtain

8, 8, D Ty (5 X)

= ngl (R 'gbn "Ta bl by, (X X)

.1

bl"'bnﬁl"'ﬁk(x)a-ﬂl e O'ﬂk,

where the last equality is obtained by applying Eq. (3.5). In
other words, applying D’ to the kth term in the series is
equivalent to multiplying that term by k:

(D/T)(k) = kT(k).

Next, we consider applying the operator D to the cova-
riant expansion of any bitensor T, |yl --d, about the

point x. In this case, there will also be a term involving
the derivative of the series coefficient, giving

bl b, /
8p, ! 8b, "DTa1~~~a,,,b/l~~~b’ (x, x')

=ng]b/‘ 'gb”szal‘ b’(x x')

m1

&) (_1)k
= Z k' [ktal"‘ambl”'bn,Bl"'ﬂk(x)a-B] P
=0 *

+ t(/ll"'ﬂmhl“'bnﬁl"'BkQa(x)o-B] M
Z (= l)k

+ tal"'am/u"'bnﬁl"'ﬁk;a(x)a'ﬁl e

a
O'Bkaa-

oPro®]

b]"'bn,Bl"'ﬂk(x)a-B] o e o-Bk

oPro®]. (4.2)
We can also consider multiplication of covariant expan-

sions. For example, for any two tensors, $¢; and 7¢,, with

product U“, = §¢,T¢,, for example, we can relate their

covariant expansions by

|

Z (— 1)" n n n)gaa’yalbal-"an(x)aal Ce (Z

_l)k 00 (_1)l B g @ .. gu) =0
2)' "B ZZ n &pY bay o, X)T o) =0.
=0 :

PHYSICAL REVIEW D 84, 104039 (2011)

[oe]
(=1)"

. 0—31)

- (D" <fn
= Z ! Z K Sa“/gl"'ﬁktabﬁm...gno'ﬂl N

(4.3)

or equivalently
—(n
Un = Z( k)S(k)T(n*k).
k=0

Finally, many of the equations derived in the previous
section contain terms involving the Riemann tensor at x/,
RY o - AAs all other quantities are expanded about x rather
than x’, we will also need to rewrite these Riemann terms in
terms of their expansion about x:

< s 2 AN 7
k! (@lblBsy, -y 7T 7

- (=" .,
=2 o K

where we follow Avramidi [17] in introducing the
definition

(4.4)

a = pRa ay ...y,
X b(n) R (a1|b|0(22a3"'au)0- o

= jcab(n)o-al ce e g%, 4.5)

These four considerations will now allow us to rewrite
the transport equations of Sec. III as recursion relations for
the coefficients of the covariant expansions of the tensors
involved.

A. Recursion relation for coefficients
. . !
of the covariant expansion of y*

Rewriting Eq. (3.15) in terms of covariant expansions,
we find

(4.6)

From this, the nth term in the covariant series expansion of g“_ ,y“/ b

, ( 1)11
gaa’ya b Z 7 b(n)’

n=0

can be written recursively in terms of products of lower order terms in the series with J:
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Y b0) = —6%, Y =0

n- ] < n— 2 a o
(S e

Many of the following recursion relations will make use of
these coefficients; to illustrate their structure we write the
next five explicitly,

4.7
Yoy =

_ 1
Vab(z) = §j<ab(2)’

Y6 = %Kab(,?)’

Y b %Kabm) K¢ «@ K oy

Yh5) %Kab(s) 3K o« K ) ~ 3K «@ K b3y
Y bie) %Kab(@ RxKe ay K ) — RxKe w3 K3

_3
3K ) K iy + 3K ) K gy Ky,

While one can give a closed form combinatoric expression,
the recursive formula (4.7) is best suited to our needs.

B. Recursion relation for coefficients
of the covariant expansion of n“,

Since y* » 18 the inverse of n“,,, we have
/
a)(gbb nab/) = 5ab‘

Substituting in covariant expansion expressions for
8y y”'a and gbb/n”‘ > We find, using our standard nota-
tion, that the nth term in the covariant series expansion of
g0, is

(g%,v" (4.8)

N0 = =069, 7% =0,

- (n
- Z( k)yamkﬁﬁ bn—by
k=2

Again, to illustrate their structure, we write the next five
explicitly,

. 4.9)
N bn)

_ 1 1
N0 = ;K¢ b2y

_ 1
77ab(3) = _EKab@)’
X

XK K

a — _3 a
M@ =~ 5% pw) T a7 b2y

—_ _2
77ah(5) B ‘Kab(s) K a(3)‘7< b2) K a(2)‘7< b(3)
- 7K a<4>3< by ~ K5 Ky
.7<

v~ 31K 4 K g0y K oy

nab(6) K
.’K

a(2)

C. Recursion relation for coefficients
of the covariant expansion of &% b
Writing Eq. (3.14) in terms of covariant series, it is
immediately apparent that the nth term in the covariant
expansion of g“a,gb"’f“’b, is

PHYSICAL REVIEW D 84, 104039 (2011)

fab(()) =69, fab(l) =0
n—2

n
= nnab(n) - Z(k)k’yaoz(nk)nab(k)‘ (410)

émh(n)

Once more, to illustrate their structure, we write the next
five explicitly,

a _ _2 a
& b2) §~7< b(2)
_ _3
fah(s) - iKahe)’

) = _15_2:]<ab(4) 15K a0y K b2y

£ = 5K s 73K 45 K — 3K 0 Ky

e = _SOK b(6) K oz(4 K0y — K a(3)‘7<" b(3)
‘K a(2)‘7< b(@) ‘,K a(2)‘7< B(2)‘7<'Bb(2)'

D. Recursion relation for coefficients
of the covariant expansion of A“,

Using Eq. (3.17), A%, = 8%, — (Dn"_)y*,, we can
write an equation for the nth order coefficient of the
covariant expansion of A“,. However, the expression in-
volves the operator D acting on the covariant series expan-
sion of gbb/ n“,, so we will first need to find an expression
for that. As discussed in the beginning of this section, the
derivative in D will affect both the coefficient and the o*’s.
When acting on the o*’s, it has the effect of multiplying the
term by n as was previously the case with D’. When acting
on the coefficient, it will add a derivative to it and increase
the order of the term (since we will then be adding a o). In
particular, given our definition (4.5)

K“b(n) = Ra(allblaz;a3~~~an)0'a' e g
we have
D:K“b(n) = 0"1”“va,,+1(Ra(a,|b|a2;a3---a”)0'al e gn)
— Ra(a]|b|a2;a3...a")an+l0'051 c e g gt
+ nRa(allhlaz;a3...alz)0'“1 e g%
= Ky T 1K

Here, the first term is one order higher while the second
keeps the order the same.

We now appeal to the fact that, from Eqgs. (4.7) and IV C,
the terms in the expansion of gb”/n“b, consist solely
of products of Z]C“b(n). This means that we can apply

the preceding rules when D acts on K“ and when

b(n)’
encountering compound expressions (i.e., consisting of

more than a single K"b(n)), use the normal rules for

differentiation (product rule, distributivity, etc.). To illus-
trate this explicitly,
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/ / 1 1
gbb Dn"b/ = D(gbb "’Iab/) = D(’r]”h(o) - 77“;,(]) + 577“;,(2) - 577“;,(3) + a"?ah@) t - )

1 1 1 1
D(—5 , +5(—§j< ,)(2)) —5(—53<

1

1 1 1
- j<_ §)U< ba) T 2K ) ~ §<_ §>(j< b(4)

7
<_ E)(U@a@) T 2K @) K+ H (K + 2K ) + -

4
1/ 2, 1/ 1, 1 ’ 28, . .
:j<_§5’< b(2>>_§<_§3< b@)*ﬂ(_‘x b(4) _EK a0 K b(2>>+”'-

We can then write the general nth term in the covariant
series expansion of g,” Dn*  Symbolically as

(D) = Don”b(n) — nD+n”b(n71), (4.11)

where D* signifies the contribution that raises the order by
one and DY signifies the contribution that keeps the order
the same. For example,

+ .a — _1 a 0 — _3 «
D 7711;(2) = 3K b(3) D nab(3) =X b(3)

and so
a — _3 a _ _1 a — _1 @
D)z = 3K 3( K b(3)) = =K%

It is then straightforward to write an expression for the nth
term in the covariant series expansion of A¢;:

A0 = 0%
A%y, =0
n—2 n
Ay =~ Z(k)(DOnaa(nza
k=0
- (n—k)D+n”a(n_k_1))‘y“b(k). (4.12)
The next five terms are given explicitly by
Aoy = _%Kab(z)’
Aya) = _%Kab(B)’
Ay = _%Kabm) - %:Kua(z):Kab(z)’
Ay = 73K 5~ K5 Ky — K Ky
M) = _%Kab(@ - gxaam)xab(z) - l7_7~7<aa(3)~7<ab(3)
= P Ky — 51K 1) K oy K oy

1 3 a 7 a a
b(3)) + ﬂ(‘gK ) " 15 K a0 K h(2>) T )

a 1 3 a a
+ 3K q) F ﬂ(_g)(j( o) T 4K )

E. Recursion relation for coefficients
of the covariant expansion of A ;.

We can rewrite Eq. (3.24) as

(D' + D(Aupag® 7" ) + 8.5 8,P Ruprapod®yP. =0,
(4.13)

which when rewritten in terms of covariant series becomes

1 /n o
Aabc(k) == m ;( k)k'Raba(k)V c(n—k)

n—2
n a
+ 3 (3 Pasatr ¥ oy (4.14)
k=0
where we follow Avramidi [17,18] in defining
R abe(n) = Rab(allcl;a2~--an)0-al o, (415)

Alternatively, writing Eq. (3.24) directly in terms of
covariant series, we obtain

n 1 n—2 n
Aabc(k) = n+ 1 Rabc(n) - m kZ_()( k)Aaba(k)fac(n_k)y

(4.16)

which has the benefit of requiring half as much computa-
tion as the previous expression.

F. Recursion relation for coefficients
of the covariant expansion of B,

By Eq. (3.26), we can immediately write an equation for
the coefficients of the covariant expansion of B,

1 & n o
Bubc(n) - Z ];)( k)Auba(k)n c(n—k)"

4.17)
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G. Covariant expansion of {

From Eq. (3.34), we immediately obtain expressions for
the coefficients of the covariant series of {:

1
lo=0 dn=0  Ln=75¢u @18
H. Recursion relation for A2, A~1/2
Since £ = InA'/2, we can write
A'2D'f = D'AV2, (4.19)

This allows us to write down a recursive equation for the
coefficients of the covariant series expansion of A!/2,

1 n
/2 _
A =5 l;( )kg(k)Am o (4.20)
Similarly, the equation
— A7V2plg = D'ATY2 4.21)

allows us to write down a recursive equation for the co-
efficients of the covariant series expansion of A~!/2,

1 n
-1/2 _
A= Z( )kg(k)A(n o 4.22)

k=2

L. Covariant expansion of 7 and 7/
Equations (3.37) and (3.38) may be immediately written
as covariant series equations,

T(n) = DO{(,,) - nD+§(n_1), Tén) = I’l{(n). (423)

J. Covariant expansion of covariant
derivative at x’ of a biscalar

Let T(x, x') be a general biscalar. Writing T as a cova-
riant series,

T(X, .Xl) _ Z ( nl)n T(n)

n=0
00 l)n
35

and applying a covariant derivative at x’, we obtain

o, (X)T g, (4.24)
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o - (_l)n o
8a T;o/=z n 8a T(n);a’

!
Ap—1 a Ay
ohig, T,

= n!
= (-1 |
a Z Nlg, - a, 0" 018,50
n=0 n! "
< (_1)n = (n
n= =
(4.25)
where we have introduced the notation
(T(n))(*k)a(n,kﬂ)...a” = Hayag,- D&t ”)U' e gk,
(4.26)

K. Covariant expansion of d’Alembertian
at x’ of a biscalar
Let T(x,x') be a general biscalar as in the previous
section. Applying (4.25) twice and taking care to include
the term involving g,”, we can then write the
d’Alembertian, [I'T(x, x’) at x’ in terms of a covariant
series,

n

n /
E'T) = = Z( k )((ga“ T.a )+ 1) (=10 1" (1)

k=0

n
Z( ) o0& TiaYn-1y

k=1

4.27)

where A () is the nth term in the covariant series of the
tensor defined in (3.24).

L. Covariant expansion of V,,A'/2

Applying Eq. (4.25) to the case T =

(ga“IA;la/fz)(n) = - Z( )(A k+1))( e’ yu—ryr (428

k=0

A2 we obtain

M. Covariant expansion of [1'A1/2
Applying Eq. (4.27) to the case T = A!/2, we obtain

n

n /
O'AYV2),) = — Z( k)((ga“ A}é/z)(k+1))(—l)p77pa(n_k)

k=0

Z()A (
- g

= k p(k)

N. Covariant expansion of V,

A ) on,  (429)

The transport equation for V|, Eq. (3.46), can be written
in the alternative form

104039-14
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(D' + 1)V, — Vor' + 40O — m? — P)AY2 = 0. (4.30)

This equation is then easily written in terms of covariant
expansion coefficients,

— 1 < n /
Vo =777 +1<,;) KOs
Yoy, a2 \p A2
2 ( )(") m (n) Z K)=mn—-k ] )
k=0 k

4.31)

k=0
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0. Covariant expansion of V,

The transport equation for V,, Eq. (3.49) can also be
written in the alternative form

1
(D' +r+ 1)V, = V.7 + 2—(D’ —m?>—=P)V,_, =0.
r
(4.32)

Again, this is easily written in terms of covariant expansion
coefficients,

n

1 n—2 n 1 n
Vi) = m(Z < X )Vracﬂfnk) - 5<(D'Vr—1)<n> —m*V, i) — Z( X )P<k>Vr—1<n—k>))- (4.33)

P. Results

We have implemented the semirecursive algorithm as a
MATHEMATICA package, which we are making freely avail-
able online [20]. It serves as an efficient tool for easily
computing high order covariant expansions. The high level
of efficiency is illustrated in Tables I and II, where we show
the performance of our implementation when run on a
desktop computer (2.4 GHz processor). For each coeffi-
cient, we list the time, number of terms, and memory
consumed in the calculation of that term. We also list
the number of terms after reduction to canonical form by
the INVAR [45,46] package. Note that INVAR currently only
supports canonicalization of scalar invariants up to order 6.
We have therefore not canonicalized our expressions for
a;, ag, and ag, nor our expressions for the nondiagonal
coefficients given in Table II. We have also not canon-
icalized our expression for ag, primarily due to memory
constraints.

TABLE 1.

k=0

The expressions for the DeWitt coefficients produced by
our code are valid for any spacetime of any dimension.
These may in turn be used to construct the Hadamard
coefficients in any dimension, although we have limited
ourselves to the 4-dimensional case here. Given our moti-
vation to study massless fields in vacuum spacetimes such
as Schwarzschild and Kerr, it is possible to make further
assumptions in order to reduce the number of terms which
appear. It is straightforward to impose the fact that the field
is massless and the Ricci tensor vanishes with the require-
ments

:}(aa(n) =0, R p

4 ﬁ(n)=0, m = 0.

(4.34)

This is a conservative requirement: terms such as
tr((ﬂ("hc))(,z)) will yield some terms involving a Ricci
tensor after the symmetrization is explicitly expanded.
However, as is shown in Tables I and II, it is sufficient to
significantly reduce the number of terms in the expansions.

Calculation performance of our semirecursive implementation of the Avramidi method for computing the coincident

(diagonal) DeWitt coefficients, a, ) for both general and vacuum spacetimes. In each case, we list the computation time (in seconds),
number of terms, memory consumed, and number of terms after canonicalization. In the general case, we also list the number of
canonical terms when the potential P is set to 0. This would be the case, for example, for a minimally coupled scalar field.

General Vacuum

DeWitt Coefficient Time Terms Memory Canonical Canonical (P = 0) Time Terms Memory Canonical
ag 0 1 16 B 1 1 0 1 16 B 1
a; 0 2 432 B 2 1 0 0 16 B 0
a, 0.003 10 5kB 7 4 0 2 536 B 1
as 0.02 91 63 kB 26 15 0.003 7 5kB 2
ay 0.2 1058 949 kB 113 68 0.015 56 51 kB 5
as 3.6 13972 15 MB 611 380 0.1 507 559 MB 14
ag 76 199264 254 MB oo oo 1.1 4988 6.3 MB

a; 1489 2987366 4.4 GB 17 51700 75 MB

ag 254 554715 910 MB

ay 3373 6098069 109 GB
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TABLE II. Calculation performance of the Avramidi method
for computing the terms V,, of order n in the covariant series
expansion of V; for both general (4 dimensional) and vacuum
spacetimes. In each case, we list the computation time (in
seconds), number of terms, and memory consumed.

General Vacuum, massless
Order Time  Terms Memory Time Terms Memory
0 0.001 3 760 B 0.001 0 16 B
1 0.001 2 288 B 0.001 0 16 B
2 0.002 10 3.8kB 0.001 2 432 B
3 0.003 15 6.1 kB  0.002 2 432 B
4 0.005 47 22.0 kB 0.003 5 2.5 kB
5 0.007 81 40.7 kB 0.004 7 3.6 kB
6 0.014 206 112 kB 0.009 22 12 kB
7 0.024 383 221 kB 0.015 39 23 kB
8 0.047 856 526 kB 0.019 94 59 kB
9 0.084 1641 1.03 MB 0.03 177 115 kB
10 0.16 3414 225 MB 0.05 384 260 kB
11 0.30 6547 451 MB 0.1 729 515 kB
12 0.58 13064 934 MB 0.19 1480 1.1 MB
13 1.1 24870 185MB 033 2811 2.1 MB
14 2.1 48167 37.1MB 0.61 5485 42 MB
15 4.1 90808 723 MB 1.1 10320 83 MB
16 7.8 172214 141 MB 2.1 19637 16 MB
17 15 321145 271 MB 37 36556 30 MB
18 28 599460 522MB 6.8 68295 58 MB
19 53 1106459 987 MB 12 125852 110 MB
20 99 2039285 1.81GB 23 231837 208 MB

The relative compactness of our expressions after canon-
icalization means that they may be readily computed for
a given choice of spacetime. For example, evaluating the
expressions for the coincidence limits, V,(x, x) = V() (x),
of the first five Hadamard coefficients given in the
Appendix for Schwarzschild spacetime gives

Vo(()) = 0,
M2
Vio) = o
O 5,8
M2
V. 194M — 81
2000 = 10087 g( r),

X (4.35)

M
Vi) = 3507 ———— (210> — 1125rM + 1454M?),

_ 2
V =
40 1663 200715
+19328017M2 — 689 775Mr2).

(78 7507% — 1746 182M3

A similar calculation can be done for spacetimes with less
symmetry (such as Kerr) without any additional difficulty
other than the fact that the results are somewhat less
compact.

PHYSICAL REVIEW D 84, 104039 (2011)

V. NUMERICAL SOLUTION OF TRANSPORT
EQUATIONS

In this section, we describe the implementation of the
numerical solution of the transport equations of Sec. III.
We use the analytic results for o, A'/2, g,”, and V, for a
scalar field in Nariai spacetime from Refs. [47,48] as a
check on our numerical code.

For the purposes of numerical calculations, the operator
D’ acting on a general bitensor 7% . can be written as

!

d
— I _ a'. a'..
(s s)(ds T T,

+"'—T” FaB/u’_...),

/

/ral... !
DTy, ’...FZ’B’”B

(5.1

where s’ is the affine parameter, I‘Z;C, are the Christoffel

symbols at x/, and u® is the four velocity at x'.
Additionally, we make use of the fact that

o = (s' — s)u?, (5.2)
which allows us to write Eqs. (3.11), (3.13), (3.18), (3.19),
(3.20), (3.21), (3.22), (3.24), (3.29), (3.34), (3.45), and
(3.46) as a system of coupled, tensor ordinary differential
equations. These equations all have the general form

% a/‘..b/m — (s/)flAa’.‘.b/ ) + Ba/mb/‘.. + slca/‘..b/m
_ To/.‘. N Fa//ﬂ/uﬂ/ ..
+ T T uf 4 (5.3)

where we have set s = 0 without loss of generality and
where A“""b,m = 0 initially (i.e., at s’ = 0). It is not nec-
essarily true, however, that the derivative of AY- b 1S Z€ro
initially. This fact is important when considering initial
data for the numerical scheme.

Solving this system of equations along with the geodesic
equations for the spacetime of interest will then yield a
numerical value for V,. Moreover, since V = V|, along a
null geodesic, the transport equation for V|, will effectively
give the full value of V on the light cone. We have imple-
mented this numerical integration scheme for geodesics in
Nariai and Schwarzschild spacetimes using the Runge-
Kutta-Fehlberg method (with adaptive time stepping) pro-
vided by the GNU Scientific Library [49]. The source code
of our implementation is available online [21].

A. Initial conditions

Numerical integration of the transport equations re-
quires initial conditions for each of the bitensors involved.
These initial conditions are readily obtained by considering
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TABLE III. Initial conditions for tensors used in the numerical calculation of Vi with P = £R.
Equation  Bitensor Initial Condition (s/)~! Initial Condition
(3.1 &, 8, 0
(3.13) nf‘b, —04, ) 0
(3.18) o, 0 BELNAEL
a 1 pa a _ 1 pa a
(3.19) ol 0 SRt 3R (alblo)™
! _2 1 _2 _2
(3:20) T SR bla) 3R plaa ™ TSR Giplac T 3R aiplea®”
a _ 1 pa _ 1 pa _ 1 pa a 2 pa a
3.21) T 3R (clbld) 2R ea R (clblda)¥ +t3R (albld);c?
b b
(3.22) gy 8, 0
(324) gab/‘(,, 0 %Rbaacua
b _1pb _2pb @
(329) 8a 'd ER acd ?R ac(d;a)u
(3.34) A2 1 0
(3.46) Vo m? + (€= DR — (€ — DR 4u”

the covariant series expansions of V;,, A'/2, &% My, and
g.” and their covariant derivatives at x’. Initial conditions
for all bitensors used for calculating V, are given in
Table III, where we list the transport equation for the
bitensor, the bitensor itself, and its initial value.

Additionally, as is indicated in Eq. (5.3), many of the
transport equations will contain terms involving (s')~!.
These terms must obviously be treated with care in any
numerical implementation. Then, for the initial time step
(s’ = 0), we require analytic expressions for

lim(s") 1A%, (5.4

s'—0

which may then be used to numerically compute an accu-
rate initial value for the derivative. This limit can be

computed from the first order term in the covariant series
of AY »_» Which is found most easily by considering the
covariant series of its constituent bitensors. For this reason,
we also list in Table III the limit as s — 0 of all required
constituent bitensors multiplied by (s')”'. In Table IV,
we list the terms (s’)_lA"‘""h,m for each trans-
port equation involving (s’)~!, along with their limit
as s’ — 0.

B. Results

The accuracy of our numerical code may be verified by
comparing with the results of Refs. [47,48], which give
analytic expressions for many of the bitensors used in this
paper in Nariai spacetime. In Figs. 1 and 2, we compare
analytic and numerical expressions for A'/2 and V,,

TABLE IV. [Initial conditions for transport equations required for the numerical calculation of V|, with P = £R.
Equation Terms involving (s/) ! Initial condition for (s')~! terms
G.11) —(sH (g g, — €7
(3.13) =) €y = M%)

(3.18) () Ho e = € g0 o = €70 o = ET G0 ) =R o
(3.19) ()70 = M0 = E¥ 0 o = €70 ) 3R et = FR o u”
(3.20) O g = T T g = O 00 g = T g T - %Ra(blalc;d)ua
— 0 o€ = T i€ o = 0 €y = T g €7
(32D TN g = Ty T = O 0T g = T g T %Ra(cmu);b“a - %Raba(c;d)ua + %Ra(dlabl;c)ua
0 o€ T O € o O o€y O g )
(3.22) 0 0
(3.24) _(S/)_lgah/;affa/cf — 3R gacut”
(3.29) ()78 €% o 8" ek F 8 0T ) — 3R et
(3.34) —(s)TTAV2(ET , — 87 ) 0
(3.46) =&, = 89 Vo + 2V + (O — m* — ER)AV] i€ = PR u"
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FIG. 1 (color online).
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Comparison of numerical and exact analytic calculations of A'/2 as a function of the angle, ¢, along an

orbiting null geodesic in Nariai spacetime. Left: The numerical calculation (blue dots) is a close match with the analytic expression
(red line). Right: With parameters so that the code completes in 1 minute, the relative error is within 0.0001% up to the boundary of the

normal neighborhood (at ¢ = ).

respectively. We consider the null geodesic, which starts at
p = 0.5 and moves inwards to p = 0.25 before turning
around and going out to p = 0.789, where it reaches the
edge of the normal neighborhood. The affine parameter, s/,
has been scaled so that it is equal to the angle coordinate,
¢. We find that the numerical results faithfully match the
analytic solution up to the boundary of the normal neigh-
borhood. For the case of A/ 2 Fig. 1, the error remains less
than one part in 107® to within a short distance of the
normal neighborhood boundary. The results for Vj(x, x’)
are less accurate, but nonetheless the relative error remains
less than 1%.

In Fig. 3, we use our numerical code to illustrate how
A2 varies over the whole light cone in Schwarzschild
spacetime. We find that it remains close to its initial value
of 1 far away from the caustic. As geodesics get close to the

oor——m—m——r———7———— 7+ 7T T 7T T

—-05F
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FIG. 2 (color online).

caustic, A2 grows and is eventually singular at the caus-
tic. This is exactly as expected: A'/2 is a measure of the
strength of focusing of geodesics, where values greater
than 1 correspond to focusing and values less than 1
correspond to defocusing. At the caustic, geodesics are
focused to a point and correspondingly A'/2 is singular
there.

In Fig. 4, we give a similar plot (again calculated
from our numerical code), which indicates how V(x, x)
varies over the light cone in Schwarzschild spacetime.
In this case, there is considerably more structure than
was previously the case with A'/2. There is the expected
singularity at the caustic. However, travelling along a
geodesic, V(x, x') also becomes negative for a period
before turning positive and eventually becoming singular
at the caustic.

0.001

Relative Error

1070

1077

0.0 2.0 25 3.0

0.5

Comparison of numerical and exact analytic calculations of V|, for a massless, minimally coupled scalar field

as a function of the angle, ¢, along an orbiting null geodesic in Nariai spacetime. Left: The numerical calculation (blue dots) is a close

match with the analytic expression (red line). The coincidence value is Vy(x, x) =

$(€ — PR = —1, as expected. Right: With

37

parameters so that the code completes in 1 min, the relative error in the numerical calculation is within 1% up to the boundary of the

normal neighborhood (at ¢ = ).
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FIG. 3 (color online). A!/2 along the light cone in Schwarzschild spacetime. The point x at the vertex of the cone is fixed at
r = 10M. A% increases along a geodesic up to the caustic where it is singular.
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FIG. 4 (color online). V(x, x’) for a massless, scalar field along the light cone in Schwarzschild spacetime. The point x (the vertex of
the cone) is fixed at r = 6M. V(x, x’) is 0 initially, then, travelling along a geodesic, it goes negative for a period before turning positive
and eventually becoming singular at the caustic. (Note that V coincides with V|, on the light cone.)
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FIG. 5 (color online).  Vj(x, x’) (solid blue line) and A2 (dashed purple line) for a massless, scalar field along the timelike circular
orbit at » = 10M in Schwarzschild spacetime as a function of the angle, ¢ through which the geodesic has passed. In the logarithmic
plot, the absolute value of Vj(x, x’) is plotted to illustrate the divergence close to the caustic. [Since Vj(x, x') passes through O at
¢ =~ 0.6 and ¢ = 2.6 there are corresponding features in the logarithmic plot.]
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The transport equations may also be applied to cal-
culate V,.(x,x’) along a timelike geodesic. In Fig. 5,
we apply our numerical code to the calculation of
Vo(x, x') along the timelike circular orbit at r = 10M
in Schwarzschild.

VI. DISCUSSION

Several of the covariant expansion expressions com-
puted by our code using the Avramidi method have been
previously given in Ref. [19], albeit to considerably lower
order [for example, in their paper, Décanini and Folacci
give V(x,x') to order (o%)* compared to order (c?)*°
here]. Comparison between the two results gives exact
agreement, providing a reassuring confirmation of the
accuracy of both our expressions and those of Ref. [19]
(and confirming the error in Ref. [50] found by Décanini
and Folacci). Furthermore, several of the expansions not
given by Décanini and Folacci may be compared with
those found by Christensen [13,14]. Again, we have found
that our code is in exact agreement with Christensen’s
results.

Our MATHEMATICA implementation of the semirecursive
approach (Sec. IV) is given as a practical tool for comput-
ing high order covariant expansions. While it already ex-
hibits a high level of efficiency, we believe that further
improvement could be achieved, particularly in the limit-
ing area of memory requirements. The initial expressions
for the DeWitt coefficients as computed by our code are
very general. However, they are not necessarily given as a
minimal set. For example, with P = 0, the DeWitt coeffi-
cient a3 may be written as a sum of four terms, yet our code
produces a sum of seven equivalent terms. It is possible,
however, to use a set of transformation rules to reduce our
expression to a canonical basis such as that of Ref. [16].
As our code is already written in MATHEMATICA [51] and
has the ability to output into the XTENSOR [22] notation
used by INVAR [45,46], we were able to quickly canonic-
alize the scalar invariants appearing in our coincidence
limit expressions. An extension of the INVAR package to
allow for the canonicalization of tensor invariants would
allow our nondiagonal coefficients to also be immediately
canonicalized with no further effort.

In Sec. V, we discussed a numerical implementation of
the transport equation approach to the calculation of
Vy. This implementation is capable of computing V|, for
any spacetime, although we have chosen Nariai and
Schwarzschild spacetimes as examples. The choice of
Nariai spacetime has the benefit that an expression for V
is known exactly [47]. This makes it possible to compare
our numerical results with the analytic expressions to
determine both the validity of the approach and the accu-
racy of the numerical calculation. Given parameters allow-
ing the code to run in under a minute, we find that the
numerical implementation is accurate to less than 1% out

PHYSICAL REVIEW D 84, 104039 (2011)

as far as the location of the singularity of V|, at the edge of
the normal neighborhood.

In integrating the transport equations along a specific
geodesic, we are not limited to the normal neighborhood.
The only difficulty arises at caustics, where some bitensors
such as A!'/2 and V,, become singular. However, this is not
an insurmountable problem. The singular components may
be separated out and methods of complex analysis em-
ployed to integrate through the caustics, beyond which the
bitensors once more become regular (but not necessarily
real valued) [2]. This is highlighted in Fig. 5, where our
plot of A'/? and V, extends outside the normal neighbor-
hood, the boundary of which is at ¢ = 1.25, where the first
null geodesic reintersects the orbit. It does not necessarily
follow, however, that the Green function outside the nor-
mal neighborhood is given by this value for V(x, x').
Instead, one might expect to obtain the Green function
by considering the sum of the contributions obtained by
integrating along all geodesics connecting x and x' (there
will be a discrete number of such geodesics except at
caustics).
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APPENDIX A: CANONICAL FORM OF
HADAMARD AND DEWITT COEFFICIENTS

In this Appendix, we present expressions for the diago-
nal DeWitt coefficients ag), @1(), @20)» @30)> da()> and
as( [where a,(x, x) = a,(p)(x)] in the canonical form pro-
duced by INVAR [45,46]. These have previously been given
in various forms in the literature: a; and a, by DeWitt [7],
asz by Sakai [52], and by Gilkey [53], a4 by Amsterdamski,
Berkin, and O’Connor [54] and by Avramidi [55,56] and a5
by van den Ven [36]. However, to our knowledge, this is the
first time that they have all been given in a simplified
canonical form. We also note that our code is capable of
producing expressions for ag and a; and for the off-
diagonal coefficients (in noncanonical form) in a matter
of minutes on a laptop computer.

During the canonicalization process, we have allowed
INVAR to use identities which are valid only in four space-
time dimensions, as our primary motivation is to study
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black hole spacetimes such as Schwarzschild and Kerr.
This additional simplification is not essential, but does
lead to more compact expressions.

Although our code is also capable of producing expres-
sions for the off-diagonal coefficients, support for canon-
icalization of such expressions involving free indices is not
yet available in INVAR. For this reason, we restrict our-
selves here to only the diagonal coefficients. We have also

Vo) = 3(m*ag) — ay)),

Vi) = s(m*ag) — 2m?a; ) + 2ayq)),

V2(0) = %(m6a0(0) - 3m4a1(0) + 6m202(0) - 603(0)),

PHYSICAL REVIEW D 84, 104039 (2011)

made these expressions, along with the corresponding
(noncanonical) off-diagonal coefficients available online
as MATHEMATICA code [20].

We also note that Eq. (2.28) allows us to directly relate
the Hadamard coefficients Vi), V(o). Va0)» V3(0)» and Vy()
to these DeWitt coefficients:

(AD)

V3(0) = ﬁ(mgao(o) - 4m601(0) + 12m402(0) - 24m2a3(0) + 24@4(0)),

V4(O) = m(mloao(o) - 5m8a1(0) + 20m6612(0) - 60m4a3(0) + 120m2a4(0) - 120615(0))

Finally, we note that our expressions for the coefficients V), V;(), and V) are in agreement with Ref. [19], after
canonicalization. In addition, our expressions for the coefficients a3 and ay() are in agreement with Ref. [44].

In the following, we group the expressions in powers of ¢ and denote by a'® the term involving the kth power of ¢ in the

diagonal DeWitt coefficient, a, ), so that

(r+1) .
a = Y alé. (A2)
k=0
In this notation, the diagonal DeWitt coefficients are
ay) =1, (A3)
a =R, aV=-R (A4)
af) = 5(=2R,gR* + 5R? + 2R, 5,sR*"® + 12R*,),  a) = -R2-R*,),  daf =R (A5)

0 _ 1

a3 = 15135(384R, Y R*P R, — 654R ,gR*FR + 99R® + 456R*PRY’R ., 55 + T2RR 4 5,5sR*P7® — 80R , ;" R*F7°R
12R 4, gR*FY — 6R 5., R*FY + 2TR g5, R*PYO€ + 8ARR® , + 36R,zR*P

+51R. R —

— 24RPR 57\, + 144R s R*PY° + 54R* P ),

ay) = 3L5(2R,gR*PR — SR> = 2RR 3,sR™P7® — 12R (R — 22RR ,, — 4R, pRF — 6K P p),

T 360

o) =

1(p3 a a (B) _ —1p3
E(R + R.,R* + 2RR h ay —?R,

ySep

(A6a)
(A6b)
(A6c)
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o=

o) =

o

Tsraaool —32736R,"RPR %R 5 + 8436R . sR*PR 5sR7® + 59136R .Y R*PR 5, R — 43518R , sR*P R + 5743R*
+13944R*PRY’RR 5 + 3618R* R 5,sR*P7° + 168R*PRY°R P R g5, — 4480RR , s R*PY°R
+14832R“PRY’ R 5" Ryesp — 3282R 4 gRPR 5, RV — 2496R , ;" R*PY° R, " Ry -
+1248R s RPY°R ;7R pyr + 696R 05y sR* PV R o - RPT — 65040RPY R g, R°* + 13740RR, o, R
+6960RPYRy. 5. R + 1440R“PRY? R, 5 5 — 1560R . gR** R + 2880RPYR**R , .., — 2160RR .., g R*PY
~5760R 4% R, 5¢p. gR*PY — 28920RR , 5., R*PY +27840R 55 R%¢ ., R*PY —T680R*PR 5. s R, /"
+4800R*PR g5, R, 7*° + 85440R*PR . 5R ¥ — 1920R , 3, s R*RPY*® — 1920R 3,5 R*P'R . °'€

—7680R 458 R*PY R, %€ + 14400R*PR 4, g 5RY%€ + 34080R*PR 4, 5. R7%€ + 27T00RR 4 g 5. R*PY %€
+12960R PR 5, :eR7*% — 10800R*PY°R 5. R, 577 — 9T92R 5, REYR , + 4608R*R
+1296R g, 5 RPY* R, +432R , gRR**P + 1632RY°R ;1 s R°*P + 936R., g R**P — 11136R*PRY°R,,,, 35
+1008R** ,R# ; + 10464R*PRY’R , 5.,,5 — 18000R*PRR , 57, + 624R*FR , ;7\, + 8352RR 1., gs R*F*7°

— 14016R 4’ R g5, R*P7° + 384R € 5P R 5, R“PY° + 18T2R 5., gR*PY® — 4032R . s RVPY?

+1872R 5.y s R*PY® + 2304R*PRY*P R pe5p — 216R*FY R, 570 s + 23904R , YR PR 5.2 5

+8448R PR 55, Ry "0 + 12288RYPR 1y gsRY¥€ ¢ + 5TOR o y5:ep R* PV P + 2640R R, o P 5 + 960R o 5., R *F7
—480R*PYR . 5% 5 —240R“PYR 5 ° s + 5T60R oy 5. R*P7€ + 1080RR* . P 5 + 960R . s R*FY ,

—240RPR,, 577 ,° 5 + 1920R 1, g5 RP77¢ + 480R P 57 ), (A7a)

ySep

15555(—584R,YR*PR 5. R + 654R ,gR*PR> — 99R* — 456R*PRY’RR 5 — T2R*R ;3,5 R*PY°

+ 80RR,zPR*PY°R 5., + 12RPYRp,  R* — 135RR R — 36RPY*Rpy 5. R + 102R s R“RP

+ 24RPYR“R 5., + 12RR 4. gR*PY + 6RR 4., R*FY + 24R , 3, sR°*RP?*® — 2TRR ;5. R*P7
+30Rg, RPYR®,, — 123R’R*®,, — 18R, 5.RPY“R'®,, — 48R, sRR*F — T2RV’R,,, psR**F — T2R , s, R**P
— 84R* ,R# ; + 24R*PRR 57, — 24R*PR 57, — 144RR g5 R*P7° — 210R“R.. P 5 — 36R . 5,
— 96RR* P 5 — 36R, sR*FY, — 18R P Y ), (A7)

R:eBY

= A(=2R,gR™R® + 5R* + 2R?R,5,5R*P7® + 34RR.,R* — 12R ,gR* R + 32R*R*,, + 8R ,zRR**P
+ 8R o gR*P + 10R* ,R*# 5 + 24R“R P 5 + 12RR* P ), (A7)

a = L(~R* — 3RR R — 3R?R*,),  di = LR (A7d)
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0) —

so700(—900736R . sR“P R, *R"R5. — 1297920R,YR*PR 3° R ,sR + 1367004R . sR*PR s R7°R

ds = 119750400

+ 1858640R Y R*PR g, R* — 1332402R , sR*P R? + 152693R5 + 219000R“P RV’ R*R ., g5 + 89530R’R , g, s R*P??
+156312R*PRY RR 4’ R g5, — 107800R*R,, P R*P7°R 5., — 1021632R .Y R*PR;°R’ R .5,

—471360R ,gR*PRY R’ R ,c5, + 438 T68R PR’ RR . 3” R 5, — 332262R ,gR*PRR 5., RY**

— 142656R,YR*PR“R3” ,"R5cq + 165312R*PRY R P R 3 "R 57 + 16512R*PRY R, 3P R\, R 5577

— 122400RR , s’ R*PY° R, " "R, + 188288R Y R*P R, R 50, s R*P7 — 82656R“PRY’R )P R 35" R pr»
+61200RR 3 R*PY°R ;7R s + 159136R, gR*PR 57" RY*# Ry + TT3TOR PRV’ R 5 R ey R
+39984RR 5,5 R“P7°R .- RP7™ +91392R , ;P R* YR TR ;" R yryeh — 45696R , s P R YR TR, MR ;)
—34368Ro5ysR“P7 Ry RP7TR 5 7p + 19558344RPYRR 5. R — 21437 T12R 3 RFYR 5., R
—4124208RPYR 5, RO¢., R +5396424R 3, RPYR ,R** — 4045236R*R., R** +241398R 3,5 RPY*R , R**
—836028RRPY* R 5. R — 3149568RPYR*“R g5y R°* = 326592R 5. 7 RFY*“ R .o R

+807696R*PRR® R 5.5 — 1932624R PR’ R*R 5.5 — 5280RPYR 15, R*R°€. 5 + 80T OT2R“PRY’ R’ ., R 5.5
—526200R,” R g, R“RF + 191772R . sRR*R*F —T36536R?°R,,., 35 R R*# + 6856 176RFY RR**R
+241992R,YR*PR%¢ ;R;..,, +4805376R*PRg.5,R? . R, + 4684080RR ., ;R

+155208R 5, ROP7 R . R — 806304RR ,°P R 5. g R*PY —T63296R ,° R, "R 557, g R*PY
+2580132R?R ., R*PY — 487944R 5., R*P7 R 4 5., R*PY + 1798 17T6RR 55 R°€ ., R*FY

—1507920R 5" Rgepr R, R*PY +2898720R ,* 57 R 55 R, R*®Y — 6241920R 3 RFYR*R .5
+1822080R PR’ R**R 5.5 + 2472096R“PRY R, R ge.5 — 1651 104R PR’ R ,€ 4R .5

—10000416R*#RR 5.5R,"*° — 9098 544R*PRR 55, R, ** — 10746912R*PRR 5.,,.5R,"*°
—859920RR 4,5 R“RPY® — 349824R . ;" Ry, RO RPY® — 4T0544R , ;¥ R 5, R RFY0

+356832R 5" R*PY°R ;. 5R, 77 ,c — 58627T20R*PRYOR ¢ 5R 5 — 8640336R*PRY’R 5. R , 5
+5012928R“PRY Rg.5R 4, € + 8810064R“PRYRg5. R, ¢ —2592384RPYR g5, R*R,, %€

—3291264RR 5,5 R*PYR, %€ +33120R 5 "7 R 5, R* PV R, %€ —33120R 5577 Ry s R*PYR 05

+134880R 5, " "R5epe R* PR, % = 894T2R 3 " R 5, e R*PYR %€ — 324T104RPYR 45, R R 3¢
+2323680RPYR e s KR 3% + 8320800R . YR*PR 5., R 3% +9750384R .Y R*PR . 5R 5
+11572176R,YR*PR 5. R ;%€ — T426464RR 55 R*PY R, %€ + 493920R "7 R pe s R*PY R, %€

+912000R,,” 37 R5per R*PY R, %€ + 5089056R*PR 55, R " . RY*€ — T634T84R , gR*PR. .5 RY %€
—4831872R“PRR 4y pe.5sR?* +89856RPR.* "R 5 5R7*€ +3264960R PR .7 , R g, crr: s RY €

+17T7T152R* PR ,* (" R g7y 5RY¥€ — 4651392RPR P 7 R gy s RO + 3936 192R*PR P 3R e s RO

— 1655496R ,gR*PR 5..RY*€ — 6984 5T6R“PR ,55,R " .cR7**¢ —3366432RPRR . p5..R?**

—6791232R*PR,* 7R gy RY2€ +23185728R*PR " ,"R,55.cR7*€ —10610304R*PR,* ,"R35,.. R? €
—2938176R*PR " 57 R p55:e RV + 1T1594R*R gy 5. R*PY€ + 314 160R“PYO R/ 7R R,p,5"
—2461824R,*,"RPY’R pr. R7 57 + 35856R , s R*PY°R 1 R 577 +202356R gy sR*PYP R REPTTH
— 1522176RPYR3°PR*R y5e.p — 39168R,°P R 57 TR YR 5., + 341952R PRY*P R R 5.,

—356832R 3" R*PYR 7™, Rs 77, +356832R , P R*PYOR 7% (R

5

aByy

EPUTK

€ETTK;p
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+ 116 160R*PRY’R 5,5 R, " — T91424R*PRYPR g5, R, P + 1156512R*PR 5, R, VO R 57
+1855296R*FR 5, RYR, 5% + 1174080R PR 55, RV R, — 5450 112R*PR g5, R, "R, <P
+5065152R“PRg.5,R, YO R, — 1258 T52R“PR 5, ,R, VPR ;5P + 5230464R*PR 5., , R, R ;5
+1191168R PR 5.,R,7 RSP — 1375296R“PR 5, R, 577 R*SP +T328064R Y R*P R, RSP
—1192224R,"R*PRg5,e.,R°<P — 1588T04R*PRR g5, R V0P + 3409920R*PR., P"RY*R 155,

+ 1821696R*PR ., "R"**“R g5, — 4T4864RR*PYO R R, 577 +361008R*PR" Rg5¢p:0 Ray”
—838176R*"PRY’ R c5:0 R0 577 + 3496512R YR PR 5., R 57 — 293028R , sR*FR 5., RV 2P
+1459200R ) >R g " R*PY R5e e + 416T936RPRY*PRs 1 o R, 377 — 2542848R*PR YR
+1998912R*PR Y 5% R per.Ry 7" + 193920R*PYR ¥R .p — 96 192R*PRYR ,5,R" ., 5
+357672R*RFR, 5 + TA016R*RPY°R5. ., — 1763424R“RPY°R . 5 + 1029888R*F YRy, 5, R%€ P
—103488R;°RPYR R, + 193776R 5, RFYRR , — 15620R* R , — 129696RFYR*R 55, R,
+29580RR 5,5 RPYPC R, —46216R 5, P RFY* Ry, R, + 211152R g5, RFVO R, — 124176R 3, s RFVP R,
+25560R gy 56, RPYPP R , + 667392R . R 3°R s RP —310128R s R s R R*F — 651 168R, Y R, RR**F
+274008R g R*R*“F — 179904R7°RR g5 R**F + 359040R 37 R*“R 4.5y R“P + 142656R7° R €, P R ges, R**P
—167424RYR € 3 Rye5, R + 27408R g R 3¢, RV P R*F — 908 832R7° R 5.5 R**F + 125064R?*" R
+4992R 53R, YO R*P —21120R 5., R, "’ R**P + 6528R 3, 5R VO R**P + 43TT6R 5. s RY*R*F

+23616R 1y 5. RYPR*P — 1028256R?°R 5., sR**P + 210696RR. , g R**F + 119040R"°P R 5., g R**P
—382080R“*RPY°R 5.5, — 221376R*PRY°RR .55 — 197568R*FYR %R . g5 + 792000R“PYR , R .5

— 194 112R*FYR %R 1 5.5¢ + 32832R*PRY? R 5.5 T 2TA8R., R* R 5 + 44568RR* . R 5 + 25920R 3., R** R*F?
—29088R“R 5.y R#Y + T200R g, R** , R'PY + 173280R*PRY°RR 1 g5 + 145056 R *RPY*R 1 .., 5

+24480R" R*PR 5.5 — 153792R*FYR ;%R 5.5 + 86016R . YR*PR*R 5., +2651328R*PYR ,%*Rg5..,
+643680RPYROPR 5 pe.rp + 1569024RPIR 55, ROC,.,P — 31 104R ., R*PRY 5 — 208080R*FRR, 57,
—39456R*PRs., o R* PR , 57, + 84960RRPR 57, + 1680RR“PR 57, — 56664R*7 Ry, sROPY
+6528R*P7 R piriapR* P, +215T12R?R 4 s R*PY® — 426240RR ., Rg5¢, R*P7° — 19584RR , 3P R 5, R*F7°
—43008R PR " pgRye5;R7? = 246528R P R 3 "R 5, - R*P7° + 123264R 1., R 5" R
+81216R g5 Reprr RPTTR* PV —482112R 7 4R s R*PY® + 6912R
+31056RR,,5.,gR*P7® — 172224RR . g5 R*PY° — 251904R ,*“ R ¢ , . 5 R*PY° — 358 128RR , ., s R*F7°
+494208R yep, RV, sR*F7° + 42336R 1 gs R PRV + 53T6R7’ R*PR 55 — 15648R%€ R*PYR .5
+95424R*FYR %R 5. 5c —39552R,,YR*PRORpg., 5. — 341952R“PYR 3R g 5. + 960RPYRO€P R
+16128R*PRRY®PR ., ge.5, + 1T280R*PYR 2<Po R +345600R“PYR >V 7R 5,
—69384RRPY R ;%5 +301824R,"R*PRR 5. s + 48288RFY . R“R 5. *° s — 1086T2R“R P YR 5 5

— 178848RPYR R s + 6528R Y R“PR 5 *° s — 10368RPRR g5, e R, "€ + 63360R“PRsc.p, R, 7

— 195840RPR 5.5.R, 7% + 161664R PR g5 R, V%€ + 1341 120R*PR 5. 5. R, V%€ + 146 592R*R ;5 5., RP 7€

ydep;o

Rﬂaptr;r

yperio

756P:BR;QB

Raﬁ;yﬁ

€poT

; $29
yeSp;o‘ROzEBp o RaBy

ayBp;de

aeBoidp
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— 101664RR 5,5, RPY*2€ + 119808R g5, R , RFY%€ + 653 T60R*RPYO PR, 5.5.c,
+26496R“PRYP R’ R 1 p5.cp — 139200R*PYROSPR 55, +253440R . YRPROPI R g5 v
—36864R y5 RPRY>€ 5+ 211TT6R PR,V sR 5 € — 418560R (R PYR 55°€ . + 229 152R,°, R*PYR 55
+198336R“P7 R, °R g5 c + 960R, " RPR 3°R_ 5. —206976R . sR“PR°R 5 — 388368R*F YR, Rys;fe
+81696R PR, 4R, 5. — 192000R*FR,7 4°R +93408R*FR 5 7°R + 12960R*ARR 5R7
+378048R*PR ", R ,5,R7"c +36096R PR ¥ 57 R 55, R7*€ . + 14400Ray psR*PRY<,
+86976R PR’ R c5,R 5" + 126 T20R“PY R g5 5R (P — 668 160R“P YR g 5., R, P
—260352R*FYR g5 . Ry F + 540672R YR PR 5, R 5% — 9216R 5, R*PY°R 50
+590400R Y R ye 6 R, 2P — 140544R PR 5., R, %P + 388608RPR . s R gep e RY* 0
+99840R PR 1y "R 575, RV P — 2T89T6R o sRPR 5, RY ¥ — 367T8T2R PR . ;7 R, RY P
+32256R PR 4epysRY 5P +486912R PR, .5, RY¥P +360960R PR, 5., R 5P
+27264RR 4y 5.c)RPY5P +293760R* YR 5P R 5,5 + 116 T36R*PR YR PT" Rp5 ey
—98304R PR, YR 3" R yseipr — 12288R* PR, 2P RPTTR 5 pr + 176256R g, R*FTOR P,
—28800R gey, RO R 5P, + 81024R g5, R, ROP ,, — 1205T6R“PRYR ,c5,R 7
+ 188928R*PRY°Rg5c, Ry + T68RPRY R 5,R ., — 205056R g, R*P VR, 57
—96000R 45, R“P7° R, 5P s —T68R PRV R 3 5.R P , — 302400R 5 g¢., R*PY RO,
+1066560R*BYR ., 55ROV, + T5T44R 455 R*PY ,ROP , +396288R*PR 35, e Ry V27
+453600R“PY%€R  ,P7" R —156672R*BYOR R, 5777 —36864RPY° Ry, 50.c,Ro S, "
+9600R’P7R*¥Y Ry yapy T 40320RPRY*R . g5 +4421T6R* PRV R 5.0 pc +281568RRR.. P
—634560RPYR“R5,,.,° 5 + 171840R“PRg, s R?® ., — 88608R g5, R*FYRC. . , — 642144RV°R 5., R*F 5
+68T60R”* PR 5¢p:a RP 5 + 33888RYR s R j — 18912R 5. RY*R*F ; + T8T2RR o .,
— 11712R ,°R g5, R“PY + 30144R ;55 R%¢., R**PY + 26880R%R 5 5.y R**PY + 1056R ,° R g.. s R**PY
+61824R 55¢R, " R*FY + T104R, o, R*PY — 42240R*PRY¥R 1. 5,5 + 18864R* PR 57,
—931584R“PRY Ry p5e — 10560RR*PYR . 5° 5 +239T6R*PRY (R 5 ;¢ —42T68R“PR, R ;5 5.
+6240R 5, R“RPY , —21120R, s R“RPY , + 467328R*PRY**“R 5. 5. + 10560RPYR“R 5. 5
—607680RR*PYR %5 + 10656R“PYR 5 05 +26352RPR, VR 55 € + 522048R 53 R*PYR P,
—2736R 5.5 R*P7 2 —4T616R PR ycpr:gR*P7° 5 — 1536R . "Répw gRPYO€ +273984RR 55, RP7OC
— T4T648R 4" R 5 RPY2€ + 16896R 7 37 Ry 5, RYPYO€ + 42624R 5, g RVPY O
—87552R 4,55 RO + 43008R o 5,5 R*PYO€ — 1368RPY PR 5. 5€ —91632R“PRY® Ry €.
+1728624R*PR VPR 5.5 +48000RPRY*PIR . pe.5p0 +301248R g5, R“RPY€,,
— 16416R 3,5 RORPY0¢ +32448R*PR g5, ,R V0P +2304R g 5,R*PYR, 5P,
—27936R g, 5. R*FVR, 5P , — 43008R 55 R*PY R, 5P |
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o) =

+ 93 888RPR 1y pe:sRY¥P , + 379392RPR 35, RY¥P , + 4800R g 5.c e ROPY P

— 2304R,5¢, R*PYROP 5 + 172800R g5, R*PYROP o, + 2T 648RPR . 57, + 2T 648R* PR 5 €.
+ 34560R“PR ,e5,R?., 5" — 58 824R,,sRYR** P 5 + 27900R*R** ,P 5 + 8640R 5., RY>’ R .

+ 6336R,gRR*FPY, + 24 192R%“R 55 R*P7, + 9216R , 5 ° sR*PY ., + 2400R ;g R s R“P7°

+ 1920R € 3" Rye5, R*F7° + 8640R 4 5., s R*“P7> — 60 612R*PRYR,,, 55 — 62208R*FYOR  55°,

+ 14256R* ,RP 57, + 51072R*PRYR 5. 5 + 2T 648RPYVOR 5. — 99984RPRR 57 ,° 5
+ 3456R*“FR 57, ° 5 + 48 5T6RR 4 ssR*P7Y7€ . — T6 032R " " R 55, R*F72¢ . + 6144R 7 3R, ,5,R*F7C,
+ 69 120Ryy p5,e, R*PYOP — 2448R*PY R, 30 €, + 132288R, YR PR ° €. + 69 888R*PR 5, R, V0P,
+ 67 488RPR 55 R7*€.F , + 19440R R P 57, + 14400R 5., R*PY° 5 — 2880R“PYR . 5° ;€.

— 1440R*FYR 5. % 5€c + 43 200R oy g5, R* PP, + 5280RR* P 57, + T200R g R P 2 s

— 960R*FR 57 ,° 5¢c + 9600R 4,55 RFYO€.P , + 1800R™ B 57,0 ), (A8a)

Tema0(32 736R, Y R“PR 3R ,sR — 8436R ,sR*PR ,sR?°R — 59 136R,YR*FR 5, R* + 43 518R , sR*F R
— 5743R° — 13944R*PRY’R*R 4,35 — 3618R°R ,5,5R*PY® — 168R*PRY’RR " R5.,

+ 4480R?R ;" R*P7°R 5., — 14832R*PRYRR 5" R ye5, + 3282R,gR*PRR 5., RY**

y€edp
+ 2496RR , ;" R*P"° R, Ry — 1248RR ;P RPY°R_ 7R, e — 696RR 4 5ysRPY°R ) RPT

+ 100256RPYRR . R — 47 648R s RFYR 5., R°* — 25 664RPYR g5, R*€. . R + 19 152R 5, RPY R, R**

— 22052R?R ., R*® — 2272R 3,5 RPY?“R ,R** — 11 240RRPY*Ry. 5. ,R** — 14 560RPYR°R g5, c.0 R**

+ 7824R 5, P RV R R — 1440R*PRRY® (R 5.5 + T520R PRV R*R 5.5 — 2640RPYR 5, R* R

— 360R, "R, R**R*# + 1240R ,sRR*R*P + 2640R?°R ;.55 R*R# + 2864RPYRR“R .., + 2160R*R ;... sR*FY
+ 5760RR, R 5ep:gR* P + 28 920R*R 5., R*PY — 27 840RR 455 R, R*PY — 3840R ;° RPYR**R .5

— 8480R, PR R*Rg,.5 + T680R*PRR 5 3R> — 4800R*PRRg5., R, "> — 85440R*PRR, 5R "

— 1600RR 1 s R RFY*> — 4800R 5P R ger, R“RPY® + 1440R , P R 5, R RFY*®> — 6112RPY R 5, R R, *<
+ 1920RR 3y 5eR*FYR, %€ + 11 840RPYR 5, R R 3% + 1600RPYR ) s R* R 3% + T680RR ;55 R* PV R i€

— 14400R“PRR 4y e:sR7*€ — 34080R*PRR 55 RY> = 2100R?R o gy5. . R*P7%€ + 3136RPYR 5P R R 5.
— 960R PRV’ R“Rpy5¢.,p — 12960R“PRR g5, R7*" + 10 800RR*PYPR 5., R , 5" — 3880R“R*#R.
+ 960R“RPYPR g5y — 480R“RPYPR 5.5 — 8608R s RFYR sR**, + 16440R 3, RFYRR* , — 5064R°R**,

— T680RPYRR g5, e R — 2484RR 5 RFY* R, + 1912R 5 P7RPYR;,, R , + 240R g5, RFV R ,

+ 600R 3.5 RP7P R, — 660R gy 5., RF7OP R, — 12352R Y R5°R,sR*F + T056R . gR,sRY R *P

+ 13888R, "R, RR*F — 6696R ,gR*R*“F + 1184R7°RR psR**P — 2240R ;Y R*“R 5, R**F

— 6912R7°R €, P Rpes, R*P + 4544RV R, 3P R 5, R*P — 816R,gR 3¢, R?* P R*F — 80RY? ., R, 5.5 R**P

— 600RY°’ R, 5., sR*P — 640R 53R, "’ R**F + 1440R 5. R,"°R**F — 480Rp, sR, Y R*P

+ 640R 4y 5¢.RY*R*P — 1920R 1 35.. RY*R*F — 1728R?°R 5., s R**P — 2376RR., s R**F

— 640RYPR 5 agRP — 480RRPYOR 5.5, + 11 136R*PRY’RR .55 — 3156R, . R*R#

— 2880RR* R 5 — 3840R 5, , R*“R*FY + 71952R*“R

By — @ piBy — a o
wpyRPY — 1008R g, R ,RPY — 10464R PRV RR 5.5

+ 960R“RPYOR 5.0 — 17T28RV R PR 5.5 + 3328R 0, R PR 5 + 18000R*PR°R 57, + 1800R“R*#R 57,
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— T20RR*FR 57, — 8352R*R 4,55 R*P7® + 14016RR 1, " R g5, R“7° — 384RR, 5P R ,c5,R*F7°

— 1872RR 5., gR*P7° + 4032RR,,.35R*P7° — 1872RR 4., 5R*P7° — 5856R ;s R*PRY?

+ 4096R"R*FR .55 — 2304R*PRRY*PR 5.5, + 216RR*PY R ;5 — 23904R,YR*PRR 5 5

+ 240RPY  R“R 5, s + 384R*R,PYR 5.0 s + 1248RPYR (R 5 — 480R,YR“PR 5,7 5

— 8448RPRR g5, R0 — 3T44RR 55, RPYO¢ + 4320R*R 5. RPV0¢ — 3648R g5, R ,RPY:¢

— 57T60R“RPY°PR g 5.cp T 512R 05 R PR 5 — 12888R*PRR 55 RV . — 1440R 1, s KPR,

— 57T6RR o py5:ep R*P77P — TOBORRR.. P 5 + 240RFYR*R . %5 + 1200R°R 5., RF

— 1120RY%¢PR R*F 5 + 640R7R 4. 5R*F 5 + 640R 45.RY*R**F 5 — 1200RR 1 3.,

+ 800R ,°R g5,y R*PY — 2080R 53 R%€., R *PY — 2400R%R 53¢, R“PY — 80R,°R,,.5sR**PY

— 4160R ;53R PR *FY — 960R, 5, R°*PY — 2640R** PR 57, + 480RR*PIR . % s — 1360R 5, R“R#7,

+ 2480R s R“RPY, + 480RPYR*R 5. ° 5 + 240RR*PYR ;5 ° 5 — T20R“PYR 5. ° 5 — ST60RR 1 g5 ROF7O€

— 3840R g5, R*RPY2¢ , + 480R 1 5, s R“RPY2¢, — 3T92R“FR, 7, + 584R,,sRY’R** ,P ; — 1604R*R** . ,

= 272R 56, R*PR* P 5 — 1264R ,gRR*PY,, — 1888R’“R 55 R**P7 ), — 624R , 5 sR*PY., — 160R ,gR s R**F7°

— 128R 5" Ryes ) R*FY? — 5T6R 5., s R*“P7? — 2088R* ,RF ;7 + 240R*FRR,, 57, 5 — 240R*“FR ;7 2 5

— 1920RR s R*P7%€ . = 2160R R, 57, — 960R 5., R*F7? 5 — B4ORR® . P 57, — 480R . g R*PY 2 5

— 120R“ P 57,°%5), (A8b)

R:eBY

ydep;a ay;d

a¥ = 55i(584R .Y R*PR g, R> — 654R . sgR*PR® + 99RS + 456R*PRY’R?R 5 + T2R*R 1 g sR*P7°

— 80R*R, 3" R*PY°R5c, — 24RPYRR g o R°* — 26R 5 RPYR.(R** + 25TR*R.(R** + 17R 5 RFY*R (R
+ T2RRPY*“R g 500 R + 90R, YR g, R*R*F — 300R ,sRR*“RP + 48R°R ., s R“R'P — 48RPYRR“R
~ 12R?R 1. gRYPY — 6R?R 3., R*PY — 48RR 3, sR*RPY® + 2TR’R 3,5, RVP7%€ + 312R‘“RFPR, 5

— 60R 3, RPYRR® , + 162R*R** , + 36RR 3,5 RPY*R** , + 60R,zR?’R**P + 144R"°RR, 55 R**F

+ 200RR.,gR*“P + 252R ,R*RP 5 + 238RR** ,R# 5y + 168Rp,. o R*RPY — 312R*R . 5.,
+ 56Rp, R RFY — 128R, R“PRY y — 24R*PR’R .57\, — T2R*R*R 57, + 48RR*FR,, ;7

+ 144R%R 1 gs R*PY® + 224R 1 s R¥PRY® + 588RRR.,P 5 + T2RR 1 5., RPY + 36R, 5, R*FY
+102R“ PR 57, + T2R R*R#7 , — 102R s R*R#7, + 144R*FR 57, + 138R*R* P

+ T2R,gRRPY, + 84R (R 7, + 108RR,,P 57, + 36RR P 57, (A8c)

aByy

R:BY

(B — _1 aBR3 _ sR5 _ 7R3 aByd _ 2 s apiB @ p; — 3pia
as’ = 5i5(2R,gR*PR? — 5R> — 2R°R . 3,sR*P?® — 66R’R ,R** + 36R,sRR“R# — 36R*R'PR .5 — 42R°R*,,

— 12RaBR2R3“B — 24RR;aBR;“ﬁ — 30R;aR;"‘R;B’B — 30RR‘“aR3BB — 72RR;“R;E,BB — 18R2R;aaﬁﬂ), (A8d)
4 . . 5
a = L(RS + 6R2R ,R™ + 4R°R*,),  af = —L.RS, (A8e)
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