Supplementary online material

Synaptotagmin10-Cre, a driver to disrupt clock genes in the SCN

Jana Husse, Xunlei Zhou, Anton Shostak, Henrik Oster and Gregor Eichele

A

B

Supplementary Figure S1. Adjacent coronal sections comparing the pattern of Syt10 mRNA and Cre activity.

Coronal brain sections at the level of the SCN showing Syt10 expression (A) and Cre activity (B) as determined by in situ hybridization or B-galactosidase staining. Sections shown here are $25 \mu \mathrm{~m}$ apart. Scale bar: 1 mm .

Supplementary Figure S2. Additional Cre activity sites in Syt10 ${ }^{\text {Cre/t }} \boldsymbol{R} 26$ R $^{\text {Lacz/+ }}$ mice.
Expression of the reporter β-galactosidase in various brain regions as determined by B-galactosidase staining of coronal sections of Syt10 ${ }^{\text {Cre/t }} R 26 R^{\text {Lacz/t }}$ mice . Scale bar: 0.2 mm . Abbreviations: 1-6, cortical layers 1-6; 3V, 3rd ventricle; AC, anterior commissure; ACA, anterior cingulate area; ACB, nucleus accumbens; BST, bed nucleus of the stria terminalis; CA1/CA3, Ammon's horn fields CA1/CA3; CC, corpus callosum; CP, caudoputamen; DG, Dentate gyrus; DMH, dorsomedial nucleus of the hypothalamus; GI, glomerular layer of OB; Gr, granule layer of OB; Hy, Hypothalamus; Mi, mitral layer of OB; OB, olfactory bulb; PVT, paraventricular nucleus of the thalamus; Sm, stria medullaris.

Wild-typ

Time (hours)
C

$$
\text { Syt10 }{ }^{\text {Cre/t }} \text { Bmal1 } 1^{\text {t/ }}
$$

Time (hours)
E

Time (hours)

Time (hours)

Supplementary Figure S3. Actograms of all Syt10 ${ }^{\text {Cre }}$ driven Bmal1 knock-outs.
Double-plotted actograms of all individual mice used for the calculations in Fig. 5. Wild-type (A), Syt10 ${ }^{\text {Cre/t }}$ Bmal1 $1^{\text {t/f/ }}$ (B), Syt10 $0^{\text {Cre/t }}$ Bmal1 $1^{\text {t//- }}$ (C), Syt10 ${ }^{\text {Cre/Cre }}$ Bmal1 $1^{\text {t//- }}$ (D) and Syt10 ${ }^{\text {Cre/Cre }}$ Bmal1-1 (E). Light regimen: 7 days in LD 12:12 followed by 19 days in DD.

Supplementary Figure S4. Validation of the anti-BMAL1 antibody used for BMAL1 quantification.

Representative high-power images of SCN neurons in wild-type and Syt10 ${ }^{\text {Cre/Cre }} \mathrm{Bmal} 1^{\text {t// }}$ mice. Top: anti-BMAL1 antibody; center: DNA counterstained with DAPI; bottom: overlay of BMAL1immunoreactivity (green) and DNA (red). Scale bar: $10 \mu \mathrm{~m}$. Note the absence of any signal in SCN cells from Syt10 ${ }^{\text {Cre/Cre }}$ Bmal1 $1^{\text {t//- }}$ mice.

Supplementary Table S1: Breeding strategies

Genotype	$\text { Genotype } \bigcirc^{\nearrow}$	Genotype offspring of interest	Experimental question addressed
R26R ${ }^{\text {Lacz/Lacz }}$	Syt10 ${ }^{\text {Cre/Cre }}$	Syt10 ${ }^{\text {Cre/t }}$ R26R ${ }^{\text {Lacz/+ }}$	LacZ reporter analysis
Syt10 ${ }^{\text {Cre/t }}$ R26R ${ }^{\text {Lacz/+ }}$	Syt10 ${ }^{\text {Cre/t }}$ R26R ${ }^{\text {Lacz/+ }}$	Syt10 ${ }^{\text {Cre/t }}$ R26R ${ }^{\text {Lacz/+ } 1}$	Ubiquitous LacZ staining
Syt10 ${ }^{\text {Cre/+ }}$	Syt10 ${ }^{\text {Cre/+ }}$	Syt10 ${ }^{\text {Cre/+ }}$	Circadian phenotype of knock in mice
Syt10 ${ }^{\text {Cre/+ }}$	Syt10 ${ }^{\text {Cre/+ }}$	Syt10 ${ }^{\text {Cre/Cre }}$	Circadian phenotype of knock in mice
Syt10 ${ }^{\text {Cre/t }}$ Bmal $1^{\text {f// }+}$	$B m a l 1^{\text {f//f }}$	Syt10 ${ }^{\text {Cre/t }}$ Bmal $1^{\text {f//f }}$	Circadian phenotype of conditional Bmal1 KO
Syt10 ${ }^{\text {Cre/t }}$ Bmal1 ${ }^{\text {f//f }}$	Syt10 ${ }^{\text {Cre/t }}$ Bmal1 ${ }^{\text {f//fl }}$	Syt $10^{\text {Cre/t }}$ Bmal1 ${ }^{\text {f/l- } 2}$	Circadian phenotype of conditional Bmal1 KO
Syt10 ${ }^{\text {Cre/t }}$ Bmal1 ${ }^{\text {f//f }}$	Syt10 ${ }^{\text {Cre/t }}$ Bmal1 ${ }^{\text {f//fl }}$	Syt10 ${ }^{\text {Cre/Cre }}$ Bmal1 ${ }^{\text {f// } 2}$	Circadian phenotype of conditional Bmal1 KO
Syt10 ${ }^{\text {Cre/Cre }}$ Bmal1 ${ }^{\text {fl/ }}$	Syt10 ${ }^{\text {Cre/Cre }}$ Bmal1 ${ }^{\text {fl/- }}$	Syt10 ${ }^{\text {Cre/Cre }} \mathrm{Bmal1}^{-1-2}$	Positive control for circadian phenotype

${ }^{1}$ As Syt10 ${ }^{\text {Cre }}$ is active in the male germline (and thus in the father of our breeding pair) Syt $10^{\text {Cre }} R 26 R^{\text {LacZ }}$ offspring from this breeding expresses the reporter in all cells of the body.
${ }^{2}$ The Bmal1 knock-out allele in the offspring resulted from germline expression of Syt $10^{\text {Cre }}$ in the father.

