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Master equations for thermal unimolecular reactions and the reverse thermal recombination reactions
are solved for a series of model reaction systems and evaluated with respect to broadening factors.
It is shown that weak collision center broadening factors Fwc

cent can approximately be related to the
collision efficiencies βc through a relation Fwc

cent ≈ max {βc
0.14, 0.64(±0.03)}. In addition, it is in-

vestigated to what extent weak collision falloff curves in general can be expressed by the limiting
low and high pressure rate coefficients together with central broadening factors Fcent only. It is shown
that there cannot be one “best” analytical expression for broadening factors F(x) as a function of the
reduced pressure scale x = k0/k∞. Instead, modelled falloff curves of various reaction systems, for
given k0, k∞, and Fcent, fall into a band of about 10% width in F(x). A series of analytical expres-
sions for F(x), from simple symmetric to more elaborate asymmetric broadening factors, are com-
pared and shown to reproduce the band of modelled broadening factors with satisfactory accuracy.
© 2011 American Institute of Physics. [doi:10.1063/1.3615542]

I. INTRODUCTION

The pressure dependence of thermal unimolecular disso-
ciation and the reverse thermal recombination reactions is of
large fundamental and practical importance such that it con-
tinues to receive considerable attention. In the framework of
the Lindemann-Hinshelwood (LH) model of unimolecular re-
actions (see, e.g., Ref. 1) it is characterized by a pseudo-first
order rate constant for dissociation

k = Z[M]k∗f ∗/(Z[M] + k∗), (1.1)

which with varying reaction order, depends on the bath gas
concentration [M] and hence on the pressure. It changes
from a limiting low pressure second order rate constant k0

= Z[M]f* (where Z[M] denotes the collision frequency for
energy transfer and f* is the equilibrium population of reac-
tive states) to a limiting high pressure first order rate constant
k∞ = k*f* (where k* denotes the first order rate constant for
dissociation of reactive states). In doubly reduced form, i.e.,
with k/k∞ as a function of the [M]- and, hence, pressure-
proportional ratio x = k0/k∞, the “falloff” expression of the
rate constant given by Eq. (1.1) alternatively can be written as

k/k∞ = x/(1 + x) = FLH (x) (1.2)

with a “Lindemann-Hinshelwood factor” FLH(x). The pres-
sure dependence thus is expressed by the ratio of the two pa-
rameters k0 and k∞.

It is well known that more detailed unimolecular rate the-
ory leads to a broadening of the reduced falloff curves which
can be represented in the form2

k/k∞ = FLH (x)F (x) (1.3)

a)Author to whom correspondence should be addressed. Electronic mail:
shoff@gwdg.de.

with a “broadening factor” F(x) = Fsc(x)Fwc(x) composed of
strong collision and weak collision broadening factors, Fsc(x)
and Fwc(x), respectively. The former can be calculated when
Eq. (1.1) is replaced by an expression which takes into ac-
count the energy (E)- and angular momentum (quantum num-
ber J)- dependences of k* and f* in Eq. (1.1) through

k =
∞∑

J=0

(2J + 1)

∞∫
E0(J )

Z [M] k (E, J ) f (E, J )

×dE/ {Z [M] + k (E, J )} (1.4)

Here, E0(J) denotes the threshold energy for dissociation,
f(E,J) are the equilibrium populations, and k(E,J) are the spe-
cific rate constants for dissociation.

The evaluation of a large number of rigid activated com-
plex RRKM (Rice-Ramsperger-Kassel-Marcus) calculations
of k for a variety of reaction systems2, 3 has suggested that
Fsc(x) in the simplest way can be approximated by

F sc (x) ≈ (
F sc

cent

)1/[1+(log x/Nsc)2]
(1.5)

with a “center broadening factor” F sc
cent and a width parameter

Nsc ≈ 0.75 − 1.27 log F sc
cent (1.6)

related to F sc
cent . Allowing for further complexity, asymme-

try corrections of Eq. (1.5) were also elaborated.2, 3 Since the
proposition of Eq. (1.5), a series of alternative falloff expres-
sions have been proposed (see, e.g., Refs. 4–15). Neverthe-
less, Eq. (1.5) has proven most convenient for representing
experimental and theoretical results and is widely used in
gas phase kinetics (see, e.g., the combustion and atmospheric
chemistry data bases16–18).

Explicit solutions of master equations of unimolecular
reactions with the aim to obtain weak collision broadening
factors Fwc(x) in the falloff range have been much less
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frequent.2, 19, 20 In order to account for weak collision effects,
one might be tempted to multiply the collision frequency
Z in Eq. (1.4) by a collision efficiency βc which is smaller
than unity. The result of this approach would be a neglect of
weak collision broadening, i.e., Fwc(x) = 1. The analysis of
solutions of the master equation, however, has shown that this
simple procedure is inadequate. The so far limited number of
calculations has suggested that Fwc(x) is smaller than unity as
well and that its center value Fwc

cent = Fwc (x = 1) decreases
with decreasing collision efficiency βc. A simple relationship

Fwc
cent ≈ β0.14

c (1.7)

was obtained and some functional forms for Fwc(x) were
proposed.2, 12 For a number of mostly technical reasons,
these studies left open a number of questions, first about
the general validity of Eq. (1.7), second about the form of
Fwc(x), and finally about the influence of specific molecular
parameters on Fwc(x). These questions have already been
addressed nearly 30 years ago, but the required calculational
effort was not invested at that time. Therefore, the present
work comes back to the problem with the aim of providing
practically useful and theoretically validated expressions for
weak collision broadening factors.

In the second part of this work, general expressions for
total broadening factors F(x) = Fsc(x)Fwc(x) are considered
again. The question arises, how well the pressure dependence
of falloff curves can be represented by the parameters k0, k∞,
and Fcent = F(x = 1) only and how large, system-specific, de-
viations from such a relationship have to be expected. It does
not appear very meaningful to look too much for alternative
functional forms of F(x) which go beyond Eqs. (1.5) and (1.6),
even if weak collision contributions such as Eq. (1.7) (or
the extension from the present work described later) are in-
cluded. The so far available falloff calculations all suffer from
simplifications; either only strong collision treatments were
employed, mostly even neglecting J-dependences, or colli-
sional energy transfer did not account for rovibrational en-
ergy transfer. Therefore, as long as calculations of the falloff
curves remain only approximate, simple expressions such as
Eqs. (1.5) and (1.6), and their asymmetry extensions such as
proposed in the present work, continue to have their justifica-
tion.

II. SOLUTION OF THE MASTER EQUATION

In general form the rate constant k is given by

k =
∞∑

J=0

(2J + 1)

∞∫
E0(J )

k(E, J )h(E, J )f (E, J )dE,

(2.1)

where h(E,J) denotes a non-equilibrium population factor. For
strong collisions, according to Eq. (1.4), h(E,J) has the form

hsc(E, J ) = Z[M]/{Z[M] + k(E, J )} (2.2)

at E ≥ E0(J), while it is unity at E < E0(J). Along the falloff
curve, for E ≥ E0(J), hsc(E,J) increases from Z[M]/k(E,J) at
the low pressure limit to unity at the high pressure limit. In

order to obtain h(E,J) for weak collisions, the full master
equation of the unimolecular reaction needs to be solved. Be-
sides k(E,J), this also requires information on the collisional
energy transfer transition probabilities P(E′, J′;E,J) from (E,
J) to (E′, J′), as well as the total energy transfer frequency per
unit concentration Z(E,J).

In the following we restrict ourselves to an exponential
collision model on the energy scale using22

P
(
E′, E

) = 1

α + γ

⎧⎨
⎩

exp[(E − E′)/α]f orE′ < E

exp[(E′ − E)/γ ]f orE′ ≥ E

(2.3)
with the two parameters α and γ , see below. Under steady-
state conditions, for not too high temperatures (say E0/kT
> 10), and extending the lower limit of the energy scale to
−∞, the master equation in continuous form then can be
transformed into the corresponding integral equation for the
non-equilibrium factor

h (E) ≈ Z [M]

Z [M] + k (E)

∞∫
−∞

P (E,E′)h(E′)dE′. (2.4)

Solving this equivalent of the steady-state master equa-
tion leads to h(E) and through Eq. (2.1) to the rate con-
stant k. In the following we describe several methods to solve
Eq. (2.4), see also Refs. 19–22. After this, we summarize our
results for h(E) and F(x).

One way to solve the integral Eq. (2.4) is an iterative
procedure. One inserts a trial function h(0)(E) into the right-
hand side of the equation, obtains a first approximation h(1)(E)
which again is inserted into the right-hand side, and so on.
This method was originally used in Ref. 2 and led to Eq. (1.7).
A series of different algorithms in the meantime were ap-
plied in other work (see, e.g., Refs. 23 and 24, and work cited
therein), mostly employing exponential down collision mod-
els which are similar but not identical with the present overall
exponential model of Eq. (2.3).

In the present work we have chosen two methods to solve
Eq. (2.4) which we briefly characterize in the following. Be-
fore we do this, a number of transformations of equations and
parameters appear appropriate. As stated before, we restrict
ourselves to a 1D-exponential collision model on the energy
scale only. However, we retain the J-dependence in the em-
ployed k(E,J) and E0(J) for the calculation of the final rate
constant. The nonequilibrium factors h(E) are thus calculated
relative to the E0(J) (denoted by E0). The parameters α and
γ in Eq. (2.3) are linked by detailed balancing. Following the
simplification suggested in Ref. 22, this is accounted for by
using

1/γ = 1/α + 1/FEkT (2.5)

with FE defined through

FE =

∞∑
J=0

(2J + 1)
∞∫

E0(J )
f (E, J ) dE

∞∑
J=0

(2J + 1)f (E0 (J )) kT

(2.6)
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in order to characterize the energy dependence of the rovibra-
tional density of states ρ(E,J) in an averaged way. The equi-
librium population f(E,J) here is expressed by

f (E, J ) = ρ(E, J ) exp(−E/kT )/Q (2.7)

with the rovibrational partition function

Q =
∞∑

J=0

(2J + 1)

∞∫
0

ρ (E, J ) exp (−E/kT ) dE, (2.8)

ρ(E,J) then is represented approximately by

ρ (E, J )≈ρ (E=E0 (J ) , J ) exp

{
(FE − 1)

FE

[E − E0 (J )]

kT

}
.

(2.9)

We furthermore relate the collisional parameter α in
Eq. (2.3) to the collision efficiency βc, such as obtained from
the analytical solution of the master Eq. (2.4) for the low pres-
sure limit of the reaction.22 This is done through

βc = [α/(α + FEkT )]2, (2.10)

which is equivalent to the relation

βc/
(
1 − β1/2

c

) = −〈�E〉 /FEkT (2.11)

with the average (total) energy transferred per collision 〈�E〉
= γ − α. In this way, α and γ can be expressed through βc

and FE by

α = β1/2
c FEkT /

(
1 − β1/2

c

)
, (2.12)

γ = β1/2
c FEkT . (2.13)

Using these relationships, we characterize our collision
model and the system temperature through the two quantities
βc and FE.

It is well known that the integral Eq. (2.4) by differenti-
ation can be transformed into a linear differential equation of
second order which in turn is equivalent to two coupled lin-
ear differential equations of first order. With the exponential
collision model these transformations lead to

d2ϕ (y)

dy2
−

[
βc

4
+ κ (y)

(
1 − β

1/2
c

)
1 + κ (y)

]
ϕ (y) = 0, (2.14)

where y = [E − E0(J)]/γ , κ(y) = k(E,J)/Z[M],

h(E) = exp
(
β1/2

c y/2
)
ϕ(y)/[1 + k(y)]. (2.15)

Following this, the pair of equations

dϕ (y)

dy
= η (y) , (2.16)

dη (y)

dy
=

[
βc

4
+ κ (y)

(
1 − β

1/2
c

)
1 + κ (y)

]
ϕ (y) , (2.17)

needs to be solved. One should note that ϕ(y) decreases with
increasing y and, for y < 0, it has the simple form ϕ(y)

= exp(−βc1/2y/2)−a− exp(+βc1/2y/2) which corresponds to

h(y) = 1 − a− exp
(
β1/2

c y
)
. (2.18)

The coefficient a− later on will be determined explicitly.
One should realize that both ϕ(y) and dϕ(y)/dy are continuous
functions at y = 0 which provides matching conditions for the
solutions obtained in the ranges y < 0 and y > 0.

The pair of differential Eqs. (2.16) and (2.17) can be nu-
merically solved by standard methods. In order to obtain sta-
ble solutions, the stepwise integration should be started at
large values of y and proceed towards smaller values. In the
following we often refer to an auxiliary function P(y) given
by the root of the bracket in Eq. (2.14), i.e., by

P (y) = [
βc/4 + k(y)

(
1 − β1/2

c

)
/(1 + k(y))

]1/2
. (2.19)

As shown below, ϕ(y) and η(y) for large values of y with
this function approach the values

ϕ (y → ∞) ≈ exp

⎡
⎣−

y∫
P (y ′)dy ′

⎤
⎦ , (2.20)

η(y → ∞) = dϕ/dy ≈ −P (y)ϕ. (2.21)

This provides a proper starting condition for the integra-
tion in the form y(0) = 20 FEkT/γ , where ϕ(y(0)) ≈ 1 and
η(y(0)) ≈ −P(y(0)). One should note that ϕ(y) has a free scal-
ing factor which later on is fixed by the matching conditions
at y = 0. The integration is continued until y = 0 is reached
and the matching of h(E) from Eq. (2.15), by means of the de-
rived ϕ(y) and η(y), with the solution of Eq. (2.18) for y < 0
can be performed. This fixes the scaling factor as C = 2/[ϕ(y
= 0)−2η(y = 0)/βc

1/2] and the coefficient a− follows as

a− = −[
ϕ(y = 0) + 2η(y = 0)/β1/2

c

]
/
[
ϕ(y = 0)

−2η(y = 0)/β1/2
c

]
. (2.22)

III. “SEMICLASSICAL” SOLUTION OF
THE MASTER EQUATION

Although the procedure outlined in Sec. II leads to accu-
rate numerical results for the nonequilibrium factor h(E) and,
hence, for the rate constant k, the alternative, approximate,
solution discussed in this section provides useful additional
insight and also leads to some interesting analytical relation-
ships.

The differential Eq. (2.14) has a form which is anal-
ogous to the Schrödinger equation of quantum mechanics.
One, therefore, may take advantage of the WKB (Wentzel,
Kramers, Brillouin) “semiclassical” approximation to the so-
lution of the differential equation.25 For simplicity, for the
present problem, we also term this solution “semiclassi-
cal”. This solution of Eq. (2.14), for y > 0 with P(y) from
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Eq. (2.19), has the form

ϕ (y) = a+[P (y)]−1/2 exp

⎡
⎣−

y∫
0

P (y ′)dy ′

⎤
⎦ (3.1)

with a scaling parameter a+. Matching this expression at
y = 0 to the solution of Eq. (2.18) for y < 0, gives

a+ = 2β1/2
c [P (y = 0)]1/2/

[
2P (y = 0) + β1/2

c

]
, (3.2)

a− = [
2P (y = 0) − β1/2

c

]
/
[
2P (y = 0) + β1/2

c

]
. (3.3)

This “semiclassical” result, with Eqs. (3.2) and (3.3), re-
produces the known analytical formulae for the limiting low
and high pressure limits of the reaction. For y < 0 (i.e.,
E < E0), in the low pressure range in particular one has22

h(E) ≈ 1 − (
1 − β1/2

c

)
exp[−(E0 − E)/FEkT ]

= 1 − [FEkT /(α + FEkT )] exp[−(E0 − E)/FEkT ],

(3.4)

while, for y > 0 (i.e., E ≥ E0), one has

h(E) = [Z[M]β1/2
c /k(E)] exp[−(E − E0)/α]. (3.5)

On the other hand, h(E) in the high pressure range ap-
proaches unity everywhere.

In spite of this good performance of the “semiclassical”
solution in the limiting ranges, it does not work too well in
the middle of the falloff curves. However, we worked out how
this problem can be overcome. For general values of y, we
replaced P(y = 0) in Eq. (3.2) by an average value Pav given
by

Pav(x) = S0(x)/yav, (3.6)

where x = k0/k∞ as before and yav is the solution of the equa-
tion

S0 (x) =
yav∫
0

P (y)dy (3.7)

with

S0(x) ≈ 1.88 + 10.0x0.39/(1 + x0.36) (3.8)

fitted by means of the numerical results of Sec. II. Then,
Eqs. (3.2) and (3.3) are replaced by

a+ ≈ 2β1/2
c [Pav(x)]1/2/

[
2Pav(x) + β1/2

c

]
, (3.9)

a− ≈ 1 − a+/[P (y = 0)]1/2. (3.10)

The quality of the so modified “semiclassical” solution
of the master equation is excellent except in few exceptional
cases such as demonstrated in the following model calcula-
tions. The “semiclassical” solution has the advantage of being
much simpler than the full numerical treatment and, therefore,
may find applications in some situations.

IV. NUMERICAL EXAMPLES: DISSOCIATION
OF FORMALDEHYDE

In order to illustrate our rate constant calculations in the
falloff range, we first show results for the thermal decompo-
sition of formaldehyde H2CO. This is a complicated reaction
system with superimposed formation of molecular (H2 + CO)
and radical (H + HCO) products. As we have in hand detailed
results for the sum of the specific rate constants k(E,J),26 we
have used them for model calculations of total, strong, and
weak collision broadening factors, Ftot(x), Fsc(x), and Fwc(x),
respectively. More detailed results for molecular vs. radical
product branching fractions in the falloff range were also de-
termined but are reported elsewhere.26

We note in passing that the present calculations neglect
tunnelling for the molecular channel which would lead to an
additional broadening of the falloff curves, see Ref. 27. It does
not appear meaningful to include tunnelling contributions into
general expressions of the type of Eqs. (1.2)–(1.7), because
the true limiting low pressure range may be reached only at
inaccessibly low pressures; in addition, there may be level-
ling off at a pressure independent low pressure limit. We pro-
pose to consider falloff curves neglecting tunnelling first and
then add the system-specific tunnelling contributions such as
shown in Ref. 27.

Figures 1 and 2, for βc = 0.1 and T = 1000 K, show the
nonequilibrium factors h(E,J = 0) obtained at various posi-
tions x along the falloff curve. At energies below the disso-
ciation energy E0(J = 0) (here determined by the molecular
channel), there is some depletion of the equilibrium popu-
lation. This depletion disappears when x increases to values
above unity. Only some depletion then subsists at high ener-
gies. Figure 1 (and its enlargement in Fig. 2) also illustrate
the excellent agreement between the accurate, numerical (full
lines) and the approximate, “semiclassical” (dashed lines)
results.

FIG. 1. Nonequilibrium population factors h(E,J = 0) in Eq. (2.1) for the
thermal dissociation of formaldehyde at T = 1000 K (FE = 1.111) and a
weak collision efficiency βc = 0.1 (curves from bottom to top for x = k0/k∞
= 0.001, 0.01, 0.1, 1, 10, 100, i.e., over the full falloff curve; full lines
= accurate numerical results, dashed lines = approximate “semiclassical” so-
lution of the master equation; E0 = E0(J = 0), γ = parameter from Eq. (2.13),
see text).
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FIG. 2. As Fig. 1, but enlarged.

Total broadening factors Ftot(x) for 1000 K, correspond-
ing to FE = 1.111, are shown in Fig. 3 for a series of col-
lision efficiencies βc. Obviously, there is a considerable in-
fluence of weak collisions on the shape of the total broaden-
ing factors. Again accurate, numerical (full lines) and approx-
imate, “semiclassical” (dots) results are in excellent agree-
ment. Next, the question arises whether the weak collision
broadening factors Fwc(x) have a similar functional form as
the strong collision broadening factors Fsc(x) such that a com-
mon expression could be used for practical applications. For
example, in the simplest case one might want to approximate
Ftot(x) by

Ftot (x) ≈ F
[1+(log x/N )2]−1

cent (4.1)

with Fcent = F sc
centF

wc
cent and N given by Eq. (1.6) using Fcent

instead of F sc
cent . Figure 4 shows the weak collision factors

Fwc(x) = Ftot(x)/Fsc(x) contributing to Fig. 3. Although the
general shapes of Ftot(x), Fsc(x), and Fwc(x) look similar (in-
creasing asymmetries for decreasing Fcent), there are differ-

FIG. 3. Total broadening factors Ftot(x) of the falloff curve for dissociation
of formaldehyde at T = 1000 K and βc = 0.0001, 0.001, 0.01, 0.03, 0.1, 0.2,
0.3, 0.5, 0.7, and 0.9 (from bottom to top; full lines = accurate numerical re-
sults, points = approximate “semiclassical” solution of the master equation; x
= k0/k∞; see text).

FIG. 4. Weak collision broadening factors Fwc(x) included in Ftot(x) from
Fig. 3 (curves from bottom to top as in Fig. 3).

ences and Ftot(x) needs not to coincide with Fsc(x) multiplied
by Fwc(x). However, these effects are only subtle and appear
negligible compared to the problem of an accurate character-
ization of the full strong collision falloff curve.

Finally, we inspect the dependence of Fwc
cent on the col-

lision efficiency βc. Again for 1000 K corresponding to
FE = 1.111, Fig. 5 shows the results for Fwc

cent = Fwc(x = 1)
(open circles) and for the minima Fwc

min = min Fwc(x) (filled
circles) of the slightly asymmetric broadening factors shown
in Fig. 4. For βc > 0.1, the old relationship (1.7) is well repro-
duced. However, we now observe a levelling of Fwc

cent and Fwc
min

at smaller βc, approaching a value Fwc
cent near 0.63. In order to

see whether this levelling of Fwc
cent at small βc, i.e., for very

weak collisions, is a general phenomenon, in Sec. V we pro-
ceed to more systematic calculations of weak collision falloff
curves for a series of more artificial reaction systems.

FIG. 5. Center (Fwc
cent , open circles) and minimum (Fwc

min, filled circles) weak
collision broadening factors as a function of the collision efficiency βc for the
dissociation of formaldehyde at T = 1000 K, see Figs. 3 and 4 (the dashed
line corresponds to Fwc

cent ≈ β0.14
c from Eq. (1.7), see text).
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V. NUMERICAL EXAMPLES: DEPENDENCE OF WEAK
COLLISION BROADENING ON MOLECULAR
PARAMETERS

The weak collision broadening factors Fwc(x) in Sec. IV,
for the model dissociation of formaldehyde, were shown to
depend on the efficiency of collisional energy transfer such
as characterized by the collision efficiency βc. In the present
section we inspect further dependences on specific molec-
ular parameters. We design artificial molecular systems in
which such parameters are varied. We consider dissociating
molecules of various numbers of atoms, with various combi-
nations of fragments, dissociation energies, rigidities of the
transition states, and for different temperatures. A selection
of results is documented by the figures of this section. We
randomly select the frequencies of the conserved oscillators
of the parent molecules and fragments between 1000 and
3000 cm−1.

We consider orbiting transition states which are ei-
ther completely loose (phase space theory, PST) or partially
rigid with transitional mode rigidity factors frigid(E,J) ei-
ther of the form frigid(E,J) ≈(1−f∞) exp[−(E−E0(J))/cloose]
+ f∞ (simplified statistical adiabatic channel model, SSACM,
of Ref. 28) or frigid ≈ {1+[(E−E0(J))/cloose]2}−1/2 (from
Ref. 29). For simplicity E0(J) is taken as BJ(J+1) with B re-
lated to the rotational constants of the fragments (B = Be for
atom + linear (Be) or atom + spherical top (Be) fragments,
or B = B1B2/2(B1+B2) for top (B1) + top(B2) fragments).
We first illustrate the influence of the rigidity of the transition
states in Figs. 6 and 7. Calculations of Ftot(x) for PST (points)
and partly rigid transition states with SSACM rigidity factors
(full lines) in Fig. 6 gave practically the same results. On the
other hand, the PST results (points) in Fig. 7 are compared
with the alternative rigidity factors given above (full lines),
showing that there are differences which, however, are nearly
exclusively due to different Fsc(x).

FIG. 6. Total broadening factors Ftot(x) for the dissociation of a four-atomic
molecule to atom + symmetric top fragments (Ae/hc = 8 cm−1, Be/hc
= 1 cm−1) at T = 1000 K (E0/hc = 30 000 cm−1, FE = 1.104; results for βc

= 0.0001, 0.001, 0.01, 0.03, 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9 from bottom to top;
points = isotropic potential, i.e., phase space theory PST, lines = anisotropic
potential with rigidity factors frigid(E,J) = (1−f∞) exp[−(E−E0(J))/cloose]
+ f∞, where f∞ = 0.1 and cloose/hc = 70 cm−1).

FIG. 7. As Fig. 6, but lines = anisotropic potential with rigidity factors
frigid(E,J) = {1+[(E−E0(J))/cloose]2}−1/2.

While Figs. 6 and 7 show results for atom + symmet-
ric top fragments (with rotational constants Ae = 8 cm−1

and Be = 1 cm−1), Fig. 8 provides PST results for Ftot(x)
for two spherical top fragments (with rotational constants B1

= 1 cm−1 and B2 = 2 cm−1). In this example, for small colli-
sion efficiencies βc < 0.1, exceptionally we found some devi-
ations between the “semiclassical,” approximate solutions of
the master equation (full lines) and the accurate, numerical re-
sults (points). However, such deviations were rare, while the
agreement between the two solutions usually was as good as
demonstrated in Fig. 3.

The influence of the temperature on the weak collision
broadening factors Fwc(x) is documented in Figs. 9 and 10 for
atom + symmetric top fragments, while Fig. 11 (correspond-
ing to the same temperature as used in Fig. 9) compares the
results for spherical top + spherical top fragments and for
a larger molecular system. One recognizes some influences
of the various parameters on the detailed shapes of Fwc(x).
However, in all cases one observes the same levelling of Fwc

cent

FIG. 8. Total broadening factors Ftot(x) for the dissociation of an eight-
atomic molecule to two spherical tops (B1/hc = 1 cm−1, B2/hc = 2 cm−1)
at T = 1000 K (E0/hc = 30 000 cm−1, FE = 1.326; results for βc from bot-
tom to top as in Figs. 6 and 7; isotropic potential, i.e., PST; lines = accurate
numerical results, points = approximate “semiclassical” results).
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FIG. 9. Weak collision broadening factors Fwc(x) contained in Ftot(x) of
Fig. 6 (x = k0/k∞, T = 1000 K, FE = 1.104; curves from bottom to top
for βc = 0.0001, 0.001, 0.01, 0.03, 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9).

at small βc as already observed in Figs. 3–5 for the model
formaldehyde system. Employing the analogous representa-
tion as in Fig. 3, i.e., Fwc

cent as a function of βc, in Fig. 12 for
a selected system we compare Fwc

cent (open circles) with Fwc
min

(filled circles) where the latter gives the minimum values of
Fwc(x) (the minima of the slightly asymmetric Fwc(x) being
slightly shifted from x = 0 to x < 0). We realize again that the
curve for βc > 0.1 approaches the simple law of Eq. (1.7),
i.e., Fwc

cent ≈ βc
0.14, while it levels off with decreasing βc

< 0.1.
In order to study specificities of the dependence of Fwc

cent

on βc, in Fig. 13 we finally compare results for a series of
different systems. There appears to be some spread of Fwc

cent

for βc 
 1 around an average value of about 0.64 while the
same limiting dependence of Fwc

cent → βc
0.14 is approached in

all cases for βc > 0.1. To a first approximation, this could be
represented by

Fwc
cent ≈ max

(
β0.14

c , Fwc
cent,0

)
(5.1)

with Fwc
cent,0 = 0.64(±0.03). However, one also might design

more elaborate fits for the average dependence of Fwc
cent on βc.

FIG. 10. As Fig. 9, but for T = 3000 K (FE = 1.370).

FIG. 11. Weak collision broadening factors Fwc(x) contained in Ftot(x) of
Fig. 8 (x = k0/k∞, T = 1000 K; curves from bottom to top for βc = 0.0001,
0.001, 0.01, 0.03, 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9).

VI. APPROXIMATE EXPRESSIONS FOR GENERAL
BROADENING FACTORS F(x)

Inspecting the large number of our calculated broaden-
ing factors, parts of which were illustrated in Secs. IV and V,
one observes that curves with the same Fcent or Fmin never-
theless have slightly different, system-specific, shapes of the
total broadening factors F(x) = Ftot(x) = Fsc(x)Fwc(x). One,
therefore, cannot hope for one, optimum, functional form of
F(x). At best, one can design average compromises for F(x)
of simpler form such as Eq. (1.5) or, if asymmetries are ac-
counted for, of more complicated forms such as proposed
in Refs. 2–15. Practical application of such expressions for
F(x) often shows that increasing complexity of the expression
does not necessarily improve the reliability of the falloff rep-
resentation. For example, a recent analysis of experimental
falloff data for the recombination 2 OH → H2O2 in Ref. 30
showed that the simple expression of Eq. (1.5) near to the
center of the falloff curve within experimental scatter agreed

FIG. 12. Center (Fwc
cent , open circles) and minimum (Fwc

min, filled circles)
weak collision broadening factors as a function of the collision efficiency
βc for the system and the conditions of Fig. 6 (the dashed line correspond to
Fwc

cent ≈ β0.14
c from Eq. (1.7)).
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FIG. 13. Weak collision center broadening factors Fwc
cent for a variety of

model systems, see text. From top to bottom: (number of atoms, products,
T/K) = (4, atom + lin, 1000), (4, atom + sym top, 1000), (8, atom + sym
top, 1000), (4, atom + lin, 3000), (4, atom + sym top, 3000), (8, sph top
+ sph top, 1000), (8, atom + sym top, 3000), (8, sph top + sph top, 3000);
the last two systems nearly coincide; full lines: accurate numerical results for
PST calculations, dashed line: Fwc

cent ≈ β0.14
c from Eq. (1.7).

equally well with the measurements as more complicated ex-
pressions accounting for the asymmetry of the broadening
factors (see Fig. 2 of Ref. 30). It, therefore, does not ap-
pear meaningful to judge the quality of new expressions for
F(x) on the basis of calculations for single or few reaction
systems only. Real improvements will only come from ac-
curate theoretical treatments with fully characterized specific
rate constants k(E,J) and collisional energy transfer probabil-
ities P(E′,J′;E,J). However such calculations appear still out
of reach today. Therefore, one may work with optimum com-
promise functions for Ftot(x) obtained on the basis of large
numbers of calculated broadening factors such as they are
available in the present work. However, in order to be of use
for and accepted by the kinetics community, these functions
should be as simple as possible and be related to established

FIG. 14. Total broadening factors Ftot(x) for a series of model systems
(dashed lines, specified in the text), compared to Eqs. (1.5) and (1.6) (dot-
ted lines) and Eq. (6.1) (full lines). Upper group of curves: Fcent ≈ 0.7, lower
group of curves: Fcent ≈ 0.45.

FIG. 15. As. Fig. 14, but compared to Eq. (6.2) (full lines).

expressions such as given in Sec. I. For this reason, we have
analyzed our calculated Ftot(x) again, with the aim to obtain
suitable expressions for asymmetric broadening factors going
beyond Eq. (1.5) but being related to the general philosophy
underlying this equation.

Figures 14–16 compare a selection of model functions for
Ftot(x) with a selection of calculated broadening factors from
weak collision falloff curves. We have chosen two groups
of examples, one for Ftot(x = 1) ≈ 0.7 and one for Ftot(x
= 1) ≈ 0.45. All three figures correspond to model functions
using the same parameters k0, k∞, and Fcent = Ftot(x = 1).
Figure 14 compares the calculated Ftot(x) with the expression

log Ftot = log Fcent /{1 + [| log(1.4x)|/(N + �N )]2},
(6.1)

where N = 0.75–1.27 log Fcent, �N = 0.3 log Fcent for log
(1.4x) > 0 and �N = −0.7 log Fcent for log (1.4x) < 0. This
expression is closest to those initially proposed in Refs. 2
and 3. Figure 15, on the other hand compares Ftot(x) with the
expression

log Ftot = log Fcent /{1 + [| log(1.4x)|/(N + �N )]3},
(6.2)

FIG. 16. As. Fig. 14, but compared to Eq. (6.3) (full lines).
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where N = 0.75–1.27 log Fcent, �N = 0 for log (1.4x) > 0,
and �N = −0.65 log Fcent for log (1.4x) < 0. Finally, Fig. 16
compares Ftot(x) with the expression

Ftot = 1 − (1 − Fcent ) exp{−[log(1.5x)/N]2/N∗}, (6.3)

where N = 0.75–1.27 log Fcent, N* = 2 for log (1.5x) > 0, and
N* = 2[1–0.15 log (1.5x)] for log (1.5x) < 0. The calculated
broadening factors include two formaldehyde-curves with
(T/K, βc, Fcent) = (1000, 0.08, 0.45) and (3000, 0.4, 0.45),
4 four-atomic → atom + top-curves with (1000, 0.0001,
0.45), (3000, 0.13, 0.45), (1000, 0.9, 0.7), and (1000, 0.5, 0.7,
anisotropic rigidity factor), 2 four-atomic → atom + linear-
curves with (3000, 0.01, 0.45) and (1000, 0.27, 0.7), and one
eight-atomic → atom + top-curve with (1000, 0.4, 0.45). The
latter curve deviates from the others most at x > 1 whereas
the four-atomic → atom + top-curve with βc = 0.0001 de-
viates most for x < 1. Nevertheless, the deviations of Eqs.
(6.1)–(6.3) from the set of calculated broadening factors do
not exceed about 10%.

The dotted lines in Figs. 14–16, for comparison, cor-
respond to the simplest modelling expression of Eqs.
(1.5) and (1.6). Although Eqs. (6.1)–(6.3) in general better
account for the asymmetry of the broadening factors (i.e.,
broader falloff curves at x < 1 and narrower curves at x > 1),
the performance of Eqs. (1.5) and (1.6) still appears satisfac-
tory, with deviations from the band of calculated broadening
factors also not exceeding more than about 10%.

VII. CONCLUSIONS

The present work, in its first part, has addressed the ques-
tion to what extent weak collision broadening factors of falloff
curves can be represented in a general fashion. We found that
this indeed appears possible by relating the weak collision
center broadening factor Fwc

cent to the weak collision efficiency
βc. Equation (5.1) in the form

Fwc
cent = max{β0.14

c , 0.64(±0.03)} (7.1)

was shown to provide such a general relationship. Full weak
collision broadening factors Fwc(x) were found to be of sim-
ilar, but not of identical form as the total broadening factors
Ftot(x). Nevertheless, the differences turned out to be compa-
rably small.

In the second part of this work, we compared a series
of modelled total broadening factors Ftot(x) of weak collision
falloff curves with a variety of simple analytical formulae. We
were interested in the question, to what extent expressions for
Ftot(x) with a minimum number of parameters can represent
the general behaviour. We observed that, for a given center
broadening factor Ftot(x = 1) = Fcent, the modelled Ftot(x)
fall within a band of about 10% width with system-specific
deviations from an average curve. Modelled falloff curves of
the described kind thus can be characterized by the quantities
k0, k∞, and Fcent only to within about 10%. Nevertheless, this
precision appears acceptable for most practical applications.
Beyond this precision, one would need a more detailed theory
which would be accurate in a variety of aspects and which
presently appears out of reach.

There remains the often discussed question what would
be “the best” formula to represent a falloff curve. According
to the present work this question has no answer. Because of
the fine details of individual reaction systems, there cannot be
“one best” general expression for representing falloff curves.
Instead, a variety of formulae work more or less equally well
and it does not appear meaningful to prefer one over an-
other. Ironically, the initially proposed symmetric broadening
factor2

log Ftot (x) ≈ log Fcent/[1 + (log x/N)2] (7.2)

with N = 0.75–1.27 log Fcent on the whole still works sim-
ilarly well as the more complicated asymmetric broaden-
ing factors described by Eqs. (6.1)–(6.3). Without going into
more details, that applies as well to the alternatives proposed
in Refs. 2–15. For this reason, there does only rarely appear
a necessity to replace the well-established Eq. (7.2) by al-
ternative expressions. In this case we recomend the use of
Eq. (6.3).

A crucial point of data representation is the proper choice
of Fcent. Whenever this is possible, it should be taken from the
experimental data. When these are too limited or uncertain,
unimolecular rate theory may help to estimate F sc

cent . In ad-
dition, however, the weak collision contribution Fwc

cent should
not be forgotten. It can be related to the collision efficiency βc

through Eq. (7.1). On the other hand, βc is obtainable from an
analysis of k0.

If Fcent is treated as a fit parameter for a too small part
of an experimental falloff curve or if, for convenience, Fcent is
chosen as an average standard value (e.g., Fcent ≈ 0.6 such as
done in Ref. 18), then one must be prepared that the values for
k0 and k∞ deviate from the true values. This is of little rele-
vance if only a parametrized representation of a certain part of
the falloff curve is intended. However, it then may be difficult
to relate the properties of the fitted k0 and k∞ to theoretical
models of these limiting rate constants.

One final remark concerns the group of reactions consid-
ered here which are “normal” thermal unimolecular reactions
and the reverse thermal recombination reactions. Tunneling
effects, which lead to additional broadenings of the falloff
curves at the low pressure side, have not been included, see
above. Obviously, the given treatment only applies to overall
rates and not to branching fractions in multi-channel disso-
ciations or complex-forming bimolecular reactions of multi-
well character. In this case, the phenomena of “rotational and
vibrational channel switching” take place.31 Multi-well uni-
molecular reaction codes32 then are helpful to the extent that
rotational effects can be handled realistically.
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