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Model-Based Nonlinear Inverse Reconstruction
for T2 Mapping Using Highly Undersampled
Spin-Echo MRI

Tilman J. Sumpf, Dipl-Ing,* Martin Uecker, PhD, Susann Boretius, PhD,

and Jens Frahm, PhD

Purpose: To develop a model-based reconstruction tech-
nique for T2 mapping based on multi-echo spin-echo MRI
sequences with highly undersampled Cartesian data
encoding.

Materials and Methods: The proposed technique relies on
a nonlinear inverse reconstruction algorithm which directly
estimates a T2 and spin-density map from a train of under-
sampled spin echoes. The method is applicable to acquisi-
tions with single receiver coils but benefits from multi-ele-
ment coil arrays. The algorithm is validated for trains of 16
spin echoes with a spacing of 10 to 12 ms using numerical
simulations as well as human brain MRI at 3 Tesla (T).

Results: When compared with a standard T2 fitting proce-
dure using fully sampled T2-weighted images, and depend-
ing on the available signal-to-noise ratio and number of coil
elements, model-based nonlinear inverse reconstructions
for both simulated and in vivo MRI data yield accurate T2
estimates for undersampling factors of 5 to 10.

Conclusion: This work describes a promising strategy for
T2-weighted MRI that simultaneously offers accurate T2
relaxation times and properly T2-weighted images at arbi-
trary echo times. For a standard spin-echo MRI sequence
with Cartesian encoding, the method allows for a much
higher degree of undersampling than obtainable by con-
ventional parallel imaging.
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QUANTITATIVE EVALUATIONS OF MRI parameters
are of utmost importance for both diagnostic imaging
of patients and biomedical research involving experi-
mental animals. In this respect, the T2 relaxation

time (or relaxation rate 1/T2) of tissue water protons
is of particular relevance as it reveals pronounced
sensitivity to pathologic tissue alterations. The cur-
rent method of choice for measuring T2-weighted
images is the fast spin-echo MRI sequence originally
proposed as single-shot RARE (1). To speed up the ac-
quisition process, the train of successively refocused
spin echoes is differently phase encoded which allows
for a corresponding reduction of the number of echo
trains or excitations. Unfortunately, however, a com-
posite k-space of Fourier lines with different echo
times leads to T2-weighted images with a mixed con-
trast (also depending on the ordering of lines in k-
space) and further causes a certain degree of spatial
blurring and ringing due to the associated alteration
of the point-spread function.

A more flexible and quantitative image analysis may
be achieved by estimating parameter maps of T2 and
spin density from fully sampled k-space datasets
acquired at different echo times. The approach ena-
bles retrospective calculations of T2-weighted ‘‘syn-
thetic’’ images at arbitrary TE values and provides
access to quantitative relaxation rates—though at the
expense of long scan times. Several methods have
been proposed to overcome this limitation. For exam-
ple, in parallel imaging the complementary spatial
information of the sensitivity profiles from multiple re-
ceiver coils is exploited to reduce the number of
phase-encoding steps (2,3). Alternatively, methods
based on compressed sensing can be applied to MRI,
if the images may be considered as sparse in suitably
chosen domains (4). Most recently, such sparsity
transforms were extended to the T1 and T2 parameter
space and used for model-based reconstructions of
corresponding maps (5). Specifically with respect to
T2 mapping, it has also been proposed to iteratively
fit the parameters of a mono-exponential decay to
undersampled radial k-space data with the use of a
Projection onto Convex Sets (POCS) algorithm (6) or to
jointly estimate a spin-density and T2 map as the so-
lution of a nonlinear inverse problem (7). In the latter
case, undersampled spin-echo MRI acquisitions used
radial k-space trajectories and multiple receiver coils
(i.e. parallel imaging). A related idea has been applied
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to simultaneously reconstruct dynamic T2* and field
maps in functional MRI (8).

In this article, we expand the general concept out-
lined in (7) and evaluate its performance for recon-
structions from undersampled Cartesian data encod-
ings because Cartesian phase encoding is still most
widely used in clinical practice and less sensitive to
gradient imperfections. We introduce an automatic
gradient-scaling method to avoid ill-conditioning of
the inverse reconstruction problem and demonstrate
a dedicated undersampling pattern which minimizes
aliasing artifacts in the parameter maps. Although the
use of multiple receiver coils further improves the
quality of the reconstruction, the method allows for a
pronounced degree of undersampling even without
parallel imaging. This is because—in a formal sense—
complementary spatial encodings may not only be dis-
tributed among different coils, but also among differ-
ent echo times. The accuracy of the approach is deter-
mined for simulated data and experimentally
validated for T2 mapping of the human brain.

MATERIALS AND METHODS

Model-Based Nonlinear Inverse Reconstruction

The MRI signal obtained from a single receiver coil
with uniform sensitivity is given by

sðtÞ ¼
Z

Mð~rÞ � e�i~r~kðtÞd~r ; ½1�

where Mð~rÞ denotes the transverse magnetization, ~r is
a position in image space and ~kðtÞ the chosen k-space
trajectory. For spin-echo experiments, the magnetiza-
tion at echo time TE can be modeled by an exponen-
tial decay

MTEðr;RÞ ¼ rð~rÞ � e�Rð~rÞ�TE ½2�

with rð~rÞ the spin density and Rð~rÞ ¼ 1=T2ð~rÞ the tis-
sue-specific transverse relaxation rate (neglecting the
T2 decay during the acquisition window).

In conventional settings, r and R are calculated on
a pixel-by-pixel basis in image space by curve fitting
of images that are obtained for different echo times by
inverse discrete Fourier transform (DFT). However, if
the number of samples per echo time is reduced such
that the k-space trajectory violates the Nyquist crite-
rion, a direct application of the inverse DFT leads to
aliasing in the images and hence to incorrect results.

To overcome this problem, it has been proposed to
include the forward DFT in the signal model to syn-
thesize fully sampled k-space data from estimated
maps, and then use a cost function

FðxÞ ¼ 1

2

X
TE

jjP DFT MTEðxÞ � sTE jj22

x ¼ r

R

� � ½3�

to quantify the conformity of the synthesized data
with the sampled data (7). The projection of the syn-

thesized data on the measured trajectory is performed
by the operator P which, for the Cartesian case, repre-
sents a multiplication with a binary sampling mask.
While P and DFT are linear operators, the model M
represents a nonlinear operator. Therefore, a nonlin-
ear numerical optimization algorithm was used to
minimize the cost function

x̂ ¼ argminfFðxÞg ½4�

and to find a common solution x̂ for all acquired k-
space positions and echo times. In fact, this model-
based reconstruction condenses the total information
into only two distinct parameter maps, and thereby
highlights the pronounced redundancy in the original
data which in turn may be exploited to reduce the
number of phase-encoding steps per echo.

Model Limitations and Undersampling Scheme

If Eq. [2] would correctly model the relaxation process
for every pixel, artifact-free reconstructions should be
achievable with arbitrary sampling patterns that col-
lect sufficient independent data to cope with the exist-
ing unknowns. However, the signal in real images
does not always comply with the assumption of a
mono-exponential T2 decay. Besides random errors
due to noise, systematic model violations may origi-
nate from sequence imperfections, partial volume
effects and truncation artifacts (Gibbs ringing). The
latter problem arises at discontinuities in image
space, which cannot accurately be recovered from a
limited number of discrete Fourier coefficients (9–12).
Thus, the minimum of the cost function [3] will be
greater than zero even for fully sampled and noiseless
data, while reconstructions of parameter maps from
undersampled data may be affected by aliasing
artifacts.

The practical impact of possible aliasing artifacts
strongly depends on the sampling pattern. For exam-
ple, estimated parameter maps that rely on a periodi-
cally interleaved Cartesian undersampling pattern
(schematically depicted in Fig. 1, left) often comprise
aliased copies of image regions that violate the under-
lying model assumptions. The coherence of these arti-
facts can be reduced with the use of a random pattern
as chosen for reconstructions based on compressed
sensing (4). Because the randomization of k-space
acquisitions works most efficiently when applied in
two dimensions, this strategy is most promising for
3D MRI. For the present case of 2D spin-echo MRI,
we achieved better results by the application of a
blocked pattern (Fig. 1, center and right), which is
similar to the acquisition scheme used for linearly
phase-encoded fast spin-echo MRI.

Multiple Receiver Coils

If multiple receiver coils are available, the reconstruc-
tion can be combined with parallel imaging strategies
by including the sensitivity profiles Cc of the coil ele-
ments c into the signal model. Accordingly, Eq. [3] is
extended to
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FðxÞ ¼ 1

2

X
c

X
TE

jjP DFT ðMTEðxÞCcÞ � sTE;c jj22: ½5�

This can improve the condition number of the equa-
tion system, but requires estimates of the coil sensi-
tivities Cc. For a blocked undersampling scheme the
centrally arranged k-space samples of the first echo
can be used to create such coil profiles from a low-re-
solution reference image. Even better coil profiles may
be obtained using a nonlinear inverse algorithm previ-
ously developed for parallel imaging (13). Here this
algorithm was constrained such as to shift all phase
information into the complex coil sensitivities and
applied to a fully sampled k-space obtained by the
combination of data from multiple echoes. The result-
ing sensitivities were kept constant during the mini-
mization of the cost function [5], while the parameter
maps r and R were assumed to be real.

Optimization and Gradient Scaling

For the minimization of the nonlinear cost function
we used the CG-Descent algorithm (14). Because its
success and speed depend on the relative scaling of
the partial derivatives of the cost function with respect
to the components in x, a heuristically chosen scaling
factor for the echo-time vector was proposed in (7).
Here, we introduce a data-driven method to automati-
cally determine proper scaling factors.

For equally spaced echo times TEn, the signal model
in [2] can be simplified to:

Mnðr; R̂Þ ¼ r � R̂n ; ½6�

with R̂ ¼ expð�R � TE1Þ and n being the echo number.
By introducing the two additional scaling variables Lq
and LR the modified model function reads:

Mnð~r; ~RÞ ¼ Lr~r � ðLR
~RÞn : ½7�

Assuming ~r; ~R and P to be real, the gradient of the
cost function is

rFð~xÞ ¼
df
d~r

df
d ~R

 !
;

df

d~r
¼
X
c

X
n

LpðLR
~RÞnKc;n

¼
X
c

X
n

Lp R̂n Kc;n ;

df

d ~R
¼
X
c

X
n

n Ln
R
~Rn�1 Lr~r Kc;n

¼
X
c

X
n

n LR R̂
n�1

r Kc;n

with Kn;c ¼ �CcDFT
�1ðP DFT Mnð~xÞCc � snÞ:

½8�

where �Cc refers to the complex conjugate coil sensitiv-
ities. As a result, the two main components of the gra-
dient near an estimated solution can be equalized
using the diagonal scaling matrices

Lr ¼
X
n

R̂n

 !�1

;

LR ¼
X
n

n R̂n�1 r

 !�1

:

½9�

With the blocked undersampling scheme, a low-re-
solution approximation of R̂ and q may be calculated
before the main reconstruction by using the central k-
space samples available at different echo times. How-
ever, a direct calculation of the scaling matrices from
such estimates can provoke disadvantageous gradient
amplifications within noisy or low-intensity image
regions. A robust solution was obtained by reducing
the diagonal scaling matrices to scalar values derived
from the respective means of the low-resolution pa-
rameter maps.

Implementation

We used a C implementation of the CG-Descent algo-
rithm (14), while the routines for the cost function
were written in MATLAB (MathWorks, Natick, MA).
The number of CG iterations was set to a fixed num-
ber of 200 for all reconstructions in this study. The
computations took approximately 70 s for a dataset
with 16 echoes and a 192 � 192 image matrix on a
single core of a standard desktop PC equipped with
an Intel Core2 Duo CPU (2.66 GHz). This time propor-
tionally increased with the number of echoes and coil
elements.

Simulations

To validate the accuracy of the approach for a single
receiver coil, we used simulated data for two numeri-
cal phantoms with multiple objects exhibiting equal
spin density but different T2 relaxation times ranging
from 50 to 1000 ms. Simulated k-space samples were
derived from superimposed circles using the

Figure 1. Cartesian encoding with (left) a three-fold acceler-
ated interleaved sampling scheme (middle) a blocked under-
sampling scheme with acceleration factor 3 and (right) 4.
The example refers to a k-space of 24 phase-encoded lines
and 9 echoes. Solid symbols represent acquired lines, while
lines not measured are represented by open symbols.
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analytical Fourier space representation of an ellipse,
i.e., a first-order Bessel function of the first kind. The
simulated data comprised 16 echoes with an echo
spacing of DTE ¼ 10 ms and a matrix size of 160 �
160. The presence of noise was simulated by adding
Gaussian noise with a standard deviation (SD) rang-
ing from 1% to 5% of the uniform spin-density signal.
For a given experimental condition and echo train,
this was accomplished by adding uncorrelated noise
(same amplitude) to the real and imaginary parts of
the k-space data of all echoes. During the analysis, a
noise mask was applied to all parameter maps to
eliminate regions with values below 15% of the arith-
metic mean of r. Low R values were limited to a mini-
mum of 0.2 s�1 corresponding to a maximum T2
value of 5000 ms.

Human Studies

A young healthy adult with no known abnormality
participated in this study and gave written informed
consent before each MRI examination at 3T (Tim Trio,
Siemens Healthcare, Erlangen, Germany). While ra-
diofrequency excitation was accomplished with the
use of a body coil, signal reception was performed ei-
ther by a single quadrature head coil or a 32-element
head coil. For this proof-of-principle study, only five
sections with a resolution of 1.0 � 1.0 � 4.0 mm3

were acquired using a commercial spin-echo MRI
sequence with an echo spacing of DTE ¼ 12.2 ms. The
original dataset involved 32 echoes with full k-space
sampling. However, because the latest echoes exhib-
ited very low SNR and because the signal strength of
the first echo was systematically too low and the
sequence not correctable by simple means, the ana-
lyzed data were restricted to echoes 2 to 17. Different
undersampling factors (blocked scheme) were realized
by selecting respective k-space lines from the fully
sampled data. For a matrix size of 192 � 160 and a
repetition time of TR ¼ 3000 ms the acquisition time
without undersampling was 8 min.

RESULTS

Undersampling Scheme

Figure 2a shows a T2 and spin-density map recon-
structed from fully sampled k-space data without
noise for a numerical phantom and a single receiver
coil. The circular shape of the compartments deliber-
ately involves partial volume effects with the sur-
rounding, so that affected voxels exhibit a multi-expo-
nential signal behavior. In addition, the estimated
maps reveal residual ringing artifacts at T2 disconti-
nuities which are most pronounced for the strongest
T2 difference (white arrow) between the first compart-
ment (50 ms) and its surrounding (500 ms). As a con-
sequence, both the compartment borders and the ad-
jacent ringing reappear in the reconstructed spin-
density map (black arrow).

The application of an interleaved undersampling
pattern is demonstrated in Figure 2b. Despite the fact
that the undersampling factor was only 2, aliased

Figure 2. (Left) Estimated T2 maps of a noiseless numerical
phantom from (a) fully sampled data as well as under-
sampled data using an interleaved (b), a random (c), and a
blocked scheme (d) (16 echoes, DTE ¼ 10.0 ms, undersam-
pling factor 2, single receiver coil). (Right) The maps repre-
sent the corresponding spin-density map (a) and T2
difference maps with respect to the fully sampled reconstruc-
tion (b–d). Residual artifacts (arrows) refer to ringing in (a)
and aliasing in (b), the latter of which is reduced in (c) and
(d). The T2 relaxation times of the compartments are 50 ms
(bottom), 100 ms (middle), 200 ms (top), and 500 ms
(surrounding).

Model-Based Reconstruction for T2 Mapping 423



copies of the object’s discontinuities become visible in
the reconstructed maps (arrows). The situation is
improved when using a random pattern as shown in

Figure 2c. Similar to Figure 1 (left) the applied pattern
was designed in an interleaved manner, where sam-
ples from odd echoes were selected randomly while
even echoes fill the previously open k-space positions.
This strategy turned out to be more efficient than an
echo-independent random sampling. As can be seen
in the difference maps, the aliasing artifacts are
weaker and spread out along the phase-encoding
direction of the image. Finally, Figure 2d demon-
strates that an even better suppression of artifacts
was achieved by a blocked undersampling scheme de-
spite residual artifacts restricted to T2 discontinuities
and respective structural borders.

A similar comparison of different sampling strat-
egies for MRI of the human brain is summarized in
Figure 3. The results are in agreement with and con-
firm the observations made for simulated data. Based
on these findings, all applications of the model-based
reconstruction to human MRI data were accomplished
with the use of a blocked undersampling scheme.

Quantitative Accuracy

The left column in Figure 4 shows the reconstructed
T2 maps of a noiseless numerical phantom for differ-
ent undersampling factors using a blocked under-
sampling scheme and a single receiver coil. The

Figure 3. (Left) Estimated T2 maps of the human brain from
fully sampled data as well as undersampled data (a) using an
interleaved (b), a random (c), and a blocked scheme (d) (16
echoes, DTE ¼ 12.2 ms, undersampling factor 2, single re-
ceiver coil). (Right) The maps represent the corresponding spin-
density map (a) and T2 difference maps with respect to the
fully sampled reconstruction (b–d) (parameters as in Fig. 2).

Figure 4. Model-based reconstructions of T2 maps from nu-
merical phantoms for undersampling factors of 1, 5, and 10
(16 echoes, DTE ¼ 10.0 ms, blocked scheme, single receiver
coil). (Left) No noise, T2 compartments isolated from the sur-
rounding, (middle) no noise, T2 compartments directly em-
bedded in the surrounding, (right) same as (middle) but with
noise corresponding to 1% SD of the initial spin-density sig-
nal for all echoes. The T2 relaxation times of the compart-
ments are 50 ms (right), 100 ms (lower left), 200 ms (upper
left), and 1000 ms (surrounding).
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compartments of this phantom have been encircled by
distinct borders of void signal intensity, precluding
partial volume effects with the surrounding. The
remaining source of signal deviations from a strictly
mono-exponential decay is, therefore, reduced to
truncation artifacts. In addition to ringing, the recon-
structed parameter maps remain free of visible arti-
facts up to an undersampling factor of 9. The result
for an undersampling factor of 10 slightly differs from
the fully sampled map by a barely visible residual ali-
asing artifact around the compartment with the high-
est relaxivity difference to the surrounding.

The influence of partial volume effects on the recon-
struction is demonstrated in the middle column of
Figure 4, where the signal void between the compart-
ments has been removed. The aliasing effect for an
undersampling factor of 10 is now more pronounced
(arrow). In the presence of Gaussian noise with a SD
that corresponds to 1% of the spin-density signal, all
aliasing artifacts become invisible as shown in the
right column of Figure 4.

A quantitative ROI-based analysis of mean T2 esti-
mates is summarized in Table 1. As a ‘‘gold standard,’’
all values are compared with the results of a nonlin-
ear least-squares fit of a set of T2-weighted magnitude
images that were obtained by Fourier transformation
of the respective fully-sampled k-space data. The
influence of Gaussian noise has been evaluated for
SD levels of 1% and 5%, which correspond to SNR
values of 100 and 20 (single coil). For comparison, the
fully sampled studies of the human brain resulted in
a SNR above 200 (initial echoes) for multi-channel
recordings, and above 40 for the single coil. Simula-

tions were performed for undersampling factors of 1,
2, 5, and 10. For noiseless data, all T2 estimates
closely agree with the values obtained by standard fit-
ting and are very accurate up to the highest under-
sampling factor of 10. Residual T2 deviations have to
be ascribed to truncation artifacts, as the removal of
the compartment isolations only causes negligible
changes in the SD values, and the reconstruction ac-
curacy for ringing-free phantoms reaches the machine
precision for all undersampling factors up to 15 (not
shown).

Similar good results are obtained for the condition
with 1% noise, although at the expense of slightly
increased SD values for the T2 estimates. In this case,
the mean T2 values up to 200 ms deviate from the
correct values by less than 2% for undersampling fac-
tors up to 8. Larger errors of up to 4% for the com-
partment with T2 ¼ 1000 ms must be ascribed to the
fact that the 16 simulated echoes covered a period of
only 160 ms which is far from being adequate for long
T2 relaxation times. This effect becomes stronger for
higher acceleration factors and noise levels. While the
results for a 5% noise level still allow for an under-
sampling factor of 5, when accepting a 4% error for
T2 estimates up to 200 ms, some T2 estimates in the
surrounding become limited by the applied mask.
Pertinent results are discarded.

Human Studies

Figure 5 shows spin-density and T2 maps of the
human brain which are reconstructed with different
degrees of undersampling using the blocked scheme

Table 1

T2 Relaxation Times From Model-Based Reconstructions of a Numerical Phantom*

Undersampling T2 ¼ 50 ms T2 ¼ 100 ms T2 ¼ 200 ms T2 ¼ 1000 ms

No noise, isolated compartments

Standard fitting 50.0 6 2.2 100.0 6 1.9 200.0 6 2.5 1000.0 6 6.6

1 50.0 6 2.3 100.0 6 1.9 200.1 6 2.4 1000.3 6 6.6

5 50.0 6 2.6 100.0 6 2.0 200.0 6 2.5 999.6 6 7.4

8 50.0 6 3.5 100.0 6 2.2 200.1 6 2.7 999.3 6 6.2

10 50.3 6 5.9 100.0 6 2.7 200.0 6 2.8 1000.0 6 6.8

No noise, compartments without isolation

Standard fitting 50.1 6 2.6 100.0 6 2.5 200.0 6 3.0 1000.0 6 6.6

1 50.0 6 2.6 100.0 6 2.5 200.0 6 3.0 999.9 6 6.6

5 50.1 6 3.1 100.0 6 2.6 200.0 6 3.1 1000.0 6 5.4

8 50.2 6 4.2 100.1 6 2.9 200.1 6 3.2 1000.0 6 10.2

10 50.6 6 6.5 100.1 6 3.5 200.0 6 3.3 1000.4 6 9.3

Noise level ¼ 1% (compartments without isolation)

Standard fitting 50.1 6 2.7 100.1 6 2.7 200.1 6 4.4 1004.8 6 57.8

1 50.0 6 2.7 100.0 6 2.6 200.1 6 4.5 1005.3 6 58.1

5 50.1 6 3.9 99.9 6 4.0 200.5 6 9.4 1021.9 6 152

8 50.7 6 7.1 100.2 6 5.7 200.6 6 10.7 1039.2 6 208

10 52.9 6 12.9 100.8 6 6.6 201.1 6 12.0 1058.5 6 260

Noise level ¼ 5% (compartments without isolation)

Standard fitting 52.8 6 4.6 102.3 6 7.3 201.8 6 17.3 1137.0 6 484

1 50.1 6 4.4 101.2 6 7.6 200.3 6 16.5 1138.7 6 521

5 51.5 6 14.1 104.3 6 18.3 208.0 6 44.6 n.a.

8 55.2 6 22.7 107.0 6 31.3 217.6 6 65.2 n.a.

10 54.1 6 28.1 110.0 6 37.3 255.8 6 498 n.a.

*T2 values (ms) represent mean 6 SD (16 echoes, DTE ¼ 10 ms, single receiver coil), n.a. ¼ not available. Noise levels (for all echoes)

are characterized by their SD in percent of the uniform spin-density signal. Standard nonlinear least-squares fitting refers to a set of fully

sampled T2-weighted magnitude images.
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and a single-element head coil for data acquisition.
Again, they are compared with a nonlinear least-
squares fit of fully sampled magnitude images. The
resulting parameter maps from the model-based non-
linear inverse reconstruction remain free of visible
artifacts up to an undersampling factor of 5. However,
with this coil the SNR decrease for fewer acquisitions
becomes already visible for undersampling factors
larger than 2. The experiment was, therefore, repeated
with a 32-element head coil as shown in Figure 6. In
this case, the magnitude images for the least-squares
fit were obtained from the sum-of-squares of the
Fourier transformed data of all individual coil ele-
ments. The nonlinear inverse reconstruction benefits
from the much better SNR and yields acceptable
T2 maps for an undersampling factor of at least 5.

The reconstructions for a factor of 10 exhibit small
artifacts such as vertical ghosts near the hemispheric
fissure.

Complementing the determination of parameter
maps, model-based reconstructions allow for the esti-
mation of T2-weighted images at arbitrary echo times.
Figure 7 depicts respective images (same section as in
Fig. 6) for an undersampling factor of 5 and echo
times that range from spin-density contrast to weak,
moderate, and strong T2 contrast. In contrast to con-
ventional fast spin-echo images, these images exhibit
‘‘true’’ T2 contrast for the chosen echo time (rather
than a mixed contrast of several echo times) and also
remain free from blurring which arises from a modu-
lation of the point-spread function when combining
phase-encoded echoes with different intensities.

Figure 5. Standard fitting (fully sampled k-space data) ver-
sus model-based reconstructions of (left) spin-density and
(middle, right) T2 maps of the human brain for a single
receiver coil and undersampling factors of 2, 3, and 5 (16
echoes, DTE ¼ 12.2 ms, blocked scheme).

Figure 6. Standard fitting (fully sampled k-space data) ver-
sus model-based reconstructions of (left) spin-density and
(middle, right) T2 maps of the human brain for a 32-element
coil and undersampling factors of 2, 5, and 10 (16 echoes,
DTE ¼ 12.2 ms, blocked scheme).
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Table 2 summarizes T2 estimates for different
regions-of-interest in the human brain as a function
of the degree of undersampling. The T2 values
obtained from the model-based reconstruction reveal
a surprisingly good agreement with those obtained
from the fully sampled datasets even for undersam-
pling factors up to 10. For the fully sampled data, the
T2 values of the least-squares fit are slightly higher
than those obtained by model-based reconstruction.
This may be due to fitting magnitude images that are
contaminated with noise in the late echoes. The dis-
crepancy is removed, if the curve fitting is applied to
the images obtained by nonlinear inversion as
described in (13).

DISCUSSION

Model-based reconstructions of parametric maps serve
several purposes: they may contribute to a reduction of
the measuring time or—for a constant measuring time—
improve the image quality (e.g., by increasing the spatial
resolution) and/or enhance the scanning efficiency (e.g.,
by allowing for more sections). Most importantly, how-
ever, their main advantage is the access to quantitative
(objective and comparable) measures of tissue proper-
ties. For the clinically relevant case of T2 relaxation, the
present work offers a relatively simple solution that uses
a standard spin-echo MRI sequence with multiple echoes
and Cartesian encoding. It requires only a minor modifi-
cation for implementing the desired undersampling
scheme. The calculation of differently T2-weighted
images (from fully sampled k-space data) is no longer
necessary and the retrospective fitting by a T2 relaxation
decay is replaced by a direct nonlinear inverse recon-
struction of a spin-density and T2map.

In general, the success of a model-based reconstruc-
tion depends on the ability to accurately model the
underlying data dependency. In this study, the chosen
model forces the optimizer to ‘‘explain’’ the signal behav-
ior by a mono-exponential decay. Image regions or pix-
els which do not comply with this assumption (e.g.,
tissues with a multi-exponential signal decay or struc-
tural borders with pronounced T2 discontinuities) may,
therefore, lead to artifacts in the reconstruction. While
an appropriate undersampling scheme could be shown
to avoid the problem, it is also possible to extend the
reconstruction by a less restrictive model function such
as a multi-exponential decay.

It is conceivable to further improve the reconstruc-
tion by incorporating prior knowledge into the cost
function using suitable regularization terms. For
example, penalizing the total variation of the maps
may suppress ringing artifacts and preclude noise
amplifications during the iterative optimization. How-
ever, because there is no generally accepted method
for objectively choosing the inherent regularization pa-
rameters, we left this option for future extensions. We
also found that in most cases a much lower number of
iterations turned out to be sufficient for accurate
reconstruction. Therefore, an automatic stopping crite-
rion for the optimization would be highly desirable.
Finally, for more widespread practical applications, we
expect a substantial reduction of the computational

Figure 7. ‘‘Synthetic’’ T2-weighted images from model-based
reconstructions of a spin-density and T2 map of the human
brain with an undersampling factor of 5 (same section and
parameters as in Fig. 5). The echo times TE ¼ 10, 40, 80,
and 120 ms correspond to spin-density contrast as well as
weak, moderate, and strong T2 contrast, respectively.

Table 2

T2 Relaxation Times From Model-Based Reconstructions of the Human Brain

Standard fitting

Undersampling factor

1 2 5 10

Anterior cingulate 100 6 10 99 6 10 98 6 10 98 6 10 98 6 10

Insular cortex 94 6 5 93 6 5 93 6 5 92 6 5 93 6 6

Thalamus 81 6 4 79 6 4 78 6 4 78 6 5 78 6 8

Lentiform nucleus 78 6 4 77 6 8 77 6 5 76 6 5 78 6 6

Caudate nucleus 88 6 5 87 6 5 86 6 5 86 6 5 87 6 9

Internal capsule 56 6 5 54 6 6 55 6 6 52 6 7 54 6 12

Frontal white matter 74 6 2 74 6 2 73 6 2 72 6 2 74 6 4

*T2 values (ms) represent mean 6 SD (16 echoes, DTE ¼ 12.2 ms, 32-element coil). Standard nonlinear least-squares fitting refers to a

set of fully sampled T2-weighted magnitude images.
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time with the use of graphical processing units as
most of the calculations may be performed in parallel.

In conclusion, depending on the available SNR, the
proposed method allows for very high undersampling
factors by exploiting data redundancy in parameter
space, even without the need for data redundancy due
to multiple receiver coils. Thus, the method effectively
works without parallel imaging in settings where only a
single or very few coils are available. This feature is of
particular interest for animal MRI studies, where coil
arrays with more than four elements are far less com-
mon than in state-of-the-art human MRI systems. On
the other hand, the availability of multiple receiver coils
not only ensures optimum SNR, but further improves
the quality of the undersampled reconstructions.
Accordingly, the combined data redundancies from
multiple coils and multiple echoes provide access to the
largest undersampling factors that clearly exceed the
values commonly obtained by conventional parallel
MRI. It should also be emphasized that the automatic
gradient-scaling method developed here removes the
need for manually tuning the algorithm for different an-
atomical regions or MRI systems.
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