Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Decoding successive computational stages of saliency processing

MPG-Autoren
/persons/resource/persons19558

Bogler,  Carsten
Max Planck Fellow Research Group Attention and Awareness, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19557

Bode,  Stefan
Max Planck Fellow Research Group Attention and Awareness, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19699

Haynes,  John-Dylan
Max Planck Fellow Research Group Attention and Awareness, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bogler, C., Bode, S., & Haynes, J.-D. (2011). Decoding successive computational stages of saliency processing. Current Biology, 21(19), 1667-1671. doi:10.1016/j.cub.2011.08.039.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-0279-1
Zusammenfassung
An important requirement for vision is to identify interesting and relevant regions of the environment for further processing. Some models assume that salient locations from a visual scene are encoded in a dedicated spatial saliency map [1, 2]. Then, a winner-take-all (WTA) mechanism [1, 2] is often believed to threshold the graded saliency representation and identify the most salient position in the visual field. Here we aimed to assess whether neural representations of graded saliency and the subsequent WTA mechanism can be dissociated. We presented images of natural scenes while subjects were in a scanner performing a demanding fixation task, and thus their attention was directed away. Signals in early visual cortex and posterior intraparietal sulcus (IPS) correlated with graded saliency as defined by a computational saliency model. Multivariate pattern classification [3, 4] revealed that the most salient position in the visual field was encoded in anterior IPS and frontal eye fields (FEF), thus reflecting a potential WTA stage. Our results thus confirm that graded saliency and WTA-thresholded saliency are encoded in distinct neural structures. This could provide the neural representation required for rapid and automatic orientation toward salient events in natural environments.