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JOSÉ LUIS JARAMILLO

Max-Planck-Institut für Gravitationsphysik,
Albert Einstein Institut,

Am Mühlenberg 1, Golm D-14476, Germany
Jose-Luis.Jaramillo@aei.mpg.de

Received 27 July 2011

We present an introduction to dynamical trapping horizons as quasi-local models for
black hole horizons, from the perspective of an Initial Value Problem approach to the
construction of generic black hole spacetimes. We focus on the geometric and structural
properties of these horizons aiming, as a main application, at the numerical evolution
and analysis of black hole spacetimes in astrophysical scenarios. In this setting, we dis-
cuss their dual role as an a priori ingredient in certain formulations of Einstein equations
and as an a posteriori tool for the diagnosis of dynamical black hole spacetimes. Com-
plementary to the first-principles discussion of quasi-local horizon physics, we place an
emphasis on the rigidity properties of these hypersurfaces and their role as privileged
geometric probes into near-horizon strong-field spacetime dynamics.

Keywords: Black holes; quasi-local horizons; Initial Value Problem.

1. Black Holes: Global vs (Quasi-)Local Approaches

1.1. Establishment’s picture of the gravitational collapse

Our discussion is framed in the problem of gravitational collapse in General Relativ-
ity. The current understanding is summarized in what one could call the establish-
ment’s picture of gravitational collapse,1 a heuristic chain of results and conjectures:

(1) Singularity theorems: If gravity is able to make all light rays locally converge
(namely, if trapped surfaces exist), then a spacetime singularity forms.2–5

(2) (Weak) Cosmic censorship (Conjecture): In order to preserve predictability, the
formed singularity is not visible for a distant observer.6

(3) Black hole spacetimes stability (Conjecture): General Relativity gravitational
dynamics drives eventually the black hole spacetime to a stationary state.

(4) Black hole uniqueness theorem: The final state is a Kerr black hole spacetime.7
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Light bending is a manifestation of spacetime curvature and black holes constitute a
dramatic extreme case of this. The standard picture of gravitational collapse above
suggests two (complementary) approaches to the characterization of black holes:

(a) Global approach: (weak) cosmic censorship suggests black holes as no-escape
regions not extending to infinity. Its boundary defines the event horizon E .

(b) Quasi-local approach: Singularity theorems suggest the characterization of a
black hole as a spacetime trapped region where all light rays locally converge.

The establishment’s picture of gravitational collapse depicts an intrinsically dynami-
cal scenario. Hence, a systematic methodology to the study of dynamical spacetimes
is needed. We adopt an Initial (Boundary) Value Problem approach, that offers a
systematic avenue to the qualitative and quantitative aspects of generic spacetimes.

1.2. The black hole region and the event horizon

The traditional5 approach to black holes involves global spacetime concepts, in
particular a good control of the notion of infinity. Given a (strongly asymptotically
predictable) spacetime M, the black hole region B is defined as B = M−J−(I +),
where J−(I +) is the causal past of future null infinity I +. That is, B is the
spacetime region that cannot communicate with I +.

We are particularly interested in characterizing a notion of boundary surface of
black holes. In this global context this is provided by the event horizon E , defined
as the boundary of B, that is E = ∂J−(I +) ∩ M. Interesting geometric and
physical properties of the event horizon are: (i) E is a null hypersurface in M; (ii)
it satisfies an Area Theorem,8,9 so that the area of spatial sections S of E does not
decrease in the evolution and, beyond that, (iii) a set of black hole mechanics laws
are fulfilled.10

However, the global aspects of the event horizon also bring difficulties: (a) it is
a teleological concept, i.e. the knowledge of the full (future) spacetime is needed in
order to locate E , and (b) the black hole region and the event horizon can enter
into flat spacetime regions. In sum, the notion of event horizon is a too global one:
it does not fit properly into the adopted Initial Value Problem approach.

1.3. The trapped region and the trapping boundary

The global approach requires controlling structures that are not accessible dur-
ing the evolution. In this context, the seminal notion of trapped surface2 plays
a crucial role, capturing the idea that all light rays emitted from the surface
locally converge. Through the singularity theorems and weak cosmic censorship, it
offers a benchmark for the existence of a black hole region: in strongly predictable
spacetimes with proper energy conditions, trapped surfaces lie inside the black
hole region.5 Moreover, their location does not involve a whole future spacetime
development.



October 11, 2011 10:34 WSPC/S0218-2718 142-IJMPD
S0218271811020366

Local Black Hole Horizons in the 3+1 Approach to General Relativity 2171

1.3.1. Trapped and outer trapped surfaces. Apparent horizons

Given a closed spatial surface S in the spacetime, we can consider the light emitted
from it along outer and inner directions given, respectively, by future null vectors �a

and ka. Then, light locally converges (in the future) at S if the area of the emitted
light-front spheres decreases in both directions (see though Ref. 11). Denoting the
area element of S as dA =

√
qd2x, the infinitesimal variations of the area along �a

and ka define outgoing and ingoing expansions θ(�) and θ(k) (see Sec. 2.1 for details)

δ�
√

q = θ(�)√q, δk
√

q = θ(k)√q. (1)

A trapped surface is characterized by θ(�)θ(k) > 0. In the black hole context, in
which the singularity occurs in the future, we refer to S as a future trapped surface
(TS) if θ(�) < 0, θ(k) < 0 and as future marginally trapped surface (MTS) if one
of the expansions, say θ(�), vanishes: θ(�) = 0, θ(k) ≤ 0. If a notion of naturally
expanding direction for the light rays exists (e.g. in isolated systems, the outer
null direction �µ pointing to infinity), a related notion of outer trapped surface is
given5 by θ(�) < 0. Marginally outer trapped surfaces (MOTS) are characterized by
θ(�) = 0.

Before proceeding to a characterization of black holes in terms of trapped sur-
faces, let us consider trapped surfaces from the perspective of a spatial slice of
spacetime Σ. The trapped region in Σ, TΣ ⊂ Σ, is the set of points p ∈ Σ belonging
to some (outer) trapped surface S ⊂ Σ. The Apparent Horizon (AH) is then the
outermost boundary of the trapped region TΣ. A crucial result is the following char-
acterization5,12,13 of AHs: if the trapped region TΣ in a slice Σ has the structure of
a manifold with boundary, the AH is a MOTS, i.e. θ(�) = 0.

Given a 3+1 foliation of spacetime {Σt}, let us consider the worldtube obtained
by piling up the two-dimensional AHs St ⊂ Σt. Such an AH-worldtube does not
need to be a smooth hypersurface (it is not even necessarily continuous, as discussed
in Sec. 5.1.1). This is our first encounter with the notion of a spacetime worldtube
foliated by MOTS. Though these worldtubes are slicing-dependent, their character-
ization in terms of MOTSs makes them very useful from an operational perspective.

1.3.2. The trapped region: Definition and caveats

From a spacetime perspective, no reference to a slice Σ must enter into the charac-
terization of the trapped region. The spacetime trapped region T is defined as the
set of points p ∈ M belonging to some trapped surface S ⊂ M. Its boundary is
referred14 to as the trapping boundary. These concepts offer, in principle, an intrin-
sically quasi-local avenue to address the notion of black hole region and black hole
horizon, with no reference to asymptotic quantities.

In spite of their appealing features, there are also important caveats associ-
ated with the trapped region and the trapping boundary. In particular, we lack an
operational characterization of the trapping boundary (see also the contribution by



October 11, 2011 10:34 WSPC/S0218-2718 142-IJMPD
S0218271811020366

2172 J. L. Jaramillo

J. M. M. Senovilla15). A systematic attempt to address this issue is provided by the
notion of trapping horizon,14 namely smooth worldtubes of MOTS (see Sec. 2.2),
as a model for the trapping boundary. Trapping horizons, that are nonunique, have
led to important insights into the structure of the trapped region, though an oper-
ational characterization of the trapping boundary is still missing.

The difficulties are illustrated in the discussion of the relation between the trap-
ping boundary and E . In strongly predictable spacetimes with appropriate energy
conditions (see, though Ref. 16), the trapped region T is contained in the black hole
region B. In attempts to refine this statement, support was found17,18 suggesting
that the trapping boundary actually coincides with the event horizon, though later
work19 showed that the trapped region not always extends up to E . The question is
still open for (outer) trapped regions constructed on outer trapped surfaces, rather
than on TSs. Important insight into these issues has been gained in recent works20,21

demonstrating truly global features of the trapped region T . In particular:

(i) The trapping boundary cannot be foliated by MOTS.
(ii) Closed trapped surfaces can enter into the flat region. This is an important

issue in this approach to black holes, since it was a main criticism in Sec. 1.2.
(iii) Closed trapped surfaces are clairvoyant, that is, they are aware of the geometry

in noncausally connected spacetime regions. This nonlocal property challenges
their applicability in an operational characterization of black holes.

1.4. A pragmatic approach to quasi-local black hole horizons

Trapping horizons offer a sound avenue towards the quasi-local understanding of
black hole physics. They provide crucial insight in gravitational scenarios where
a quasi-local notion of black hole horizon is essential, such as black hole ther-
modynamics beyond equilibrium, the characterization of physical parameters of
strongly dynamical astrophysical black holes (notably in numerical simulations),
semi-classical collapse, quantum gravity or mathematical relativity (cf. A. Nielsen’s
contribution22). But, on the other hand, issues like their nonuniqueness or the clair-
voyant properties of trapped surfaces pose fundamental questions that cannot be
ignored.

We do not aim here at addressing first-principles questions about the role of
trapping horizons as a characterization of black hole horizons. We rather assume
a pragmatic approach to the study of gravitational dynamics, which underlines the
role of trapping horizons as hypersurfaces of remarkable geometric properties in
black hole spacetimes. More specifically, our main interests are:

(i) The construction and diagnosis of black hole spacetimes in an Initial (Bound-
ary) Value Problem approach.

(ii) Identification of a geometric probe into near-horizon spacetime dynamics.

Point (ii) is particularly important in the study of gravity in the strong-field regime,
where the lack of rigid structures (e.g. symmetries, a background spacetime . . . ) is
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a generic and essential problem. Given our interests and the adopted pragmatic
methodology, we look for a geometric object such that: (a) represents a footprint of
black holes, providing a probe into their geometry; (b) is adapted, by construction,
to an Initial-Boundary Value Problem approach; and (c) although not-necessarily
unique, provides a geometric structure with some sort of rigidity property. As we
shall see in the following, dynamical trapping horizons fulfill these requirements.

1.5. General scheme

In Sec. 2 we introduce the basics of the geometry of closed surfaces in a Lorentzian
manifold and motivate quasi-local horizons in stationary and dynamical regimes.
Section 3 reviews their geometric properties and their special features as physical
boundaries. Sections 4 and 5 are devoted to applications in a 3+1 description of
the spacetime. Section 4 shows the use of quasi-local horizons as inner boundary
conditions for elliptic equations in General Relativity, whereas Sec. 5 discusses some
applications to the analysis of spacetimes, in particular their role in a correlation
approach to spacetime dynamics. In Sec. 6 a general overview is presented.

2. Quasi-Local Horizons: Concepts and Definitions

2.1. Geometry of spacelike closed 2-surfaces S
2.1.1. Normal plane: Outgoing and ingoing null vectors

Let us consider a spacetime (M, gab) with Levi-Civita connection ∇a. Given a
spacelike closed (compact without boundary) 2-surface S in M and a point p ∈
S, the tangent space splits as TpM = TpS ⊕ T⊥

p S. We span the normal plane
T⊥

p S either by (future-oriented) null vectors �a and ka (defined by the intersection
between T⊥

p S and the null cone at p) or by any pair of normal timelike vector na

and spacelike vector sa. Let us denote conventionally �a to be the outgoing null
normal and ka the ingoing one. We choose normalizations:

�a�a = 0, kaka = 0, �aka = −1, nana = −1, sasa = 1, nasa = 0. (2)

Directions �a and ka are uniquely determined, but a normalization-boost freedom

�′a = f�a, k′a = f−1ka, (3)

n′a = cosh(σ)na + sinh(σ)sa, s′a = sinh(σ)na + cosh(σ)sa,

remains for some arbitrary rescaling positive function f on S (where σ = ln(f) and
�a = λ(na + sa)/

√
2 and ka = λ−1(na − sa)/

√
2, for some function λ on S).

2.1.2. Intrinsic geometry of S

The induced metric on S is given by

qab = gab + ka�b + �akb = gab + nanb − sasb, (4)
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so that qa
b is the projector onto S

qa
bq

b
c = qa

c, qa
bv

b = va (∀ va ∈ TS), qa
bw

b = 0 (∀wa ∈ T⊥S). (5)

We denote the Levi-Civita connection associated with qab as 2Da. The volume form
on S will be denoted by 2ε =

√
qdx1 ∧ dx2, i.e. 2εab = ncsd4εcdab, though we will

also employ the area measure notation dA =
√

qd2x.

2.1.3. Extrinsic geometry of S in (M, g)

We define the second fundamental tensor of (S, qab) in (M, gab) (also, shape tensor
or extrinsic curvature tensor) as

Kc
ab = qd

aqe
b∇dq

c
e, (6)

where c is an index in the normal plane T⊥S, whereas a and b are indices in TS.
Given a vector va normal to S, we can define the deformation tensor Θ(v)

ab as

Θ(v)
ab = qc

aqd
b∇cvd. (7)

Then, using expression (4), the second fundamental tensor can be expressed as

Kc
ab = kcΘ(�)

ab + �cΘ(k)
ab = ncΘ(n)

ab − scΘ(s)
ab . (8)

We can express Θ(v)
ab in terms of the variation of the intrinsic metric along va.

Given a (tensorial) object Aa1···an

b1···bm tangent to S we denote by δv the operator
(δvA)a1···an

b1···bm = qa1
c1 · · · qan

cnqd1
b1 · · · qdm

bmLvAc1···cn

d1···dm , where Lv denote
the Lie derivative along (some extension of) va. Then, it follows

δvqab =
1
2
Θ(v)

ab . (9)

(a) Shear and expansion associated with va. Defining the expansion θ(v) and shear
tensor σ

(v)
ab associated with the normal vector va as

θ(v) ≡ qab∇avb = δvln
√

q, σ
(v)
ab ≡ Θ(v)

ab − 1
2
θ(v)qab, (10)

we express the deformation tensor Θ(v)
ab in terms of his trace and traceless parts

Θ(v)
ab = σ

(v)
ab +

1
2
θ(v)qab. (11)

(b) Mean curvature vector Ha. Taking the trace of Θ(v)
ab on S we define the mean

curvature vector a

Hc ≡ qabKc
ab = θ(�)kc + θ(k)�c. (12)

aNote the opposite sign convention with respect to the contribution by J. M. M. Senovilla.15
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The extrinsic curvature information of (S, qab) in (M, gab) is completed by the
normal fundamental forms associated with normal vectors va. In particular23

Ω(n)
a = scqd

a∇dnc, Ω(s)
a = ncqd

a∇dsc,

Ω(�)
a =

1
kb�b

kcqd
a∇d�c, Ω(k)

a =
1

kb�b
�cqd

a∇dkc. (13)

All these normal fundamental forms are related up to a sign and a total derivative
on S. Using the normalizations (2) we getb: Ω(n)

a = −Ω(s)
a , Ω(�)

a = −Ω(k)
a , Ω(�)

a =
Ω(n)

a − 2Daλ. We choose to employ the 1-form Ω(�)
a in the following.

2.1.4. Transformation properties under null normal rescaling

Under the rescaling (2) �a → f�a, ka → f−1ka the introduced fields transform as

qab → qab,
2Da → 2Da,

Kc
ab → Kc

ab, Ha → Ha,

Θ(�)
ab → fΘ(�)

ab , θ(�) → fθ(�), σ
(�)
ab → fσ

(�)
ab ,

Θ(k)
ab → f−1Θ(k)

ab , θ(k) → f−1θ(k), σ
(k)
ab → f−1σ

(k)
ab .

Ω(�)
a → Ω(�)

a + 2Da(lnf),

(14)

Finally, given an axial Killing vector φa on S, we can write the angular momentumc

J =
1
8π

∫
S

Ω(�)
a φa2ε. (15)

The transformation rule of Ω(�)
a in (14) together with the divergence-free property

of φa (following from its Killing character) guarantee that the quantity J does not
depend on the choice of null normals �a, ka (i.e. J does not change under a boost).

2.2. Trapping horizons

2.2.1. Worldtubes of marginally trapped surfaces

A trapping horizon14 is (the closure of) a hypersurface H foliated by closed marginal
(outer) trapped surfaces: H =

⋃
t∈R

St, with θ(�)|St = 0. Trapping horizons are
classified according to the signs of θ(k) and δkθ(�). In particular, the sign of θ(k)

controls if the singularity occurs either in the future or in the past of S, whereas
the sign of δkθ(�) controls the (local) outer- or inner-most character of H. Then, a
trapping horizon is said to be: (i) future (respectively, past) if θ(k) < 0 (respectively,
θ(k) > 0), and (ii) outer (respectively, inner) if there existsd �a and ka such that
δkθ(�) < 0 (respectively, δkθ(�) > 0).

bWhen using �aka = −eσ one gets: Ω
(�)
a = −Ω

(k)
a − 2Daσ. This will be relevant later, in Eq. (39).

cThe quantity J coincides with the Komar angular momentum in case that φa can be extended
to an axial Killing in the neighborhood of S.
dThe sign of δkθ(�) is not invariant on the whole S under a rescaling (2). However, if there exists
�a and ka such that δkθ(�) < 0 on S, then there does not exist any choice of �a and ka such that
δkθ(�) > 0 on S; see Ref. 24 and also the marginally trapped surface stability condition in Ref. 25.
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2.2.2. Future outer trapping horizons

In a black hole setting the singularity occurs in the future of sections St of H, so
that the related trapping horizon is of future type, θ(k) < 0. In addition, when
considering displacements along ka (ingoing direction) we should move into the
trapped region, i.e. δkθ(�) < 0, so that the trapping horizon should be outer.

The resulting characterization of quasi-local black hole horizons as Future Outer
Trapping Horizons (FOTHs) is further supported by the following analysis of the
area evolution. Hawking’s area theorem for event horizons (cf. Sec. 1.2) captures a
fundamental feature of classical black holes. It is natural to wonder about a quasi-
local version of it. Let us consider an evolution vector ha along the trapping horizon
H, characterized as: (i) ha is tangent to H and orthogonal to St, and (ii) ha trans-
ports St onto St+δt: δht = 1. We can write ha and a dual vector τa orthogonal to H as

ha = �a − Cka, τa = �a + Cka. (16)

Then haha = −τaτa = 2C, i.e. ha is spacelike for C > 0, null for C = 0 and timelike
for C < 0. The evolution of the area A =

∫
S dA =

∫
S

2ε along ha is given by

δhA =
∫
S

θ(h)2ε =
∫
S
(θ(�) − Cθ(k))2ε = −

∫
S

Cθ(k)2ε. (17)

Considering for simplicity the spherical symmetric case (C = const; see discussion
of Eq. (37) in 3.2.4, for the general case), the trapping horizon condition, δhθ(�) = 0,
writes δ�θ

(�)−Cδkθ(�) = 0, so that C = δ�θ(�)

δkθ(�) . Applying the Raychaudhuri equation
for δ�θ

(�) [see later Eq. (21)], together with the θ(�) = 0 condition, we find

C = −σ
(�)
ab σ(�)ab

+ 8πTab�
a�b

δkθ(�)
. (18)

Under the null energy and outer horizon conditions, it follows C ≥ 0, so that the
future condition guarantees the nondecrease of the area in (17). Therefore, FOTHs
are null or spacelike hypersurfaces (C ≥ 0), satisfying an area law result, and there-
fore providing appropriate models for quasi-local black hole horizons.

2.3. Isolated and dynamical horizons

The distinct geometric structure of null and spatial hypersurfaces suggests different
strategies for the study of the stationary and dynamical regimes of quasi-local
black holes, modeled as future outer trapping horizons. This has led to the parallel
development of the isolated horizon and the dynamical horizon frameworks.26–29

In equilibrium, Isolated Horizons (IH) provide a hierarchy of geometric struc-
tures constructed on a null hypersurface H that is foliated by closed (outer)
marginally trapped surfaces. They characterize different levels of stationarity for
a black hole horizon in an otherwise dynamical environment:

(i) Non-Expanding Horizons (NEH). They represent the minimal notion of equi-
librium by imposing the stationarity of the intrinsic geometry qab.



October 11, 2011 10:34 WSPC/S0218-2718 142-IJMPD
S0218271811020366

Local Black Hole Horizons in the 3+1 Approach to General Relativity 2177

(ii) Weakly Isolated Horizons (WIH). They are NEHs endowed with an additional
structure needed for a Hamiltonian analysis of the horizon and its related
(thermo-)dynamics. They impose no additional constraints on the geometry of
the NEH.

(iii) Isolated Horizons (IH). These are WIHs whose extrinsic geometry is also invari-
ant along the evolution. They provide the strongest stationarity notion on H.

The nonstationary regime can be characterized by Dynamical Horizons (DH),
namely spacelike hypersurfaces H foliated by closed future marginally trapped sur-
faces, i.e. θ(�) = 0 and θ(k) < 0. Introduced in a 3+1 formulation, they provide
a complementary perspective to the dual-null foliation formulation14 of trapping
horizons, making them naturally adapted for an Initial Value Problem perspective.

2.4. IHs and DHs as stationary and dynamical sections of FOTHs

A natural question when considering the transition from equilibrium to the dynam-
ical regime is whether a section St of a FOTH can be partially stationary and
partially dynamical. Or, in other words, whether the element of area dA can be
non-expanding (C = 0) in a part of St whereas it already expands (C > 0) in
another part. Namely, can ha be both null and spacelike on a section St of a FOTH?

The answer is in the negative. Transitions between non-expanding and dynam-
ical parts of a FOTH must happen all at once. More precisely, assuming the null
energy condition, a FOTH can be completely partitioned into non-expanding and
dynamical sections. For a section St to be completely dynamical (C > 0) it suffices
that it has δ�θ

(�) < 0 somewhere on it. Otherwise ha is null (C = 0) all over St.24,30

In more physical terms, it suffices that some energy crosses the horizon some-
where, and the whole horizon instantaneously grows as a whole. This nonlocal
behavior is a consequence of the elliptic nature of quasi-local horizons. As shown
in Sec. 3.2.3, the function C determining the metric type of ha satisfies an ellip-
tic equation [cf. Eq. (37)]. Under the outer condition δkθ(�) < 0 one can apply
a maximum principle to show that C is non-negative [generalization of Eq. (18)].
Moreover, it suffices that δ�θ

(�) 
= 0 somewhere, for having C > 0 everywhere.

3. Quasi-Local Horizons: Properties from a 3+1 Perspective

3.1. Equilibrium regime

3.1.1. Null hypersurfaces: Characterization and basic elements

A hypersurface H is null if and only if the induced metric is degenerated. Equiv-
alently, if and only if there is a tangent null vector �a orthogonal to all vectors
tangent to H: �ava = 0, ∀ va ∈ TH.

Let us introduce some elements on the geometry of H. Choosing a null vector
ka transverse to H, we can writee the degenerated metric as qab = gab +ka�b + �akb.

eWe abuse notation and employ the same notation employed in sections St of H, cf. Eq. (4).
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A projector onto H can also be constructed as: Πa
b = δa

b + �ak
b = qa

b − ka�b. As
a part of the extrinsic curvature of H, a rotation 1-form can be introduced31 on H
as ω

(�)
a = 1

�aka
kc∇a�c. This 1-form lives on H, i.e. kaω

(�)
a = 0. In particular, we can

write Πa
c∇c�

b = ω
(�)
a �b+Θ(�)

a
b
, where Θ(�)

ab is given by expression (7) [cf. Eq. (5.23)
in Ref. 28]. Contracting with �a we find: �c∇c�

a = κ(�)�a, a pre-geodesic equation
where the non-affinity coefficient κ(�) is defined as κ(�) = �aω

(�)
a . If a foliation {St}

of H is given, we can write [cf. Eq. (5.35) in Ref. 28]: ω
(�)
a = Ω(�)

a − κ(�)ka.
Vectors �a and ka can be completed to a tetrad {�a, ka, (e1)a, (e2)a}, where (ei)a

are tangent to sections St. Normalizations given in (2) are then completed to

� · (ei)a = 0, ka(ei)a = 0, (ei)
a(ei)b = δab. (19)

Defining the complex null vector ma = 1√
2
[(e1)a + i(e2)a], the Weyl scalars

are defined as the components of the Weyl tensor Ca
bcd in the null tetrad

{�a, ka, ma, ma}
Ψ0 = Ca

bcd �amb�cmd, Ψ3 = Ca
bcd �akbmckd,

Ψ1 = Ca
bcd �amb�ckd, Ψ4 = Ca

bcd makbmckd.

Ψ2 = Ca
bcd �ambmckd,

(20)

3.1.2. Null hypersurfaces: Evolution

It is illustrative to give a 3+1 perspective on H. Given a foliation H =
⋃

t∈R
St let

us evaluate explicitly the evolution along �a of some quantities defined on sections
St.

(i) Expansion equation (null Raychaudhuri equation):

δ�θ
(�) − κ(�)θ(�) +

1
2
θ(�)2 + σ

(�)
ab σ(�)ab

+ 8πTab�
a�b = 0. (21)

(ii) Tidal equation:

δ�σ
(�)
ab = κ(�)σ

(�)
ab + σ

(�)
cd σ(�)cd

qab − qc
aqd

bCecfd�
e�f . (22)

(iii) Evolution for Ωa:

δ�Ω(�)
c + θ(�)Ω(�)

a = 8πTcd �cqd
a + 2Da

(
κ(�) +

θ(�)

2

)
− 2Dcσ

(�)c

a. (23)

3.1.3. Non-expanding horizons

A NEH32 is a null-hypersurface H ≈ S2 × R, on which the expansion associated
with �a vanishes (θ(�) = 0), the Einstein equations hold and −T a

c �c is future directed
(null dominant energy condition). Note that any foliation H =

⋃
t∈R

St produces a
foliation of H by MOTS St.

(i) NEH characterization. Making θ(�) = 0 in the Raychaudhuri Eq. (21) we get

σabσ
ab + 8πTab�

a�b = 0. (24)
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Since the two terms are positive-definite, they vanish independently. This pro-
vides an instantaneous characterization of a NEH:

θ(�) = 0, σ
(�)
ab = 0, Tab�

a�b = 0. (25)

From Eq. (11) with va = �a, it follows Θ(�)
ab = 0. The NEH characterization is

equivalent, cf. Eq. (9), to the evolution independence of the induced metric qab

δ�qab =
1
2
Θ(�)

ab = 0. (26)

From Eq. (8), we conclude that a NEH fixes half of the degrees of freedom in
the second fundamental form Kc

ab of St in M. This will be relevant in Sec. 4.2.1.
(ii) Connection ∇̂a on a NEH. A null hypersurface has no unique (Levi-Civita)

connection compatible with the metric. However, on a NEH H one can intro-
duce a preferred connection as that one induced from the spacetime connection
∇a: uc∇̂cw

a ≡ uc∇cw
a, ∀ua, wa ∈ TH. Indeed using NEH characterization

(26), uc∇cw
a is tangent to H: �d(uc∇cw

d) = uc∇c(�dw
d) − ucwdΘ(�)

cd = 0.
(iii) Geometry of a NEH. We refer (cf. Ref. 33) to the pair (qab, ∇̂a) as the geometry

of a NEH. Writing the components of the ∇̂a connection in terms of quantities
on St

qc
aqb

d∇̂cv
d = 2Da(qb

cv
c),

qc
akd∇̂cv

d = 2Da(vckc) − qc
avdΘ(k)

cd , (27)

�c∇̂cv
a = δ�v

a + vcω(�)
c �a,

the free data on a NEH are given, from an evolution perspective, by
(qab|St , Ω

(�)
a |St , κ

(�)|H, Θ(k)
ab |St), where qab is time independent.

(iv) Weyl tensor on a NEH. Under the rescaling (3), the 1-form ω
(�)
a transforms as

ω
(�)
a → ω

(�)
a + ∇̂alnf . Its exterior derivative dω(�) provides a gauge invariant

object: understanding ω
(�)
a as a gauge connection, dω(�) is its gauge-invariant

curvature. Using the NEH condition, Θ(�)
ab = 0, one can express (cf. Sec. 7.6.2.

in Ref. 28)

dω(�) = 2 ImΨ2
2ε. (28)

Hence, ImΨ2 is gauge invariant on a NEH. Actually the full Ψ2 is invariant,
as it follows from its boost transformation rules and the values of Ψ0 and Ψ1

on a NEH,28

Ψ0|H = Ψ1|H = 0. (29)

3.1.4. Weakly isolated horizons

A Weakly Isolated Horizon (WIH) (H, [�a]) is a NEH together with a class of null
normals [�a] such that: δ�ω

(�)
a = 0. This condition permits to set a well-posed

variational problem for spacetimes containing stationary quasi-local horizons. This
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enables the development of a Hamiltonian analysis on the horizon H leading to the
construction of conserved quantities under WIH-symmetries.31 In particular, the
expression for the angular momentum in Eq. (15) is recovered

JH =
1
8π

∫
St

ω(�)
c φc 2ε =

1
8π

∫
St

Ω(�)
c φc 2ε = − 1

4π

∫
St

f ImΨ2
2ε, (30)

with φa = 2Dcf
2εac (φa is an axial Killing vector, in particular divergence-free).

The WIH structure is relevant for the discussion of IH thermodynamics (cf. A.
Nielsen’s contribution22). We do not address this issue here and just comment on the
equivalence of the WIH condition with a thermodynamical zeroth law. Reminding
ω

(�)
a = Ω(�)

a −κ(�)ka, the (vacuum) evolution equation (23) for Ω(�)
a leads to L�Ω

(�)
a =

2Daκ
(�). More generally, δ�ω

(�)
a = ∇̂κ(�) (cf. for example Eq. (8.5) in Ref. 28). That

is, on WIHs the non-affinity coefficient (surface gravity) is constant: κ(�) = κo.

WIHs and NEH geometry. WIHs do not constraint the underlying NEH geometry.
In other words, every NEH admits a WIH structure. In fact, given κ(�) 
= const.,
the rescaling �′ = α�, with κo = const. = ∇�α + ακ(�), leads to a constant κ(�′) =
κo. Finally, free data for a WIH are again (qab|St , Ω

(�)
a |St , κ

(�)|H, Θ(k)
ab |St), but now

qab|St , Ω(�)
a |St and κ(�)|H = κo are time-independent.

3.1.5. (Strongly) isolated horizons

An isolated horizon (IH) is a WIH on which the whole extrinsic geometry is time-
invariant: [δ�, ∇̂a] = 0. This condition can be characterized28,33 as δ�Θ(k) = 0, that
leads to the geometric constraint

κ(�)Θ(k)
ab =

1
2
(2DaΩ(�)

b + 2DbΩ(�)
a ) + Ω(�)

a Ω(�)
b − 1

2
2Rab + 4π

(
qc

aqd
bTcd −

T

2
qab

)
.

(31)

With Eq. (26), this fixes completely the second fundamental form Kc
ab. Free data of

an IH, (qab|St , Ω
(�)
a |St , κ

(�)|H = κo), are time independent. Their geometric (gauge-
invariant) content can be encoded in the pairf : (2R, ImΨ2). On the one hand, 2R

accounts for the gauge-invariant part of qab. Regarding Ω(�)
a , from dω(�) = 2ImΨ2

2ε

and κ(�) = const., it follows dΩ(�) = 2ImΨ2
2ε. On a sphere St we can write

Ω(�)
a = Ωdiv−free

a + Ωexact
a , so that Ωexact

a = 2Dag is gauge-dependent [cf. (14)].
From dΩdiv−free

a = 2ImΨ2, the gauge-invariant part of Ω(�)
a is encoded in ImΨ2.

IH multipoles of axially symmetric horizons. On an axially symmetric IH, the gauge-
invariant part of the geometry, (2R, ImΨ2), can be decomposed onto spherical har-
monics. On an axially symmetric section St of H, a coordinate system can be

fNote the relation with the complex scalar K in Refs. 34 and 35.
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canonically constructed,36,37 such that [with AH = 4π(RH)2]

qabdxa ⊗ dxb = (RH)2(F−1sin2θdθ ⊗ dθ + Fdφ ⊗ dφ). (32)

In particular, dA = (RH)2sinθdθdφ (round sphere area element). We can then use
standard spherical harmonics Y�m(θ), with m = 0 in this axisymmetric case∫

St

Y�0(θ)Y�′0(θ)d2A = (RH)2δ��′ , (33)

to define the IH geometric multipoles36 In and Ln

In =
1
4

∫
St

2R Yn0(θ) d2A,

Ln = −
∫
St

ImΨ2 Yn0(θ) d2A. (34)

Then, mass Mn and angular momentum Jn multipoles are defined36−39 by adequate
dimensional rescalings of In and Ln.

3.1.6. Gauge freedom on a NEH: Non-uniqueness of the foliation

Before proceeding to the dynamical case, we underline the existence of a funda-
mental gauge freedom in the equilibrium (null) case: any foliation {St} of a NEH
H provides a foliation of H by marginally trapped surfaces. This is equivalent to
the rescaling freedom of the null normal �a → f�a. Therefore, the amount of gauge
freedom in the equilibrium case is encoded in one arbitrary function f on St.

Note that in this equilibrium horizon context, the relevant spacetime geometric
object (the hypersurface H) is unique, whereas the gauge-freedom enters in its
evolution description due to the non-uniqueness of its possible foliation by MOTS.

3.2. Dynamical case

3.2.1. Existence and foliation uniqueness results

Let us introduce two fundamental results following from the application of geometric
analysis techniques to the study of dynamical trapping horizons.

Property 1 (Dynamical horizon foliation uniqueness).40 Given a dynamical
FOTH H, the foliation by marginally trapped surfaces is unique.

This first result identifies an important rigidity property of DHs: the uniqueness
of its evolution description. This is in contrast with the equilibrium null case, with
its freedom in the choice of the foliation. In particular, on a dynamical FOTH the
evolution vector is completely determined: ha is unique up to time reparametriza-
tion.

Property 2 (Existence of DHs).30,41 Given a marginally trapped surface S0 sat-
isfying an appropriate stability condition on a Cauchy hypersurface Σ, to each 3+1
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spacetime foliation (Σt)t∈R it corresponds a unique dynamical FOTHs H containing
S0 and sliced by marginally trapped surfaces {St} such that St ⊂ Σt.

This second result addresses the Initial Value Problem of DHs, in particular
the existence of an evolution for a given MOTS into a dynamical FOTH. The
result requires a stability condition (namely, S0 is required to be stably outer-
most25,30,41,42), so that the sign of the variation of θ(�) in the inward (outward)
direction is under control. This is essentially the outer condition14 in the FOTH
characterization.

3.2.2. “Gauge” freedom: Non-uniqueness of dynamical horizons

The evolution of an AH into a DH is non-unique, as a consequence of combining
Properties 1 and 2 above. Let us consider an initial AH S0 ⊂ Σ0 and two different
3+1 slicings {Σt1} and {Σt2}, compatible with Σ0. From Property 2 there exist DHs
H1 =

⋃
t1
St1 and H2 =

⋃
t2
St2 , with St1 = H1∩Σt1 and St2 = H2∩Σt2 marginally

trapped surfaces. Let us consider now the sections of H1 by {Σt2}, i.e. S′
t2 =

H1∩Σt2 , so that H1 =
⋃

t2
S′

t2 . In the generic case, slicings {S′
t2} and {St1} of H1 are

different (one can consider a deformation of the slicing {Σt2}, if needed). Therefore,
from the foliation uniqueness of Property 1, sections S′

t2 cannot be marginally
trapped surfaces. It follows then that H1 and H2 are different as hypersurfaces
in M: if H1 = H2, sections St2 (MOTSs) and S′

t2 (non-MOTSs) would coincide
by construction, leading to a contradiction. In addition to this non-uniqueness,
DHs interweave in spacetime due to the existence of causal constraints40: a DH H1

cannot lay completely in the causal past of another DH H2 (cf. Fig. 1).
Comparing with the discussion in Sec. 3.1.6 on the uniqueness and gauge-

freedom issues in the equilibrium case, we conclude from the previous geometric

Fig. 1. (Color online) Illustration of the DH non-uniqueness. Dynamical horizons H1 and H2

represent evolutions from a given initial MOTS corresponding to different spacetime 3+1 slicings.
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considerations that the dynamical and equilibrium cases contain the same amount
of gauge freedom, namely a function on S, although dressed in a different form.
More specifically, whereas in the NEH case there is a fixed horizon, with a rescaling
freedom (�a → f�a, f function on St), in the DH case the foliation is fixed, but a
(gauge) freedom appears in the choice of the evolving horizon (lapse function N on
St). In other words, in the dynamical case the choice is among distinct spacetime
geometric objects, H1 and H2, whereas in the equilibrium case the choice concerns
the description (foliation) of a single spacetime geometric object H.

3.2.3. FOTH characterization

As discussed in Subsec. 2.2, a FOTH with evolution vector ha = �a − Cka is
characterized by: (i) a trapping horizon condition: θ(�) = 0, δhθ(�) = 0, (ii) a future
condition θ(k) < 0, and (iii) an outer condition: δkθ(�) < 0. These conditions can be
made more explicit in terms of the variations24,43

δα�θ
(�) = −α(σ(�)

ab σ(�)ab − 8πTab�
a�b),

δβkθ(�) = β

[
−2DcΩ(�)

c + Ω(�)
c Ω(�)c − 1

2
2R + 8πTabk

a�b

]
+ 2∆β − 2Ω(�)

c
2Dcβ, (35)

with α and β functions on St. Making β = 1, the outer condition writes

δkθ(�) = −2DcΩ(�)
c + Ω(�)

c Ω(�)c − 1
2

2R + 8πTabk
a�b < 0, (36)

for some �a and ka, whereas the trapping horizon condition (with α = 1, β = C) is

δhθ(�) = δ�θ
(�) − δCkθ(�) = δ�θ

(�) − Cδkθ(�) − 2∆C + 2Ω(�)
c

2DcC = 0, (37)

that is

− 2∆C + 2Ω(�)
c

2DcC − C

[
−2DcΩ(�)

c + Ω(�)
c Ω(�)c − 1

2
2R

]
= σ

(�)
ab σ(�)ab

+ 8πTabτ
a�b

(38)

This elliptic condition on C, in particular through the application of a maximum
principle relying on the outer condition δkθ(�) < 0, is at the heart of the nonlocal
behavior of the worldtube

⋃
t∈R

St discussed in Sec. 2.4.

Remark on the variation/deformation/stability operator δvθ
(�). Before proceeding

further, Eq. (35) requires some explanation. In Sec. 2.1.3, we have introduced δv

in terms of the Lie derivative on a tensorial object. However, the expansion θ(�)

is not a scalar quantity in the sense of a point-like (tensorial) field defined on
the manifold M. The expansion is a quasi-local object whose very definition at
a point p ∈ M requires the choice of a (portion of a) surface S passing through
p. In this sense, δγv (with γ a function on S) cannot be in general evaluated as
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a Lie derivative. Consider a displacement of the surface St by a vector γva. The
surface St+δt and therefore θ(�)|t+δt depend on the angular dependence of γ, so
that δγvθ

(�) 
= γδvθ
(�). The operator δv still satisfies a linear property for constant

linear combinations, δav+bwθ(�) = aδvθ
(�)+bδwθ(�) (a, b ∈ R), and the Leibnitz rule,

δv(γθ(�)) = (δvγ)θ(�) + γδvθ
(�). Details about this operator can be found in Refs.

30, 24, 43.g Here we rather exploit a practical trick for the evaluation of δγvθ
(�),

based on the remark that given the vector va normal to S, and not multiplied by a
function on S, it still holds formally δvθ(�) = Lvθ(�). Then, we can evaluate δγvθ

(�)

as δγvθ
(�) = δṽθ

(�) = Lṽθ(�), with ṽa = γva. In particular, the application of this
strategy to the second line of (35) goes as follows. We write k̃a = βka and calculate
δk̃θ(�) through a Lie derivative evaluation. This results in

δk̃θ(�) = (−k̃c�c)
[
2DcΩ(k̃)

c + Ω(k̃)
c Ω(k̃)

c
− 1

2
2R

]
+ 8πTabk̃

a�b. (39)

Using (−k̃c�c) = β, Ω(k̃)
a = Ω(k)

a +2Dalnβ and Ω(k)
a = −Ω(�)

a the expression for δk̃θ(�)

in (35) follows (cf. footnote b).

3.2.4. Generic properties of dynamical FOTHs

We review some generic properties of dynamical trapping horizons.14,24,26,32,44

(i) Topology law: under the dominant energy condition, sections St are topological
spheres. This can be shown by integrating δkθ(�) < 0 on St. Under the assumed
energy condition, the Euler characteristic χ

χ =
1
4π

∫
S

2R 2ε =
1
2π

∫
S
(−δkθ(�) + Ω(�)

c Ω(�)c
+ 8πTabk

a�b)2ε,

is positive and, being St a closed 2-surface, its spherical topology follows.
(ii) Signature law: under the null energy condition, H is completely partitioned into

null worldtube sections (where δ�θ
(�) = 0) and space-like worldtube sections

(where δ�θ
(�) 
= 0 at least on a point). Applying a maximum principle to

the trapping horizon constraint condition, Eq. (37), it follows that either C =
const ≥ 0, or C is a function C > 0 everywhere on S (cf. discussion in Sec. 2.4).

(iii) Area law: under the null energy condition, if δ�θ
(�) 
= 0 somewhere on St, the

area grows locally everywhere on St. Otherwise the area in constant along
the evolution. This follows from applying the future condition, θ(k) < 0, and
the signature law to δh

2√q = −Cθ(k)√q [cf. Eq. (17)].
(iv) Preferred choice of null tetrad on a DH. According to the foliation uniqueness

and existence results discussed in Sec. 3.2.1, there is a unique evolution vector

gSee also the treatment in terms of Lie derivatives in the double null foliations treatment in
Refs. 14 and 23.
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ha tangent to H and orthogonal to St, such that ha transports St ∈ Σt onto
St+δt ∈ Σt+δt: that is, δht = 1, for a given function t defining a 3+1 spacetime
foliation {Σt}. Denoting the unit timelike normal to Σt by na, the lapse func-
tion by N , i.e. na = −N∇at, and the normal to St tangent to Σt by sa, we
can write on the horizon HN

ha = Nna + bsa, (40)

for some b fixed from N and C in (16), as 2C = (b +N)(b−N). The expression
of the evolution vector as ha = �a−Cka [cf. Eq. (16)] links the scaling of �a and
ka to that of ha. In particular, �a is singled out as the only null normal to St

such that ha → �a as the trapping horizon is driven to stationarity (C → 0 ⇔
δ�θ

(�) → 0). Writing generically the null normals at HN as �a = f · (na + sa)
and ka = (na − sa)/(2f), Eqs. (40) and (16) lead to a preferred scaling of null
normals on the DH HN

�a
N =

N + b

2
(na + sa), ka

N =
1

N + b
(na − sa). (41)

3.2.5. Geometric balance equations

One of the main motivations for the development of quasi-local horizon formalisms
is the extension of the laws of black hole thermodynamics to dynamical regimes.
This involves in particular finding balance equations to control the rate of change
of physical quantities on the horizon, in terms of appropriate fluxes through the
hypersurface. This is an extensive subject whose review is beyond our scope. In the
spirit of the present discussion, we restrain ourselves to comment on the balance
equations for two geometric quantities on St: the area A =

∫
S dA =

∫
S

2ε and
the angular momentum J [φ] in Eq. (15), for an axial Killing (or, more generally,
divergence-free) vector φa . That is, we aim at writing

dA

dt
=

∫
St

FA dA,
dJ [φ]

dt
=

∫
St

F J dA, (42)

for appropriate area FA and angular momentum F J fluxes, with d/dt associated
to the foliation Lie-transported by ha. Eventually, one would aim at writing a first
law of thermodynamics by appropriately combining the previous balance equations

κt
dA

dt
+ Ωt

dJ [φ]
dt

=
∫
St

FE dA, (43)

for some functions κt and Ωt on St, so that FE is interpreted as an energy
flux.24,26,44–50 As a first step towards (42) we write evolution equations for the
expansion θ(h) and the 1-form Ω(�)

a along the evolution vector ha. These equations
are given by the projection of some of the components of the Einstein equations
onto H. Introducing a 4-momentum current density pa = −Tabτ

b, with τa the vector
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orthogonal to H defined in (16), such equations provide three of the components of
pa. The fourth is given by the trapping horizon condition (38). In brief:

(i) Evolution element of area51,52 (paha = −Tabτ
bha):

(δh + θ(h))θ(h) = −κ(h)θ(h) + σ
(h)
ab σ(τ)ab

+
(θ(h))2

2
− 22DaQa + 8πTabτ

ahb − θ(k)

8π
δhC, (44)

with Qa = 1
4π [CΩ(�)

a − 1/22DaC] and κ(h) = −hbkc∇b�c.
(ii) Evolution normal (rotation) form23,52 Ω(�)

a (pbq
b
a = −Tbcτ

cqb
a):

(δh + θ(h))Ω(�)
a = 2Daκ

(h) − 2Dcσ(τ)
ac − 2Daθ(h) + 8πqb

aTbcτ
c − θ(k)2DaC.

(45)

(iii) Normal component (paτa = −Tabτ
bτa): linear combination, using τa =

2�a − ha, of Tabτ
ahb (area element evolution) and Tabτ

a�b [trapping horizon
constraint (38)].

In order to derive the evolution equation for A, we write A =
∫
S dA =

∫
S

2ε

so that, using the transport of St into St+δt by ha, we have dA
dt =

∫
S δh(dA) =∫

S θ(h)dA and d2A
dt2 =

∫
S(δhθ(h) + (θ(h))2)dA. From Eq. (44) it then follows

d2A

dt2
+ κ̄′ dA

dt
=

∫
St

[
8πTabτ

ahb + σ
(h)
ab σ(τ)ab

+
(θ(h))2

2
+ (κ̄′ − κ′)θ(h)

]
2ε, (46)

where κ′ ≡ κ − δh ln C and κ̄′ = κ̄(t) ≡ A−1
∫
St

κ′2ε. Note that this is a second-
order equation for the area.51 Near equilibrium, the second time derivative as well as
higher-order terms can be neglected leading to the Hawking and Hartle expression53

κ̄′ dA

dt
=

∫
St

[8πTab�
a�b + σ

(�)
ab σ(�)ab

]dA.

Regarding the evolution equation for J [φ], we make use of Eq. (45) together with
a divergence-free condition on φa (that relaxes the Killing condition) and the con-
dition that φa is Lie-dragged by the evolution vector ha. Then23,54,55

d

dt
J(φ) = −

∫
St

Tabτ
aφb 2ε − 1

16π

∫
St

σ
(τ)
ab δφqab 2ε, (47)

with the second term on the right-hand side accounting for a non-Killing φa. Inter-
estingly in dynamical (spacelike) horizons H, the conditions 2Daφa = 0 and δhφa

completely fix54 the form of the vector φa: φa = 2εab2Dbθ
(h).
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3.2.6. Open geometric issues and physical remarks

To close this generic section on geometric aspects of dynamical horizons, we list
some relevant open geometric problems:

(i) Canonical choice of dynamical trapping horizon. DHs are highly non-unique
in a given black hole spacetime. A natural question concerns the possibility
of making a canonical choice. There has been some attempts in this direction
based on entropic arguments.51,56–58 A very interesting avenue lies on the
recently introduced notion of the core of the trapped region21 (see also J. M. M.
Senovilla’s contribution15).

(ii) Asymptotics of dynamical horizons to the event horizon. One would expect DHs
to asymptote generically to the event horizon at late times. This is indeed a
topic of active research.16,59–61

(iii) Black hole singularity covering by dynamical horizons. In addition to the
asymptotics of DHs to the event horizon, it is also of interest to assess their
behaviour at the birth of the black hole singularity, in particular their capability
to separate (dress) singularities from the rest of the spacetime (see Sec. 5.4.4).

DHs as physical surfaces. Dynamical horizons are objects with very interesting
geometric properties for the study of black hole spacetimes. In addition, from a
physical perspective it is remarkable that they admit a nontrivial thermodynam-
ical description (cf. A. Nielsen’s contribution22). However, it is also important to
underline that, if thought as boundaries of compact physical objects (in the sense
we think, say, of the surface of a neutron star), then they have nonstandard physical
properties:

(a) They are non-unique. From an Initial Value Problem perspective, the question
about the evolution of a given AH is not well-posed, since it depends on the 3+1
slicing choice (such non-uniqueness in evolution is typical in gauge dynamics).

(b) Dynamical trapping horizons are superluminal, something difficult to reconcil-
iate with the physical surface of an object.

(c) DHs show a nonlocal behavior. For instance, they grow globally (reacting
as a whole) when energy crosses them at a given local region (even a
point). This is a consequence of their intrinsic elliptic, rather than hyperbolic,
behavior.

4. Black Hole Spacetimes in an Initial-Boundary Value
Problem Approach

In the context of an Initial-Boundary Value Problem approach to the construction
of spacetimes, dynamical trapping horizons play a role at two levels: (i) first, as
an a priori ingredient to be incorporated into a given PDE formulation of Einstein
equations, and (ii) as an a posteriori tool to extract information of the constructed
spacetimes. In this section we address their application as an a priori ingredient.
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4.1. The initial value problem in general relativity:

3+1 formalism

Our general basic problem is the control62 of the qualitative and quantitative
aspects of generic solutions to Einstein equations in dynamical scenarios involv-
ing a black hole spacetime. The Initial-Boundary Value Problem approach provides
a powerful avenue to it. Such a strategy is well suited, on the one hand, to the use
of global analysis and Partial Differential Equations (PDE) tools for controlling the
qualitative aspects of the problem and, on the other hand, to the employment of
numerical techniques to assess the quantitative ones. In particular, we focus here
on the Cauchy (and hyperboloidal) Initial Value Problem.

4.1.1. Einstein equations: Constraint and evolution system

General Relativity is a geometric theory in which not all the fields constitute phys-
ical degrees of freedom (gauge theory), so that constraints among the fields are
present. In the passage from the geometric formulation of the theory to an ana-
lytic problem in the form of a specific PDE system, several PDE subsystems enter
into scene.63 First, the constraint system is determined by the (Gauss–Codazzi)
conditions that data on a three-dimensional Riemannian manifold must satisfy to
be considered as initial data on a spacetime slice. The Hamiltonian and momen-
tum constraints are determined by the Gabn

b components of the Einstein equation,
where na is a unit timelike vector normal to the initial slice. Second, the evolu-
tion system is built from the rest of Einstein equation, including possible auxiliary
fields. The gauge system determines the dynamical choice of coordinates in the
spacetime. Finally, a subsidiary system controls the internal consistency of the pre-
vious systems.

4.1.2. 3+1 formalism

We introduce some notation regarding the 3+1 formalism.64 As in Sec. 3.2.4, given
a 3+1 slicing of spacetime by spacelike hypersurfaces {Σt}, the unit timelike nor-
mal to Σt is denoted by na and the lapse function as N , na = −N∇at, with t

the scalar function defining the 3+1 slicing. The 3+1 evolution vector is denoted
by ta = Nna + βa, where βa is the shift vector. The induced metric on Σt is
denoted by γab, i.e. γab = gab + nanb. We choose the following sign convention
for the extrinsic curvature of Σt in M: Kab = −γc

a∇cnb = − 1
2Lnγab. In particu-

lar, we can write Kij = 1
2N (γikDjβ

k + γjkDiβ
k − γ̇ij), where the dot denotes the

derivative Lt. Indices i, j, k, . . . are used for objects leaving on Σt. For concrete-
ness, we focus on a particular 3+1 decomposition of Einstein equations, namely
involving the following conformal decomposition (conformal Ansatz 65) for data
(γij , K

ij) on Σt:

γij = Ψ4γ̃ij , Kij = ΨζÃij +
1
3
Kγij , (48)
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for several ζ choices. Denoting by D̃i the Levi-Civita connection associated with
γ̃ij and inserting (48) into Einstein equations leads to a coupled elliptic–hyperbolic
PDE system on the variables Ψ, βi, N and γ̃ab. The elliptic part has the form

D̃kD̃kΨ −
3R̃

8
Ψ = SΨ[Ψ, N, βi, K, γ̃, . . .],

D̃kD̃kβi +
1
3
D̃iD̃kβk + 3R̃i

kβk = Sβ [Ψ, N, βi, K, γ̃, . . .], (49)

D̃kD̃kN + 2D̃k ln ΨD̃kN = SN [N, Ψ, βi, K, γ̃, K̇, . . .],

where the equation on Ψ follows from the Hamiltonian constraint, the equation
on βi follows from the momentum constraint and the third equation on N follows
from a (gauge) condition imposed on K̇. If only solved on an initial slice with γ̃ij ,
˙̃γ
ij

, K and K̇ as free data, this system constitutes the Extended Conformal Thin
Sandwich approach to initial data.66,67 If we solve it during the whole evolution,
together with

∂2γ̃ij

∂t2
− N2

Ψ4
∆γ̃ij − 2Lβ

γ̃ij

∂t
+ LβLβ γ̃ij = Sij

γ̃ [N, Ψ, βi, K, γ̃, . . .], (50)

for γ̃ij , it defines a particular constrained evolution formalism.68–70

4.2. Initial data: Isolated horizon inner boundary conditions

There are two standard approaches to ensure that initial data on a slice Σ0 cor-
respond to a black hole spacetime. The punctures approach exploits the nontrivial
topology71,72 of Σ0, whereas the excision approach removes a sphere from the
initial slice and enforces it to be inside the black hole region. In a sense, they
both reflect the global versus quasi-local discussion in Sec. 1. Here we discuss
the use of inner boundary conditions derived from the IH formalism, when con-
structing initial data of black holes instantaneously in equilibrium in an excision
approach.

4.2.1. Non-expanding horizon conditions

The NEH condition Θ(�)
ab = 0 in Eq. (26) [or (25)] provides three inner boundary

conditions for the elliptic system (49). In particular, they enforce the excised surface
S0 to be a section of a quasi-local horizon instantaneously in equilibrium.

For a given choice of free initial data in system (49), the geometric NEH inner
boundary conditions, Θ(�)

ab = 0, must be complemented with two additional inner
boundary (gauge) conditions. Denoting by si the normal vector to St tangent to Σt,
we write βi = β⊥si + βi

‖, with β⊥ = βisi and βi
‖si = 0. Adapting the coordinate

system to the horizon (i.e. ta = �a + βa
‖ ⇔ β⊥ = N) supplies a fourth gauge
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condition that, together with the θ(�) = 0 and σ
(�)
ab = 0 NEH conditions, reads28,73–75

s̃iD̃iΨ + D̃is̃
iΨ + Ψ−1Kij s̃

is̃j − Ψ3K = 0,

2D̃aβ̃
‖
b + 2D̃bβ̃

‖
a − (2D̃cβ

c
‖)q̃ab = 0, β⊥ = N, (51)

where q̃ab = Ψ4qab and β̃
‖
a = q̃abβ

‖b
. A fifth boundary condition, namely for N , can

be obtained by choosing a slicing inner boundary condition. The (gauge) weakly
isolated horizon structure can be used in this sense.28,76

4.2.2. (Full) isolated horizon conditions

The next geometric quasi-equilibrium horizon structure is a (full) IH (cf. Secs. 3.1.4
and 3.1.5). This involves three additional conditions that cannot be accommodated
in system (49) for fixed free initial data. However, we can revert the argument
and employ IH conditions to determine improved quasi-equilibrium free initial data
γ̃ab and ˙̃γab by solving the full set of Einstein equations (49) and (50) under a
quasi-equilibrium Ansatz. Namely, we can set ∂tγ̃

ab and ∂2γ̃ab

∂t2 in (50) to prescribed
functions fab

1 and fab
2 and consider the elliptic system formed by (49) together with

− N2

Ψ4
∆̃γ̃ab + LβLβ γ̃ab = Sab

γ̃ − fab
2 + 2Lβfab

1 . (52)

This extended elliptic system is solved for ten fields: (Ψ, βa, N) and the five γ̃ab.
Geometrically, we need to impose four gauge inner conditions, leaving exactly six
inner conditions to be fixed. Remarkably, this fits exactly the six IH conditions77

Θ(�)
ab = 0, Θ(k)

ab = Θ(k)
ab (κo, q̃ab, Ω(�)

a ) ⇔ FΘ(k)

ab (κo, Ψ, βa, N, γ̃ab) = 0, (53)

where FΘ(k)

ab is determined by the expression for Θ(k)
ab in Eq. (31), fixed up to the

value of the constant κo. It is interesting to remark that this IH prescription77

completely fixes (up a κo one-parameter family) the extrinsic curvature tensor
Kc

ab = kcΘ(�)
ab + �cΘ(k)

ab [cf. Eq. (8)] of S0 as embedded in the spacetime M.

4.3. Constrained evolutions: Trapping horizon inner

boundary conditions

The elliptic–hyperbolic system (49)–(50) provides a constrained evolution scheme
for the dynamical construction of the spacetime. Adopting an excision approach
to black holes, we need five inner boundary conditions for the elliptic part of the
system. In principle, dynamical trapping horizon conditions on the inner bound-
ary worldtube H = ∪tSt provide a geometric prescription guaranteeing that H
remains in the black hole region. However, imposing FOTH conditions on H can be
too stringent in generic evolutions. The reason is that the constructed worldtube of
MOTS H, regarded as a hypersurface in spacetime, can change signature. This is in
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conflict with the outer condition in Sec. 2.2 (something related to jumps occurring
generically78–80 in AH evolutions; see Sec. 5.1.1) so that the resulting PDE sys-
tem can become ill-posed. In this context, trapping horizon conditions together
with the requirement of recovering NEH inner conditions at the equilibrium limit,
provide an appropriate relaxed set of inner boundary conditions.81 More specifi-
cally, trapping horizon conditions provides two geometric conditions θ(�) = 0 and
δhθ(�) = 0, whereas three additional gauge conditions guarantee the recovery of
NEH at equilibrium.

As a first step, as in Sec. 4.2.1, we choose a coordinate system adapted to the
horizon. This means that spacetime evolution ta is tangent to H. Decomposing the
shift as βa = β⊥sa + βa

‖ , then ta is written as ta = Nna + βa = (Nna + bsa) +
βa
‖ + (β⊥ − b)sa = ha + βa

‖ + (β⊥ − b)sa. Therefore ta is tangent to H if and only
if β⊥ = b.

(i) Geometric trapping horizon conditions. Condition θ(�) = 0 leads, in terms of
the 3+1 quantities in Sec. 4.1.2, to the expression in the first line of Eq. (51).
Condition δhθ(�) = 0 in Eq. (38), using the adapted coordinate system β⊥ = b,
leads to

[−2Da
2Da − 2La2Da + A](β⊥ − N) = B(β⊥ + N), (54)

where La = Kijs
iqj

a, A = 1
2
2R− 2DaLa −LaL

a −4πTab(na + sa)(nb − sb), and

B = 1
2σ

(�̂)
ab σ(�̂)ab + 4πTab(na + sb)(nb + sb), with �̂a = na + sa.

(ii) Gauge boundary conditions I. Aiming at recovering NEH boundary conditions
for βa

‖ , we first express δhqab = θ(h)qab + 2σ
(h)
ab in adapted coordinates (ha =

ta − βa
‖ )

2σ
(h)
ab =

(
∂qab

∂t
− ∂

∂t
ln
√

q qab

)
− (2Daβ

‖
b + 2Dbβ

‖
a − 2Dcβ

c
‖qab). (55)

Then, the coordinate choice ∂tqab − ∂t ln
√

q qab = 0 leads to the condition
on β

‖
a

2Daβ
‖
b + 2Dbβ

‖
a − 2Dcβ

c
‖qab = −2σ

(h)
ab , (56)

that is completed by using the evolution equation for σ
(h)
ab on H

δhσ
(h)
ab = −qd

aqf
bC

c
def �c�

e − C2qd
aqf

bC
c
defkck

e

− 8πC

[
qc

aqd
bTcd −

1
2
(qcdTcd)qab

]
+ · · · . (57)

(iii) Gauge boundary conditions II. The slicing condition for N is essentially free.
However, from Properties 1 and 2 in Sec. 3.2.1, such a choice is equivalent to
choosing a dynamical horizon H. Since each H is a genuine geometric object,
this suggests the possibility of recasting into geometric terms the gauge choice
of inner boundary condition for N , by selecting a trapping horizon H satisfying
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some specific geometric criterion for H. As an example of this, maximizing the
area growth rate Ȧ of H leads51,81 to the condition β⊥ − N = −const. · θ(k̂),
with k̂a = na − sa.

5. A posteriori Analysis of Black Hole Spacetimes

We address here the application of dynamical trapping horizons to the a poste-
riori analysis of spacetimes, their main application in the Initial Value Problem
approach.

5.1. “Tracking” the black hole region: AH finders

As discussed in Sec. 1.2, event horizons cannot be located during the spacetime evo-
lution. However, in applications such as numerical relativity, assessing if a region
of spacetime lays inside the black hole region can be crucial during the evolu-
tion. Under the assumption of cosmic censorship, the location of AHs in spatial
sections Σt and the worldtubes constructed by piling them up (see Sec. 1.3.1) are
extremely useful to determine the evolutive properties of the black hole. In this
sense, AH finders prove to be extraordinary practical tools. These are algorithms
for searching surfaces St ⊂ Σt that satisfy the MOTS condition θ(�) = 0. There are
many approaches to this problem,82 but all of them aim at solving the condition
Dis

i−K+Kijs
isj = 0. For instance, assuming spherical topology, we can character-

ize the surface in an adapted (spherical) coordinate system as F (r, θ, ϕ) = r−h(θ, ϕ)
with F = const, so that the normal vector to St is given by si = 1√

DiF ·DiF
DiF

with DiF = (1,−∂θh,−∂ϕh) in the spherical coordinate system. The MOTS con-
dition becomes then a nonlinear elliptic equation on h that can be solved very
efficiently.

5.1.1. Understanding AH jumps

Noncontinuous jumps of AHs occur generically in 3+1 black hole evolutions. The
dynamical trapping horizon framework sheds light79,80,83 on these AH jumps, sug-
gesting a spacetime picture where the jumps are understood as multiple spatial
cuts of a single underlying spacetime MOTS worldtube. Jumps are associated with
the change of metric type of the horizon hypersurface (see Fig. 2). This is partic-
ularly dramatic in binary black hole simulations, where at a given time t the two
individual nonconnected horizons jump to a common one. A specific prediction of
the dynamical horizon picture is that new (common) horizons form in pairs37,83:
the outermost (apparent) horizon growing in area and a dual inner one whose
area decrease in the time t. Apart from providing a better understanding of the
underlying geometry of the trapped region, this spacetime picture can be of use
in the study of flows interpolating between a given MOTS and the eventual event
horizon, something of potential interest for studies of the Penrose inequality (see
Sec. 5.2.2).
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Fig. 2. (Color online) Illustration of AH jumps as multiple cuts of a single spacetime MOTS-
worltube H. In particular, timelike sections of H produce jumps (null hypersurfaces are represented
with 45◦).

5.2. Horizon analysis parameters

Assigning parameters to (individual) black holes can offer crucial insight into the
dynamical evolution. These can be physical parameters like the mass or the angular
momentum, or diagnosis parameters informing of relevant dynamical properties.
Given the generic absence of background rigid structures, first-principles parameters
are often out of reach and one must follow nonrigorous or pragmatic approaches.

5.2.1. Mass and angular momentum. IH and DH multipoles

In our discussion we have avoided entering into first-principles physical issues,
stressing rather the geometric properties of dynamical trapping horizons and their
applications. However, mass and angular momentum estimates for individual black
holes, either fundamental or effective, are extremely important in the modeling of
astrophysical systems involving matter or binary systems. The problem has two
aspects. First, one must identify a surface to be associated with the black hole
boundary. Discussion in Sec. 1 shows that this is a delicate question. In any case,
AHs provide surfaces St ∈ Σt tracking the black hole region, that can be employed
as preferred choices for pragmatic estimations. The second problem refers to the
ambiguities in the quasi-local characterization of the gravitational field mass and
angular momentum in General Relativity.84,85 Regarding the angular momentum,
the Komar expression (15) characterizes appropriately the axisymmetric case. Effec-
tive prescriptions86–88 exist for generic horizons. Regarding the mass, the irreducible
mass Mirred A = 16πM2

irred provides a purely geometric estimation in terms of the
area. Its physical interpretation as the portion of the black hole mass that cannot
be extracted by a Penrose process, together with its equivalence with the Hawking
energy, MHawking =

√
A/(16π)(1+1/(8π)

∮
θ(�)θ(k)dA) for MOTSs, makes it useful

in numerical applications and in thermodynamical treatments.45,46 Given A and J

one can also consider32 the Christodoulou expression for the Kerr mass

MChris =
(

A

16π
+

4πJ2

A

) 1
2

. (58)
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There are many prescriptions for the quasi-local mass.84,85 It is therefore crucial to
choose and keep consistently a prescription when comparing different solutions. In
this latter sense, the mass and angular momentum horizon geometric multipoles In

and Ln in (34) offer a useful and refined diagnosis tool in numerical studies.37,89

5.2.2. Useful diagnosis parameters

Insight into the geometric properties of MOTS worldtubes leads to useful diagnosis
parameters for monitoring dynamical evolutions. Geometric black hole inequali-
ties provide a particular avenue. In particular, the conjectured Penrose’s inequality
A ≤ 16πM2

ADM
for asymptotically flat spacetimes provides a bound to the AH area

(strictly speaking, the bound is on the area of a minimal surface enclosing the AH).
A violation of εPenrose ≡ A/(16πM2

ADM
) ≤ 1 indicates a more exterior MOTS. In the

axially symmetric case this can be refined in terms of a so-called90,91 Dain number

εDain ≡ A

8π(M2
ADM

+
√

M4
ADM

− J2)
≤ 1. (59)

Moreover, the rigidity part of the conjecture provides an extremely simple char-
acterization of Kerr as satisfying εDain = 1. In the same spirit, the geometric
inequality92 J ≤ M2

ADM
provides a characterization of (sub)extremality of black

holes. However, these inequalities involve total quantities such as the ADM mass.
It is remarkable that the dynamical horizon structure (actually the outer trapping
horizon condition) provides exactly the needed conditions to prove the quasi-local
inequality42,93,94

A ≥ 8π|J |, (60)

in generic spacetimes with matter satisfying the dominant energy condition. The
validity of the area-angular momentum inequality (60) is equivalent to the non-
negativity of the surface gravity κ of isolated and dynamical horizons,32 supporting
the internal consistency of their first law of black hole thermodynamics. Inequality
(60) provides a quasi-local characterization of black hole (sub)extremality, that is
directly related to changes in the horizon metric type80 and jumps discussed in
Sec. 5.1.1. This is also the context of the Booth & Fairhurst extremality parame-
ter80,95

e ≡ 1 +
1
4π

∫
S

dA δkθ(�) ≤ 1. (61)

5.3. Heuristic and effective approaches in a posteriori

spacetime analysis

Hitherto we have discussed analysis tools to be applied in numerically constructed
spacetimes, but related to sound geometric structures. However, when developing a
qualitative understanding of the underlying dynamics, involving, e.g. a comparison
with Newtonian or Special Relativity scenarios, the available geometric notions are
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often not enough. This is manifest in astrophysical contexts requiring estimations
for linear, orbital angular momentum or binding energies. In some cases, a choice
must be done between saying nothing at all or rather adopting a heuristic approach.

An example of the latter is the following heuristic proposal96 for a quasi-local
black hole linear momentum. Given a vector ξa transverse to a MOTS S, applying
on S the linear momentum ADM prescription at spatial infinity leads to

P (ξ) =
1
8π

∫
St

(Kab − Kγab)ξasb 2ε. (62)

In spite of its ad hoc nature, this quantity has been successfully applied in the
analysis96 of linear and orbital angular momentum in binary black hole orbits and
in the recoil dynamics of the black hole resulting of asymmetric binary mergers.

5.4. An effective correlation approach to the analysis

of spacetime dynamics

The qualitative and quantitative understanding of strong-field spacetime dynam-
ics represents a challenge in gravitational physics both at a fundamental level and
in applications. In astrophysical settings a natural strategy consists in extending
to general relativistic scenarios the Newtonian celestial mechanics approach. This
has indeed led to fundamental achievements in the understanding of the physics
of compact objects. However, the focus on the properties of individual objects,
in particular in multi-component systems, also meets fundamental obstacles in a
gravitational theory (i) without a priori rigid structures providing canonical struc-
tures, and (ii) with global aspects playing a crucial role. The latter encompasses
global causal issues and also the in-built elliptic character of certain objects, both
aspects relevant in the characterization of black holes. In this context, an approach
to spacetime analysis that explicitly emphasizes the global/quasi-local properties of
the relevant fields, at the price of renouncing to a detailed tracking of the geometry
and trajectories of small compact regions, can offer complementary insights to the
celestial mechanics approach. Such a coarse-grained effective description is much in
the spirit of the correlation approach in the analysis of complex condensed-matter
systems or in quantum/statistical-field theory, where the functional structure of the
(local) dynamical fields is encoded in the associated n-point correlation functionals.h

Such an approach underlines the relational aspects of the theory, as a complemen-
tary methodology to the isolation of the dynamical properties a compact parts of
the system. In sum, we can paraphrase the strategy as aiming at a functional and
coarse-grained description of the spacetime geometry, by importing functional tools
for the analysis of condensed matter and quantum/statistical field theory systems.

hN-point correlation functions encode the functional structure of the local fields. A coarse-grained
description appear as a truncation to a finite number of n-point functions.
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5.4.1. Cross-correlations of geometric quantities at test screens

The strategy outlined above is admittedly vague. We sketch now a particular imple-
mentation97 of some of its aspects in a cross-correlation approach to the analysis
of spacetime dynamics. Aiming at studying the gravitational dynamics in a given
spacetime region R, we consider an outer Bo and an inner Bi hypersurfaces lying
in the causal future of R. These hypersurfaces are taken as outer and inner bound-
aries of the bulk spacetime region of interest. The geometry of Bo and Bi is causally
affected by the dynamics in R, so that Bo and Bi can be understood as balloon
probes into the spacetime geometry. In other words, Bo and Bi provide test screens
(they do not back-react on the bulk dynamics) on which we can construct geometric
quantities ho and hi to be cross-correlated. Choosing causally disconnected screens
Bo and Bi, a nontrivial correlation between ho and hi encodes geometric informa-
tion about the common past region R. We can think of this as the reconstruction
of the interaction region from the debris in a scattering experiment (inverse scat-
tering picture). Let us now restrict ourselves to the study of near-horizon spacetime
dynamics.97 In an (asymptotically flat) black hole spacetime setting, null infinity
I + and the (event) black hole horizon E provide canonical choices for Bo and
Bi, respectively (cf. Fig. 3). Retarded and advanced null coordinates u and v pro-
vide good parameters for quantities ho and hi calculated as integrals on sections
Su ⊂ I + and Sv ⊂ E . A meaningful notion for the cross-correlation between
ho(u) and hi(v), considered as time series, requires the introduction of a (gauge-
dependent) mapping between u and v at I + and E . We refer to this point as the
time-stretching issue.

5.4.2. Cross-correlations in an Initial Value Problem approach: Dynamical
horizons as canonical inner probe screens

The adopted Initial Value Problem approach has a direct impact in the cross-
correlation picture above. In particular, the event horizon is not available during
the evolution.i Instead, the (outermost) DH H fixed by the chosen 3+1 foliation
stands as a natural spacetime inner boundary Bi. Although any hypersurface cov-
ering the black hole singularity could be envisaged for the present cross-correlation
purposes, the DH H provides a natural geometric prescription. Regarding the time-
stretching issue, the time function t defining the 3+1 spacetime slicing automati-
cally implements a (gauge) mapping between retarded and advanced times u and v.
Cross-correlations between geometric quantities at H and I + can then be calcu-
lated as standard time-series hi(t) and ho(t) (cf. Fig. 4). Due to the gauge nature
of t, the geometric information in quantities hi(t) and h2(t) is not encoded in
their local (arbitrary) time dependence, but rather in the global structure of suc-
cessive maxima and minima. The calculation of cross-correlations must take this

iRegarding I +, a pragmatic choice in a Cauchy approach consists in substituting it by a timelike
worldtube of large radii spheres. However, I + can be kept if using a hyperboloidal foliation.
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Fig. 3. (Color online) Carter–Penrose diagram representing a generic (spherically symmetric)
collapse and illustrating the cross-correlation approach to near-horizon gravitational dynamics.

Fig. 4. (Color online) Carter–Penrose diagram for the cross-correlation picture in a Cauchy IVP
approach.
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into account.97 This means, in particular, that quantities to be correlated must be
scalars.

5.4.3. Application to black hole recoil dynamics: Towards DH news functions

In the context of the study of black hole recoil dynamics after an asymmetric
merger, let us take ho(u) as the Bondi flux of linear momentum along a (preferred)
direction

dPB[ξ]
du

(u) = lim
(u,r→∞)

r2

8π

∮
Su,r

(ξisi) |N (u)|2dΩ, N (u) =
∫ u

−∞
Ψ4(u′)du′. (63)

Here N is the news function at I +, and ξa is a given spacelike transverse direc-
tion to Su,r, so that (dPB/du)[ξ] is a scalar. A natural choice j for hi(v) would be
given by the expression (63) with Ψ4 at I + substituted by some Ψ0 at H. A pre-
ferred null tetrad on Sv is then needed, something that for DHs is provided by �a

N

and ka
N in (41). Using them in (20), the preferred Weyl scalar ΨN

0 is employed to
construct

K̃N [ξ](v) = − 1
8π

∮
Sv

(ξisi)|Ñ (0)
N (v)|2dA, with Ñ (0)

N (v) =
∫ v

v0

ΨN
0 (v′)dv′. (64)

In spite of the formal similarity between (63) and (64) there is a fundamental dif-
ference: whereas (dPB/du)[ξ] is an instantaneous flux through I +, this is not true
for K̃N [ξ](v). The function N (u) can be written in terms of geometric quantities
on sections Su. This local-in-time behavior is a crucial feature of any valid news
function and it is not shared by Ñ (0)

N (v). However, it suffices to modify Ñ (0)
N (v)

with terms completing the integrand ΨN
0 (v′) to a total differential in time. Noting

qc
aqd

b Clcfd�
l�f = Ψ0mamb + Ψ0mamb, inspection of Eq. (22) [actually its dynami-

cal version with ha instead of �a] suggests the identification of a correct news-like
function at H as proportional to the shear σ

(h)
ab (see also Refs. 99 and 100 for the

discussion of the news in quasi-local contexts). In tensorial notation, we write

dPN

dv
[ξ](v) = − 1

8π

∮
Sv

(ξisi)(NN,g
ab N ab

N,g)dA, with NN,g
ab = − 1√

2
σ

(h)
ab , (65)

where the coefficient in NN,g
ab guarantees the correct factor in the leading-term. This

(dPN/dv)[ξ] provides a natural quantity to be correlated with (dPB/du)[ξ]. The
notation underlines the local character in time as the f lux of a quantity PN [ξ], but
no physical meaning is given to the latter. It is worthwhile, though, to remark the

jWe also mention an effective curvature vector97,98 constructed from the Ricci scalar 2R on sections
Sv of H, that provides an intrinsic prescription for hi(v) leading to nontrivial97 cross-correlations
with (dPB/du)[ξ].
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formal similarity of the monopolar part of the square of the news NN,g
ab , i.e.

dEN

dv
(v) =

1
16π

∮
Sv

σ
(h)
ab σab

(h)dA

=
1

16π

∮
S
[σ(�)

ab σ(�)ab − 2Cσ
(�)
ab σ(k)ab

+ C2σ
(k)
ab σ(k)ab

]dA (66)

with the expression of the flux of gravitational energy26,44 through a DH, in partic-
ular with its transverse part.45,46 The identification of σ

(h)
ab as a news-like function

suggests a further step, by introducing a heuristic notion of Bondi-like 4-momentum
flux through H. Considering the unit normal τ̂a to H (τ̂a = τa/

√
|τbτb| =

(�a + Cka)/
√

2C = (bna + Nsa)/
√

2C), and for a generic spacetime vector ηa

dPN
τ

dv
[η] = − 1

16π

∮
Sv

(ηaτ̂a)σ(h)
ab σab

(h)dA, (67)

has formally the expression of a Bondi-like 4-momentum.k The flux of energy asso-
ciated with an Eulerian observer na would be

dEN
τ

dv
(v) ≡ dPN

τ

dv
[na] =

1
16π

∮
S

b√
2C

(σ(h)
ab σ(h)ab

)dA,

(68)

where b√
2C

=
√

1 + N2/2C. The flux of linear momentum for ξa ∈ TΣt would be

dPN
τ

dv
[ξ] = − 1

16π

∮
Sv

N√
2C

(ξasa)(σ(h)
ab σ(h)ab

)dA. (69)

Near equilibrium (C → 0), we have σ
(h)
ab σab

(h) ∼ C on DHs [cf. Eq. (17)] so that
expressions (68) and (69) are regular (O(

√
C)). Integrating (69) in time would lead

to a Bondi-like counterpartl of the heuristic ADM-like linear momentum in (62).
Before finishing this section, let us mention that the present discussion on hori-

zon news-like functions can be related97 to a viscous fluid analogy for quasi-local
horizons.23,51 In particular, geometric decay and oscillation timescales (respectively,
τ and T ) can be constructed on the horizon97 from the expansion θ(h) and shear
σ

(h)
ab , respectively related to bulk and shear viscosity terms. In the context of black

hole recoil dynamics, this provides an instantaneous geometric prescription for a
slowness parameter101 P = T/τ controlling the qualitative aspects of the dynamics.

kAn alternative expression would follow by using in (67), instead of σ
(h)
ab σ(h)ab

, the integrand in

the DH energy flux,26,44–46 that would also include the longitudinal part Ω
(�)
a Ω(�)a

.
lA related prescription for a DH linear momentum flux would be given by angular integration of
the appropriate components in the effective gravitational-radiation energy-tensor of Ref. 46.
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Fig. 5. (Color online) Illustration of the splitting of a DH into internal and external sections by
a 3+1 slicing.

5.4.4. The role of the inner horizon in the integration of fluxes along H

Flux integrations along H require appropriate parametrizations of H, such as an
advanced time v. Then, given the flux FQ(v) of a quantity Q(v), we can writem

Q(v) = Q(v0) + sign(C)
∫ v

v0

FQ(v′)dv′, (70)

this requiring an initial value Q(v0). However, such coordinate v is not natural in
an Initial Value Problem approach. As discussed in Sec. 5.1.1, the 3+1 slicing {Σt}
induces a splitting of the DH into internal and external sections. The integration
in (70) can then be split into external and internal horizon parts (cf. Fig. 5)

Q(t) = Q(v0) + sign(C)
∫ t

tc

(FQ)int(t′)dt′ + sign(C)
∫ t

tc

(FQ)ext(t′)dt′ + Res(t), (71)

where the error Res(t) is Res(t) = sign(C)
∫ ∞

t
(FQ)int(t′)dt′.

If the growth of Q is understood as ultimately associated with some flow into
the black hole singularity, the actual essential role of the horizon H would be that
of capturing the associated fluxes. This assumes that the worldtube H begins at the
formation of the singularity. More complex singularity structures (as those coming

mThe coefficient sign(C), +1 for spacelike H and −1 for timelike H, takes into account the possible
integration of fluxes happening when timelike sections of H occur; cf. Fig. 2.
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from a binary merger) would require a more detailed analysis of this point. From
this perspective, there is nothing intrinsically special about dynamical horizons: any
hypersurface separating the black hole singularity from past null infinity I − (e.g.
the event horizon) would be appropriate for fluxes evaluation. However, from a
quasi-local perspective, if DHs are shown to cover systematically the black hole
singularity (or, more generally, the inner Cauchy horizon), they actually provide
excellent geometric prescriptions for such test screens (this is the motivation for the
point (iii) in Sec. 3.2.6).

5.4.5. Auxiliary test-field evolutions in curved backgrounds

In Sec. 5.4.3 we have considered cross-correlations between different contractions
of the Weyl tensor at distinct hypersurfaces. It is legitimate to question if such
cross-correlations are meaningful at all, given the a priori different geometric con-
tent of the involved functions. Let us consider the following approach to this issue:
evolve, together with the gravitational degrees of freedom in Einstein equations,
an auxiliary (set of) scalar field(s) Φi without back-reaction on the geometry (i.e.
test fields) and whose evolution on the dynamically evolving background space-
time closely tracksn its relevant geometric features. Then, the correlation approach
outlined in Subsec. 5.4 for a (coarse-grained) extraction of geometric content, can
be applied directly on Φi. We can paraphrase this approach as pouring sand on a
transparent surface. On the one hand, this removes the ambiguity in the choice of
quantities hi and ho at inner and outer hypersurfaces. On the other hand, and more
importantly, it also permits to extend to the bulk spacetime the (cross-)correlation
strategy between spacetime boundaries.

6. General Perspective

We have presented an introduction to some aspects of quasi-local black holes in
an Initial Value Problem approach to the spacetime construction. From a funda-
mental perspective, quasi-local black hole horizons provide crucial insights into the
geometry of the black hole and trapped regions and a sound avenue to black hole
physics in generic scenarios. However, quasi-local black holes also meet challenges
when considered as physical surfaces of a compact object. We have adopted a prag-
matic or effective approach in which quasi-local black hole horizons are understood
as hypersurfaces with remarkable geometric properties that provide worldtubes of
canonical surfaces in a given 3+1 slicing of the spacetime. We have shown how they
can be used as an a priori ingredient in evolution schemes to Einstein equations,
where they provide inner boundary conditions for black hole spacetimes. Then we
have illustrated their use as a posteriori analysis tools tracking and characteriz-
ing quasi-locally the black hole properties and providing, through their rigidity

nSee Ref. 102 for a discussion of a similar approach in a binary black hole context, and Ref. 35
for a methodology sharing part of the spirit but directly tracking spacetime curvature quantities.



October 11, 2011 10:34 WSPC/S0218-2718 142-IJMPD
S0218271811020366

2202 J. L. Jaramillo

properties, excellent test-screen probes into the near-horizon black hole spacetime
geometry.
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