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The current early stage in the investigation of the stability of the Kerr metric is
characterized by the study of appropriate model problems. Particularly interesting is
the problem of the stability of the solutions of the Klein-Gordon equation, describing
the propagation of a scalar field in the background of a rotating (Kerr-) black hole.
Results suggest that the stability of the field depends crucially on its mass μ. Among
others, the paper provides an improved bound for μ above which the solutions of the
reduced, by separation in the azimuth angle in Boyer-Lindquist coordinates, Klein-
Gordon equation are stable. Finally, it gives new formulations of the reduced equation,
in particular, in form of a time-dependent wave equation that is governed by a family
of unitarily equivalent positive self-adjoint operators. The latter formulation might
turn out useful for further investigation. On the other hand, it is proved that from the
abstract properties of this family alone it cannot be concluded that the corresponding
solutions are stable. C© 2011 American Institute of Physics. [doi:10.1063/1.3653840]

I. INTRODUCTION

Kerr space-time is the only possible vacuum exterior solution of Einstein’s field equations
describing a stationary, rotating, uncharged black hole with non-degenerate event horizon34 and
is expected to be the unique, stationary, asymptotically flat, vacuum space-time containing a non-
degenerate Killing horizon.1 Also, it is expected to be the asymptotic limit of the evolution of
asymptotically flat vacuum data in general relativity.

An important step towards establishing the validity of these expectations is the proof of the
stability of Kerr space-time. In comparison to Schwarzschild space-time, this problem is complicated
by a lower dimensional symmetry group and the absence of a Killing field that is everywhere timelike
outside the horizon. For instance, the latter is reflected in the fact that energy densities corresponding
to the Klein-Gordon field in a Kerr gravitational field have no definite sign. This absence complicates
the application of methods from operator theory and of so-called “energy methods” that are both
employed in estimating the decay of solutions of hyperbolic partial differential equations.18

On the other hand, two facts are worth noting. For this, note that in the following any reference
to coordinates implicitly assumes use of Boyer-Lindquist coordinates.8

First, in addition to its Killing vector fields that generate one-parameter groups of symmetries
(isometries), Kerr space-time admits a Killing tensor38 that is unrelated to its symmetries. Initiated
by his groundbreaking work10 on the complete separability of the Hamilton-Jacobi equation in a Kerr
background, Carter discovered that an operator that is induced by this Killing tensor commutes with
the wave operator. On the other hand, Carter’s operator contains a second order time derivative.11

An analogous operator has been found for the operator governing linearized gravitational perturba-
tions of the Kerr geometry.23 A recent study finds another such “symmetry operator” which only
contains a first order time derivative and commutes with a rescaled wave operator.7 Differently
to Carter’s operator, this operator is analogous to symmetry operators induced by one-parameter
group of isometries of the metric, in that it induces a mapping in the data space that is compatible
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with time evolution and, therefore, describes a true symmetry of the solutions. It is likely that an
analogous operator can be found for a rescaling of the linearized operator governing gravitational
perturbations of the Kerr geometry. In case of existence, it should facilitate the generalization to
a Kerr background of the Regge-Wheeler-Zerilli-Moncrief (RWZM) decomposition of fields on a
Schwarzschild background,12, 28, 31, 33, 36, 41 which in turn should greatly simplify the analysis of the
stability of Kerr space-time.

Second, there is a Killing field that is timelike in an open neighborhood of the event horizon
given by

ξ := ∂t + a

2Mr+
∂ϕ, (1.1)

where ∂ t, ∂ϕ are coordinate vector fields of Boyer-Lindquist coordinates corresponding to the
coordinate time t and the azimuthal angular coordinate ϕ, M > 0 is the mass of the black hole and a
∈ [0, M] its rotational parameter. Moreover, if

a

M
�

√
3

3
, (1.2)

ξ is timelike in the ergoregion, see Lemma 2.2. On the other hand, ∂ t itself is spacelike in the
ergoregion, null on the stationary limit surface, and timelike outside. For these reasons, at least for
a satisfying (1.2), it might be possible to “join” energy inequalities belonging to the Killing fields
by ξ and ∂ t.

The discussion of the stability of the Kerr black hole is in its early stages. The first interme-
diate goal is the proof or disproof of its stability under “small” perturbations. In the case of the
Schwarzschild metric, by using the RWZM decomposition of fields in a Schwarzschild background,
the question of the stability can be completely reduced to the question of the stability of the solutions
of the wave equation on Schwarzschild space-time. For Kerr space-time, a similar reduction is not
known. If such reduction exists, there is no guarantee that the relevant equation is the scalar wave
equation. It is quite possible that such equation contains an additional (even positive) potential term
that, similar to the potential term introduced by a mass of the field, could result in instability of
the solutions. Second, an instability of a massive scalar field in a Kerr background could indicate
instability of the metric against perturbations by matter which generically has mass. If this were the
case, even a proof of the stability of Kerr space-time could turn out as a purely mathematical exercise
with little relevance for general relativity. Currently, the main focus is the study of the stability of
the solutions of the Klein-Gordon field on a Kerr background with the hope that the results lead to
insight into the problem of linearized stability. Although the results of this paper also apply to the
case that μ = 0, its main focus is the case of Klein-Gordon fields of mass μ > 0.

Quite differently from the case of a Schwarzschild background,24 the results for these test cases
suggest an asymmetry between the cases μ = 0 and μ �= 0. In the case of the wave equation, i.e.,
μ = 0, results point to the stability of the solutions,2, 13, 17, 26, 27, 40 whereas for μ �= 0, there
are a number of results pointing in the direction of instability of the solutions under certain
conditions.9, 14–16, 19, 21, 35, 42

In particular, unstable modes were found by the numerical investigations by Furuhashi and
Nambu for μM ∼ 1 and (a/M) = 0.98, by Strafuss and Khanna for μM ∼ 1 and (a/M) = 0.9999,
and by Cardoso and Yoshida for μM ≤ 1 and 0.98 ≤ (a/M) < 1. The analytical study by Hod and
Hod finds unstable modes for μM ∼ 1 with a growth rate which is four orders of magnitude larger
than previous estimates. On the other hand, Ref. 3 proves that the restrictions of the solutions of the
separated, in the azimuthal coordinate, Klein-Gordon field (RKG) are stable for

μ � |m|a
2Mr+

√
1 + 2M

r+
+ a2

r2+
. (1.3)

Here, m ∈ Z is the “azimuthal separation parameter” and r+ := M + √
M2 − a2. So far, this has

been the only mathematically rigorous result on the stability of the solutions of the RKG for μ > 0.
This result contradicts the result of Zouros and Eardley, but is consistent with the other results above.
In addition, there is the numerical result by Konoplya and Zhidenko,25 which confirms the result of
Beyer, but also finds no unstable modes of the RKG for μM � 1 and μM ∼ 1.
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Among others, this paper improves the estimate (1.3). It is proved that the solutions of the RKG
are stable for μ satisfying

μ � |m|a
2Mr+

√
1 + 2M

r+
.

Further, it gives new formulations for RKG, in particular, in form of a time-dependent wave equation
that is governed by a family of unitarily equivalent positive self-adjoint operators. The latter might
turn out useful in future investigations. On the other hand, it is proved that from the abstract properties
of this family alone it cannot be concluded that the corresponding solutions are stable.

The remainder of the paper is organized as follows. Section II gives the geometrical setting
of the discussion of the solutions of the RKG and a proof of the above-mentioned property of the
Killing field ξ . Section III gives basic properties of operators read off from the equation, including
some new results. These properties provide the basis for a formulation of the initial-value problem
for the equation in Sec. IV, which is less dependent on methods from semigroups of operators than
that of Ref. 3. Section IV also contains the improved result on the stability of the solutions of RKG,
a formulation of the RKG in terms of a time-dependent wave equation and the above-mentioned
counterexample. Finally, the paper concludes with a discussion of the results and two Appendixes
that contain proof of results that were omitted in the main text to improve the readability of the
paper.

II. THE GEOMETRICAL SETTING

In Boyer-Lindquist coordinates,22 (t, r, θ, ϕ) : � → R4, the Kerr metric g is given by

g = gtt dt ⊗ dt + gtϕ(dt ⊗ dϕ + dϕ ⊗ dt) + grr dr ⊗ dr + gθθ dθ ⊗ dθ + gϕϕ dϕ ⊗ dϕ,

where

gtt := 1 − 2Mr

�
, gtϕ := 2Mar sin2θ

�
, grr := −�

�
, gθθ := −�,

gϕϕ := −��b

�
sin2θ,

M is the mass of the black hole, a ∈ [0, M] is the rotational parameter and

� := r2 − 2Mr + a2, � := r2 + a2 cos2θ,

�b := (r2 + a2)� + 2Ma2r sin2θ

�
= (r2 + a2)2

�
− a2 sin2θ = � + 2Mr + 4M2r2

�
,

r+ := M +
√

M2 − a2, r− := M −
√

M2 − a2,

� := R × (r+,∞) × (0, π ) × (−π, π ) .

In these coordinates, the reduced Klein-Gordon equation corresponding to m ∈ Z, governing
solutions ψ : � → C of the form

ψ(t, r, θ, ϕ) = exp(imϕ) u(t, r, θ ),

where u : �s → C,

�s := (r+,∞) × (0, π ),

for all t ∈ R, ϕ ∈ ( − π , π ), (r, θ ) ∈ �s, is given by

∂2u

∂t2
+ ib

∂u

∂t
+ D2

rθ u = 0, (2.1)

where

b := 4m Mar

��b
= 4m Mar

(r2 + a2)2 − a2� sin2 θ
= 4m Mar

(r2 + a2)� + 2Ma2r sin2θ
,

D2
rθ f := 1

�b

(
− ∂

∂r
� ∂

∂r
− m2a2

� − 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ m2

sin2 θ
+ μ2�

)
f
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for every f ∈ C2(�s,C) and μ ≥ 0 is the mass of the field. In particular, note that b defines a real-
valued bounded function on �s which is positive for m ≥ 0 and negative for m ≤ 0. For this reason,
it induces a bounded self-adjoint (maximal multiplication) operator B on the weighted L2-space X,
see below, which is positive for m ≥ 0 and negative for m ≤ 0. Further, D2

rθ is singular since the
continuous extensions of the coefficients of its highest (second) order radial derivative vanish on the
horizon {r+ } × [0, π ].

In particular, the following proves that the Killing field

ξ := ∂t + a

2Mr+
∂ϕ

is timelike in an open neighborhood of the event horizon and timelike in the ergoregion if

a

M
�

√
3

3
.

Proofs are given in Appendix A.

Lemma 2.1: Let M > 0, a > 0. For every s ∈ R, the function

g(∂t + s ∂ϕ, ∂t + s ∂ϕ)

has a continuous extension to �s . This extension is positive on ∂�s if and only if

s = a

2Mr+
.

Further,

ξ := ∂t + a

2Mr+
∂ϕ

is timelike precisely on

�e2 :=
[

2Mr+ − a2 sin2θ − a �1/2 sin θ

(
1 + 2M

r − r−

)]−1

( (0,∞) ) .

Proof: See Appendix A. �
Lemma 2.2: Let M > 0, a > 0, and �e1, defined by

�e1 := (a2 sin2θ − �)−1((0,∞)),

denote the ergoregion. If

a

M
�

√
3

3
, (2.2)

then

�e1 ⊂ �e2 .
Proof: See Appendix A. �

III. BASIC PROPERTIES OF OPERATORS IN THE EQUATION

In a first step, we represent (2.1) as a differential equation for an unknown function u with
values in a Hilbert space. For this reason, we represent formal operators present in (2.1) as operators
with well-defined domains in an appropriate Hilbert space and, subsequently, study basic properties
of the resulting operators. Theorems 3.5 and 3.6 provide new results.

Definition 3.1: In the following, X denotes the weighted L2-space X defined by

X := L2
C

(
�s , �b sin θ

)
. (3.1)

Further, B is the bounded linear self-adjoint operator on X given by

B f := b f (3.2)
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for every f ∈ X. Note that B is positive for m ≥ 0 and negative for m ≤ 0.

Remark 3.2: We note that, as consequence of the fact that B ∈ L(X, X) is self-adjoint, the operator

exp((i t/2)B),

where exp denotes the exponential function on L(X, X), see, e.g., Sec. 3.3 in Ref. 5, is unitary for
every t ∈ R and coincides with the maximal multiplication operator by the function exp ((it/2)b).

Definition 3.3 (Definition of A0):

(i) We define D(A0) to consist of all f ∈ C2(�̄s,C) ∩ X satisfying the following conditions (a),
(b), and (c):
(a) D2

rθ f ∈ X ,
(b) there is R > 0 such that f(r, θ ) = 0 for all r > R and θ ∈ Iθ := (0, π ),

(c)

lim
r→r+

∂ f

∂θ
(r, θ ) = 0

for all θ ∈ Iθ .
(ii) For every f ∈ D(A0), we define

A0 f := D2
rθ f .

Lemma 3.4: A0 is a densely defined, linear, symmetric, and essentially self-adjoint operator in
X. In addition, the closure Ā0 of A0 is semibounded with lower bound

α := − m2a2

4M2r2+
.

Proof: See Lemma 2 and Theorem 4 in Ref. 6. �
Theorem 3.5: The span, D, of all products

f ⊗ (Pm
l ◦ cos),

where f ∈ C2
0 ((r+,∞),C) and Pm

l : (−1, 1) → R is the generalized Legendre polynomial corre-
sponding to m ∈ Z and l ∈ {|m|, |m| + 1, . . . }, is a core for Ā0.

Proof: For this, we use the notation of Ref. 6. According to the proof of Theorem 4 of Ref. 6,
the underlying sets of X and X̄ := L2(�s, (r4/�) sin θ )) are equal; and the norms induced on the
common set are equivalent, the maximal multiplication operator Tr4/(��b) by the function r4/(��b)
is a bijective bounded linear operator on X that has a bounded linear inverse; the operator H, related
to A0 by

A0 = Tr4/(��b) H (3.3)

is a densely defined, linear, symmetric, semibounded, and essentially self-adjoint operator in X̄ , and
D is contained in the (coinciding) domains of A0 and H. Further, it has been shown that (H − λ)D
is dense in X̄ for λ < β, where β := −m2a2/r4

+ is a lower bound for H. From this follows that D is
a core for the closure H̄ of H. For the proof, let f ∈ D(H̄ ). Since (H − λ)D is dense in X̄ , there is
a sequence f1, f2, . . . in D such that

lim
ν→∞(H − λ) fν = (H̄ − λ) f .

Since H̄ − λ is bijective with a bounded inverse, the latter implies that f1, f2, . . . is convergent to f
and also that

lim
ν→∞ H fν = H̄ f .
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Hence, we conclude that H̄ coincides with the closure of H|D. Since Tr4/(��b), T −1
r4/(��b) ∈ L(X, X ),

from the latter also follows that Ā0 coincides with the closure of A0|D. �
Theorem 3.6: The operator Ā0 coincides with the Friedrichs extension of the restriction of A0

to C∞
0 (�s,C).

Proof: As a consequence of Theorem 3 in Ref. 3, it follows that D is contained in the domain
of the Friedrichs extension AF of the restriction of A0 to C∞

0 (�s,C) and that AFf = A0f for every f ∈
D. In this connection, note that the addition of a multiple of the identity operator “does not affect”
the Friedrichs extension of an operator.37 Since D is a core for Ā0, from this follows that AF ⊃ Ā0

and hence, since AF is in particular symmetric and Ā0 is self-adjoint, that AF = Ā0. �
Lemma 3.7:

A := Ā0 + (1/4) B2

is a densely defined, linear, and positive self-adjoint operator in X.

Proof: That A is a densely defined, linear, and self-adjoint operator in X is a consequence of
Theorem 3.4 and the Rellich-Kato theorem. For the latter, see, e.g., Theorem X.12 in Ref. 32, Vol.
II. The positivity of A is a simple consequence of the fact that

1

�b

(
− m2a2

� + m2

sin2 θ

)
+ 1

4
b2 = m2

[� − a2 sin2 θ

��b sin2 θ
+ 4M2a2r2

( ��b )2

]

= m2

( ��b )2 sin2 θ

[
(� − a2 sin2 θ ) ��b + 4M2a2r2 sin2θ

]

= m2

( ��b )2 sin2 θ

{
(� − a2 sin2 θ ) [�(� + 2Mr ) + 4M2r2] + 4M2a2r2 sin2θ

}

= m2

��b
2 sin2 θ

[
(� − a2 sin2 θ ) (� + 2Mr ) + 4M2r2

]

= m2

��b
2 sin2 θ

[
(� − 2Mr ) (� + 2Mr ) + 4M2r2] = m2 �2

��b
2 sin2 θ

� 0 .

�
IV. FORMULATION OF AN INITIAL VALUE PROBLEM

In the following, we give an initial value formulation for equations of the type of (2.1) whose
possibility is indicated by Theorem 4.11 in Ref. 4, see also Theorem 5.4.11 in Ref. 5. Here, we
give the details of such formulation, including abstract energy estimates that provide an independent
basis for the estimate (1.3) and also for its improvement (4.5) below. Specialization of the abstract
formulation to X given by (3.1), A := Ā0 − C , B given by (3.2) and C := − (α + ε) for some ε >

0, provides an initial-value formulation for (2.1) on every open interval I of R along with quantities
that are conserved under time evolution. Note that in this case A + C = Ā0. For convenience, the
proofs of the following statements are given in the Appendix B.

Assumption 4.1: In the following, let (X, 〈 | 〉) be a non-trivial complex Hilbert space and A be
a densely defined, linear, and strictly positive self-adjoint operator in X.

Definition 4.2: We denote by W 1
A the complex Hilbert space given by D(A1/2) equipped with the

scalar product 〈 | 〉1, defined by

〈ξ |η〉1 := 〈A1/2ξ |A1/2η〉 + 〈ξ |η〉
for every ξ , η ∈ D(A1/2), and induced norm ‖ ‖1.39

Remark 4.3: Note that, as a consequence of

‖ξ‖1 = (‖A1/2ξ‖2 + ‖ξ‖2)1/2 � ‖ξ‖
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for every ξ ∈ D(A1/2), the imbedding W 1
A ↪→ X is continuous.

Assumption 4.4: Let B: D(A1/2) → X be a symmetric linear operator in X for which there are a
∈ [0, 1) and b ∈ [0, ∞) such that

‖Bξ‖2 � a2‖A1/2ξ‖2 + b2‖ξ‖2

for every ξ ∈ D(A1/2). Note that this implies that B ∈ L(W 1
A, X ). Further, let C ∈ L(W 1

A, X ) be a
symmetric linear operator in X and I be a non-empty open interval of R.

Definition 4.5: We define a solution space SI to consist of all differentiable u : I → W 1
A with

Ran(u) ⊂ D(A), such that u′: I → X is differentiable and

(u′)′(t) + i Bu′(t) + (A + C)u(t) = 0 (4.1)

for every t ∈ I.30

Note that (4.1) contains two types of derivatives. Every first derivative of u is to be understood in
the sense of derivatives of W 1

A-valued functions, whereas every further derivative is to be understood
in the sense of derivatives of X-valued functions. Unless otherwise indicated, this convention is also
adopted in the subsequent part of this section. On the other hand, since the imbedding W 1

A ↪→ X
is continuous, differentiability in the sense of W 1

A-valued functions also implies differentiability in
the sense of X-valued functions, including agreement of the corresponding derivatives. In particular,
every u ∈ SI also satisfies the equation

u′′(t) + i Bu′(t) + (A + C)u(t) = 0 (4.2)

for every t ∈ I, where here all derivatives are to be understood in the sense of derivatives of X-valued
functions. Further, note that the assumptions on C, in general, do not imply that A + C is self-adjoint.

Remark 4.6: According to Theorem 4.11 in Ref. 4, see also Theorem 5.4.11 in Ref. 5, for
every t0 ∈ I, ξ ∈ D(A), and η ∈ W 1

A, there is a uniquely determined corresponding u ∈ SI such
that u(t0) = ξ and u ′(t0) = η. The proof uses methods from the theory of semigroups of operators.
Independently, the uniqueness of such u follows more elementary from energy estimates in part (iii)
of the subsequent Lemma 4.7.

Parts (i) and (ii) of the subsequent Lemma 4.7 give a “conserved current” and a “conserved
energy,” respectively, that are associated with solutions of (4.1). Part (iii) gives associated energy
estimates, that, in particular, imply the uniqueness of the initial value problem for (4.1) stated in (iv).

Lemma 4.7: Let u ∈ SI and t0 ∈ I. Then the following holds.

(i) If v ∈ SI, then ju,v : I → C, defined by

ju,v(t) := 〈u(t)|v′(t)〉 − 〈u′(t)|v(t)〉 + i 〈u(t)|Bv(t)〉
for every t ∈ I, is constant.

(ii) The function Eu : I → R, defined by

Eu(t) := ‖u′(t)‖2 + 〈u(t)|(A + C)u(t)〉
for every t ∈ I, is constant.

(iii) In addition, let A + C be semibounded with lower bound γ ∈ R. Then

‖u(t2)‖ �

⎧⎪⎪⎨
⎪⎪⎩

[ ‖u(t1)‖ + |Eu |1/2(t2 − t1) ]e|γ |1/2 (t2−t1) if γ < 0,

‖u(t1)‖ + E1/2
u (t2 − t1) if γ = 0,

(2Eu/γ )1/2
(

1 − e−γ 1/2(t2−t1)
)

+ ‖u(t1)‖e−γ 1/2(t2−t1) if γ > 0,

for t1, t2 ∈ I such that t1 ≤ t2.
(iv) In addition, let A + C be semibounded. If v ∈ SI is such that

u(t0) = v(t0), u′(t0) = v′(t0),

then v = u.
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FIG. 1. (Color online) Graph of (R → R, λ �→ Ã − λB − λ2) for Ã and B from Example 4.8.

Proof: See Appendix B. �
The following example proves that it is possible that the energy assumes strictly negative values,

but that the solutions of (4.1) are stable, i.e., that there are no exponentially growing solutions. This
is different from the case of vanishing B, where there are unstable solutions of (4.1) if and only if
the energy assumes strictly negative values.

Example 4.8: The example uses for the Hilbert space X the spaceC2 equipped with the Euclidean
scalar product, Ã := A + C and B are the linear operators on C2 whose representations with respect
to the canonical basis are given by the matrices(

1 0
0 −1

)
and

(
3 1
1 3

)
, (4.3)

respectively. An analysis shows that Ã and B are bounded linear and self-adjoint operators in
X, Ã is semibounded, B is positive, and Ã + (1/4)B2 is strictly positive. Further, Ã and B do not
commute. Finally, the operator polynomial (C → L(X, X ), λ �→ Ã − λB − λ2) has four distinct real
eigenvalues. Therefore, in this case, there are no exponentially growing solutions of the corresponding
equation (4.1). Figure 1 gives the graph of p := (R → R, λ �→ det( Ã − λB − λ2)) = λ4 + 6λ3

+ 8λ2 − 1 which suggests that there are precisely four distinct real roots. Indeed, we notice that

p(−5) > 0, p(−4) < 0, p(−1) > 0, p(0) < 0, p(1) > 0

and hence that p has real roots in the intervals ( − 5, − 4), ( − 4, − 1), ( − 1, 0), and (0, 1). In
addition, the value of the conserved energy Eu corresponding to the solution u of (4.1) with initial
data u(0) = t (0, 1) and u ′(0) = t (0, 0) is <0.

There are other possible definitions for the energy that is associated with solutions of (4.1). In
cases of vanishing B, such are usually not of further use. In the case of a nonvanishing B, they can
be useful as is the case for the RKG. In this case, the positivity of Es, u for sufficiently large masses
of the field and

s = ma

2Mr+
(4.4)

provides a basis for (1.3) and its improvement (4.5) below.
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Corollary 4.9: Let s ∈ R and u ∈ SI. Then, the function Es,u : I → R, defined by

Es,u(t) := ‖u′(t) + isu(t)‖2 + 〈u(t)|(A + C + s(B − s))u(t)〉
for every t ∈ I, is constant. If A + C + s(B − s) is additionally semibounded with lower bound
γ ∈ R, then

‖u(t2)‖ �

⎧⎪⎪⎨
⎪⎪⎩

[ ‖u(t1)‖ + |Es,u |1/2(t2 − t1) ]e|γ |1/2 (t2−t1) if γ < 0,

‖u(t1)‖ + E1/2
s,u (t2 − t1) if γ = 0,

(2Es,u/γ )1/2
(

1 − e−γ 1/2(t2−t1)
)

+ ‖u(t1)‖e−γ 1/2(t2−t1) if γ > 0,

for t1, t2 ∈ I such that t1 ≤ t2.

Proof: See Appendix B. �
Theorem 4.10: If there is s ∈ R such that A + C + s(B − s) is positive, then there are no

exponentially growing solutions of (4.1).

Proof: The statement is a direct consequence of Corollary 4.9 (or Theorem 4.17 (ii) in Ref. 4,
see also Theorem 5.4.17 (ii) in Ref. 5). �

Assumption 4.11: In the following, we assume that X is given by (3.1), A := Ā0 − C , B is given
by (3.2), and C := − (α + ε) for some ε > 0.

Theorem 4.10 leads to an improvement of the estimate (1.3).

Theorem 4.12: If

μ � |m|a
2Mr+

√
1 + 2M

r+
, (4.5)

then there are no exponentially growing solutions of (4.1).

Proof: Let s ∈ R. In the following, we estimate Ā0 + s B − s2. For this, let f ∈ D(A0). Then

(A0 + s B − s2) f = 1

�b

(
− ∂

∂r
� ∂

∂r
− 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ m2

sin2 θ
+ Vs

)
f,

where

Vs := −m2a2

� + μ2� + s
4m Mar

� − s2 �b

= − (2s Mr − ma)2

�
+ (μ2 − s2)� − 2s2 Mr .

First, we note that

m2

sin2 θ
� m2 .

In the following, we assume that s = ma/(2Mr+ ). Then

Vs1 := − (2s Mr − ma)2

�
= −

(
ma

r+

)2

+
(

ma

r+

)2 2
√

M2 − a2

r − r−
� −m2 .

Further, we define

Vs2 := (μ2 − s2)� − 2s2 Mr = (μ2 − s2)r2 − 2s2 Mr + a2(μ2 − s2) cos2 θ .

If μ ≥ |s| · [ 1 + (2M/r+ ) ]1/2, then

Vs2 � s2 2M

r+
r2 − 2s2 Mr + a2(μ2 − s2) cos2 θ � a2(μ2 − s2) cos2 θ � 0 .

Downloaded 10 Jan 2012 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



102502-10 Horst Reinhard Beyer J. Math. Phys. 52, 102502 (2011)

As a consequence,

1

�b

(
m2

sin2 θ
+ Vs

)
� 0 .

Further, we conclude that

〈 f ⊗ (Pm
l ◦ cos) | (A0 + s B − s2)( f ⊗ (Pm

l ◦ cos))〉

�
∫

�s

sin θ ( f ⊗ (Pm
l ◦ cos))∗

(
− ∂

∂r
� ∂

∂r
− 1

sin θ

∂

∂θ
sin θ

∂

∂θ

)

( f ⊗ (Pm
l ◦ cos)) drdθ � 0

for every f ∈ C2
0 ((r+,∞),C) and l ∈ {|m|, |m| + 1, . . . }. Since D is a core for Ā0, this implies

that

Ā0 + s B − s2 � 0 .

Hence the statement follows from Theorem 4.10. �
The following gives a connection of the operator Ā0 + s B − s2, s ∈ R, and the Killing field ∂ t

+ s∂ϕ . The corresponding proof is given in Appendix B. This connection sheds light on the previous
proof of the positivity of Ā0 + s B − s2 for s = ma/(2Mr+ ) for sufficiently large μ. Differently
to gtt, the term g(∂ t + s∂ϕ , ∂ t + s∂ϕ) is positive in a neighborhood of the event horizon, but
gradually turns negative away from the horizon. The latter is compensated by the mass term μ2ρ for
sufficiently large μ.

Lemma 4.13: Let s ∈ R and ξ := ∂ t + s∂ϕ . Then

[ A0 + ms B − (ms)2 ] f

= 1

gtt

[
1√−|g| ∂r

√
−|g| grr∂r + 1√−|g| ∂θ

√
−|g| gθθ ∂θ

]
f + m2g(ξ, ξ ) + μ2ρ

−gϕϕ

f

for every f ∈ D(A0), where

ρ := −[ gtt gϕϕ − (gtϕ)2 ] = � sin2θ .

Proof: See Appendix B. �
Subsequently, we rewrite (4.2) into an equivalent time-dependent wave equation that is governed

by a family of unitarily equivalent positive self-adjoint operators. The latter equation might turn out
useful for further investigation since only self-adjoint operators are involved. On the other hand,
a subsequent example proves that from the abstract properties of this family alone it cannot be
concluded that the solutions of the equation are stable.

Lemma 4.14: Let B be additionally bounded and u ∈ SI. Then, v: I → X defined by

v(t) := exp((i t/2)B)u(t)

for every t ∈ I is twice differentiable in the sense of derivatives of X-valued functions and satisfies

v′′(t) + A(t)v(t) = 0 (4.6)

for every t ∈ I, where

A(t) := exp((i t/2)B)

(
A + C + 1

4
B2

)
exp(−(i t/2)B) (4.7)

for every t ∈ R.

Proof: See Appendix B. �
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The previous can be used to prove the stability of the solutions of (4.1) in particular cases where
the operators A + C and B commute. Note that in these cases, there is a further conserved “energy”
associated to the solutions of (4.1).

Theorem 4.15: If, in addition, A + C is self-adjoint and semibounded, B is bounded, A + C
and B commute, i.e.,

(A + C) ◦ B ⊃ B ◦ (A + C)

and

A + C + 1

4
B2

is positive, then there are no exponentially growing solutions of (4.1).

Proof: The statement is a simple consequence of Lemma 4.14 and Lemma 4.7 (iii). �
Coming back to the statement of Lemma 4.14, for every t ∈ I, the corresponding A(t) is a densely

defined, linear, and self-adjoint operator in X, see, e.g., Lemma 5.1, in the Appendix. In particular,
if A + C + (1/4) B2 is positive, A(t) is positive, too. For instance, according to Lemma 3.7, this is
true in the special case of the Klein-Gordon equation (2.1). Hence, in such case it might be expected
that (4.6) for u ∈ SI implies that ‖u‖ is not exponentially growing since this is the case if A(t) = A
for every t ∈ I, where A is a densely defined, linear, positive self-adjoint operator in X. In that case,
u is given by

u(t) = cos((t − t0)A1/2)u(t0) + sin((t − t0)A1/2)

A1/2
u′(t0) (4.8)

for all t0, t ∈ I, where cos((t − t0)A1/2) and sin((t − t0)A1/2/A1/2) denote the bounded linear
operators that are associated with the functional calculus forA1/2 to the restriction of cos((t − t0).idR)
and the restriction of the continuous extension of sin((t − t0).idR)/idR to [0, ∞), respectively, to the
spectrum of A1/2.5 Note that the solutions (4.8) are in particular bounded if A is strictly positive.
Unfortunately, this expectation is in general not true. A counterexample can be found already on the
level of finite-dimensional Hilbert spaces.

Example 4.16: The example uses for the Hilbert space X the space C2 equipped with the
Euclidean scalar product, Ã := A + C and B are the linear operators on C2 whose representations
with respect to the canonical basis are given by the matrices(

1 0

0 −1

)
and

(
23/10 1

1 23/10

)
, (4.9)

respectively. An analysis shows that Ã and B are bounded linear and self-adjoint operators in
X, Ã is semibounded, B is positive, and Ã + (1/4)B2 is even strictly positive. Further, Ã and
B do not commute. Finally, the operator polynomial (C → L(X, X ), λ �→ Ã − λB − λ2) has an
eigenvalue with real part <0. Therefore, in this case, there is an exponentially growing solution of
the corresponding equation (4.2) and hence also of (4.6). Note that in this case, the corresponding
family of operators (4.7) consists of strictly positive bounded self-adjoint linear operators whose
spectra are bounded from below by a common strictly positive real number. Figure 2 gives the graph
of p := (R → R, λ �→ det( Ã − λB − λ2)) = λ4 + 4.6λ3 + 4.29λ2 − 1 which suggests that there
are precisely two distinct simple roots. Indeed, this is true. The proof proceeds by a discussion of
the graph of p using the facts that

p(−4) > 0, p(−3) < 0, p(0) < 0, p(1) > 0,

that the zeros of p′ are given by

(−69 −
√

1329 )/40, (−69 +
√

1329 )/40, 0

and that

p((−69 +
√

1329 )/40) < 0 .
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FIG. 2. (Color online) Graph of (R → R, λ �→ Ã − λB − λ2) for Ã and B from Example 4.16.

Thus, (C → L(X, X ), λ �→ det( Ã − λB − λ2)) has two distinct simple real roots and a pair of
simple complex conjugate roots.

V. DISCUSSION

The mathematical investigation of the stability of Kerr space-time has started but is still in the
phase of the study of relevant model equations in a Kerr background. The study of the solutions of
the Klein-Gordon equation is expected to give important insight into the problem.

In the case of the wave equation, i.e., for the case of vanishing mass μ of the scalar field, results
point to the stability of the solutions. On the other hand, inspection of the reduced Klein-Gordon
equation, (2.1), reveals that the case of μ > 0 originates from the case μ = 0 by the addition of a
positive bounded potential term

μ2 �

�b

to the equation. If there were no first order time derivative present in the equation, from this alone,
it would be easy to prove that the stability of the solutions of the wave equation implies the stability
of the solutions of the Klein-Gordon equation for non-vanishing mass.

In presence of such a derivative, such stabilizing influence of a bounded positive potential term
is not clear, but it is worth noting that the energy estimates in Lemma 4.7 indicate a stabilizing
influence of such a term.

Interestingly, according to an unknown referee, there is another range of masses for which
stability results can be shown. The method of Dafermos and Rodnianski from Ref. 13 can be
adapted to show the stability of the solutions for masses μ below some bound that depends on the
azimuthal separation parameter m.

The numerical results that indicate instability in the case μ �= 0 make quite special assumptions
on the values of the rotational parameter of the black hole that do not make them look very trustworthy.
They could very well be numerical artifacts. Moreover, the numerical investigation by Konoplya
and Zhidenko25 does not find any unstable modes and contradicts all these investigations. Also
the analytical results in this area are not accompanied by error estimates and, therefore, ultimately
inconclusive. Still, apart from Ref. 42, all these results are consistent with the estimate on μ in Ref.
3 and the improved estimate of this paper, above which the solutions of the reduced, by separation
in the azimuth angle in Boyer-Lindquist coordinates, Klein-Gordon equation are stable.
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It seems that the proof of the stability of the solutions of the wave equation in a Kerr background
will soon be established. The question of the stability of the massive scalar field in a Kerr back-
ground is still an open problem, with only few rigorous results available, and displays surprising
mathematical subtlety. In particular, in this case standard tools of theoretical physical investigation,
including numerical investigations, seem too imprecise for analysis. Hence a rigorous mathematical
investigation, like the one performed in this paper, seems to be enforced.
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APPENDIX A: PROOFS FROM SECTION II

In the following, we give the proofs of the Lemmas 2.1 and 2.2 from Sec. II.

Proof of Lemma 2.1.

Proof: For this, let s ∈ R. Then

g(∂t + s ∂ϕ, ∂t + s ∂ϕ) = gtt + 2s gtϕ + s2 gϕϕ

= 1 − 2Mr

�
+ 4s

Mar sin2θ

�
− s2 ��b

�
sin2θ

= �

�
+ sin2θ

�

[−a2 + 4s Mar − s2(r2 + a2)2 + s2a2� sin2θ
]

= �

�
+ sin2θ

�

[−(a − 2s Mr )2 + 4s2 M2r2 − s2(r2 + a2)2 + a2s2� sin2θ
]

= �

�
+ sin2θ

�

[−(a − 2s Mr )2 − s2�(� + 4Mr ) + a2s2� sin2θ
]

= �

�
− sin2θ

�

[
(a − 2s Mr )2 + s2�(� + 4Mr − a2 sin2θ )

]
.

Hence, g(∂ t + s ∂ϕ , ∂ t + s ∂ϕ) has a positive extension to the boundary of �s if and only if

s = a

2Mr+
.

In this case,

(a − 2s Mr )2 + s2�(� + 4Mr − a2 sin2θ )

= a2

r2+
(r − r+)2 + a2

4M2r2+
�(� + 4Mr − a2 sin2θ )

= a2

4M2r2+

[
4M2(r − r+)2 + �(� + 4Mr − a2 sin2θ )

]

= a2�

4M2r2+

[
4M2 r − r+

r − r−
+ � + 4Mr − a2 sin2θ

]
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and hence

g(∂t + s ∂ϕ, ∂t + s ∂ϕ)

= �

4M2r2+�

[
4M2r2

+ − a2 sin2θ

(
4M2 r − r+

r − r−
+ � + 4Mr − a2 sin2θ

)]

= �

4M2r2+�

[
(2Mr+ − a2 sin2θ )2 − a2(r − r+) sin2θ

(
4M2

r − r−
+ r − r− + 4M

)]

= �

4M2r2+�

[
(2Mr+ − a2 sin2θ )2 − a2� sin2θ

(
1 + 2M

r − r−

)2
]

.

�
Proof of Lemma 2.2.

Proof: For this, let (r, θ ) ∈ �e1. Then

�(r, θ ) < a2 sin2θ

and

(2Mr+ − a2 sin2θ )2 − a2�(r, θ ) sin2θ

(
1 + 2M

r − r−

)2

= a4 sin4θ −
[

4Mr+ + �(r, θ )

(
1 + 2M

r − r−

)2
]

a2 sin2θ + 4M2r2
+

> (�(r, θ ))2 −
[

4Mr+ + �(r, θ )

(
1 + 2M

r − r−

)2
]

a2 + 4M2r2
+

= (�(r, θ ))2 − a2�(r, θ )

(
1 + 2M

r − r−

)2

+ 4Mr+(Mr+ − a2)

=
[
�(r, θ ) − a2

2

(
1 + 2M

r − r−

)2
]2

− a4

4

(
1 + 2M

r − r−

)4

+ 4Mr+(Mr+ − a2)

�
[
�(r, θ ) − a2

2

(
1 + 2M

r − r−

)2
]2

+ 4

[
− a4r4

+
(r+ − r−)4

+ Mr+(Mr+ − a2)

]
.

Hence it follows that (r, θ ) ∈ �e2 if

a4r4
+

(r+ − r−)4
+ a2 Mr+ − M2r2

+

= r4
+

(r+ − r−)4

[
a4 + M(r+ − r−)4

r3+
a2 − M2(r+ − r−)4

r2+

]
� 0 .

The latter is the case if and only if

a2 � 2Mr+

1 +
√

1 + 4r4+
(r+−r−)4

.

Further,

2Mr+

1 +
√

1 + 4r4+
(r+−r−)4

� Mr+

1 + r2+
(r+−r−)2

� M2

1 + M2

M2−a2

= M2(M2 − a2)

2M2 − a2

� 1

2
(M2 − a2) .
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Hence if

a2 � 1

2
(M2 − a2),

or, equivalently, if condition (2.2) is satisfied, it follows that (r, θ ) ∈ �e2. �
APPENDIX B: PROOFS FROM SECTIONS III AND IV

In the following, we give the omitted proofs from Secs. III and IV.

Proof of Lemma 4.7.

Proof: “(i)”: For this, let t ∈ I and h ∈ R such that t + h ∈ I. Then

ju,v(t + h) − ju,v(t)

h

= h−1
[〈u(t + h)|v′(t + h)〉 − 〈u′(t + h)|v(t + h)〉 + i 〈u(t + h)|Bv(t + h)〉

− 〈u(t)|v′(t)〉 + 〈u′(t)|v(t)〉 − i 〈u(t)|Bv(t)〉]
= h−1 [〈u(t + h) − u(t)|v′(t + h)〉 + 〈u(t)|v′(t + h) − v′(t)〉

− 〈u′(t + h)|v(t + h) − v(t)〉 − 〈u′(t + h) − u′(t)|v(t)〉
+i 〈u(t + h) − u(t)|Bv(t + h)〉 + i 〈Bu(t)|v(t + h) − v(t)〉] .

Hence it follows that ju, v is differentiable in t with derivative

j ′
u,v(t) = 〈u(t)|(v′)′(t)〉 − 〈(u′)′(t)|v(t)〉 + i 〈u′(t)|Bv(t)〉 + i 〈Bu(t)|v′(t)〉

= 〈u(t)|(v′)′(t) + i Bv′(t)〉 − 〈(u′)′(t) + i Bu′(t)|v(t)〉
= − 〈u(t)|(A + C)v(t)〉 + 〈(A + C)u(t)|v(t)〉 = 0 .

From the latter, we conclude that the derivative of ju, v vanishes and hence that ju, v is a constant
function.

“(ii)”: For this, again, let t ∈ I and h ∈ R such that t + h ∈ I. Further, let Ã := A + C . Then

Eu(t + h) − Eu(t)

h

= h−1
[〈u′(t + h)|u′(t + h)〉 + 〈u(t + h)| Ãu(t + h)〉 − 〈u′(t)|u′(t)〉 − 〈u(t)| Ãu(t)〉]

= h−1
[〈u′(t + h) − u′(t)|u′(t + h)〉 + 〈u′(t)|u′(t + h) − u′(t)〉

+ 〈u(t + h) − u(t)| Ãu(t + h)〉 + 〈u(t)| Ã(u(t + h) − u(t))〉]
= h−1

[〈u′(t + h) − u′(t)|u′(t + h)〉 + 〈u′(t)|u′(t + h) − u′(t)〉
+ 〈A1/2(u(t + h) − u(t))|A1/2u(t + h)〉 + 〈u(t + h) − u(t)|Cu(t + h)〉
+ 〈 Ãu(t)|u(t + h) − u(t)〉] .

Hence it follows that Eu is differentiable in t with derivative

〈(u′)′(t)|u′(t)〉 + 〈u′(t)|(u′)′(t)〉 + 〈A1/2u′(t)|A1/2u(t)〉 + 〈u′(t)|Cu(t)〉
+ 〈(A + C)u(t)|u′(t)〉
= − 〈i Bu′(t) + (A + C)u(t)|u′(t)〉 − 〈u′(t)|i Bu′(t) + (A + C)u(t)〉

+ 〈u′(t)|(A + C)u(t)〉 + 〈(A + C)u(t)|u′(t)〉
= − 〈i Bu′(t)|u′(t)〉 − 〈u′(t)|i Bu′(t)〉 = 0 .

From the latter, we conclude that the derivative of Eu vanishes and hence that Eu is a constant
function.
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“(iii)”: Since A + C is semibounded with lower bound γ ∈ R,

〈ξ |(A + C)ξ〉 � γ ‖ξ‖2

for every ξ ∈ D(A). Hence it follows by (ii) that

‖u′(t)‖2 + γ ‖u(t)‖2 = Eu − (〈u(t)|(A + C)u(t)〉 − γ ‖u(t)‖2) � Eu (B1)

for every t ∈ R. If γ = 0, the latter implies that

‖u′(t)‖ � E1/2
u

for every t ∈ I. Hence it follows by weak integration in X, e.g., see Theorem 3.2.5 in Ref. 5, that

‖u(t2) − u(t1)‖ =
∥∥∥∥

∫
(t1,t2)

u ′(t) dt

∥∥∥∥ �
∫

(t1,t2)
‖u ′(t)‖ dt � E1/2

u (t2 − t1),

where t1, t2 ∈ I are such that t1 < t2, and hence that

‖u(t2)‖ � ‖u(t1)‖ + E1/2
u (t2 − t1) .

For the weak integration, note that the inclusion of W 1
A into X is continuous. If γ > 0, it follows

from (B1) along with the parallelogram identity for elements of X that

‖e−γ 1/2t (eγ 1/2.idR .u)′(t)‖2 = ‖u′(t) + γ 1/2u(t)‖2 � 2( ‖u′(t)‖2 + ‖γ 1/2u(t)‖2 ) � 2Eu

and hence that

‖(eγ 1/2.idR .u)′(t)‖ � (2Eu)1/2eγ 1/2t

for t ∈ I. Hence it follows by weak integration in X that

‖eγ 1/2t2 u(t2) − eγ 1/2t1 u(t1)‖ =
∥∥∥∥
∫

(t1,t2)
(eγ 1/2.idR .u)′(t) dt

∥∥∥∥
�

∫
(t1,t2)

‖(eγ 1/2.idR .u)′(t)‖ dt � (2Eu/γ )1/2
(

eγ 1/2t2 − eγ 1/2t1
)

for all t1, t2 ∈ I such that t1 < t2. The latter implies that

‖eγ 1/2t2 u(t2)‖ � ‖eγ 1/2t1 u(t1)‖ + (2Eu/γ )1/2
(

eγ 1/2t2 − eγ 1/2t1
)

.

Hence

‖u(t2)‖ � (2Eu/γ )1/2
(

1 − e−γ 1/2(t2−t1)
)

+ e−γ 1/2(t2−t1)‖u(t1)‖ .

If γ < 0, it follows from (B1) that

‖u′(t)‖2 � Eu − γ ‖u(t)‖2 � |Eu | + a ‖u(t)‖2,

for every t ∈ I, where a := − γ > 0. The latter implies that

‖u′(t)‖ � |Eu |1/2 + a1/2 ‖u(t)‖
for every t ∈ I. Hence it follows by weak integration in X that

‖u(t2) − u(t1)‖ =
∥∥∥∥
∫

(t1,t2)
u ′(t) dt

∥∥∥∥ �
∫

(t1,t2)
‖u ′(t)‖ dt

� |Eu |1/2(t2 − t1) + a1/2
∫

(t1,t2)
‖u(t)‖ dt,

where t1, t2 ∈ I are such that t1 < t2, and

‖u(t2)‖ � ‖u(t1)‖ + |Eu |1/2(t2 − t1) + a1/2
∫

(t1,t2)
‖u(t)‖ dt .
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By help of the generalized Gronwall inequality from Lemma 3.1 in Ref. 20, from the latter we
conclude that

‖u(t2)‖ � [ ‖u(t1)‖ + |Eu |1/2(t2 − t1) ]ea1/2(t2−t1)

for t1 ∈ I and t2 ∈ I such that t1 < t2.
“(iv)”: For this, we define w := v − u. Then w is an element of SI such that w(t0) = w′(t0) = 0.

This implies that

Ew(t) := ‖w′(t)‖2 + 〈w(t)|(A + C)w(t)〉
for every t ∈ I is constant of value 0. Hence we conclude from (iii) that w(t) = 0X for all t ∈ I and
therefore that v = u. �

Proof of Corollary 4.9.

Proof: We define v : I → W 1
A by

v(t) := eist u(t)

for every t ∈ I. Then v is differentiable with Ran v ⊂ D(A) and also v′: I → X is differentiable such
that

v′(t) = eist [u′(t) + isu(t)], (v′)′(t) = eist [(u′)′(t) + 2isu′(t) − s2u(t)]

for every t ∈ I. Further,

(v′)′(t) + i(B − 2s)v′(t) + (A + C + s B − s2)v(t)

= eist [(u′)′(t) + 2isu′(t) − s2u(t) + i(B − 2s)(u′(t) + isu(t))

+(A + C + s B − s2)u(t)]

= eist [(u′)′(t) + 2isu′(t) − s2u(t) + i Bu′(t) − 2isu′(t) − s Bu(t) + 2s2u(t)

+(A + C + s B − s2)u(t)]

= eist [(u′)′(t) + i Bu′(t) + (A + C)u(t)] = 0

for every t ∈ I. Note that (X, A, B − 2s, C + sB − s2) satisfy Assumptions 4.1 and 4.4. Hence it
follows by Lemma 4.7 that the function Ev : I → R, defined by

Ev(t) := ‖v′(t)‖2 + 〈v(t)|(A + C + s B − s2)v(t)〉
= ‖u′(t) + isu(t)‖2 + 〈u(t)|(A + C + s B − s2)u(t)〉

for every t ∈ I, is constant. If, in addition, A + C + s(B − s) is semibounded with lower bound
γ ∈ R, then

‖v(t2)‖ �

⎧⎪⎪⎨
⎪⎪⎩

[ ‖v(t1)‖ + |Ev|1/2(t2 − t1) ]e|γ |1/2 (t2−t1) if γ < 0,

‖v(t1)‖ + E1/2
v (t2 − t1) if γ = 0,

(2Ev/γ )1/2
(

1 − e−γ 1/2(t2−t1)
)

+ ‖v(t1)‖e−γ 1/2(t2−t1) if γ > 0,

for t1, t2 ∈ I such that t1 ≤ t2. �
Proof of Lemma 4.13.

Proof: First, we notice that the only non-vanishing components of (gab)(a,b)∈{t,r,θ,ϕ}2 are given
by

gtt = �b

�
, gtϕ = gϕt = 2Mar

��
, grr = −�

�
, gθθ = − 1

�
,

gϕϕ = − 1

� sin2θ

(
1 − 2Mr

�

)
.
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Further, we notice that

gtt = −gϕϕ

ρ
, gtϕ = gtϕ

ρ
, gϕϕ = −gtt

ρ
,

where

ρ := −[ gtt gϕϕ − (gtϕ)2 ] = � sin2θ .

Hence

1

gtt
� = ∂2

t + 2
gtϕ

gtt
∂t∂ϕ + gϕϕ

gtt
∂2
ϕ

+ 1

gtt

[
1√−|g| ∂r

√
−|g| grr∂r + 1√−|g| ∂θ

√
−|g| gθθ ∂θ

]

= ∂2
t + 2

gtϕ

−gϕϕ

∂t∂ϕ − gtt

−gϕϕ

∂2
ϕ

+ 1

gtt

[
1√−|g| ∂r

√
−|g| grr∂r + 1√−|g| ∂θ

√
−|g| gθθ ∂θ

]
.

As a consequence,

A0 f = 1

gtt

[
1√−|g| ∂r

√
−|g| grr∂r + 1√−|g| ∂θ

√
−|g| gθθ ∂θ

]
f + m2gtt + μ2ρ

−gϕϕ

f

for every f ∈ D(A0). Finally, it follows that

[ A0 + ms B − (ms)2 ] f = A0 f + ms 2m
gtϕ

gtt
f − (ms)2 f

= 1

gtt

[
1√−|g| ∂r

√
−|g| grr∂r + 1√−|g| ∂θ

√
−|g| gθθ ∂θ

]
f

+ m2

−gϕϕ

(
gtt + 2s gtϕ + s2gϕϕ

)
f + μ2ρ

−gϕϕ

= 1

gtt

[
1√−|g| ∂r

√
−|g| grr∂r + 1√−|g| ∂θ

√
−|g| gθθ ∂θ

]
f + m2g(ξ, ξ ) + μ2ρ

−gϕϕ

f

for every f ∈ D(A0). �
Proof of Lemma 4.14.

Proof: First, if D ∈ L(X, X) and f: I → X is differentiable in t ∈ I and h ∈ R∗ such that t + h
∈ I, it follows that

1

h

[
exp((t + h)D) f (t + h) − exp(t D) f (t)

] = exp(t D)
1

h

[
exp(h D) f (t + h) − f (t)

]
= exp(t D)

[
exp(h D)

1

h
[ f (t + h) − f (t)] + 1

h
(exp(h D) f (t) − f (t))

]

= exp(t D)

[
exp(h D)

(
1

h
[ f (t + h) − f (t)] − f ′(t)

)
+ exp(h D) f ′(t)

+ 1

h
(exp(h D) f (t) − f (t))

]

and hence that g := (I → X, s �→exp (sD)f(s)) is differentiable in t with derivative

exp(t D)[ f ′(t) + D f (t)] .
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In particular, this implies, if f is twice differentiable in t ∈ I, that g is twice differentiable in t with
second derivative

exp(t D)[ f ′′(t) + 2D f ′(t) + D2 f (t)] .

Applying the previous auxiliary result to D = (i/2)B proves that v is twice differentiable. Further,
from the definition of v, it follows that

u(t) = exp(−(i t/2)B)v(t)

for every t ∈ I. Application of the auxiliary results above to D = − (i/2)B leads to

u′(t) = exp(−(i t/2)B)

(
v′(t) − i

2
B v(t)

)
,

u′′(t) = exp(−(i t/2)B)

(
v′′(t) − i B v′(t) − 1

4
B2v(t)

)
.

Hence it follows from (4.2) that

0 = u′′(t) + i Bu′(t) + Ãu(t)

= exp(−(i t/2)B)

(
v′′(t) − i B v′(t) − 1

4
B2v(t) + i Bv′(t) − i B

i

2
B v(t)

+ exp((i t/2)B) Ã exp(−(i t/2)B)v(t)

)

= exp(−(i t/2)B)

(
v′′(t) + 1

4
B2v(t) + exp((i t/2)B) Ã exp(−(i t/2)B)v(t)

)

= exp(−(i t/2)B)

[
v′′(t) + exp((i t/2)B)

(
Ã + 1

4
B2

)
exp(−(i t/2)B)v(t)

]
,

where Ã := A + C . �
In the following, we give some abstract lemmas that are applied in the text. For the convenience

of the reader, corresponding proofs are added.

Lemma 5.1 Let (X, 〈 | 〉) be a Hilbert space over K ∈ {R,C}, A a densely defined, linear, and
self-adjoint operator in X and U ∈ L(X, X) be unitary. Then, AU := U◦A◦U− 1 is a densely defined,
linear, and self-adjoint operator in X. Further, if D ≤ D(A) is a core for A, then U(D) is a core for
U◦A◦U− 1. Also, if A is positive, then U◦A◦U− 1 is positive, too.

Proof: First, we note that D(U◦A◦U− 1) = U(D(A)). Since D(A) is dense in X, for ξ ∈ X, there
is a sequence of ξ 1, ξ 2, . . . of elements of D(A) such that

lim
ν→∞ ξν = U−1ξ .

Hence also

lim
ν→∞ Uξν = ξ .

As a consequence, U◦A◦U− 1 is densely defined. Also, as composition of linear maps, U◦A◦U− 1 is
linear. In addition, for ξ , η ∈ D(A), it follows that

〈Uξ |U ◦ A ◦ U−1Uη〉 = 〈ξ |Aη〉 = 〈Aξ |η〉 = 〈U ◦ A ◦ U−1Uξ |Uη〉
and hence that U◦A◦U− 1 is symmetric. Further, if ξ ∈ D((U◦A◦U− 1)*), then

〈(U ◦ A ◦ U−1)∗ξ |Uη〉 = 〈ξ |(U ◦ A ◦ U−1)Uη〉 = 〈U−1ξ |Aη〉
for every η ∈ D(A). Hence ξ ∈ U(D(A)), and

〈U−1ξ |Aη〉 = 〈AU−1ξ |η〉 = 〈U AU−1ξ |Uη〉
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for every η ∈ D(A). Since U(D(A)) is dense in X, this implies that (U◦A◦U− 1)*ξ = UAU− 1ξ . As a
consequence,

U AU−1 ⊃ (U ◦ A ◦ U−1)∗ .

Hence it follows that U◦A◦U− 1 is self-adjoint. Further, let D ≤ D(A) be a core for A. As a
consequence, for every ξ ∈ D(A) there is a sequence ξ 1, ξ 2, . . . in D such that

lim
ν→∞ ξν = ξ, lim

ν→∞ Aξν = Aξ .

Hence Uξ 1, Uξ 2, . . . is a sequence in U(D) such that

lim
ν→∞ Uξν = Uξ, lim

ν→∞ U AU−1Uξν = U AU−1Uξ .

Therefore, U(D) is a core for UAU− 1. Finally, if A is positive, it follows for ξ ∈ D(A) that

〈Uξ |(U ◦ A ◦ U−1)Uξ〉 = 〈Uξ |U Aξ〉 = 〈ξ |Aξ〉 � 0

and hence also the positivity of UAU− 1. �
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