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ABSTRACT

Context. Two-point correlation functions are used throughout cosmology as a measure for the statistics of random fields. When used
in Bayesian parameter estimation, their likelihood function is usually replaced by a Gaussian approximation. However, this has been
shown to be insufficient.
Aims. For the case of Gaussian random fields, we search for an exact probability distribution of correlation functions, which could
improve the accuracy of future data analyses.
Methods. We use a fully analytic approach, first expanding the random field in its Fourier modes, and then calculating the characteris-
tic function. Finally, we derive the probability distribution function using integration by residues. We use a numerical implementation
of the full analytic formula to discuss the behaviour of this function.
Results. We derive the univariate and bivariate probability distribution function of the correlation functions of a Gaussian random
field, and outline how higher joint distributions could be calculated. We give the results in the form of mode expansions, but in one
special case we also find a closed-form expression. We calculate the moments of the distribution and, in the univariate case, we discuss
the Edgeworth expansion approximation. We also comment on the difficulties in a fast and exact numerical implementation of our
results, and on possible future applications.

Key words. large-scale structure of Universe – methods: statistical – gravitational lensing: weak – galaxies: statistics –
cosmology: miscellaneous

1. Introduction

In several fields of science, there are observations that can be
modelled as random processes, either time series or spatial ran-
dom fields. In cosmology, mostly random fields are of interest,
for example as the density perturbation field. Therefore, we use
the language of random fields in this article. Still, all results are
applicable to time series as well.

An important statistical quantity of random fields is the two-
point correlation function, labelled ξ(x) in the following, with x
being the separation between two points of the field. When the
empirical correlation function has been measured, it can be used
to estimate the parameters of a theoretical model for the ran-
dom field. The standard method for this, at least in cosmology,
is Bayesian inference, using Bayes’ theorem:

p(θ|ξ) = p(ξ|θ)p(θ)∫
dθ′ p(ξ|θ′)p(θ′)

, (1)

where θ are the model parameters, p(θ|ξ) is the posterior prob-
ability of some parameters given the data ξ, p(ξ|θ) is called the
likelihood and p(θ) is the prior probability of the parameters.
The prior can be chosen, more or less freely, by several schemes,
and the integral in the denominator is usually not relevant for pa-
rameter estimation studies, as only posterior ratios are necessary.
But it is crucial to the Bayesian analysis to determine the correct
likelihood function for the problem beforehand, a process also
known as forward modelling.

However, in many applications, such as those most relevant
for cosmology, it is very difficult to obtain the correct likeli-
hood function either empirically or theoretically. Therefore, in
those cases where the underlying random field is assumed to be
Gaussian, it has been standard practice for some time to sim-
ply use a Gaussian approximation for the likelihood, as well.
Examples include Fu et al. (2008) in a cosmic shear analy-
sis, Okumura et al. (2008) for luminous red galaxy counts, and
Seljak & Bertschinger (1993) for the cosmic microwave back-
ground correlation function.

There is no a priori reason to assume that the Gaussian ap-
proximation should be exact, or even very accurate. In fact, it
was shown by Hartlap et al. (2009) that there is a significant de-
viation between the real likelihood and a Gaussian for simulated
cosmic shear data. In this case, the error bars on cosmological
parameters improved by 10–40% when using a non-Gaussian
likelihood. This result encouraged a mathematical study on the
properties of correlation functions of Gaussian random fields.
Schneider & Hartlap (2009) found that these correlation func-
tions cannot take arbitrary values, but are subject to constraints.
This can be seen from first studying the power spectrum of
the field, which is Fourier conjugate to the correlation function.
Power spectra are always non-negative, P(k) ≥ 0 for all wave
vectors k.

If the correlation function is measured over a separation
vector (or “lag parameter”) x and its integer multiples nx,
n ∈ N, the non-negativity of P(k) leads to constraints in the
form of inequalities rnl ≤ rn ≤ rnu. Here, rn = ξ(nx)/ξ(0) is the
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“correlation coefficient” normalised by the correlation at zero
separation, and the upper and lower boundaries rnl and rnu are
functions of all ri with i < n. The three lowest order constraints
are 0 ≤ ξ(0), −1 ≤ r1 ≤ 1 and −1 + 2r2

1 ≤ r2 ≤ 1.
Since a Gaussian or multivariate Gaussian is unbounded, the

existence of the constraints already demonstrates that the real
likelihood function cannot be exactly Gaussian, but at least must
have its tails cut off. Still, the constraints do not immediately lead
to a full description of the likelihood function. Another study by
Sato et al. (2011) has used the copula approach to construct a
more realistic likelihood function for large-scale structure data.
However, this approach is mostly useful for numerical applica-
tion and does not yield direct insights into the analytical struc-
ture of the likelihood function. Also, a preliminary investigation
by Wilking & Schneider (in prep.) has shown that a simple ap-
proach using a Gaussian copula cannot correctly reproduce the
likelihood under constraints. Therefore, in this article we will
focus on a simple type of random fields, but try to find a fully
analytical expression for the likelihood function, or probability
distribution, of correlation functions, and will demonstrate that
it is indeed manifestly non-Gaussian.

For this derivation, we concentrate on Gaussian random
fields, since their unique properties allow for a fully analyti-
cal calculation. In addition, a Gaussian field is fully specified
by its two-point statistics, i.e. ξ(x) or equivalently P(k), which
makes the derivation of their probability distributions especially
rewarding, since then P(k) determines the full set of joint prob-
ability distributions p(ξ1), p(ξ1, ξ2), p(ξ1, ξ2, ξ3) and so on, with
ξi = ξ(xi).

This article consists of five main sections, apart from this
introduction. In Sect. 2, we derive the univariate probability dis-
tribution function. We also calculate its moments and present ex-
plicit results for a special power spectrum. Then, we repeat the
derivation for bivariate distributions in Sect. 3, also discussing
its moments. We go on to discuss possible numerical implemen-
tations of these results in Sect. 4. Using numerical evaluation, we
can discuss the properties of the distribution functions in more
detail in Sect. 5. There, we comment on the general analytical
properties of the uni- and bivariate functions. We also use the
moments to construct an Edgeworth expansion of the univari-
ate distribution, and we generalise our derivations and results to
higher dimensions. We conclude the article in Sect. 6.

2. Univariate distribution

2.1. Derivation

We describe a real Gaussian random field by its Fourier decom-
position

g(x) =
∞∑

n=−∞
gneikn x. (2)

The Fourier modes are independently distributed, each with a
Gaussian probability distribution:

p(gn) =
1
πσ2

n
e−|gn|2/σ2

n . (3)

The mode dispersions are determined by the power spectrum,

σ2
n =

1
LNdim

P(|kn|). (4)

The following derivations will be independent of the choice of
a power spectrum, as long as it obeys the constraint of non-
negativity. So the σn are arbitrary parameters.

As is usually done in numerical simulations, we consider a
finite field, x ∈ [0, L]Ndim, with periodic boundary conditions. A
sufficiently large finite field will be representative of a field on
the whole of RNdim if the random field has no power on scales
larger than L. This is also equivalent to the assumption of sta-
tistical homogeneity on these scales. Together with isotropy, we
know that the correlation function depends on the distance mod-
ulus, or lag parameter, only:

ξ(x, y) = ξ(|x − y|). (5)

We will now concentrate on a one-dimensional field to keep ex-
pressions simple. However, in Sect. 5.4 we will see that all re-
sults also hold for higher dimensions. We start with an estimator
for the correlation function from the finite field, given by

ξ(x) = 〈g(y)g∗(x + y)〉 = 1
L

L∫
0

dy g(y)g∗(x + y), (6)

which approaches the true value for L→ ∞.
Going to k-space, the Fourier modes that fit inside the in-

terval [0, L] are discrete. Each wave number kn has to fulfil the
condition eiknL = 1, so that

kn =
2π
L

n (7)

with n ∈ N. For a real-valued random field, the Fourier compo-
nents fulfil g−n = g

∗
n. Using this property, the mode expansion of

the field can be split up as

g(x) =
∞∑

n=−∞
gneikn x =

∞∑
n=1

(
gneikn x + g∗ne−ikn x

)
+ g0. (8)

Without loss of generality, we assume that the field has zero
mean, since we can always achieve this by a simple transforma-
tion. Then, the zero mode g0 cancels out. We can then insert his
expansion into the estimator (6). For the spatial integrals, we can
use the integral representation of the Kronecker delta symbol:

L∫
0

dx ei(2π/L)x(n−m) = Lδnm =

{
L if n = m,
0 if n � m.

(9)

The correlation function is then given by

ξ(x) =
1
L

∞∑
n=1

∞∑
m=1

L
(
gngmeikm xδn,−m + g

∗
ngmeikm xδn,m

+gng
∗
me−ikm xδn,m + g

∗
ng
∗
me−ikm xδ−n,m

)
. (10)

Executing the sum over m, only half of the terms survive, and
the remaining exponentials give a cosine function:

ξ(x) = 2
∞∑

n=1

|gn|2 cos(knx). (11)

Now that we have a convenient expression for (the estimator of)
the correlation function, we need to take one more intermedi-
ate step before calculating its probability distribution. This is
the characteristic function, which, in general, is defined as the
Fourier transform of a probability distribution function. For the
given random field, we can calculate the characteristic function
by means of an ensemble average:

ψ(s) =
〈
eisξ(x)

〉
x
=

⎛⎜⎜⎜⎜⎜⎝
∞∏

n=1

∫
d2gn p(gn)

⎞⎟⎟⎟⎟⎟⎠ eisξ(x). (12)
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Since the field is Gaussian, the modes are independently
distributed, and the probability distribution factorises.
Inserting (11), we get

ψ(s) =
∞∏

n=1

∫
d2gn p(gn) e2is|gn|2 cos(kn x) =:

∞∏
n=1

ψn(s). (13)

In the individual factors ψn(s), we substitute z = |gn|2 to solve
the integral:

ψn(s) =

2π∫
0

dφn

∞∫
0

d|gn| |gn|
πσ2

n
exp

(
−|gn|2
σ2

n

)
exp

(
2is|gn|2 cos(knx)

)

=
1
σ2

n

∞∫
0

dz exp

(
−z

1 − 2isσ2
n cos(knx)

σ2
n

)

=
1

1 − 2isσ2
n cos(knx)

· (14)

With the product over all modes, we obtain the full characteristic
function as

ψ(s) =
∞∏

n=1

1
1 − 2isσ2

n cos(knx)
=

∞∏
n=1

1
1 − 2isCn

, (15)

where in the last step we introduced the shorthand notation

Cn = σ
2
n cos(knx). (16)

The characteristic function is an important result in its own right,
since we can use it to calculate the moments of the distribution,
which we will do in Sect. 2.2. But for now, we go on to calculate
the probability density distribution p(ξ) by an inverse Fourier
transform:

p(ξ) =

∞∫
−∞

ds
2π

e−isξψ(s) =

∞∫
−∞

ds
2π

e−isξ
∞∏

n=1

1
1 − 2isCn

· (17)

We will solve this integral using the theorem of residues, since
the integrand is analytic except at its poles

sn =
−i

2Cn
=

−i
2σ2

n cos(knx)
· (18)

All of these lie on the imaginary axis. However, if cos(knx) = 0
for some n, then the corresponding factor in the characteristic
function is unity, and there is no pole and no contribution to
the integral from this term. On the other hand, some Cn may
be equal, and so there may be poles of higher order (multiple
poles). These special cases will be discussed in Appendix A, but
for now we focus on the standard case of N simple poles.

We can choose a contour of integration made up of two parts,
a straight section [R,R] combined with a semicircle of radius R,
which we parametrise by s = Reiφ, with either φ ∈ [0, π] for
the upper or φ ∈ [π, 2π] for the lower half-plane. To get the full
integral for p(ξ), we have to take the limit of R→ ∞. The numer-
ator of the integrand is e−isξ, whereas the denominator, after ex-
ecuting the product, is only a polynomial in s. So the numerator
dominates the convergence behaviour, requiring �(−isξ) < 0.
For ξ > 0, this corresponds to (s) < 0, and we can close the
contour in the lower half-plane. If instead ξ < 0, the requirement
is (s) > 0, and we can close the contour in the upper half-
plane. So for a given ξ, only the poles lying in the corresponding

half-plane contribute to the sum of residues. We encode this be-
haviour in the factor

Hn = H(ξ)H(Cn) − H(−ξ)H(−Cn), (19)

where for the Heaviside step function we use the convention

H(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if x > 0,
0.5 if x = 0,
0 if x < 0.

(20)

If all poles sn are simple, we can calculate the residues by

Ressn = lim
s→sn

⎛⎜⎜⎜⎜⎜⎝(s − sn)
e−isξ

1 − 2isCn

∏
m�n

1
1 − 2isCm

⎞⎟⎟⎟⎟⎟⎠
= e−ξ/(2Cn) i

2Cn

∏
m�n

1

1 − Cm
Cn

· (21)

Inserting the winding numbers wn = 1 for the upper and wn = −1
for the lower contour, the full integral is then

p(ξ) =

∞∫
−∞

ds
2π

e−isξ
∞∏

n=1

1
1 − 2isCn

= 2πi
∑

n

wn Ressn

=

∞∑
n=1

Hne−ξ/(2Cn) 1
2Cn

∏
m�n

1

1 − Cm
Cn

· (22)

This result holds for most relevant combinations of input power
spectra and lag parameters. For other cases, we derive a gener-
alised result of a very similar functional form, that also holds for
multiple poles, in Appendix A.

We were unable to further simplify the limit of the infinite
sum in the probability distribution function (22). However, as
long as the power spectrum decreases at least like k−2 for large k,
our numerical implementation of the sum formulae, as described
in Sect. 4, showed that the probability distribution function con-
verges as well. In practice, it is therefore possible to truncate the
series at some maximum mode number N without losing much
precision.

Also, it is obvious from Eq. (22) that for large ξ, a single
mode will always dominate the sum, so that asymptotically, the
distribution is not Gaussian, p(ξ) ∝ e−ξ2

, but instead exponential,
p(ξ) ∝ e−ξ/(2Cmax ).

We also note at this point that Eq. (22) depends on the field
size L, separation x and power spectrum P(|kn|) only through the
ratios x/L and P(|kn|)/L, as can be seen from the definition of
Cn in Eq. (16). When we present numerical results in the further
course of this article, we therefore give these quantities only.
Furthermore, in the case of a Gaussian power spectrum,

P(|kn|) = 1

σP

√
2π

e−k2
n/(2σ2

P), (23)

we can directly state LσP as the relevant quantity.
For such a power spectrum with LσP = 150 and a separation

x = 0, Fig. 1 demonstrates the convergence behaviour of the dis-
tribution function. In this case, the calculations with N = 64 and
N = 128 produce virtually indistinguishable results, so that the
former mode number is sufficient for all practical purposes. In
general, the steepness of the power spectrum determines which
maximum wave number N is necessary: Inserting the wave num-
bers from Eq. (7) into (23), we see that N ∼ LσP/2 is sufficient
for Gaussian power spectra.

A76, page 3 of 13



A&A 534, A76 (2011)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.05  0.1  0.15  0.2

p(
ξ)

ξ

N=1
N=2
N=4
N=8

N=16
N=32
N=64

N=128

Fig. 1. Univariate distributions for different mode numbers N, demon-
strating convergence. All distributions have a Gaussian power spectrum
with LσP = 150 and lag x = 0. With maxima from left to right: solid:
N = 1, long-dashed: N = 2, dashed: N = 4, dotted: N = 8, long-dashed-
dotted: N = 16, dashed-dotted: N = 32, double-dashed: N = 64, long-
dashed-double-dotted: N = 128.

2.2. Moments

In this section, we calculate the moments of the distribution.
Apart from possible use in future applications, this is also useful
as a check for the distribution function derived above, since we
can derive the moments in two independent ways and compare
results. First, we can get the moments Mk from the derivatives
of the characteristic function (Kendall & Stuart 1977, p. 63):

Mk = i−k dkψ(s)
dsk

∣∣∣∣∣∣
s=0

= i−k dk

dsk

∞∏
n=1

1
1 − 2isCn

∣∣∣∣∣∣∣
s=0

· (24)

The first derivative yields the mean of the distribution, or the
expectation value of ξ:

ξ = M1 = −i
dψ(s)

ds

∣∣∣∣∣
s=0
= 2

∞∑
n=1

Cn. (25)

For the variance and other higher-order quantities, we use the
central moments, which are the moments of the distribution of
ξ − ξ. The centralised characteristic function is simply

ψc(s) :=
〈
eis

(
ξ−ξ

)〉
=

⎛⎜⎜⎜⎜⎜⎝
∞∏

n=1

∫
d2gn p(gn)

⎞⎟⎟⎟⎟⎟⎠ eis
(
ξ−ξ

)
= e−isξψ(s),

(26)

and it yields the central moments as (Kendall & Stuart 1977,
pp. 57, 63)

Mck = i−k dkψc(s)
dsk

∣∣∣∣∣∣
s=0

· (27)

The first six non-zero central moments are then

Mc2 = 4
∞∑

n=1

C2
n, (28)

Mc3 = 16
∞∑

n=1

C3
n, (29)

Mc4 = 48
∞∑

n=1

⎛⎜⎜⎜⎜⎜⎝3C4
n + 2C2

n

∑
m>n

C2
m

⎞⎟⎟⎟⎟⎟⎠ , (30)

Mc5 = 128
∞∑

n=1

⎛⎜⎜⎜⎜⎜⎝11C5
n + 5C3

n

∑
m�n

C2
m

⎞⎟⎟⎟⎟⎟⎠ , (31)

Mc6 = 320
∞∑

n=1

⎛⎜⎜⎜⎜⎜⎝ 53C6
n + 27C4

n

∑
m�n

C2
m + 16C3

n

∑
m>n

C3
m

+18
∑

k>m>n

(CnCmCk)2

⎞⎟⎟⎟⎟⎟⎠ . (32)

From these moments, we can also obtain some conventional sta-
tistical quantities: the variance V(ξ) = Mc2, the standard devia-
tion σ =

√
V(ξ), the skewness S (ξ) = Mc3/σ

3 and the kurtosis
K(ξ) = Mc4/σ

4 − 3.
Alternatively, we can also calculate the moments from the

probability distribution function by the integrals

Mn =

∞∫
−∞

dξ ξn p(ξ). (33)

An important check for the sanity of the distribution function
will be to re-obtain the normalisation as unity by this approach.
We can compute it as the moment of order zero:

N = M0 =

∞∫
−∞

dξ
∞∑

n=1

Hne−ξ/(2Cn) 1
2Cn

∞∏
m�n

1

1 − Cm
Cn

=

∞∑
n=1

∞∏
m�n

1

1 − Cm
Cn

=:
∞∑

n=1

an. (34)

We can evaluate this sum of products by considering another
Fourier transform from p(ξ) back to ψ(s):

ψ(s) =

∞∫
−∞

dξ eisξp(ξ)

=

∞∑
n=1

an

2Cn

∞∫
−∞

dξHne[is−1/(2Cn)]ξ

=
∑
Cn>0

an

2Cn

∞∫
0

dξ e[is−1/(2Cn)]ξ −
∑
Cn<0

an

2Cn

0∫
−∞

dξ e[is−1/(2Cn)]ξ

= −
∑
Cn>0

an

2Cn

1

is − 1
2Cn

−
∑
Cn<0

an

2Cn

1

is − 1
2Cn

= −
∞∑

n=1

an

2Cn

(
is − 1

2Cn

) =
∞∑

n=1

an

1 − 2isCn
· (35)

Comparing this expression for the characteristic function to the
original from Eq. (15), we get

∞∏
n=1

1
1 − 2isCn

=

∞∑
n=1

an

1 − 2isCn
· (36)

Evaluation at s = 0 yields

∞∑
n=1

an = 1, (37)

so that together with Eq. (34) we have shown that N = 1.
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To calculate the higher moments, we make use of the integral

∞∫
0

dξ ξkH(C) e−ξ/(2C) = 2k+1k! Ck+1 with k ≥ 0 (38)

and of sum formulae of the type

N∑
n=1

Cn

N∏
m�n

1

1 − Cm
Cn

=

N∑
n=1

Cn, (39)

N∑
n=1

C2
n

N∏
m�n

1

1 − Cm
Cn

=

N∑
n=1

Cn

N∑
m=n

Cm, (40)

N∑
n=1

C3
n

N∏
m�n

1

1 − Cm
Cn

=

N∑
n=1

Cn

N∑
m=n

Cm

N∑
k=m

Ck. (41)

These follow from taking derivatives with respect to s in Eq. (36)
and setting s = 0. We have checked the results for mean, vari-
ance, skewness and kurtosis and have reproduced the results of
the characteristic function approach, demonstrating the validity
of the probability distribution function.

2.3. Cumulative distribution function

From the probability distribution function (22), we can also di-
rectly calculate the cumulative distribution function, defined as
F(ξ) = P(ξ′ > ξ). For single poles only, it is given by

F(ξ) =

∞∫
ξ

dξ′ p(ξ′)

=

∞∑
n=1

1
2Cn

∏
m�n

1

1 − Cm
Cn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣H(ξ)

∞∫
ξ

dξ′ H(Cn) e−ξ/(2Cn)

−H(−ξ)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0∫
ξ

dξ′ +
∞∫

0

dξ′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ H(−Cn) e−ξ/(2Cn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

∞∑
n=1

(
Hne−ξ/(2Cn) + H(−ξ)

)∏
n�m

1

1 − Cm
Cn

· (42)

Again, we use the notation Hn = H(ξ)H(Cn) − H(−ξ)H(−Cn)
for the Heaviside factor, but this time note the extra term of
+H(−ξ). Analogous expressions in the presence of higher-order
poles could be obtained by integrating the corresponding proba-
bility density (A.3).

2.4. A special case – power-law power spectra

In general, the probability distribution function we found is a
sum formula that needs to be evaluated numerically. However,
if the power spectrum of the underlying random field is a power
law P(k) ∝ |k|−ν, we can analytically find a more explicit ex-
pression for the univariate distribution function. In the case of

P(kn) = A|kn|−2 =
L2A

4π2n2
, (43)

with A a normalisation constant, and for a separation of x = 0,
we have Cn = LA/

(
4π2n2

)
and the product factors are

an =
∏
m�n

1

1 − n2

m2

=
∏
m�n

1(
1 − n

m

) (
1 + n

m

) = 2(−1)n, (44)

which is a special case of the infinite product family (Prudnikov
et al. 1986, p. 754)

∞∏
m=1

(
1 − nk

mk

)
= −n−k

k−1∏
m=0

1
Γ
(−ne2πim/k) · (45)

The probability density function (at zero separation) is then

p(ξ) =
4π2

LA
H(ξ)

∞∑
n=1

(−1)n+1n2e−2π2n2ξ/(LA), (46)

where the field size L comes in through Eq. (4). We can now
express the cumulative distribution function in terms of known
functions as

F(ξ) =

∞∫
ξ

dξ′ p(ξ′) = 2H(ξ)
∞∑

n=1

(−1)n+1e−2π2n2ξ/(LA)

= H(ξ)
[
1 − ϑ4

(
0, e−2π2ξ/(LA)

)]
. (47)

Here, ϑ4 (0, q) is a special case of the Jacobi elliptic theta func-
tion, which is known to satisfy (Whittaker & Watson 1963,
p. 463 ff.)

∞∑
n=1

(−1)nqn2
=

1
2

[−1 + ϑ4 (0, q)
]
. (48)

We can then re-obtain the probability density function by differ-
entiation,

p(ξ) = −H(ξ)
d
dξ
ϑ4

(
0, e−2π2ξ/(LA)

)
(49)

=
2π2

LA
H(ξ) e−2π2ξ/(LA)ϑ′4

(
0, e−2π2ξ/(LA)

)
,

where ϑ′4 (0, q) = dϑ4(0,q)
dq . It is not clear to us yet whether this

connection to elliptical functions is a coincidence for just this
special case, or whether it points towards a possible reformula-
tion of the probability distribution for general power spectra.

However, it allows us to analyse the asymptotic behaviour of
the distribution function for large ξ. From Eq. (48), we have

ϑ′4(0, q) = 2
∞∑

n=1

(−1)nn2qn2−1 = −2 + 8q3 − 18q8 + . . . (50)

∼ −2 + 8q3

for q � 1. Then, inserting into Eq. (50), we obtain

p(ξ) ∝ e−2π2ξ/(LA)ϑ′4
(
0, e−2π2ξ/(LA)

)
∝ e−2π2ξ/(LA) (51)

for ξ � 1. Thus, the distribution function behaves like a single
exponential at large ξ, and not like a Gaussian at all. This is in
agreement with our general result p(ξ) ∝ e−ξ/(2Cmax) for large ξ
from Sect. 2.1.
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For the same power spectrum, we can also explicitly calcu-
late the moments. With Cn ∝ P(|k|) ∝ |k|−2, we obtain the mth
(central) moment from the sum

∞∑
n=1

1
n2m
= ζ(2m) =

(−2)2m−1π2m

(2m)!
B2m. (52)

Here, ζ(m) is the Riemann zeta function and Bm are the Bernoulli
numbers (Prudnikov et al. 1986, p. 776) given by

x
ex − 1

=

∞∑
n=0

Bn
xn

n!
· (53)

For example, the mean of the distribution then is simply given
by ξ = LA/12 and the standard deviation is σξ = LA/

(
6
√

10
)

.
For power law power spectra with a different exponent,

Eq. (45) still allows us to express the product factors explic-
itly in terms of known (trigonometric and hyperbolic) functions.
Regrettably, these do not yield any known functions for the full
probability distribution, or for the moments, as far as we are
aware. Thus, a really explicit form was found for the special case
of P(k) ∝ |k|−2 only.

3. Bivariate distribution

3.1. Derivation

In this section, we will calculate the bivariate probability distri-
bution function p(ξ(x1), ξ(x2)), which we will mostly abbreviate
as p(ξ1, ξ2) with ξ1 = ξ(x1), ξ2 = ξ(x2). All preliminaries carry
over from the univariate case, and the starting point of this cal-
culation is

ξ(xi) = 2
∞∑

n=1

|gn|2 cos(knxi). (54)

The characteristic function is now bivariate as well,

ψ(s1, s2) =

⎛⎜⎜⎜⎜⎜⎝
∞∏

n=1

∫
d2gn p(gn)

⎞⎟⎟⎟⎟⎟⎠ ei(s1ξ1+s2ξ2)

=

∞∏
n=1

1
1 − 2i (s1Cn1 + s2Cn2)

· (55)

In the last step, we have defined a generalised shorthand for the
factors Cnm = σ2

n cos(knxm) to allow for the two different lag
parameters xm. It is worth noting at this point that for higher
multivariate distributions, say p(ξ1, ξ2, . . . , ξk), the only change
necessary in the characteristic function will be to add additional
terms of smCnm in this factor, resulting in the generally valid
expression

ψ(s1, s2, . . . , sk) =
∞∏

n=1

⎛⎜⎜⎜⎜⎜⎜⎝1 − 2i
k∑

m=1

smCnm

⎞⎟⎟⎟⎟⎟⎟⎠
−1

. (56)

Next, we will obtain the bivariate probability distribution itself
from the characteristic function by Fourier inversion, in analogy
to the univariate case. But an important difference arises in this
step, since the inversion now contains a double integration. Thus,
we have to calculate the following:

p(ξ1, ξ2) =

∞∫
−∞

ds1

2π

∞∫
−∞

ds2

2π
e−i(s1ξ1+s2ξ2)

∞∏
n=1

[1 − 2i (s1Cn1 + s2Cn2)]
· (57)

Since the pairs of variables (s1, s2) and (ξ1, ξ2) each are mutu-
ally independent, the result has to be invariant under exchanging
the order of integration. We choose to first integrate over ds2
and after that over ds1. From the resulting formula, the symme-
try will not be immediately apparent. However, we have checked
the equivalence of both approaches by also explicitly evaluating
the other choice. Also, we will assume simple poles in both inte-
grations, and will only briefly comment on the effects of multiple
poles at the end of this section.

The poles for the inner integration are now located at

s2n =
1

2iCn2
− Cn1

Cn2
s1, (58)

and, for simple poles, their residues are

Ress2n = lim
s2→ 1

2iCn2
− Cn1

Cn2
s1

[(
s2 − 1

2iCn2
+

Cn1

Cn2
s1

)
e−i(s1ξ1+s2ξ2)

2π

×
∞∏

m=1

1
1 − 2i(s1Cm1 + s2Cm2)

⎤⎥⎥⎥⎥⎥⎦

=
i

2π
e−ξ2/(2Cn2)−is1[ξ1−(Cn1/Cn2)ξ2]

2Cn2

⎛⎜⎜⎜⎜⎜⎜⎝
∏
m�n

Cn2

2iDnm

1

s1 +
Cn2−Cm2

2iDnm

⎞⎟⎟⎟⎟⎟⎟⎠ ·
(59)

Here we have simplified the expression by defining the determi-
nant factor

Dnm = Cn1Cm2 −Cm1Cn2 = det

(
Cn1 Cm1
Cn2 Cm2

)
. (60)

The arguments as to the choice of contours apply exactly as be-
fore, since the imaginary part of the poles remains unchanged
from Eqs. (18) to (58). Thus, poles with positive Cn2 factors lie
within the lower contour, whereas those with negative Cn2 lie
within the upper contour. The corresponding Heaviside factors
encoding this behaviour are H(ξ2)H(Cn2) and H(−ξ2)H(−Cn2).
The winding numbers are wn = 1 for the upper and wn = −1 for
the lower contour. So we obtain the full integral as

p(ξ1, ξ2) =

∞∫
−∞

ds1

2π

∞∫
−∞

ds2

2π
e−i(s1ξ1+s2ξ2)

∞∏
n=1

1
1 − 2i(s1Cn1 + s2Cn2)

=

∞∫
−∞

ds1

2π
2πi

∑
n

wn Ress2n

=

∞∑
n=1

[
H(ξ2)H(Cn2) − H(−ξ2)H(−Cn2)

]
e−ξ2/(2Cn2)

×
∞∫
−∞

ds1

2π
e−is1[ξ1−(Cn1/Cn2)ξ2]

2Cn2

⎛⎜⎜⎜⎜⎜⎜⎝
∏
m�n

Cn2

2iDnm

1

s1+i Cm2−Cn2
2Dnm

⎞⎟⎟⎟⎟⎟⎟⎠ ·
(61)

The remaining task is to calculate the second integral. For ease
of notation, we will substitute s1 → s and introduce the new
variables

αn = ξ1 − Cn1

Cn2
ξ2 and βnm =

Cm2 −Cn2

2Dnm
· (62)

Then, the second integral can be reduced to the calculation of
the term

S n =

∞∫
−∞

ds
2π

e−isαn

⎛⎜⎜⎜⎜⎜⎝
∏
m�n

1
s + i βnm

⎞⎟⎟⎟⎟⎟⎠ · (63)
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Fig. 2. Isoprobability contours of the bivariate distributions p(ξ1, ξ2) for a Gaussian power spectrum with LσP = 20 and 16 modes. Left panel:
x/L = (0.15, 0), right panel: x/L = (0.2, 0.25).

This integral has poles at snm = −i βnm. For simple poles, the
residues are

Ressnm = lim
s→−iβnm

(s + i βnm)
1

2π
e−isαn

1∏
p�n

(
s + i βnp

)

=
i−N+2

2π
e−αn βnm∏

p�n
p�m

(
βnp − βnm

) · (64)

Furthermore, the choice of contours is also very similar to the
previous procedure. We will again close the contour with semi-
circles in either the upper or the lower half-plane, and the purely
imaginary poles snm = −i βnm lead, by the same convergence
argument, to Heaviside factors H(αn)H( βnm) for the contour in
the lower half-plane and H(−αn)H(−βnm) for the contour in the
upper half-plane. With the usual winding numbers wn = ±1, the
integral is

S n = 2πi
∑

n

wn Ressnm

=
∑
m�n

[
H(αn)H( βnm) − H(−αn)H(−βnm)

] i−N+1e−αn βnm∏
p�n
p�m

(
βnp − βnm

) ·

(65)

Reinserting this result into the full expression (61), the bivariate
probability distribution function is

p(ξ1, ξ2)N =
(−1)N+1

2N

N∑
n=1

CN−2
n2∏

m�n
Dnm

(66)

×
∑
m�n

Hnm

exp
(

(Cn2−Cm2)ξ1+(Cm1−Cn1)ξ2

2Dnm

)
∏
p�n
p�m

(
βnp − βnm

) ,

where we used a shorthand notation for all of the Heaviside
factors:

Hnm =
[
H(ξ2)H(Cn2) − H(−ξ2)H(−Cn2)

]
× [

H(αn)H( βnm) − H(−αn)H(−βnm)
]
. (67)

Finally, we can bring this expression to a more symmetric form
by reinserting the βnm and shifting around some factors:

p(ξ1, ξ2)N =
(−1)N+1

4

N∑
n=1

∑
m�n

HnmDN−3
nm (68)

×
exp

(
(Cn2−Cm2)ξ1+(Cm1−Cn1)ξ2

2Dnm

)
∏
p�n
p�m

(
Dnp − Dnm − Dmp

) ·

This derivation is only valid if, in both integrations, none of the
poles vanish or are of higher order. But like we do for the uni-
variate distribution in Appendix A, we can find corrections to
get the most general result. In this case, they become rather un-
wieldy, and we will not present them in this article, since they
can be easily avoided by choosing well-behaved power spectra
and non-commensurable lag parameters. However, in Fig. 2 we
show results for lag parameters which produce such zero modes.
The corrections were implemented in the numerical code, as de-
scribed in Sect. 4, and produce smooth, non-singular results.

Both panels show results for an one-dimensional field with
a rather narrow Gaussian power spectrum, LσP = 20, since this
allows for convergence with a small number of modes. N = 16
was used for the diagrams. The left panel shows the distribu-
tion for separations x1/L = 0.15 and x2 = 0. It is obvious that
the distribution obeys the constraint |ξ(x1)| ≤ ξ(0), with zero
probability outside the triangular region defined by this con-
straint. It is also clearly asymmetric in ξ1, demonstrating the
non-Gaussianity. Marginalisations over either ξ1 or ξ2, shown in
Fig. 3, also demonstrate the non-Gaussian nature of the bivariate
distribution, and are consistent with our univariate results.

The right panel of Fig. 2 shows the case of x1/L = 0.2,
x2/L = 0.25. Here, no constraints are visible, since we have not
fixed any specific value of ξ0, so that the distribution is averaged
over all realisations with arbitrary ξ0 and so both ξ1 and ξ2 are
unbound. Still, the non-Gaussian nature is apparent in this case
as well, since the isoprobability contours have kinks and straight
segments following the prescription of the Heaviside terms.

3.2. Moments

There are analogues of mean, variance and also of higher mo-
ments for multivariate distributions. As we did in Sect. 2.2 for
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Fig. 3. Univariate distributions obtained by marginalisation from the
bivariate p(ξ1, ξ2), for a Gaussian power spectrum with LσP = 20,
16 modes and x/L = (0.15, 0). Solid: p(ξ1), dashed: p(ξ2).

the univariate distribution, we can calculate them either by inte-
grating the distribution function or by differentiating the char-
acteristic function. Since two-dimensional integrals are more
cumbersome, we restrict ourselves to the characteristic function
approach for the bivariate moments.

The mean is now a vector, but calculation and result are quite
similar to the univariate case in Eq. (25):

ξ =

(
ξ1

ξ2

)
=

⎛⎜⎜⎜⎜⎜⎜⎝
−i dψ(s1,s2)

ds1

−i dψ(s1,s2)
ds2

⎞⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣
s1=0=s2

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2
∞∑

n=1
Cn1

2
∞∑

n=1
Cn2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (69)

For the central moments, the centralised characteristic function
is again easy to obtain:

ψc(s1, s2) :=
〈
eis

(
ξ−ξ

)〉
= e−i

(
s1ξ1+s2ξ2

)
ψ(s1, s2). (70)

The analogue of the variance in the bivariate case is the 2 × 2
covariance matrix, which we get from the second centralised
moments:

Σ =

(
Σ11 Σ12
Σ21 Σ22

)
=

( −∂2
1ψc(s1, s2) −∂1∂2ψc(s1, s2)

−∂2∂1ψc(s1, s2) −∂2
2ψc(s1, s2)

)∣∣∣∣∣∣
s1=0=s2

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
4
∞∑

n=1
C2

n1 4
∞∑

n=1
Cn1Cn2

4
∞∑

n=1
Cn1Cn2 4

∞∑
n=1

C2
n2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (71)

Higher central moments Mck could be obtained by building ten-
sors of rank k from the components

i−k ∂ j1∂ j2 . . . ∂ jkψc(s1, s2)
∣∣∣
s1=0=s2

. (72)

3.3. Higher multivariate distributions

In this work, we have derived both univariate and bivariate distri-
bution functions, but no multivariate distributions of more than
two correlation functions. In principle, however, these could be
obtained by exactly the same type of derivation. From the gen-
eral multivariate characteristic function, Eq. (56), the k-variate

distribution function can in general be obtained by solving the k
integrals in

p(ξ1, ξ2 . . . , ξk) =

∞∫
−∞

ds1

2π

∞∫
−∞

ds2

2π
. . .

∞∫
−∞

dsk

2π

× exp

⎛⎜⎜⎜⎜⎜⎜⎝−i
k∑

m=1

smξm

⎞⎟⎟⎟⎟⎟⎟⎠
∞∏

n=1

⎛⎜⎜⎜⎜⎜⎜⎝1 − 2i
k∑

m=1

smCnm

⎞⎟⎟⎟⎟⎟⎟⎠
−1

. (73)

Since the integration was already quite complicated for k = 2,
this is not very practical for higher multivariates.

However, since the multivariate characteristic function is not
very complicated and can be computed directly from the input
power spectrum, an alternative approach would be to calculate
this numerically on a grid in s space, and then do a numerical
complex-to-real Fourier transform on these values to obtain p(ξ)
on a corresponding grid in ξ space.

This approach could be quite efficient for practical purposes,
where the likelihood function is only needed at discrete points
anyway. However, the efficiency and stability of this approach
depends strongly on the input Cnm factors, since the denominator
in the integrand might prove to be numerically hard to handle.
Estimating the performance of such a calculation would require
further studies.

4. Numerical implementation

The numerical implementation of the probability distribution
function, Eq. (22), or of the cumulative distribution function,
Eq. (42), as required for a Bayesian parameter estimation or even
for simply plotting the functions, is not trivial. For a small num-
ber of modes and benign parameters (number of dimensions,
power spectrum, lag parameter), this can be done straightfor-
wardly in any computer numerics system. In general, however,
the summation of many terms with very different orders of mag-
nitude (due to the exponentials and the product factors) leads to
a high demand in numerical accuracy. If the internal accuracy of
the software is less than the number of significant digits in the
summands, rounding and addition errors lead to uncontrollable
errors in p(ξ) and all related quantities.

We solved this problem by using the arprec package (Bailey
et al. 2002), available for C, C++ and Fortran, which allows cal-
culations with up to 1000 decimal digits. The higher the ratio of
separation and field size or the number of significant modes, the
higher the necessary precision. However, a large working pre-
cision significantly increases the run-time for each evaluation
of the likelihood function. Therefore, for a fast and stable im-
plementation suitable for parameter estimation, a way has to be
found to determine the necessary precision beforehand.

For plotting the distribution as a function of ξ, we only need
to compute the product factors once. But in a parameter estima-
tion, the likelihood is evaluated for a different power spectrum
in each step, and so an efficient computation of the product fac-
tors is also necessary. We will describe one such possibility in
Sect. 5.2, which, however, comes with its own numerical issues.
Further investigation into efficient and stable implementations
seems necessary.

5. Discussion

5.1. Analytic properties

The probability distribution function, Eq. (22), has some in-
teresting analytic properties. For lag parameters x � 0, the
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distribution (as the full infinite sum) is non-vanishing both for
positive and negative ξ, and infinitely differentiable at all points.
However, there are some subtleties when the sum gets truncated.
We can most easily see this for the special case of x = 0, where
all Cn are positive, and we obtain

p(ξ) = H(ξ)
∞∑

n=1

e−ξ/(2Cn)an

2Cn
, (74)

with the an defined as in Eq. (34). Thus, we have p(ξ) > 0 for
ξ > 0 and p(ξ) = 0 for ξ ≤ 0. The first derivative is

p′(ξ) =
d p(ξ)

dξ
=

∞∑
n=1

e−ξ/(2Cn) an

2Cn

(
δD(ξ) − H(ξ)

2Cn

)
, (75)

with the Dirac delta function δD(x) = dH(x)
dx . At ξ = 0, we have

p′(0) = δD(0)
∞∑

n=1

an

2Cn
− H(0)

∞∑
n=1

an

4C2
n
= 0. (76)

For the last step, we had to define 0 · δD(0) = 0, and to use the
equality
∞∑

n=1

an

(2Cn)k+1
= 0 (77)

for k = 0 and k = 1, which can be proven by the same argument
used for the normalisation in Sect. 2.2, equating two different
forms of the characteristic function ψ(s) and then taking the kth
derivative in s.

So far, we have seen that p(0) = 0 and p′(0) = 0. If we
consider the full infinite sum for p(ξ), the same is true for all
derivatives

p(k)(ξ) =
dk p(ξ)

dξk
= H(ξ)

∞∑
n=1

e−ξ/(2Cn) (−1)kan

(2Cn)k+1
+ (. . . ), (78)

where (. . . ) stands for terms proportional to δD(x) and its deriva-
tives: we find that p(ξ) can be differentiated infinitely often at all
points along the real axis, with all derivatives vanishing at ξ = 0.
But, if the sum is truncated at some arbitrary mode number N,
this is no longer true. In this case, only the first N − 1 derivatives
will vanish at the origin, and higher derivatives will be discon-
tinuous at this point, making p(ξ) differentiable only N−1 times.
This also holds for x � 0: a sum truncated at N modes is only
N − 1 times continuously differentiable. Still, this phenomenon
does not harm the convergence of the sum, and the truncated
function can still be used as a good approximation of the full
sum if N is chosen sufficiently large, as we have demonstrated
numerically.

However, it is of mathematical interest to note that even the
infinite sum version of Eq. (74) has peculiar properties at ξ = 0.
If we consider the function p(ξ) on the complex plane, the direc-
tional derivatives anywhere but on the real line will not vanish,
while they do along the real line. Thus, the function is not ana-
lytic in any neighbourhood of ξ = 0, and therefore the origin is
an essential singularity of this function. This phenomenon can
also be seen in the special case discussed in Sect. 2.4, where

p(ξ) =
2π2

LA
H(ξ)e−2π2ξ/(LA)ϑ′4

(
0, e−2π2ξ/(LA)

)
. (79)

The elliptic theta function shares just this analytic behaviour.
Still, these functions are smooth for the purposes of real cal-
culus, and there are no problems in practical applications of our
results due to this phenomenon.

Also, discussion in the complex plane allows for another
interesting result. Recalling the characteristic function from
Eq. (35), which is in general a complex function, we have

�(ψ(s)) =
∞∑

n=1

an

1 + 4s2C2
n

and (ψ(s)) =
∞∑

n=1

2ansCn

1 + 4s2C2
n
·

(80)

Obviously, the real part is an even function in s, while the imag-
inary part is odd. Considering the back transform to the proba-
bility distribution function, we find

p(ξ) =

∞∫
−∞

ds
2π

e−isξψ(s)

=

∞∫
−∞

ds
2π

[
cos(sξ) − i sin(sξ)

] [� (ψ(s)) + i (ψ(s))
]

=

∞∫
−∞

ds
2π

[
cos(sξ)� (ψ(s)) + sin(sξ) (ψ(s))

]

+ i

∞∫
−∞

ds
2π

[
cos(sξ) (ψ(s)) − sin(sξ)� (ψ(s))

]
. (81)

Therefore, the real part of p(ξ) contains an even-even and an
odd-odd term, whereas the imaginary part consists of two even-
odd terms, which vanish under the integration. This way, we
have proven that the probability distribution function is indeed
purely real, a fact that was not immediately evident from the
original derivation, which had the complex characteristic func-
tion as an intermediate step.

Going to the bivariate distribution function, we find analyti-
cal issues similar to those in the univariate case. If both lag pa-
rameters are non-zero, p(ξ1, ξ2) is non-zero in the full (ξ1, ξ2)
plane and smooth everywhere. If, however, one of the ξi = 0,
then the probability density is strictly zero outside the bound-
aries defined by the constraint inequality |ξ(x)| ≤ |ξ(0)|, with the
function going smoothly to zero at these boundaries, in the sense
that the real directional derivatives (partial derivatives along unit
vectors) vanish when crossing the boundaries. However, we have
only checked this smoothness numerically, since an analytical
calculation of the derivatives would become rather convoluted.

5.2. Alternative calculation of product factors

In principle, the distribution function (22) is simply a weighted
sum of exponentials. However, the weights are given by the
products

an =
∏
m�n

1

1 − Cm
Cn

· (82)

These make the summation complicated, since closed-form ana-
lytic expressions exist in special cases only, and high accuracy is
needed to compute them numerically. Therefore, we were look-
ing for alternative ways to calculate these products, and found
an approach by a linear set of equations (LSE).

We obtain the first equation of this system from the normal-
isation, as calculated in Sect. 2.2:
∞∫

0

dξ p(ξ) =
N∑

n=1

an = 1. (83)
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Fig. 4. Edgeworth expansions compared to full analytical distributions, for Gaussian power spectra. Left panel: x = 0, LσP = 20, N = 16; solid:
analytical, dashed: 0-order Edg., dotted: 3rd order Edg., dash-dotted: 4th order Edg. Right panel: x/L = 0.5, LσP = 100, N = 32; solid: analytical,
dashed: 0-order Edg., dotted: 3rd order Edg., dash-dotted: 6th order Edg.

For the remaining equations, we consider again the smoothness
of the distribution function at the origin. As already discussed in
Sect. 5.1, the first N−1 derivatives of p(ξ) with respect to ξ yield
the equations

p(k)(0) =
N∑

n=1

an

(2Cn)k+1
= 0. (84)

Then, we can consider the N factors an as the components of a
vector a = (a1, a2, . . . , aN). Combining this with another vector
b = (1, 0, 0, . . . , 0) with N entries and with the N × N coefficient
matrix M of the above equations, we obtain the LSE

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
(2C1)−1 (2C2)−1 . . . (2CN)−1

(2C1)−2 (2C2)−2 . . . (2CN)−2

...
...

. . .
...

(2C1)−N (2C2)−N . . . (2CN)−N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
a2
a3
...

aN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (85)

We can then solve this LSE by any of the usual methods. In
particular, we applied the Singular Value Decomposition (SVD)
as implemented in the GNU Scientific Library (GSL, Galassi
et al. 2009). This implementation has limited precision and
therefore runs into the same numerical problems described in
Sect. 4. However, SVD solutions for many numerically challeng-
ing problems exist, and therefore the general approach seems
promising.

5.3. Edgeworth expansion

Since the moments have simpler expressions (Eqs. (25) and (28)
to (32)) than the probability distribution function itself, it seems
promising to express the distribution in terms of its moments.
One way to do so is the Edgeworth asymptotic expansion, de-
scribed in Blinnikov & Moessner (1998). It has the form

p
(
σξ + ξ

)
=

e−ξ2/2

√
2πσ

⎡⎢⎢⎢⎢⎢⎢⎣1 +
∞∑

n=1

σn
∑
{km}

Hen+2r(ξ)
km!

(86)

×
n∏

m=1

(
κm+2

σ2m+2(m + 2)!

)km
⎤⎥⎥⎥⎥⎥⎦

with the (probabilist’s) Hermite polynomials Hen, and ξ and σ
as given in Sect. 2.2. The inner sum runs over all sets {km} of
non-negative integers solving the Diophantine equation

n∑
m=1

mkm = n, (87)

and we also defined, for each such set,

r =
n∑

m=1

km. (88)

We calculate the {km} and r with the algorithm presented in
Appendix C of Blinnikov & Moessner (1998).

The first term in the Edgeworth expansion is a simple
Gaussian, and the higher order terms are given by the cumulants
κn of the distribution in question, which we can derive from the
central moments Mc,n as

κn = Mc,n −
n−1∑
m=1

(
n − 1
m − 1

)
κmMc,n−m. (89)

In Fig. 4, we demonstrate the performance of the Edgeworth ex-
pansion in two examples, both for Gaussian power spectra. The
left panel shows a distribution at zero lag, with LσP = 20 and
16 modes. The Edgeworth term of order zero, a Gaussian with
the same mean and variance as the full distribution, is a very bad
fit in this case. The third-order Edgeworth expansion is the best
fit, fitting the peak of the distribution almost perfectly and the
tail decently well, while also producing negative probabilities
for some ξ < 0. Adding additional terms only makes the approx-
imation worse, distorting it in the high probability region. For
the right panel, we used x/L = 0.5, LσP = 100 and N = 32. For
this more symmetric distribution, the Gaussian is already a bet-
ter fit; still, the third order Edgeworth expansion fits even better
at the peak. Higher orders again begin to deviate, as evidenced
by the strongly two-peaked sixth-order expansion.

The reason for this behaviour is that, for the higher terms,
the Edgeworth expansion assigns high weights to the tails of the
distribution. Since the distribution we are analysing is in fact
far from Gaussian, especially in the tails, the fit to the peak cor-
respondingly gets worse, and often even multiple peaks appear.
This is similar to the effect noticed by Blinnikov & Moessner
(1998) for the example of χ2 distributions. Also, the regions
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Fig. 5. Univariate distributions for a power-law power spectrum and different separation vectors x, demonstrating isotropy in 2D. Left panel:
dashed: x/L = (0.3, 0), dotted: x′/L ≈ (0.212, 0.212), right panel: dashed: x/L = (0.03, 0), dotted: x′/L ≈ (0.0212, 0.0212).

of negative probability density are generic features of the
Edgeworth expansion when applied to strongly non-Gaussian
distributions.

Still, if we truncate the Edgeworth expansion after a wisely
chosen number of terms, it will provide a good approximation to
the true probability distribution. Since Eq. (86) is an asymptotic
series expansion, it generally does not converge, but we do have
a method at hand to find the optimal number of terms and to con-
trol the error we make. If we truncate the sum over n in Eq. (86)
after N terms, the last term retained will also give the order of the
difference between the full p(ξ) and this partial sum expansion.
Therefore we can, in practice, simply truncate the expansion at
the term with minimal contribution (measured at the peak of the
distribution, at a certain point of evaluation, or integrated over a
domain in ξ we are interested in).

For both cases illustrated in Fig. 4, this criterion gives N = 3
as the optimal order of expansion. Also for other parameters x/L
and LσP, such a third-order Edgeworth expansion seems to be
a safe choice to get a substantial improvement as opposed to a
simple Gaussian likelihood.

5.4. Higher dimensions

In all of the above calculations, we assumed one-dimensional
random fields. However, we can easily generalise all results to
higher dimensions. If we go to Ndim dimensions, with lag pa-
rameters x = (x1, . . . , xNdim), then the allowed Fourier modes are
all

k =
2π
L

n =
2π
L

(n1, . . . , nNdim) (90)

with integer ni. Still, all the modes are independent and each has
a Gaussian probability distribution with its dispersion given by
σn = P(|kn|)/LN

dim. The derivation of p(ξ) stays exactly the same
as presented in Sect. 2.1. Where necessary, we can renumber all
modes n with a single integer n by an arbitrary scheme and retain
the old notations with scalar indices. Then, Eq. (22) still holds,
with only two important changes.

First, the sums now go over many more modes, namely all
possible vectors of integers n = (n1, . . . , nNdim) with ni ∈ N.
If, in a numerical implementation, we want to cover a box in
k-space with N grid points in each direction, we therefore end
up with NNdim modes. Besides the increased computational cost,
this also leads to frequent occurrences of multiple poles. This is
the case especially for x = 0, since then the Cn depend on |n|

only. Therefore, the generalised result of Appendix A gets nat-
urally important in higher dimensions. However, in real appli-
cation scenarios, where accuracy is limited by external factors
anyway, it is always possible to avoid multiple poles by slightly
changing the Cn factors, e.g. by adding a small number ε in the
cosine,

Cn → C′n = σ
2
n cos(x · kn + ε). (91)

Doing this removes the multiple poles while only slightly chang-
ing the results with respect to using the unmodified Cn and the
full multi-pole formula, Eq. (A.3).

As a second effect, the factors Cn now depend on the angle
between separation vector x and mode vector kn:

Cn = σ
2
n cos(x · kn). (92)

However, a Gaussian random field is completely determined by
its power spectrum, and when we assume a P(kn) which depends
on the absolute values of the kn only, such a field should be sta-
tistically isotropic. Any anisotropies seen in our results must be
a consequence of using a finite, cubic field instead of an infinite
field. So we expect that all anisotropies vanish as soon as most
of the power comes from scales much smaller than the field size.
For power spectra concentrated narrowly towards k = 0, i.e.
those with only a few significant modes, the low-k, large-scale
modes will dominate for any finite field size. But for a wide
power spectrum, where many small-scale modes contribute, a
sufficiently large field size should lead to approximate isotropy.

This is demonstrated for a two-dimensional field with a
power spectrum P(k) = k−2 in Fig. 5. Both panels show the
probability distributions for two separation vectors x and x′ of
the same length, but rotated by 45◦. (Or, more precisely, with
x = (x1, 0) and x′ = (x1 cos(45◦ + ε), x1 cos(45◦ − ε)), with
ε = 10−10, to avoid double poles.) For a large separation to
field size ratio, |x|/L = 0.3, seen in the left panel, the distri-
butions for different separation vectors are quite different, while
for |x|/L = 0.03, in the right panel, they have almost converged.
Note that, for P(k) = k−2 in 2 dimensions, the field size L cancels
out of the σn, and therefore we could keep the power spectrum
normalisation constant while changing |x|/L, without changing
the scale of p(ξ).

Isotropy is even easier to obtain for power spectra that are
small both for very small and very large k and large only at in-
termediate wavelengths, since then the low-k, large scale modes
do not harm isotropy. The ΛCDM power spectrum in cosmol-
ogy fulfils this condition, allowing isotropic N-body simulations
with reasonable field sizes.
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However, these are no fundamental changes, and the result-
ing distribution function has all the same properties as the one-
dimensional version. So all our results can be readily applied to
higher dimensions, as long as the computational difficulties can
be handled.

6. Conclusions

We have considered the problem of accurate likelihood func-
tions for Bayesian analyses of data from Gaussian random fields.
Making use of Fourier mode expansions and characteristic func-
tions, we have derived analytically the probability distribution
function of the correlation function for a one-dimensional finite
Gaussian random field. For general power spectra, we can only
give a sum formula for the distribution function. However, for
the special power spectrum P(k) ∝ k−2, we have found an ex-
plicit expression in terms of elliptic theta functions. We can also,
for general power spectra, calculate arbitrary moments and cu-
mulants of the distribution by much simpler sum expressions.

Then, we continued the analytical approach for bivariate
distributions as well, and found a similar, but even more com-
plicated sum formula as a result. We have also outlined a gen-
eral procedure for calculating arbitrary high multivariate distri-
butions, though this is not feasible in practice.

Furthermore, we have considered the analytical properties of
the new probability distribution function, which are well under-
stood and consistent with numerical results. We used the mo-
ments of the univariate distribution to construct an Edgeworth
expansion, which is able to closely approximate the true distri-
bution function in the region of highest likelihood, and therefore
could be a useful replacement of simple Gaussian approxima-
tions in Bayesian analyses. Finally, we found that all our results
easily generalise to multi-dimensional fields.

Considering possible future applications of these results, we
have to point out the importance of improving the correlation
function likelihood, as well as the further steps that are necessary
for a practical implementation.

As already mentioned in the introduction, the Gaussian ap-
proximation for the likelihood can lead to considerable devia-
tions in parameter estimation. For example, in cosmic shear stud-
ies, this leads to significantly reduced accuracy (Hartlap et al.
2009). Similar effects are to be expected in other fields where
correlation functions are used.

However, the work presented in this article has so far been
purely mathematical, and the results are not readily applicable
to real data. The main obstacle lies in the infeasibility of ana-
lytical calculations for higher multivariate distributions. If data
of the correlation function over N bins needs to be analysed, we
would need the full N-variate distribution function. Therefore,
we expect that a numerical approach, as by Wilking & Schneider
(in prep.), is best suited for practical computations. Still, their
“quasi-Gaussian” approach makes direct use of the analytical
univariate distribution function presented in this article. We also
expect that the analytical results will yield important guidance
and cross-checks for future numerical implementations.

We also note that our analytical results depend on the as-
sumption of a Gaussian random field, whereas a lot of cosmolog-
ical data probes the evolved density field on small scales, which
is far from Gaussian. Nevertheless, applications for the analyt-
ical likelihood function could be found on very large scales,
or in cosmic microwave background analysis, since the density
fluctuations at that epoch were still either Gaussian or close to
Gaussian. Furthermore, this work could also be relevant to fields

outside of cosmology, for example in the common problem of
time series analysis of Gaussian random processes.
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Appendix A: Multiple poles

So far, to keep calculations simple, we have considered simple
poles only. However, it is entirely possible to have multiple poles
in the characteristic function, i.e. to have some mode numbers
m � n with Cm = Cn. This could happen if

– the power spectrum is non-monotonic, with P(kn) = P(km)
for some m � n;

– in higher dimensions, several different modes n have identi-
cal absolute value |kn|;

– one of the lag parameters is commensurable with π
2 and thus

produces periodicity in cos(x · kn).

From now on, we will use a scalar index n running over all
modes n by some arbitrary numbering scheme. If a multiple pole
of order k is present for some set of modes, which we will call
N
∗
n = {m ∈ N|Cm = Cn}, we can calculate the residue as

Ressn =
1

Nn(k−1)! lim
s→sn

∂k−1

∂sk−1

⎛⎜⎜⎜⎜⎜⎜⎝ (s − sn)ke−isξ

(1 − 2isCn)k

∏
Cm�Cn

1
1 − 2isCm

⎞⎟⎟⎟⎟⎟⎟⎠ ,
(A.1)

where the weight Nn is the number of modes in N∗n. We can then
rewrite p(ξ) as the usual sum, limited to single pole modes, plus
correction terms for the multiple poles. For example, when there
are some double poles N∗ and all other modes have single poles,
the full expression reads

p(ξ) =
∑

n∈N/N∗

Hne−ξ/(2Cn)

2Cn

∏
m�n

1

1 − Cm
Cn

+
∑
n∈N∗

Hne−ξ/(2Cn)

4C2
n

∏
m�n

1

1 − Cm
Cn

⎛⎜⎜⎜⎜⎜⎜⎝ξ − 2
∑

Cm�Cn

Cm

1 − Cm
Cn

⎞⎟⎟⎟⎟⎟⎟⎠ ·
(A.2)

For general types of poles, we can absorb all multi-pole contri-
butions in a pole order correction factor Pn, so that we can write
the probability distribution function compactly as

p(ξ) =
∞∑

n=1

Hne−ξ/(2Cn)Pn

∏
m�n

1

1 − Cm
Cn

· (A.3)

If the nth mode belongs to a set of poles of order k, its correction
factor is

P(k) =
1

k!(2Cn)k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑
{ai}

A{ai}ξ
a0

k−1∏
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

Cm�Cn

⎛⎜⎜⎜⎜⎜⎜⎝ Cm

1 − Cm
Cn

⎞⎟⎟⎟⎟⎟⎟⎠
i⎤⎥⎥⎥⎥⎥⎥⎥⎦

ai⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (A.4)

where the outer sum goes over all sets of integers ai that fulfil

a0 +

k−1∑
i=1

aii = k − 1. (A.5)

This expression was extrapolated from explicit calculation of
up to quintuple poles. The prefactors A{ai} obtained in these
calculations are given in Table A.1. We still have to find a gen-
eral expression for these prefactors, so that we can also giveP(k)
for k > 5.
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Table A.1. Pole order correction factors.

k {ai} A{ai}
1 0, 0, 0, 0, 0 1
2 1, 0, 0, 0, 0 1

0, 1, 0, 0, 0 −2
3 2, 0, 0, 0, 0 −1

1, 1, 0, 0, 0 4
0, 2, 0, 0, 0 −4
0, 0, 1, 0, 0 −4

4 3, 0, 0, 0, 0 −1
2, 1, 0, 0, 0 6
1, 2, 0, 0, 0 −12
1, 0, 1, 0, 0 −12
0, 3, 0, 0, 0 8
0, 1, 1, 0, 0 24
0, 0, 0, 1, 0 16

5 4, 0, 0, 0, 0 1
3, 1, 0, 0, 0 −8
2, 2, 0, 0, 0 24
2, 0, 1, 0, 0 24
1, 3, 0, 0, 0 −32
1, 1, 1, 0, 0 −64
0, 4, 0, 0, 0 16
0, 2, 1, 0, 0 96
0, 1, 0, 1, 0 128
0, 0, 2, 0, 0 48
0, 0, 0, 0, 1 96

Note added in proof. Recently, it was brought to our attention (thanks
to Stefan Hilbert) that a related distribution has long been known in

the fields of renewal theory and signal processing. In the special case
that all Cn > 0, the correlation function (Eq. (11)) simplifies to a sum
of squares of absolute values of complex Gaussian random variables,
equivalent to a sum of exponential variables, and our univariate distri-
bution (Eq. (22)) is equivalent to a type of generalized Erlangian dis-
tribution (see Cox 1962). A more generalized, multivariate version is
given as “Theorem 4” in Hammarwall et al. (2008), but this is still lim-
ited to positive parameters. Therefore, these results do not apply for the
case of arbitrary signs of the Cn which is needed for our purpose.
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