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Abstract

The Hilbert space of loop quantum gravity is usually described in terms of cylindrical func-
tionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators.
Here we introduce a dual description of this space, by means of a Fourier transform mapping
the usual loop gravity states to non-commutative functions on Lie algebras. We show that the
Fourier transform defines a unitary equivalence of representations for loop quantum gravity. In
the dual representation, flux operators act by ⋆-multiplication and holonomy operators act by
translation. We describe the gauge invariant dual states and discuss their geometrical meaning.
Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the
resulting flux representation with the triad representation used in loop quantum cosmology.

1 Introduction

Loop quantum gravity (LQG) [1,2] is now a solid and promising candidate framework for a quantum
theory of gravity in four spacetime dimensions. It is based on the canonical quantization of the phase
space of general relativity in the Ashtekar formulation, using rigorous functional techniques as well
as ideas and tools from lattice gauge theory. Diffeomorphism invariance of the classical theory is
a crucial ingredient of the construction, both conceptually and mathematically, and background
independence is the guiding principle inspiring it. The main achievement to date in this framework
is the complete definition of the kinematical space of (gauge and diffeomorphism invariant) states
of quantum geometry, based on the conjugate pair of variables given by holonomies he[A] of the
Ashtekar SU(2) connection A, and fluxes of the Ashtekar electric field E (densitized triads) across
2-surfaces. These states are described in terms of so-called cylindrical functionals Ψ[A] of the
connection, which depend on A via holonomies along graphs. Under suitable assumptions involving a
requirement of diffeomorphism invariance, the representation of the algebra generated by holonomies
and fluxes, hence the definition of the state space, is unique [3].

A crucial, and somewhat surprising fact is that the flux variables, even at the classical level, do
not (Poisson) commute [4, 5]. This non-commutativity is generic and necessary, once holonomies of
the Ashtekar connection are chosen as their conjugate variables. In the simplest case, for a given
fixed graph, fluxes across surfaces dual to a single edge act as invariant vector fields on the group,
and have the symplectic structure of the su(2) Lie algebra. Thus, the phase space associated to
a graph is a product over the edges of cotangent bundles T ∗SU(2) ≃ SU(2) × su(2) on the gauge
group. Recent works have shown that the structure of this phase space can also be understood from
a simplicial geometric point of view [6–8].

The fact that non-commutative structures are at the very root of the loop quantum gravity
formalism is well-known for a long time [4]. However, to our knowledge, it has not been built upon
to any extent in the LQG literature, and the full implications of it, as well as the consequent links
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between the loop quantum gravity approach and non-commutative geometry ideas and tools, have
remained unexplored. In fact, it is often believed that non-commutativity of the fluxes implies that
the framework has no flux (or triad) representation. The goal of this paper is to show, instead, that
this non-commutativity is naturally encoded in a definition of a non-commutative Fourier transform
and ⋆-product, and that these can be used to build up a nice non-commutative flux representation
for generic LQG states.

The key technical tool we use is a generalization of the ‘group Fourier transform’, first introduced
in [9–11] in the context of spin foam models [12–14], which address the dynamics of loop quantum
gravity. This is also from developments in the spin foam context, and especially in the context of
group field theory [15], that the idea of building up a non-commutative flux representation for LQG
originates. Much of the recent progress in spin foam models stemmed from the use of a coherent
state basis [16–22] to express both quantum states and amplitudes. This basis has the advantage,
as compared to the standard spin-network basis in LQG, of a clearer and more direct geometric
interpretation of the labels that characterize it, in terms of metric variables. This allowed a more
consistent encoding of geometric constraints in the definition of the spin foam amplitudes, a nice
characterization of the corresponding boundary states and of the semi-classical limit of the same
amplitudes, relating them with simplicial gravity actions. The same aims also motivated recent
work attempting to introduce metric variables in the group field theory framework [23,24]. This line
of research has resulted in a new representation of group field theory in terms of non-commutative
metric variables [25], which could in fact be directly interpreted as discrete (smeared) triads (in the
SU(2) case). In this representation, where non-commutativity of metric variables is brought to the
forefront and used in the very definition of the group field theory model, the Feynman amplitudes
have the form of simplicial gravity path integrals in the same metric variables. These results suggest
to explore a similar metric representation for LQG states, since the group field can be interpreted as
the (2nd quantized) wave function for a LQG spin network vertex. We exhibit such a representation
here, and show that the whole construction of the LQG Hilbert space can be performed in this new
representation as well.

We expect this new non-commutative flux representation to be useful in many respects. First
of all it would help clarifying the quantum geometry of LQG states, including the relation with
simplicial geometry [6, 7]. Thanks to this, it may facilitate the definition of the dynamics of the
theory, both in the canonical (Hamiltonian or Master constraint) [1] and covariant (spin foam or
GFT) setting [25], and the coupling of matter fields [26–30]. Further down the line, it offers a new
handle for tackling the issue of the semi-classical limit of the theory. All these advantages of a
metric representation are in fact shown already in the simpler context of Loop Quantum Cosmology,
where such a representation has been already developed and used successfully [31, 32]. Obviously,
the new representation brings loop quantum gravity closer to the language and framework of non-
commutative geometry [33], thus possibly fostering further progress.

The paper is organized as follows. In Sec. 2, we review some well-known features of the kinemat-
ical Hilbert space H0 of loop quantum gravity in the standard representation. We mainly recall how
it can be defined by induction from a family of lattice Hilbert spaces Hγ labelled by graphs; we also
briefly recall the action of the fundamental operators (holonomy and flux) and the implementation
of gauge invariance. In Sec. 3, we define the non-commutative Fourier transform underlying the flux
representation. The idea is, first, to introduce a family Fγ of ‘group Fourier transforms’ mapping
each Hγ into a space H⋆,γ of non-commutative functions on a Lie algebra. Second, we show that
the family Fγ consistently defines a unitary equivalence F : H0 → H⋆, where H⋆ is built up by in-
duction from the family H⋆,γ . This defines our Fourier transform. In Sec. 4, we describe further the
Fourier representation on the dual space H⋆. We illustrate the action of the fundamental operators
in this representation, which justifies its interpretation as a ‘flux’ representation. We then discuss
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further properties of the gauge invariant dual states, which clarify their geometric meaning and the
relation with the spin network basis. Finally, in Sec. 5, we discuss the analogous construction in
the simpler case of U(1) and comment on its relation with the triad representation used in Loop
Quantum Cosmology. We conclude with a brief outlook on possible further developments.

2 The Hilbert space of loop gravity

Kinematical (gauge covariant) states in loop quantum gravity are functions on a space Ā of suitably
generalized connections [34]. A cornerstone of the framework is the fact that the state space H0

can be defined by induction from a family of Hilbert spaces Hγ = L2(Aγ , dµγ), labeled by graphs
embedded in the spatial manifold σ. For a given graph γ with n edges, Aγ is a space of (distribu-
tional) connections on γ, naturally identified with the product Gn of n copies of the gauge group;
dµγ is the product Haar measure on Gn. The construction stems from a characterization of Ā as a
projective limit of the spaces Aγ .

In this section we briefly recall this standard construction, as we will use it to define the Fourier
transform in Sec. 3. We will assume G is any compact group, though having in mind the cases
G=SU(2) or SO(3) relevant to gravity. Further details can be found in the original articles [35–37]
or in the textbook [1].

2.1 Generalized connections

Given any smooth connection A on Σ, one can assign of a group element Ae to each path e in Σ,
by considering the holonomy of A along e. This assignment respects composition and inversion of
paths:

Ae1◦e2 = Ae1Ae2 , Ae−1 = A−1
e .

In other words, the connection gives a morphism from the groupoid of paths to the gauge group
G. The space Ā of ‘generalized connections’ is defined is the set Hom(P , G) of all such morphisms.
It contains the smooth connections, but also distributional ones. Ā shows up as the quantum
configuration space in loop quantum gravity.

An independent and very useful characterization of Ā makes use of projective techniques [34],
based on the set of embedded graphs. A graph γ=(e1, · · · en) is a finite set of analytic paths with
1 or 2-endpoint boundary, such that every two distinct paths intersect only at one or two of their
endpoints. The path components ei are called the edges of γ; the endpoints of an edge are called
vertices. The set of all graphs has the structure of a ‘partially ordered’ and ‘directed’ set: we say γ′

is larger than γ, and we write γ′ ≥ γ, when every edge of of γ can be obtained from a sequence of
edges in γ′ by composition and/or orientation reversal; then for any two graphs γ1, γ2, there exists
a graph γ3 such that γ3 ≥ γ1, γ2.

For a given graph γ, let Aγ := Hom(γ̄, G) be the set of all morphisms from the subgroupoid
γ̄ ⊂ P generated by the n edges of γ, to the group G. Aγ is naturally identified with Gn, both
set-theoretically and topologically. For any two graphs such that γ′ ≥ γ, γ̄ is a subgroupoid of γ̄′:
we thus have a natural projection pγγ′ : Aγ′ → Aγ , restricting to Aγ any morphism in Aγ′ . These
projections are surjective, and satisfy the rule:

pγγ′ ◦ pγ′γ′′ = pγγ′′, ∀γ′′ ≥ γ′ ≥ γ (1)

This defines a projective structure for the spaces Aγ . It can be shown that the space Ā coincides
with the projective limit of the family (Aγ , pγγ′): namely, a generalized connection can be viewed
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Figure 1: Elementary moves relating ordered graphs

as one of those elements {Aγ}γ of the direct product ×γAγ such that

pγγ′Aγ′ = Aγ , ∀γ′ ≥ γ.

Such a characterization allows to endow Ā with the topology of a compact Hausdorff space.
Let us close this section with a property of the projections pγγ′ that will useful for us. Given

any two ordered graphs γ′ ≥ γ, the larger one γ′ may be obtained from the smaller one γ from a
sequence of three elementary moves: (i) adding an edge (ii) subdividing an edge by adding a new
vertex (iii) inverting an edge (see Fig. 1). Together with the consistency rule (1), this means that
the projections pγγ′ can be decomposed into the following elementary projections onto the space Ae

of connections on a single edge e:

padd : Ae,e′ → Ae; (g, g′) 7→ g

psub : Ae1,e2 → Ae; (g1, g2) 7→ g1g2

pinv : Ae → Ae; g 7→ g−1 (2)

where we have used the identification Aγ :=(g1, · · · gn) of Aγ with Gn.

2.2 Inductive structure of H0

Having unpacked the projective structure of the space of generalized connections:

Ā ≃ {{Aγ}γ ∈ ×γAγ : pγγ′Aγ′ = Aγ ∀γ′ ≥ γ},

we now illustrate how to define the LQG state space H0 by an appropriate ‘glueing’ of the much
more tractable spaces Hγ =L2(Aγ , dµγ), in a way that reflects the projective structure of Ā. The
idea is to define functions on A as equivalence classes of elements in ∪γHγ for a certain equivalence
relation which reflects the projective structure of A.

Let us introduce the family of injective maps p∗γ′γ : Hγ → Hγ′ , γ′ ≥ γ, obtained by pull back of
the projections pγγ′ : Aγ′ → Aγ′ defined in Sec, 2.1. Thus p∗γ′γ acts on fγ ∈ Hγ as

p∗γ′γ : Hγ → Hγ′ , (p∗γ′γfγ)[Aγ′ ] = fγ [pγγ′Aγ′ ] (3)
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These injective maps satisfy a rule analogous to (1):

p∗γ′′γ′ ◦ p∗γ′γ = p∗γ′′γ , ∀γ′′ ≥ γ′ ≥ γ (4)

Just as for the projections pγγ′, the maps p∗γ′γ can be decomposed into three elementary injections
add := p∗add, sub := p∗sub and inv := p∗inv, which encode the transformation of the functions when
adding, subdividing, and inverting an edge of a graph. These elementary injections act on the space
He associated to a single edge as:

add : He → He,e′ ; f(g) 7→ (add ⊲ f)(g, g′) := f(g)

sub : He → He1,e2 ; f(g) 7→ (sub ⊲ f)(g1, g2) := f(g1g2)

inv : He → He; f(g) 7→ (inv ⊲ f)(g) := f(g−1) . (5)

where we have used once again the identification Aγ := (g1, · · · gn) of Aγ with Gn. Using these
elementary maps, as well as the translation and inversion invariance and the normalization of the
Haar measure, it can be checked that the p∗γγ′ are isometric embeddings Hγ →֒ Hγ′ , namely injective
maps preserving the inner product. This expresses the fact that (Hγ , p

∗
γ′γ)γ′≥γ defines an inductive

family of Hilbert spaces.
We now define an equivalence relation on ∪γHγ by setting

fγ1
∼ fγ2

⇐⇒ ∃ γ3 ≥ γ1, γ2, p∗γ3γ1
fγ1

= p∗γ3γ2
fγ2

The quotient space can be endowed with an inner product which naturally extends the inner products
〈 , 〉γ of each Hγ . Let indeed fγ1

, fγ2
be two functions in ∪γHγ . The set of graphs is directed, so we

may pick a graph γ3 such that γ3 ≥ γ1, γ2. It can then be easily shown using the rule (4) and the
fact that the maps p∗γ′γ preserve the inner products, that the quantity

〈fγ1
, fγ2

〉 := 〈p∗γ3γ1
fγ1

, p∗γ3γ2
fγ2

〉γ3

does not depend on the chosen larger graph γ3, and is well-defined on the equivalence classes f1 :=
[fγ1

] and f2 := [fγ2
]. Hence it defines an inner product on the quotient space ∪γHγ/∼. The

completion of this quotient space with respect to the inner product is called the inductive limit of
the inductive family (Hγ , p

∗
γ′γ)γ′≥γ . It can be shown that the limit

H0 = ∪γHγ/∼ (6)

coincides with the space L2(Ā, dµ0) of square integrable functions on Ā, with respect to a gauge
and diffeomorphism invariant measure – the so-called Ashtekar-Lewandowski measure [37]. This is
the kinematical (gauge covariant) state space of loop quantum gravity.

2.3 Quantum theory on H0

Let us fix a graph γ=(e1, · · · en), and identify Hγ with L2(Gn), where the L2-measure is the product
Haar measure. The fundamental operators arising from the quantization, on Hγ , of a classical phase
space given by a cotangent bundle T ∗Gn, act respectively by multiplication by a smooth function
ϕγ of Gn, and as generators of (right) actions of G in (a dense subset of) Hγ :

(ϕ̂γ ⊲ fγ)(g1, . . . , gn) := ϕγ(g1, . . . , gn)fγ(g1, . . . , gn) (7)

(L̂i
e ⊲ fγ)(g1, . . . gn) :=

d

dt
fγ(g1, . . . gee

tτi . . . , gn)

∣∣∣∣
t=0

(8)
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where τ i is a basis of su(2), say i times the Pauli matrices, τi = iσi. L̂i
e is the left-invariant vector

field on the copy of G associated to the edge e, first defined on smooth functions fγ of Gn and then
extended to Hγ . These provide the quantum theory on the graph γ with well-defined momenta
operators, whose algebra has the structure of su(2)n.

The action (7) can be easily extended to the quotient ∪γHγ/∼. For ϕγ1
and fγ2

associated to
different graphs, pick a graph γ larger than both γ1 and γ2, and define ϕ̂γ1

⊲ fγ2
as the equivalence

class [ϕγ ⊲ fγ ] of (7). This action does not depend on the representatives chosen in the equivalence
classes ϕ := [ϕγ1

] and f := [fγ2
]; it defines the action of the holonomy operator ϕ̂ on generic states

of H0. The operator (8) should be interpreted as the flux of the electric field across an ‘elementary’
surface1 cut by the edge e. More generally, the LQG flux operator across a surface S acts on f = [fγ ]
as a sum of left-invariant derivative on fγ′, where γ′ ≥ γ cuts S at its vertices, with only outgoing
edges, the sum being over all the intersection points of γ′ ∩ S and their adjacent edges:

Ei
S ⊲ fγ =

∑

v∈γ′∩S

∑

e⊂v

ǫ(S, e) L̂i
e ⊲ fγ ,

where ǫ(S, e)=± depending on the relative orientation of the edge and the surface.
One can also define on each Hγ operators ĝv generating gauge transformations at each vertex of

v ∈ γ. These act on fγ as

(ĝv ⊲ fγ)(g1 · · · gn) = fγ(g
-1
s1
g1gtn , · · · , g-1sngngtn)

where se, te denote source and target vertices of the oriented graph e. Gauge invariance is thus
imposed by acting with the gauge averaging operator

Pγ :=

∫ ∏

v

dgv ĝv

It can be checked that the action of such operators are well-defined on equivalence classes.
Finally, the so called spin-network basis of H0 is a very convenient one for actual computations.

Such a basis is obtained by harmonic analysis on the gauge group: using the Peter–Weyl theorem, any
function fγ ∈ Hγ can be decomposed into a product over the edges of Wigner functions Dje

mene
(ge)

labelled by irreducible representations of G (j ∈ 1
2N or N for G= SU(2) or SO(3)), and magnetic

numbers −je ≤ me, ne ≤ je. These quantum numbers are interpreted as encoding metric variables;
in particular the spins j labels the eigenvalues of area operators. In the next section, we define
a Fourier transform on H0 that will provide an alternative decomposition of the LQG states, into
functions of continuous Lie algebra variables, naturally interpreted as flux (triad) variables.

3 Fourier transform on the LQG state space

In this section we define the non-commutative Fourier transform that will give the dual flux rep-
resentation. This transform generalizes the ‘group Fourier transform’ introduced in [10, 11, 38] to
theories of connections. We first recall the main features of the group Fourier transform and use

1Actually there exist different proposals to which classical quantities the quantum flux operators should correspond:
In [5] it was shown that they can also be interpreted as quantum versions of a different set of classical functions involving
the holonomies and the triads. The construction performed there is based on a family of graphs γ and dual graphs
γ∗ and the classical continuum phase space is understood as a certain generalized projective limit of graph–phase
spaces of the form T ∗SU(2)n. In section 4.2 we will see that this interpretation is also favored from the dual (Fourier
transformed) point of view.
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it to construct a family of Fourier transforms Fγ defined on Hγ . We then show how this family
extends to a transform F defined on the whole space H0. We emphasize that, to avoid unnecessary
complications, we will work from now on with the gauge group G=SO(3). With more work, the
construction can be extended to the SU(2) case, using the SU(2) group Fourier transform spelled
out in [38].

3.1 Group Fourier transform

The SO(3) Fourier transform F maps isometrically L2(SO(3), dµH), equipped with the Haar measure
dµH , onto a space L2

⋆(R
3, dµ) of functions on su(2) ∼ R3 equipped with a non-commutative ⋆-

product, and the standard Lebesgue measure dµ. Just as for the standard Fourier transform on R
n,

the construction of F stems from the definition of plane waves:

eg : su(2)∼R
3 → U(1), eg(x) = ei~pg ·~x

depending on a choice of coordinates ~pg on the group manifold. For a given choice of such coordinates,
F is defined on L2(SO(3)) as

F(f)(x) =

∫
dgf(g) eg(x) (9)

where dg is the normalized Haar measure on the group.
Let us fix our conventions and notations. In the sequel we will identify functions of SO(3) ≃

SU(2)/Z2 with functions of SU(2) which are invariant under the transformation g → −g. We denote
by τi, i = 1, 2, 3 the generators of su(2) algebra, chosen to be i times the (hermitian) Pauli matrices.
They are normalized as (τi)

2 =−1 and satisfy [τi, τj ] =−2ǫijkτk. We choose coordinates on SU(2)
given by

~pg = −1

2
Tr(|g|~τ), |g| :=sign(Trg)g

where ‘Tr’ is the trace in the fundamental representation. The presence of factor sign(Trg) ensures
that ~pg=~p-g. Using these conventions, writing x=~x · ~τ and g=eθ~n·~τ with θ∈ [0, π] and ~n ∈ S2, the
plane waves take the form

eg(x) = e−
i
2
Tr(|g|x) = eiǫθ sin θ~n·~x (10)

with ǫθ = sign(cos θ). Note that we may identify SO(3) to the upper hemisphere of SU(2) ∼ S3,
parametrized by θ∈ [0, π/2] and ~n∈S2; on this hemisphere, we have ǫθ = 1.

The image of the Fourier transform (9) has a natural algebra structure inherited from the addition
and the convolution product in L2(SO(3)). The product is defined on plane waves as

eg1 ⋆ eg2 = eg1g2 ∀g1, g2 ∈ SU(2) (11)

and extended by linearity to the image of F . Using the following identity

∫
d3x eg(x) = 4π[δSU(2)(g) + δSU(2)(−g)] := 8π δSO(3)(g) (12)

for the delta function on the group, with d3x being the standard Lebesgue measure on R3, one may
prove the inverse formula

f(g) =
1

8π

∫
d3x (F(f) ⋆ eg-1)(x),

7



which shows that F is invertible. Next, let us denote by L2
⋆(R

3) the image of F endowed with the
following Hermitian inner product:

〈u, v〉⋆ :=
1

8π

∫
d3x(u ⋆ v)(x) (13)

Writing u=F(f), v=F(g), the quantity 〈u, v〉⋆ can be written as:

〈F(f),F(h)〉⋆ =
1

8π

∫
dg1dg2f(g1)h(g2)

∫
d3x(eg1 ⋆ eg2)(x)

=
1

8π

∫
dg1dg2f(g1)h(g2)

∫
d3x eg-1

1 g2(x) =

∫
dgf(g)h(g)

where on the second line we used that eg(x) = eg-1(x) as well as the identity (12). This establishes
in one stroke that the inner product (13) is well defined, since f and h are square integrable, and
that the Fourier transform defines a unitary equivalence L2(SO(3))≃L2

⋆(R
3).

It is interesting to give a more ‘intrinsic’ characterization of the image L2
⋆(R

3) of the Fourier
transform. To do so, we may recast the transform (9) into a standard R3 Fourier transform, in
terms of the coordinates ~pg=sinθ~n, with θ∈ [0, π/2]. Writing the Haar measure as dg= 1

π
sin2θd2~n,

where d2~n is the normalized measure on S2, leads to the integral formula

F(f)(x) =
1

π

∫

|p|≤1

d3~p√
1− p2

f(g(~p))ei~p·~x

We thus see that the map F hits functions of R3 that have bounded Fourier modes |~pg| ≤ 1 for
the standard R3 Fourier transform. From this perspective, the ⋆-product (11) induces a deformed
addition for the momenta ~pg1 ⊕ ~pg2 :=~pg1g2 , which insures that they remain in the ball of radius one.
We also may think of elements of L2

⋆(R
3) as equivalence classes of functions of R3, for the relation

identifying two functions with the same R3-Fourier coefficients for (almost-every) low modes |~p| ≤ 1.
Loosely speaking, this means that the elements of L2

⋆(R
3) ‘probe’ the space R3 with a finite resolution.

It is worth noting that the image of the Fourier transform has a discrete basis, as shown by taking
the Fourier transform of the Peter-Weyl formula:

f̂(x) =
∑

j,m,n

f j
mnD̂

j
mn(x) (14)

expressed in terms of the matrix elements of the dual Wigner matrices D̂j(x) =
∫
dgeg(x)D

j(g)
in the SO(3) representation j. Finally, let us point out that the inner product in L2

⋆(R
3) can be

written [11] in terms of a differential operator acting on ordinary functions on R3:
∫

d3x(u ⋆ v)(x) =

∫
d3x(u

√
1+∆ v)(x)

where ∆ is the Laplacian on R3.

3.2 Fourier transform on Hγ

The construction straightforwardly extends to the case of a finite graph γ with n edges, for which

Hγ ≃L2(SO(3)n). Given g := (g1, · · · gn) ∈ SO(3)n, we define the plane waves E
(n)
g : su(2)n → U(1)

as a product of SO(3) plane waves:

E(n)
g

(x) := eg1(x1) · · · egn(xn)

8



The Fourier transform F is defined on Hγ by

F(f)(x) =

∫ n∏

i=1

dgif(g)E
(n)
g

(x)

The ⋆-product acts on plane waves as

(E(n)
g

⋆ E
(n)
g′ )(x) := E

(n)
gg′(x) = eg1g′

1
(x1) · · · egng′

n
(xn)

and is extended by linearity to the image of Fγ . This image, endowed with the inner product

〈u, v〉⋆,γ =
1

(8π)n

∫ n∏

i=1

d3xi (u ⋆ v)(x),

is a Hilbert space L2
⋆(R

3)⊗n :=H⋆,γ . The Fourier transform provides an unitary equivalence between
the Hilbert spaces Hγ and H⋆,γ .

3.3 Cylindrical consistency and Fourier transform on H0

In the previous section we have defined a family of unitary equivalences Fγ : Hγ → H⋆,γ labelled by
graphs γ. In this section we show how this family extends to a map defined on the whole Hilbert
space

H0 = ∪γHγ/∼ .

First, the family Fγ gives a linear map ∪γHγ → ∪γH⋆,γ . In order to project it onto a well-defined
map on the equivalence classes, we introduce the equivalence relation on ∪γH⋆,γ which is ‘pushed
forward’ by Fγ :

∀uγi
∈ H⋆,γi

, uγ1
∼ uγ2

⇐⇒ F−1
γ1

(uγ1
) ∼ F−1

γ2
(uγ2

)

For simplicity, we use the same symbol ∼ for the equivalence relation in the source and target space.
We thus have a map F̃ making the following diagram commute:

∪γHγ

Fγ
//

π

��

∪γH⋆,γ

π⋆

��

∪γHγ/∼ F̃
// ∪γH⋆,γ/∼

(15)

where π and π⋆ are the canonical projections. Next, the quotient space ∪γH⋆,γ/∼ is endowed with
a Hermitian inner product inherited from the inner products 〈 , 〉⋆,γ on each H⋆,γ . This is also the

inner product which is ‘pushed forward’ by F̃ . The inner product of two elements u, v of the quotient
space with representatives uγ1

∈H⋆,γ1
and vγ2

∈H⋆,γ2
is specified by choosing a graph γ3 ≥ γ1, γ2

and two elements uγ3
∼uγ1

and vγ3
∼vγ1

in H⋆,γ3
, and by setting:

〈u, v〉⋆ := 〈uγ3
, vγ3

〉⋆,γ3
. (16)

In fact, we know by unitarity of Fγ3
that the right-hand-side coincides with 〈F−1

γ3
(uγ1

),F−1
γ3

(vγ2
)〉,

hence does not depend on the representatives uγ1
, vγ2

nor on the graph γ3.
This gives an ‘extrinsic’ definition of the (pre-)Hilbert space ∪γH⋆,γ/∼, where equivalence relation

and inner product have been pushed forward from ∪γHγ/∼ by the family Fγ . It is worth giving
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a more ‘intrinsic’ characterization of this space, by making the equivalence relation and the inner
product more explicit without using Fγ . We turn to this task now.

As explained in Sec 2, there are three generators of equivalence classes in ∪γHγ , induced by
the action on the set of graphs, consisting of adding, subdividing or changing the orientation of an
edge. These generators are encoded into the operators add, sub and inv defined on L2(SO(3)). To
characterize the equivalence classes in the target space, we thus need to compute the dual action of
these operators on L2

⋆(R
3). We will need to introduce the following family of functions:

δx(y) :=
1

8π

∫
dg eg-1(x)eg(y) (17)

These play the role of Dirac distributions in the non-commutative setting, in the sense that
∫

d3y (δx ⋆ f)(y) =

∫
d3y (f ⋆ δx)(y) = f(x)

However, let us emphasize that δx(y), seen as a function of y ∈R3, is not distributional; this is a
regular function2 peaked on y = x, with a non-zero width, normalized as

∫
d3y δx(y) = 1. We will

denote by δ0 the function of this family obtained for the value y=0.
Simple calculations performed below will show that the dual action of add, sub and inv is given

by:

add : L2
⋆(R

3) → L2
⋆(R

3)⊗2 (add ⊲ u)(x1, x2) := 8πu(x1) δ0(x2)

sub : L2
⋆(R

3) → L2
⋆(R

3)⊗2 (sub ⊲ u)(x1, x2) := 8π(δx1
⋆ u)(x2)

inv : L2
⋆(R

3) → L2
⋆(R

3) (inv ⊲ u)(x) := u(−x)

Thus, when adding an edge, the function depends on the additional Lie algebra variables x2 via
δ0(x2); taking the inner product of this function with any other function v(x1, x2) of L2

⋆(R
3)⊗2

will project it onto its value v(x1, 0) for x2 = 0. When subdividing an edge into two parts, the
two variables x1, x2 on the two sub-edges get identified (under inner product) via a delta function
δx1

(x2). Finally, when changing the orientation of the edge, the sign of the variable x is flipped.
To prove these equalities, take f ∈L2(SO(3)) such that u=F(f). The dual action add ⊲ u :=

F(add ⊲ f) is obtained by evaluating the Fourier transform:

F(add ⊲ f)(x1, x2) =

∫
dg1dg2 (add ⊲ f)(g1, g2)eg1(x)eg2(x

′)

=

∫
dg1dg2 f(g1) · eg1(x1)eg2(x2) = 8πF(f)(x1) δ0(x2)

Next, the dual action sub ⊲ u :=F(sub ⊲ f) reads

F(sub ⊲ f)(x1x2) =

∫
dg1dg2(sub ⊲ f)(g1g2)eg1(x1)eg2(x2)

=

∫
dg1dg2 f(g1g2)eg1(x1)eg2(x2)

The successive changes of variables g2 → g1g2 and g1 → g−1
1 lead to

F(sub ⊲ f)(x1x2) =

∫
dg2 f(g2)

∫
dg1 eg-1

1
(x1)eg1g2(x2)

2An explicit calculation using the expression (10) of the plane waves gives in fact δx(y)=
1
8π

J1(|x−y|)
|x−y|

where J1 is

the Bessel function of the first kind Jn for n=1.
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Writing the plane waves eg1g2 as the ⋆-product eg1 ⋆ eg2 and using the linearity of the ⋆-product, we
then get

F(sub ⊲ f)(x1x2) = 8π(δx1
⋆ F(f))(x2)

Finally, the dual action inv ⊲ u :=F(inv ⊲ f) is computed as

F(inv ⊲ f)(x) =

∫
dg(inv ⊲ f)(g)eg(x) =

∫
dgf(g−1)eg(x)

The property that eg-1(x)=eg(-x) gives then

F(inv ⊲ f)(x) = F(f)(−x).

These rules describe recursively all the elements equivalent to u. By an obvious extension of these
rules to functions on a graph with an arbitrary number of edges, they generate all the equivalence
classes in ∪γH⋆,γ . It is instructive to check directly that the inner product given in (16) is well-
defined on equivalence classes. This amounts to show that the linear maps add, sub and inv acting
on L2

⋆(R
3) are unitary. Writing the inner product in L2

⋆(R
3)⊗2 as 〈 , 〉⋆,2, we indeed check that, given

u, v ∈ L2
⋆(R

3), we have

〈add ⊲ u, add ⊲ v〉⋆,2 =

∫
d3x1d

3x2 (u ⋆ v)(x1)(δ0 ⋆ δ0)(x2) = 〈u, v〉⋆

where the second equality follows from the fact that δ0=δ0 is a ⋆-projector: δ0 ⋆ δ0 = δ0, normalized
to 1. The analogous calculation for sub:

〈sub ⊲ u, sub ⊲ v〉⋆,2 =

∫
d3x1d

3x2 [(δ•1
⋆ u)(•2) ⋆ (δ•1

⋆ v)(•2)](x1, x2) = 〈u, v〉⋆

where ‘f(•j)’ indicates that f is a function of the variable xj , is slightly more involved, but follows
from the properties that δx1

⋆ u=u ⋆ δx1
, and that

∫
d3x1(δ•1

(•2) ⋆ δ•1
(•2))(x1, x2)=1. Finally, we

easily show that

〈inv ⊲ u, inv ⊲ v〉⋆ =

∫
d3x (u ⋆ v)(−x) = 〈u, v〉⋆

Coming back to the construction (15), we now have a map F̃ between two pre-Hilbert spaces,
which, by construction, is invertible and unitary. Since ∪γHγ is dense in its completion ∪γHγ , there

is a unique linear extension of F̃ to a map

F : ∪γHγ/∼ −→ ∪γH⋆,γ/∼

between the completion of the two pre-Hilbert spaces. This defines our Fourier transform. F is
invertible and unitary, so that it gives a unitary equivalence between the loop quantum gravity
Hilbert space H0=∪γHγ/∼ and the Hilbert space H⋆=∪γH⋆,γ/∼.

4 Flux representation

In this section we define the flux representation that is obtained by applying the non–commutative
Fourier transform onto the LQG state space. We derive the dual action of holonomy– and flux–
operators, analyze the geometrical interpretation of this dual space and investigate its relation to
the standard spin network basis.
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4.1 Dual action of holonomy and flux operators

Consider an elementary surface Se which intersects the graph at a single point of an edge e. The
action of the corresponding flux operators Ei(Se) coincides with the action of left or right –invariant
vector fields Li, Ri on SO(3), depending on the respective orientation of e and Se. They act dually
on L2

⋆(R
3) as Li ⊲ u :=F(Li ⊲ f) and Ri ⊲ u :=F(Ri ⊲ f), where u=F(f). Now, since

F(Ri ⊲ f)(x) =

∫
dg(Ri ⊲ f)(g)eg(x)

=

∫
dg

[
d

dt
f(etτ

i

g)

]

t=0

eg(x) =

∫
dgf(g)

[
d

dt
e
e-tτi

g
(x)

]

t=0

,

we only need to determine the action of the operators on the plane waves eg(x), for almost every g.
By definition of the ⋆-product, e

e-tτi
g
= e

e-tτi ⋆ eg(x). Thanks to the relation

[
d

dt
e
e-tτi (x)

]

t=0

= −1

2
Tr(xτ i) = −ixi,

we may conclude that Ri ⊲ eg = −ix̂i ⋆ eg, where x̂i(x) =− 1
2Tr(xτ

i) is the coordinate function on
su(2). This shows that

F(Rif)(x) = −ix̂i ⋆ F(f) .

There is a analogous formula for the left–invariant vector field, which acts by ⋆-multiplication on the
right. Thus, the invariant vector fields on SO(3), and hence the elementary flux operator E(Se, τ

i)
act dually by ⋆-multiplication.

Next, we investigate the dual action of holonomy operators. We have seen that smooth functions
ϕ(g) with compact support on G, and by extension any square integrable function, defines a multi-
plication operator ϕ̂ on L2(SO(3)). Let us consider the elementary operators ê(a), labelled by Lie
algebra variables a ∈ su(2), generated by the plane waves g 7→ eg(a). Let u ∈ L2

⋆(R
3), and assume

u=F(f). The dual action of ê(a) on u, is given by:

(̂e(a) ⊲ u)(x) := F (̂e(a) ⊲ f)(x) =

∫
dg eg(a)f(g)eg(x)

Using the fact that eg(a)eg(x) = eg(x+ a), we obtain:

(̂e(a) ⊲ u)(x) = F(f)(x+ a) = u(x+ a)

Hence elementary holonomy operators act by translation on the states in the dual representations.
More generally, any function ϕ on the image L2

⋆(R
3) of the Fourier transform defines an operator ϕ̂

acting on f as

(ϕ̂ ⊲ f)(x) =

∫
d3a(ϕ ⋆a f

x)(a)

where fx(a) :=f(x+ a).

4.2 Gauge invariant dual states

Fix a graph γ and label the edges by i= 1, . . . , n. A gauge transformation generated by a set of
group elements gv labeled by the vertices of γ acts on f ∈Hγ as

(ĝv ⊲ f)(g1, . . . , gn) = fγ(g
-1
s1
g1gt1 , . . . , g

-1
sn
gngtn)
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where se, te denote source and target vertices of the oriented graph e. Given u=Fγ(fγ) in H⋆,γ , the
dual action of ĝv on uγ is defined as gv ⊲ uγ :=Fγ(gv ⊲ fγ) and given by:

(ĝv ⊲ u)(x1, . . . , xn) =

∫ ∏

i

dgi fγ(gi)
∏

i

egsigig-1
ti
(xi)

Gauge invariance is thus imposed by acting with the gauge averaging operator Pγ :=
∫ ∏

v dgv ĝv.
Let us first consider the example of the averaging over gauge transformations at a single vertex v,
having only outgoing edges e1, . . . en. Using that egvgi =egv ⋆ egi , we can write such an averaging as
a ⋆-product:

(

∫
dgv ĝv ⊲ uγ)(x) =

∫
dgv

∫ ∏

i

dgi fγ(gi)

(
∏

i⊃v

egv ⋆
∏

i

egi

)
(xi) = (Ĉv ⋆ u)(xi, · · ·xn)

where Ĉv is a ‘closure’ constraint at the vertex v:

Ĉv(xi) :=

∫
dg
∏

ei⊃v

eg(xi) = 8πδ0(
∑

i⊃v

xi)

As emphasized in the previous section, the functions δ0 act as Dirac distribution for the ⋆-product;
in particular δ0 ⋆ f = f ⋆ δ0= f(0)δ0. Hence the operators Ĉv act as a strong closure constraint for
the su(2) variables xi of the edges incident at v. More generally, the gauge invariant state Pγ ⊲ uγ is
obtained by ⋆-multiplication of the function uγ with a product of closure constraints at each vertex

Ĉv=8πδ0(
∑

i⊂v ǫ
i
vxv), where ǫiv=±1 depends on whether the edge i is ingoing or outgoing at v. A

nice way to write down a general expression for the gauge invariant states is the following. Consider
the graph γ′ ≥ γ obtained by (i) subdividing each edge i∈γ in two parts is, it, where is is adjacent to
the source vertex si and it is adjacent to the target vertex ti of i; and (ii) by flipping the orientation
of iti , so that the edges of the new graph γ′ are all outgoing of the original vertices of γ. This
procedure defines a new element uγ′ ∈ Hγ′ in the same equivalence class as uγ , given by

uγ′(x1s , x1t , · · ·xns
, xnt

) = (
∏

i

δxis
⋆ uγ)(-xit)

The projector onto gauge invariant states acts on uγ′ by left ⋆-multiplication

P ⊲ u =
∏

v

Ĉv ⋆ uγ′ (18)

of the product of closure constraints Ĉv=8πδ0(
∑

iv⊃v xiv ).
By construction, the projectors Pγ on H⋆,γ are well defined on equivalence classes in ∪γHγ ,

hence also on the equivalence classes in ∪γH⋆,γ . We may also check, directly from the definition
(18), that the action of Pγ commutes with the action of add, sub and inv.

This only confirms the geometric interpretation of the Lie algebra variables xi as fluxes associated
to elementary surfaces dual to the edges of the graph γ, and closing around vertices of the same
graph to form elementary 3-cells3. More precisely, one should think of reference frames associated
to the vertices of the graph γ and of the flux variables xis as the fluxes across elementary surfaces
intersecting the edges of γ (to which the group variables gi are associated), at a single point, and then

3Note that the construction does not depend on the valence of the graph and thus does not need a simplicial setting
for its geometric interpretation.
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parallel-transported to the source vertex. The flux variable xit associated to the same edge in the
reference frame of the target vertex touched by the edge can them be identified with gixisg

−1
i . This

property is consistent with the action of plane waves, it is once more encoded in the star product,
and is illustrated by the formula:

(δx ⋆ egi)(x
′) = (egi ⋆ δgi•g-1

i
(x′))(x)

4.3 Relation with spin network basis

It is interesting to investigate the relation between the Lie algebra variables x and the labels of
standard basis of states. Starting from the geometric interpretation of x as flux variables, one would
thus deduce from direct calculation the geometric interpretation of these labels. The relation with
the usual spin-network basis is made explicit using the Fourier transform of the Peter-Weyl theorem,
see Equ. 14. This gives a basis for the dual states on a graph γ given by a product over the edges
of dual Wigner functions:

D̂je
mene

(x) :=

∫
dg eg(x)D

je
mene

(g)

These functions, whose dependence upon the norm r= |x| of x goes as Jdj
(r)/r, where Jdj

is the
Bessel function of the first kind associated to the integer dj :=2j+1 (see for e.g [39]), are peaked on
the value r=dj , thus relating the spin j to the norm of the flux. The quantum labels corresponding
to the direction variables of the fluxes may then be identified using Perelomov group coherent states
|j, ~n〉 = g~n|j, j〉, where ~n ∈ S2 and g~n is an SU(2) element (say, the rotation with axis vector on
the equator) mapping the north pole (0, 0, 1) to ~n by natural action on the 2-sphere S2. In such
(overcomplete) coherent state basis, the dual Wigner functions

D̂j
~n~n(x) := 〈j, ~n|D̂j(x)|j, ~n′〉

satisfy the property that
D̂j

~n~n′(x) = eg~ng-1
~n′

⋆ D̂j
~n′~n′ = D̂j

~n~n ⋆ eg-1
~n
g~n′

where the diagonal matrix elements are given by

D̂j
~n~n(x) =

∫
dg eg(g

−1
~n xg~n)D

j
jj(g) (19)

Now, the dependence of these function upon the directional part x̂=~x/|x| goes as [x̂ ·~n]2j , and hence
reaches its highest value of x̂=±~n.

These considerations suggest the identification ~x = j~n of flux variables and the labels of the
coherent states basis, that should hold true in a suitable semi-classical limit. One can show that this
is indeed the case, in a limit where fluxes and spins are large x ∼ 1

κ
, j ∼ 1

κ
with κ → 0. This limit

is obtained by introducing rescaled states uκ such that u(x)=uκ(κx) and an effective ⋆-product ⋆κ
making the rescaling unitary 〈u, v〉⋆=A(κ)〈uκ, vκ〉⋆κ

– up to a multiplicative factor by a function of
κ. Considering modified plane waves (and modified Fourier transform accordingly):

eκg (x)=e
i
κ
ǫθ sin θ~n

where notations are the same as in (10), this effective ⋆-product can be defined via its action on these
plane waves as eκg1 ⋆κ eκg2 =eκg1g2 . Now, replacing eg by eκg in (19) and scaling the spins as j → j/κ,
one can recast the integrand of the right hand side of (19) as an oscillatory phase, subject to saddle
point analysis. The saddle point analysis is similar to the one performed in [16]; we find that the
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existence of a saddle point requires precisely that ~x = j~n. This confirms the interpretation of the
spin j as identifying eigenvalues of the (square of the) flux operators, thus of their norm. In four
dimensions, this gives areas to the elementary surfaces to which the flux variables are associated.
We also conclude that, in the semi-classical limit, the coherent state parameters ~n behave like
the direction components of the flux variables ~x, and thus admit the same interpretation as triad
components 4.

In general, therefore, we can expect that any function of the quantum numbers j,~n will acquire,
in a semi-classical approximation, a functional dependence on them matching that of the function
u(x) on the non-commutative triad variables x, in the same approximation5.

5 The U(1) case

Here we shortly want to explain the Group Fourier transform for U(1) and comment on the relation
to the triad representation used in Loop Quantum Cosmology (see e.g. [31,32]). The U(1) case is in
several respects simpler than the SU(2) case but it can serve to understand the principle mechanisms.
As for SU(2) we start by defining plane waves

eφ(x) = e−iφx (20)

where x ∈ R. The Fourier transform F of a function f(φ) on U(1) (with the convention −π < φ ≤ π)
is then defined as

F(f)(x) =

∫ π

−π

dφ f(φ) eφ(x) =

∫ π

−π

dφ f(φ)e−iφx . (21)

Note the similarity with the usual Fourier transform which is obtained by just restricting x from R

to Z. The image ImF is a certain set of continuous functions on R, but certainly not all functions
in C(R) are hit by F .
ImF can be equipped with a ⋆–product, which is dual to the convolution product on U(1). For
plane waves, this product reads

(eφ ⋆ eφ′)(x) := e[φ+φ′](x) , (22)

and extends to ImF by linearity. Here [φ + φ′] is the sum of the two angles modulus 2π such that
−π < [φ+ φ′] ≤ π. In this way the star product is dual to group multiplication. Next, we define an
inner product on ImF via

〈u , v〉⋆ :=

∫
dx (u ⋆ v)(x) ∀u, v ∈ ImF . (23)

With this inner product one can check that F is a unitary transformation between L2(U(1)) and
ImF .
The peculiar class of functions which build up ImF also leads to a different characterization of

4This gives further support to the recent constructions in the spin foam setting [16–18,21] based on group coherent
states and on their interpretation as metric variables; in particular, it suggests that imposing geometric restrictions
on them in the definition of the dynamical amplitudes will ensure that such amplitudes will have nice geometric
properties in a semi-classical regime, as confirmed by the asymptotic analysis of [22].

5The asymptotic analysis of the new spin foam amplitudes [22], showing how they take the form of a simplicial path
integrals for gravity in the “triad variables”j~n can then be interpreted as suggesting the existence (possibly beyond
the semi-classical regime) of a simplicial path integral expression for the same amplitudes in the non-commutative
variables ~x. This interpretation is of course strongly supported by the results of [25].
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the ⋆–product: it turns out that 〈u, v〉⋆ is entirely fixed by a discrete set of values. This can be
understood by comparing this Fourier transform with the usual one which is obtained from (21) by
restricting x to be integer, x ∈ Z. In this case the inverse transformation is given by

f(φ) =
1

2π

∑

x∈Z

F(f)(x)eiφx . (24)

This formula indicates that for the function u(x) in the image of F , only the values x ∈ Z are
relevant. Indeed we will see below that the Lebesgue measure in x-space (together with the ⋆–
product) reduces to a counting measure with support in Z (and the pointwise product) for functions
u ∈ ImF .
Using the formula for the inverse Fourier transform (24), the star product between two functions
u1=F(f1) and u2= F(f2) can be evaluated to

u1 ⋆ u2 (x) =

∫ π

−π

∫ π

−π

dφdφ′e−iφ′x f1(φ)f2(φ
′ − φ)

=
∑

x′,x′′∈Z

u1(x
′)u2(x

′′)
sin(π(x′ − x′′))

π(x′ − x′′)

sin(π(x′′ − x))

π(x′′ − x)

=
∑

x′∈Z

u1(x
′)u2(x

′)
sin(π(x′ − x))

π(x′ − x)
(25)

where for the last line we used that

sin(π(x′ − x′′))

π(x′ − x′′)
= δx′,x′′ (26)

for x′, x′′ ∈ Z. The integral over x in sin(π(x′−x))
π(x′−x) evaluates to one and therefore the inner product

(23) is given by

〈u , v〉⋆ =

∫
dx (u ⋆ v)(x) =

∑

x∈Z

u(x) v(x) . (27)

This agrees with the inner product for the usual Fourier transform. As mentioned the Lebesgue
measure (to be understood together with the star multiplication) in the inner product (27) can be
rewritten as a counting measure (together with point multiplication) for functions u ∈ ImF which
shows that we essentially have to deal with the Hilbert space of square summable sequences, that is
L̂2
⋆(R) ≃ ℓ2. With this counting measure there is a large class of functions with zero norm inducing

an equivalence relation between functions that differ only by terms of zero norm, that is functions
that are vanishing on all x ∈ Z. In every equivalence class one can define a standard representative
by

us(x) =
∑

x′∈Z

u(x′)
sin(π(x′ − x))

π(x′ − x)
. (28)

These standard representatives also span ImF , that is, the condition u ∈ ImF picks a unique repre-
sentative in the equivalence class. Furthermore formula (28) defines the map that converts standard
Fourier transformed functions to group Fourier transformed functions and is in precise analogy to
the SU(2) case where we can use the ‘dual’ Peter–Weyl decomposition to show that functions in the
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image of F can be sampled by discrete values.

On L2(U(1)) we have two elementary operators, the (left and right invariant) derivative L = −i d
dφ

and the holonomy operator Tn := e−iφn, that act as a multiplication operator. It is straightforward
to check, that these operators act dually as

L̂ ⊲ u (x) = (x ⋆ u) (x)

(T̂n ⊲ u) (x) = u(x+ n) (29)

In the same way as for SU(2) one can construct Hilbert spaces over graphs and can also obtain
cylindrical consistency of the group Fourier transform map.

In Loop Quantum Cosmology (LQC) [31,32], a kind of mini–superspace reduction of Loop Quan-
tum Gravity, one uses also a representation in which the (symmetry reduced) triad operator acts by
multiplication and the holonomies act by translations. The spectrum of the multiplication operator
is R. Note that it is a discrete spectrum in the sense that the associated eigenfunctions have finite
norm. This is possible as the Hilbert space used in LQC is non-separable. Note that the represen-
tation (29) used here is different. The action of L̂ is via ⋆-multiplication and – as in L2(U(1)) – the
spectrum is given by Z.

The measure used in Loop Quantum Cosmology can be defined through the inner product be-
tween two wave functions u and v in the following way. Such a wave function u can be understood
as a map from a countable set {xi}i∈Iu ⊂ R for some index set Iu of countable cardinality to C

u : xi → u(xi) . (30)

The union of two countable sets {xi}i∈Iu and {xi}i∈Iv defines another countable set which contains
both previous sets. In this way we obtain the structure of a partially ordered set similar to full
Loop Quantum Gravity. Now one can extend each of the maps u, v to the union of the two sets by
defining u(x) := 0 for all x /∈ {xi}i∈Iu and similarly for v. The inner product is given by

〈u , v〉 =
∑

x∈{xi}i∈Iu∪{xi}i∈Iv

u(x) v(x) . (31)

Hence wave functions u ∈ ImF based on one copy of U(1) can be (isometrically) embedded into the
LQC Hilbert space, but the latter space is obviously much bigger.

6 Outlook

In this paper, we have used tools from non-commutative geometry, more precisely the non-commutative
group Fourier transform of [9, 11, 38], to define a new triad (flux) representation of Loop Quantum
Gravity, which takes into account the fundamental non-commutativity of flux variables. We have
shown first how this defines a unitary equivalent representation for states defined on given graphs
(cylindrical functions), and then proven cylindrical consistency in this representation, thus defining
the continuum limit and the full LQG Hilbert space. As one would expect, the new representation
sees flux operators acting by ⋆-multiplication, while holonomies act as (exponentiated) translation
operator. We have then discussed further properties of the new representation, including the triad
counterpart of gauge invariance, clarifying further its geometric meaning and the relation with the
spin network basis (including the case in which group coherent states are used). Finally, we have dis-
cussed the analogous construction in the simpler case of U(1) emphasizing similarities and differences
with the triad representation commonly used in Loop Quantum Cosmology.
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Let us conclude with a brief outlook on possible further developments. As we mentioned in the
text, our construction has been limited, for simplicity, to the case of SO(3) states. The extension of
the group Fourier transform to SU(2) has been considered in [11,38] and we expect the generalization
of our construction of a LQG triad representation to be straightforward, and probably most easily
performed using the plane waves augmented by polarization vectors (identifying the hemisphere in
SU(2) in which the plane wave eg(x) lives) defined in [38].

Perhaps more interesting is a fully covariant extension of the SU(2) structures we used to SO(4) or
SL(2,C) ones, depending on the spacetime signature. In fact, we can think of our non-commutative
triad vectors as identifying the self-dual or the rotation sector of the SO(4) or SL(2,C) algebra, and
similarly for the group elements representing the conjugate connection. The SU(2) plane waves would
then arise from SO(4) or SL(2,C) plane waves after imposition of suitable constraints corresponding
to the constraints that reduce the phase space of BF theory to that of gravity, in a Plebanksi
formulation of 4d gravity as a constrained BF theory. It is at this level that the role of the Immirzi
parameter (absent in our contruction) will be crucial. In identifying this covariant extension, one
could take advantage of the detailed analysis of phase space variables and geometric constraints
in [6], in the simplicial context, and of the work already done on simplicity constraints in the
non-commutative metric representation of GFTs in [25]. This extension will most likely involve
an embedding of the spatial SU(2) spin networks and cylindrical functions in spacetime obtained
introducing unit vectors, interpreted as normals to the spatial hypersurface, located at the vertices
of the graphs. The relevant structures would then be that of projected spin networks as studied
in [40, 41] (see also [25]).

As we mentioned in the text, our construction has identified the Hilbert space of continuum Loop
Quantum Gravity in the new triad representation, by means of projective limits. It would be inter-
esting, however, to obtain a better characterization of the resulting space in terms of some functional
space of generalized flux fields, as we conjecture to be the case, in analogy to the usual construction
of the L2 space over generalized connections, endowed with the Ashtekar-Lewandowski measure.
This will involve the definition of the relevant non-commutative C∗-algebra and the application of
a generalization of the usual GNS construction (for some work in this direction, see [42]).

The new representation we have defined for LQG can be an important mathematical (and compu-
tational) tool for studying the semi-classical limit of the theory, using the expansion of the ⋆-product
of functions in the Planck length (see [9]). In particular, this can be useful for a better understanding
of quantum field theory for matter fields on a quantum spacetime, following [26], and more generally
for the definition of matter coupling in LQG. This is indeed already facilitated by the very presence
of explicit triad (metric) variables in the quantum states of the theory, which is true in the new
representation.

Finally, the new triad representation brings the geometric meaning of the LQG states to the
forefront, and suggests a different avenue for the construction of coherent states, on top of giving of
course a new representation for the known ones. Both these two facts can be relevant for tackling
the issue of defining the quantum dynamics of the theory in the canonical framework, for analyzing
the relation to the one defined by the new spin foam models [18–21], and building up on the results
of [25] in the group field theory setting.
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