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Abstract. We explicitly prove the horizon-entropy increase law for both causal and

quasi-locally defined horizons in scalar-tensor and f(R) gravity theories. Contrary to

causal event horizons, future outer trapping horizons are not conformally invariant

and we provide a modification of trapping horizons to complete the proof, using the

idea of generalised entropy. This modification means they are no longer foliated

by marginally outer trapped surfaces but fixes the location of the horizon under a

conformal transformation. We also discuss the behaviour of horizons in “veiled” general

relativity and show, using this new definition, how to locate cosmological horizons in

flat Minkowski space with varying units, which is physically identified with a spatially

flat FLRW spacetime.

PACS numbers: 04.70.-s, 04.70.BW, 04.70.Dy

1. Introduction

The entropy of a black hole is not always given simply by one quarter of its area. In

alternative theories of gravity, such as Brans-Dicke or f(R) theories, the horizon-entropy

of the black hole is given by a more complicated function of the black hole geometry

and possible horizon fields. In such cases, ensuring that the entropy of the black hole is

non-decreasing is not equivalent to ensuring that the area is non-decreasing. A number

of authors have been able to prove an equivalent of Hawking’s area increase theorem for

black hole event horizons in several alternative theories [1, 2, 3].

Quasi-local horizons also have an area increase law [4]. The thermodynamic

properties of apparent horizons and their quasi-local associates, dynamical and trapping

horizons, have been investigated in [4, 5], and [6]. In Einstein gravity the area of

http://arxiv.org/abs/1103.2089v1
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a trapping horizon is guaranteed to be non-decreasing if the null energy condition is

satisfied. This result for the area is true even in alternative gravity situations, provided

the null convergence condition is substituted for the null energy condition. But this

does not guarantee that the horizon-entropy of the trapping horizon is non-decreasing.

In this article we will examine situations where the horizon-entropy is not one

quarter of the area. We examine both causal horizons and quasi-local horizons. Causal

horizons are the null causal boundaries of a given spacetime region and include event

horizons, which are the past causal boundary of future null infinity. Quasi-local horizons

include dynamical and trapping horizons, but we will also investigate a new definition,

closely related to that of a trapping horizon, that satisfies a horizon-entropy increase law

in a range of situations [7]. This new surface has the important property that it reduces

to that of a trapping horizon in cases where the horizon-entropy is one quarter of the

area. It therefore retains all of the previous results for trapping horizons in the case of

Einstein gravity and extends their validity to other theories. We extend the results in

[7] to a much wider class of gravity theories, including scalar tensor theories and f(R)

theories and also extend the results to a much wider class of horizons, including ones

that are not necessarily spherically symmetric. In addition, we derive a corresponding

horizon-entropy equation for causal horizons that unifies many of the previous results

that have appeared in the literature.

This new horizon definition has the property that under a conformal transformation

of the metric, its location and in particular its relation to the event horizon is unchanged.

This is not true of trapping horizons. The use of conformal transformations is fairly

common in the study of gravity theories. This is particularly true in string theory

where conformal transformations are used to relate the string frame, with a non-

minimally coupled dilaton field, to the Einstein frame.‡ It has been argued in the

literature that, classically, the two frames are physically equivalent [9, 10, 11, 8]. This

physical equivalence suggests that the new horizons should be preferred to trapping

horizons if these surfaces are to have physical significance, such as a role in black hole

thermodynamics and Hawking radiation.

The conformal transformation rescales lengths and areas as measured by the metric.

The physical effect of this rescaling is, for example, to change the meaning of mass since

the norm of the four-momentum papa will no longer be constant from point to point

or from time to time. The importance of running units in making the correspondence

was emphasised in [9, 11]. The example of Einstein gravity in a frame where gravity is

not minimally coupled to the matter fields was explicitly examined in [8]. In this case,

where there are no “fundamental” scalar fields, the observational predictions are still

exactly the same in two different frames. The authors of Ref. [8] use the term “veiled

general relativity” to describe this situation.

The plan of this paper is as follows: Sec. 2 provides background material on

horizon-entropy in modified theories of gravity. Sec. 3 examines the various proofs for

‡ Several authors have already noted that they should more properly be called “representations” rather

than “frames” [3, 8].
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the increase of this horizon-entropy for both causal horizons and quasi-local horizons

such as trapping horizons. The proofs are discussed for Einstein gravity, Brans-Dicke

gravity, and general scalar-tensor and f(R) gravity theories. Here we see that trapping

horizons, as commonly defined, can only guarantee increase of horizon-entropy in the

case of Einstein gravity. However, for the modification given in eqs. (34), the horizon-

entropy law can be guaranteed in a large class of other theories. This modification

makes the location of the geometrically defined horizon invariant under a conformal

transformation, as we discuss in Sec. 4. This allows us to locate invariantly defined

horizons in conformally equivalent spacetimes and we demonstrate this for cosmological

horizons in Sec. 5. Sec. 6 contains a discussion and the conclusions.

2. Horizon-entropy for general gravity theories

There are several ways to derive the entropy that should be associated with a black hole

horizon. For a static spacetime one can make use of the Euclideanised action. This

was used in [12] to show that static black holes do not obey S = A/4 to linear order

in a particular model of second order curvature corrections derived from string theory.

This technique was later generalised to all orders for Lagrangians that are an arbitrary

function of the Riemann tensor by Visser [13, 14] who derived the formula

S =
AH

4
+ 4π

∫

H

∂Lm

∂Rabcd

g⊥acg
⊥

bd

√
q d2x , (1)

where integrations should be taken over closed two-spheres, H , with metric qab, while g
⊥

ab

is the symmetric metric of the two-dimensional subspace orthogonal to these surfaces,

spanned by null vectors la and na such that g⊥ab = −lanb − nalb with nala = −1. Lm

is the “matter” Lagrangian density, which can be constructed as the total Lagrangian

density minus the Einstein-Hilbert term.

Alternatively, one can require the validity of the first law for Killing horizons of any

diffeomorphism-invariant theory. This was done in [15] and gives the result

S = −2π

∫

H

∂L

∂Rabcd
ε̂abε̂cd

√
q d2x+ higher derivative terms, (2)

where ε̂ab is the antisymmetric binormal form for the surface H , ε̂ab = lanb−nalb and L

is the full Lagrangian density. The higher derivative terms arise for theories that depend

on derivatives of the Riemann tensor and we will ignore them here. The equivalence of

this formula with (1) is obtained by the relation ε̂abε̂cd = g⊥ad g
⊥

bc − g⊥ac g
⊥

bd.

What is needed for these formulae is a choice of spacelike surface H , knowledge

of how the Lagrangian density L depends on the Riemann tensor, and knowledge of

the local geometry and fields at the surface H . The horizon-entropy has the form of an

integral over the two-dimensional surface of a two-form, S =
∫

H
sab with

sab = −2π
∂L

∂Rcdef
ε̂cdε̂efεab , (3)

which is just a scalar quantity times the area two-form εab of the surface H . In principle

a horizon-entropy two-form can be associated with each point of the horizon, although
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it depends on which two-surface it is associated with. For the normal Einstein-Hilbert

action of Einstein gravity, where the “matter” Lagrangian is zero and hence the Visser

horizon-entropy is trivial, we have

L =
R

16π
, (4)

∂L

∂Rabcd
=

1

16π

1

2

(

gacgbd − gadgbc
)

, (5)

thus,

sab = −2π

(

1

16π

)

ε̂cdε̂cd εab , (6)

and therefore, since ε̂cdε̂cd = −2,

S =
A

4
, (7)

A being the area of H . In the case of scalar-tensor gravity [16], we have

L = F (φ)
R

16π
+ other terms independent of Riemann (8)

and thus

sab =
F (φ)

4
εab . (9)

When F (φ) is constant over the horizon, for example for a spherically symmetric surface,

we have

S =
F (φ)A

4
(10)

(cf. [17]), while in the case of f(R) gravity [18], we have

L =
f(R)

16π
(11)

and thus

sab =
f ′(R)

4
εab . (12)

Again, in the case where f ′(R) is constant over H , this gives

S =
f ′(R)A

4
. (13)

In all these cases the horizon-entropy has the form S =WA for some scalar function

W . The horizon-entropy in [15] was explicitly derived to apply to Killing horizons in a

stationary spacetime. It was suggested in [19] that in certain cases the entropy could

also take this form for non-stationary situations. We will henceforth refer to (2) as

the horizon-entropy, without prejudice to the question of whether it represents a true

entropy or not in dynamical situations. The question then arises as to what kind of

surface this horizon-entropy can be applied to. In non-stationary situations the event

horizon does not in general coincide with the trapping horizon even though both satisfy

an area increase law in Einstein gravity. In the next section we will consider to what

extent the horizon-entropy satisfies an increase law for non-stationary surfaces.
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3. The second law of black hole mechanics

Let us consider a three-dimensional surface that can be foliated by closed spacelike two-

dimensional surfaces (such an object could be an event horizon, a trapping horizon, or

even something else). In a four-dimensional Lorentzian signature spacetime the spacelike

two-surfaces have null normals la and na that are unique up to scalings. la and na are

conventionally referred to as the out-going future-directed null normal and in-going

future-directed null normal respectively. The tangent ra to the surface, which is normal

to the spacelike two-surfaces, can be written everywhere as a linear combination of la

and na,

ra = Bla + Cna . (14)

For a Killing horizon, or a non-stationary event horizon, or general causal horizon, ra

would be the generators of the horizon, and would therefore be null with either B = 0 or

C = 0 and in the case of a dynamical horizon we would have B > 0 and C < 0. A future

outer trapping horizon can have any sign for C. The signature of the three-dimensional

surface is just given by the norm squared of ra,

rara = 2BClana (15)

where, for future directed null normals, lana is negative. The discussion here will follow

that of [4] where la and na can be chosen such that B and C above are constant on the

two-dimensional surfaces. To fix a direction on the three-dimensional horizon surface

we can choose B > 0. The horizon will then be spacelike if C < 0, null if C = 0, and

timelike if C > 0. The horizon-entropy will in all these cases be non-decreasing if
∫

Lrsab ≥ 0 , (16)

with Lr the Lie derivative along ra. Now one can look at how the horizon-entropy two-

form sab varies as one moves along integral curves of ra from one spacelike two-surface

to another.

Lrsab = BLlsab + CLnsab . (17)

Since the entropy two-form can be written as sab = W εab, this equation is equivalent to

Lrsab = [B (LlW +Wθl) + C (LnW +Wθn)] εab , (18)

where we define the expansion θl by Llεab = θlεab. Determining, or defining, that the

signs of the scalar terms in Lrsab combine to give an overall non-negative result implies

that the entropy two-form is non-decreasing in the direction of ra everywhere on H

and thus the horizon-entropy is non-decreasing along the three-dimensional surface in

question. For causal horizons, this just reduces to the requirement that εabLlsab be non-

negative, which can be related to the equations of motion and an energy condition. In

situations where the horizon is not null, as we will see below, the sign of the CεabLnsab
term can also be evaluated in a similar manner.
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3.1. Einstein gravity

In the usual case of Einstein gravity we have sab = εab/4 and S = A/4. In this case

the horizon-entropy increase law for event horizons is just the area theorem of Hawking

[20, 21]. Since it does not affect the sign of the change in entropy, henceforth we will

incorporate the factor of 4 into A for notational convenience.

For the case of quasi-local horizons, foliated by marginally outer trapped surfaces

with outgoing null expansion θl = 0 and ingoing null expansion negative, θn < 0, the

variation of the horizonentropy two-form is simply

Lrεab = BLlεab + CLnεab

= C θnεab . (19)

If C is assumed to be negative, the area-entropy is non-decreasing without further

assumptions. This is the case considered for dynamical horizons in [5] since dynamical

horizons are required to be spacelike and by eq. (15) this guarantees C < 0.

In the more general case of a future outer trapping horizon, which can have any

signature, the sign of C can be related to the energy conditions via the condition that

θl should be zero everywhere on the trapping horizon. The conditions for a future outer

trapping horizon are [4]

θl = 0 ,

θn < 0 ,

Lnθl < 0 . (20)

For a past inner trapping horizon one would interchange the n’s and the l’s and reverse

the sign of the inequalities. The third condition distinguishes trapping horizons from

dynamical horizons. The constancy of the expansion θl on the horizon gives the condition

Lrθl = BLlθl + CLnθl = 0 . (21)

The Raychaudhuri equation for null geodesic congruences is

Llθl = κlθl −
1

2
θ2l − σ2

l + ω2
l −Rabl

alb , (22)

where κl is a measure of the failure of la to be affinely parameterised (a “surface gravity”

[22]), σl is the shear, and ωl is the vorticity. If the null vectors used to define the

horizon are derived from a double-null foliation (this construction is used in [4]), then

the vorticity vanishes identically and for θl = 0 we have

Llθl = −σ2
l − Rabl

alb , (23)

and we obtain

C =
B

Lnθl

(

σ2
l +Rabl

alb
)

. (24)

For situations satisfying the null curvature condition, Rabl
alb ≥ 0, which can be related

to the null energy condition, Tabl
alb ≥ 0, by the Einstein equations, C is seen to be
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negative and thus by (19) the area-entropy of the future outer trapping horizon is non-

decreasing, in which case it is also spacelike. By equivalent reasoning an area-entropy

law can be derived for past inner trapping horizons. In the case where a normalisation

lana = −1 is imposed, the same conclusion about area increase can be reached using a

minimum principle [23].

The existence of the Rabl
alb term in the area law gives a direct local relation between

the curvature at a point and the rate of increase of an area element at that point.

However, the shear and vorticity terms, although locally defined, are related not only to

the local properties of the geometry, but also to the choice of surface passing through

the geometry, i.e., of the choice of null normals lc and nc. It is perfectly possible, for

example, that a portion of the horizon can be growing locally in Schwarzschild spacetime,

because of the non-local influence on the shear and vorticity. This is for example what is

seen in the merger of vacuum puncture data [24] and is encapsulated in FOTS Property

5 of [23]. In vacuum spacetimes, the shear can only increase the area of the trapping

horizon and the only way for the horizon to shrink is to develop non-zero vorticity.

3.2. Brans-Dicke theory

Brans-Dicke theory is the prototype alternative theory of gravity with scalar and tensor

modes. The theory was first expressed in a frame in which the particle masses remain

constant, the effective gravitational constant varies from point to point, and massive test

particles follow timelike geodesics (Jordan or string frame). In this frame, the action is

given by the Lagrangian density

L =
1

16π

(

φR− ω

φ
∇aφ∇aφ

)

+ Lmatter . (25)

ω is the Brans-Dicke parameter, not to be confused with the vorticity ωl. Variation of

this action with respect to the metric gives the gravitational field equations

Gabφ = 8πTab +
ω

φ

(

∇aφ∇bφ− 1

2
gab∇cφ∇cφ

)

+∇a∇bφ− gab∇c∇cφ ,

(26)

where Tab is the energy-momentum tensor of the matter fields. Contracting the Einstein

tensor with la twice for the above yields

Rabl
alb =

8π

φ
Tabl

alb +
ω

φ2
(la∇aφ)

2 +
lalb∇a∇bφ

φ
. (27)

In Brans-Dicke theory the horizon-entropy two-form is given by sab = φεab. The

variation of horizon-entropy in the outgoing null direction is then

Llsab =

(

θl +
la∇aφ

φ

)

φεab . (28)

Since we require φ > 0 for the horizon-entropy to be positive, the term (θl + la∇aφ/φ)

must be positive for the horizon-entropy to be increasing for a causal horizon generated
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by la. The sign of the la∇aφ term though cannot immediately be established for a causal

horizon. But, by extending a method used in [3], taking another derivative gives

Ll

(

θl +
la∇aφ

φ

)

= Llθl +
lb∇b (l

a∇aφ)

φ
− 1

φ2
(la∇aφ)

2 . (29)

Using the Raychaudhuri equation (22), the equations of motion (26) and

lb∇b (l
a∇aφ) =

(

lb∇bl
a
)

∇aφ+ lalb∇a∇bφ

= κll
b∇bφ+ lalb∇a∇bφ , (30)

where κl is again a measure of the failure of la to be affinely parameterised, we get

Ll

(

θl +
la∇aφ

φ

)

= κl

(

θl +
la∇aφ

φ

)

− θ2l
2

− σ2
l + ω2

l

− (ω + 1)

φ2
(la∇aφ)

2 − 8π

φ
Tabl

alb . (31)

For a causal horizon with ωl = 0, affinely parameterised (κl = 0) and ω + 1 ≥ 0 Brans-

Dicke theory, this quantity will be negative provided the matter Tab satisfies the null

energy condition. The condition ωl = 0 is guaranteed because the horizon generators

are hypersurface orthogonal to the null horizon and a normalisation of the generators

can always be chosen so that κl = 0. If we then assume that the horizon settles down

at late times to a Killing horizon, such that Llsab = 0 at late times, then the term
(

θl +
la∇aφ

φ

)

cannot ever be negative, because to get from a negative value to zero, its

derivative must be positive somewhere in between, which is excluded by eq. (31). Thus

the horizon-entropy must be non-decreasing for a causal horizon, provided it settles

down at late times to a Killing horizon. Note that this requires us to assume that the

horizon settles down at late times to a Killing horizon, but that this is sufficient, we do

not need to assume that the horizon forms the causal past of future null infinity. This

assumption is not needed in the case of Einstein gravity and can be replaced by the

assumption that the spacetime contains no naked singularities.

In the general case, eq. (31) implies that if θl+
la∇aφ

φ
were anywhere negative on the

horizon, it would reach an infinite value in a finite parameter distance. Thus either θl
would become infinite, implying a focal point, or la∇aφ

φ
would become infinite, implying a

discontinuity in φ. In the former case a focal point for the null generators of the horizon

is forbidden since the generators of the event horizon can have no future end-points. We

can therefore conclude that if φ is continuous, θl +
la∇aφ

φ
cannot be negative anywhere

on the horizon.If the causal horizon is the past causal boundary of some set other than

future null infinity then its generators can only have future end-points on the set itself.

For a causal horizon, the change of the horizon-entropy cannot be taken arbitrarily

close to zero in the past if the area remains non-zero. If a null surface is initially a Killing

horizon with zero horizon-entropy change it cannot return to a Killing horizon after a

perturbation. The equivalent statement in the Einstein case is that the expansion of

the horizon is always decreasing even though it is always positive, so its initial value

must be larger than any subsequent value. The moment at which the logarithm of
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the horizon-entropy of a causal horizon is changing the most lies in the infinite past

even though the moment at which the horizon-entropy itself is changing the most is not

necessarily in the infinite past.

For a trapping horizon we can again use eq. (24) but now, instead of (19), we have

Lrsab = [Blc∇cφ+ C (nc∇cφ+ φθn)] εab . (32)

The signs of the terms la∇aφ and na∇aφ cannot be guaranteed from the equations of

motion. Ultimately, this is related to the value of ra∇aφ on the horizon. Because of this

the horizon-entropy can decrease for a trapping horizon [3], even in situations where the

matter fields obey the null energy condition such as considered in [25].

Because the expansion θp of a null congruence with tangent pa is related to the

variation of the cross-sectional area two-form, Lpεab = θpεab, the conditions for a future

outer trapping horizon (20) can be re-written as

εabLlεab = 0 ,

εabLnεab < 0 ,

Ln

(

εabLlεab
)

< 0 . (33)

Consider now, instead of future outer trapping horizons, the following conditions:

εabLlsab = 0 ,

εabLnsab < 0 ,

Ln

(

εabLlsab
)

< 0 . (34)

In ordinary Einstein gravity, this would reduce to the requirements on the null

expansions for a trapping horizon given in (33) since, in this case, sab = εab up to

a constant factor. But in cases where the horizon-entropy is not simply the area,

these conditions will in general be satisfied at different locations of the spacetime.

In Brans-Dicke theory the horizon-entropy two-form is just sab = φεab in which case

the first condition is satisfied where φθl + la∇aφ = 0 and the second condition when

φθn + na∇aφ < 0.

The variation of the horizon-entropy two-form is now

Lrsab = BLlsab + CLnsab

= CLnsab

= C (φθn + nc∇cφ) εab. (35)

The first term on the right hand side of the first line is now zero by assumption. The

term (φθn + nc∇cφ) is negative by assumption and so the sign of the change in horizon-

entropy along the horizon is given by the sign of C again. If C is negative, the horizon

is spacelike and the horizon-entropy increases.

It is possible to determine the sign of C by a similar argument used for trapping

horizons. Since we require the tangent ra to generate evolution along a horizon on which

Llsab = 0, we have

C = −BLl

(

εabLlsab
)

Ln (εcdLlscd)
. (36)
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With the sign of B assumed positive, setting the orientation of ra, and Ln

(

εcdLlscd
)

negative by assumption on the horizon, whether the horizon-entropy is increasing or not

is just determined by the sign of the term Ll

(

εabLlsab
)

:

sign
(

εabLrsab
)

= −sign
(

Ll

(

εabLlsab
))

. (37)

Using eqs. (22) and (27), we obtain

Ll

(

εabLlsab
)

= 2φ

(

−1

2
θ2l − σ2

l −
ω + 1

φ2
(la∇aφ)

2 − 8π

φ
Tabl

alb
)

. (38)

For ω + 1 ≥ 0 and matter obeying the null energy condition Tabl
alb ≥ 0, the horizon-

entropy is guaranteed to be non-decreasing along surfaces satisfying (34).§ The condition

in (38) is very similar to (31) for a causal horizon, except now the term involving κl in

(31) vanishes on a horizon satisfying (34) anyway, and the horizon-entropy is guaranteed

to increase without an assumption that it settles down to a future Killing horizon. We

remind the reader that the location of surfaces for which these conditions hold will in

general be different from causal horizons. Surfaces satisfying (34) will be spacelike for

positive energy.

The similarity of (38) to (31) is not surprising since we have

Ll

(

εabLlsab
)

= 2Llφ

(Llφ

φ
+ θl

)

+ 2φLl

(Llφ

φ
+ θl

)

. (39)

The first term is zero by the assumption εabLlsab = 0 and the second term is just

eq. (31). The right hand side of (38) is used in the first variation of the horizon-entropy

for quasi-local horizons, through eqs. (35) and (36), but in the second variation of the

horizon-entropy for causal horizons, through eqs. (28) and (31). If the right hand side

of (38) ever becomes positive then the horizon-entropy of the quasi-local horizons will

immediately start to decrease, but the change of horizon-entropy of a causal horizon

may still increase because in this case it only influences the second variation of the

horizon-entropy.

In the case where we impose a cross-normalisation lana = −1 as is done in [23], we

do not have complete freedom to rescale la and na so that B and C in (14) are constant.

In this case, the ra variation, δr, as defined in [23], is not equivalent to the Lie derivative

with respect to ra for terms such as θl that depend not just on the spacetime point but

also on the choice of two-surface for which they are defined. The variation of θl+Llφ/φ

however splits into a variation of θl and a part that is equivalent to the Lie derivative

because φ is a globally defined scalar field. In this case a maximum principle can still

be invoked as in [23] since the variation becomes

δr

(

θl +
Llφ

φ

)

= κrθl + d2C − 2ω̃adaC

+BLl

(

θl +
Llφ

φ

)

+ CLn

(

θl +
Llφ

φ

)

, (40)

§ In fact, because the conditions (34) are satisfied in Brans-Dicke theory by surfaces satisfying

θl = −la∇aφ/φ, the θl term can be eliminated in eq. (38) and the condition on the Brans-Dicke

parameter ω becomes ω > −3/2.
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with notation adapted from [23]. The term involving B is once again (38). In the case

where this term is negative and la and na are both derived from a double null foliation

so that κr vanishes, a maximum principle can be applied (see [23] for further details)

to conclude that C is either constant or everywhere negative and the horizon-entropy is

non-decreasing.

3.3. Scalar-tensor and f(R) gravity

The scalar-tensor generalizations of Brans-Dicke theory, described by the action

SST =

∫

d4x
√
−g

[

F (φ)R

16π
− ω(φ)

φ
∇aφ∇aφ− V (φ)

]

+ Smatter , (41)

where the Brans-Dicke coupling ω becomes a function of φ and a scalar field potential

V (φ) is introduced, can be discussed in the same way as Brans-Dicke theory. One can

consider a new Brans-Dicke field ψ ≡ F (φ) provided that the function F (φ) admits

a regular inverse F−1 (this is not always the case in the literature, in which F (φ) is

sometimes found in the form of a series of even powers of φ [26, 27], but specific choices

in the literature are motivated by mathematical, not physical considerations, i.e., by

the fact that they allow certain calculations to be performed). Then the action (41) can

be recast in the form

SST =

∫

d4x
√−g

[

ψR

16π
− ω̄(ψ)

ψ
∇aψ∇aψ − U(ψ)

]

+ Smatter ; (42)

therefore, we limit ourselves to consider the action (41) with F (φ) = φ, which yields the

field equations

Gab =
8π

φ
Tab +

ω(φ)

φ2

(

∇aφ∇bφ− 1

2
gab ∇cφ∇cφ

)

+
1

φ
(∇a∇bφ− gab�φ)−

V (φ)

2φ
gab , (43)

∇a∇aφ =
1

2ω + 3

(

8πT − dω

dφ
∇cφ∇cφ+ φ

dV

dφ
− 2V

)

. (44)

The discussion of horizons in scalar-tensor gravity remains the same as in Brans-Dicke

theory because, by contracting eq. (43) twice with the null vector la, one obtains again

eq. (27) (now with ω dependent on φ). Since the horizon-entropy is again S = φA, one

finds again eqs. (31) and (38).

Metric modified (or f(R)) gravity, described by the action

SMG =
1

16π

∫

d4x
√−g f(R) + Smatter (45)

is equivalent to a Brans-Dicke theory with ω = 0 and a potential [18]. In fact, setting

φ = f ′(R) , V (φ) = φR(φ)− f(R(φ)) (46)

leads to the equivalent action [18]

S ′

MG =
1

16π

∫

d4x
√
−g [φR− V (φ)] + Smatter (47)
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(similarly, Palatini f(R) gravity can be recast as an ω = −3/2 Brans-Dicke theory with

a potential, but we will not consider it here because of its well-known problems [18]).

Since the potential V (φ) does not give contributions upon double contraction of eq. (43)

with the null vector la, the considerations on horizons made for Brans-Dicke theory can

be immediately extended to f(R) gravity.

4. Horizons under conformal transformations

A conformal transformation of the metric will, in general, change the areas of spacelike

two-surfaces. This in turn will change the location of the trapping horizons given by the

above conditions (33). The conformal transformation relates two different conformal

frames if the metric is scaled by a conformal factor that can vary with spacetime point

gab → g̃ab = W (x)gab . (48)

The geometric expansion of a null vector la in any frame is given by

θl = qab∇alb =

(

gab +
lanb

(−ncldgcd)
+

nalb

(−ncldgcd)

)

∇alb , (49)

where qa
b is a projection tensor onto the two-dimensional spacelike surface to which la

and na are normal. (If la is defined as globally null, then the third term on the right

hand side vanishes identically.) This result holds for a Lorentzian signature manifold

independently of whether the Einstein equations hold. In general, there is freedom to

rescale null vectors even without rescaling the metric. The vanishing of the expansion

does not depend on a pure rescaling of the null vector la →Wla, although its value does

since under this rescaling we have

θl →Wθl . (50)

Under a conformal transformation of the form (48) we have g̃ab = W−1gab and

qab → q̃ab = W−1qab. We can fix the normalization of la by requiring l̃a = la with

l̃a = Wla and thus

∇̃al̃b = W∇alb + lb∇aW − 1

2
(la∇bW + lb∇aW − gabl

c∇cW ) , (51)

therefore

θ̃l = θl +
la∇aW

W
. (52)

The vanishing of θl for a given surface is therefore not necessarily invariant under a

conformal transformation. And thus the location of a marginally outer trapped surface

satisfying θl = 0 is not necessarily invariant. This is despite the fact that the conformal

transformation does not change the coordinates of a given spacetime event nor the path

of null rays. The location of the event horizon, for example, is unchanged. In one frame

the solution of θl = 0 may lie inside the event horizon and in another frame outside, as

discussed in [25].

The vanishing of the expansion is equivalent to the statement that the area is

unchanged under infinitesimal translations along la via the relation Ll εab = θl εab. Since
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the conformal factor changes how areas are measured, this criterion no longer selects

the same horizon in the two frames. The area two-form changes as εab → ε̃ab = Wεab.

The condition that the Lie derivative of this “conformally transformed area” be zero is

Ll (Wεab) =

(

θl +
LlW

W

)

Wεab = 0 . (53)

This rule is the same as the transformation in (52). This also makes clear what lies

behind the relations (34). In the Einstein frame the horizon-entropy is just one quarter

of the area but the area is modified in other conformal frames, leading to a modification

of the relationship between horizon-entropy and area. The formula (2) gives an explicit

way of calculating this new horizon-entropy in the new frame and for the class of theories

we have investigated the entropy is invariant. For example, the gravitational sector in

the Einstein frame has the familiar Einstein-Hilbert form of the action

Saction =

∫

d4x
√−gR . (54)

By (2), the horizon-entropy is A/4 in the Einstein frame. In another frame obtained by

gab → g̃ab =Wgab, the same action will take the form

Saction =

∫

d4x
√

−g̃
(

R̃

W
− 9

2

g̃ab

W 3
∇̃aW ∇̃bW + 3

g̃ab

W 2
∇̃a∇̃bW

)

, (55)

and the horizon-entropy, with W constant on the horizon, will be Ã/4W . But, since

the areas are related by Ã = AW , the horizon-entropy will still take the same numerical

value in the new frame (the equality between entropies in the Einstein and the Jordan

frames extends to all theories with action
∫

d4x
√−g f (gab, Rab, φ,∇cφ) [28]). As long

as the horizon-entropy transforms in the same way as the metric under a conformal

transformation, the conditions (34) will give rise to a surface whose location is invariant

and for which one can derive a horizon-entropy increase law, exactly as one can derive

an area increase law for trapping horizons in the Einstein frame.

The issues that occur can be illustrated with a few examples. One of the cases

considered in [8] is the Schwarzschild spacetime under a conformal transformation with

conformal factor W = ∆−1. Then the “veiled general relativity” spacetime becomes

ds̃2 = −dt2 +
dr2

∆2
+
r2

∆
dΩ2

2 , (56)

where ∆ = 1 − 2M/r and dΩ2
2 = dθ2 + sin2 θ dϕ2 is the line element on the unit two-

sphere. Like the usual form of the Schwarzschild metric in Schwarzschild coordinates,

this metric is valid everywhere in the region r > 2M . The radial null vectors in this

transformed metric have components

lµ = (1,∆, 0, 0) , nµ = (1,−∆, 0, 0) , (57)

and their expansions are, using eq. (49),

θ̃l =
2

r2
(r − 3M) , θ̃n = − 2

r2
(r − 3M) . (58)
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The marginally outer trapped surfaces, where θl vanishes, are now found at r = 3M

instead of r = 2M . But these surfaces do not form a trapping horizon because θn = 0

here too. The constant r tube at r = 3M is timelike, but its area is not decreasing

because θn = θl = 0. There are no true spherically symmetric trapping horizons in this

metric. In fact, in this metric there are not even any spherically symmetric trapped

surfaces, because nowhere do we have θ̃lθ̃n > 0.

This result can be generalised by considering conformal factors of the form W (x) =

∆n, in which case the null vectors are given again by eq. (57) and their expansions

become

θ̃l =
2

r2
[r −M(2− n)] , θ̃n = − 2

r2
[r −M(2− n)] . (59)

The marginally outer trapped surfaces can be conformally transformed to any r by a

suitable choice of n. But since the area of the spherically symmetric two-spheres is now

A = 4π∆nr2, the horizon-entropy is S = A/W = ∆−nA = 4πr2, and the conditions

(34) just give back trivially the location of the usual horizon, r = 2M .

Similar things can occur with coordinates and conformal factors that are perfectly

regular on the horizon. For example, in Kerr-Schild coordinates the Schwarzschild metric

takes the form

ds2 = −∆dt2 + 2(1−∆)dtdr + (2−∆)dr2 + r2dΩ2
2 . (60)

In these coordinates the radial null vectors have components

lµ =

(

1− ∆

2
,
∆

2
, 0, 0

)

, nµ = (1,−1, 0, 0) , (61)

where nµ is affinely parameterised, i.e., na∇an
b = 0. In this frame the expansions are,

as expected,

θl =
∆

r
, θn = −2

r
. (62)

If we choose a conformal factor of the form W (x) = e−λt2 we find

θ̃l =
λrt∆+∆− 2λrt

r
,

θ̃n = − 2 (λrt+ 1) eλt
2

r
. (63)

Setting θ̃l equal to zero and expanding for λt≪ 1/M gives

r = 2M + 8λtM2 +O(λ2) . (64)

In this limit the trapping horizon is close, but not equal, to the r = 2M surface, but

it is now also spacelike. The surface r = 2M is still null and is still the location of the

event horizon and again is given simply by the conditions (34). The physical horizon is

located by (34), not by (33).

It has been observed in numerical simulations of black hole collapse in Brans-Dicke

theory that the trapping horizon can appear outside the event horizon [25, 29]. This

possibility occurs despite the fact that the Jordan frame of Brans-Dicke theory (25) can
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be related via a conformal transformation to Einstein theory with a scalar field that

obeys the null energy condition. In the Einstein frame the trapping horizon appears

exclusively inside the event horizon, in accordance with a theorem of Hawking and Ellis

[21].

Two related issues are involved here. First, unlike the event horizon, the location

of the trapping horizon changes under a conformal transformation. Second, the null

energy condition is not necessarily equivalent to the null curvature condition. (This

condition is called the null convergence condition in [21].) The trapping horizon can

appear outside the event horizon in the string frame, even if the null energy condition

is satisfied, because the Einstein equations do not hold in this frame [25, 29].

The proof that the apparent horizon cannot lie outside the event horizon (the

apparent horizon theorem [21]) is purely geometric and relies only on the validity of the

null Raychaudhuri equation (22) and the geometrical condition Rabl
alb ≥ 0, the null

curvature condition. Even if the matter obeys the null energy condition, the sign of

the last term in (27) can be negative and, therefore, we may have a violation of the

null curvature condition. This is in fact what happens for the surfaces found in [25, 29].

Brans-Dicke theory can be recast in the Einstein frame via the conformal transformation

gab → g̃ab = φ gab , φ → φ̃ with dφ̃ =

√

2ω + 3

16π

dφ

φ
. (65)

Here φ > 0 in order to guarantee that the effective gravitational coupling Geff ∼ φ−1

remains positive. In the Einstein frame the null tangent vectors are unchanged, l̃a = la,

and they are null with respect to the “new” metric g̃ab as well as the old one gab. In the

Einstein frame the gravitational field equations are

G̃ab = 8π

(

T̃ab + ∇̃aφ̃∇̃bφ̃− 1

2
g̃ab g̃

cd∇̃cφ̃∇̃dφ̃

)

, (66)

where T̃ab ≡ Tab/φ
2 and thus

g̃acg̃bdR̃ablclb = 8πg̃acg̃bdT̃ablcld +
(

g̃abla∇̃bφ̃
)2

. (67)

Provided the matter obeys the null energy condition and ω > 0, the geometry will also

obey the null curvature condition in the Einstein frame. As we have seen, quasi-local

horizons satisfying (34) cannot appear outside the event horizon in any conformal frame

if they are located entirely inside the event horizon in the Einstein frame.

5. Cosmological horizons

The problem of locating the trapping horizons following a conformal transformation

appears not only in black hole spacetimes but also in cosmology in alternative gravity

(especially scalar-tensor and f(R) theories, which can be formally reduced to Einstein

gravity plus non-minimally coupled scalars by a conformal transformation). The
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line element of a spatially homogeneous and isotropic Friedmann-Lemaitre-Robertson-

Walker (FLRW) metric is commonly written in comoving coordinates as

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)

. (68)

In the spatially flat case k = 0, we have radial null vectors with components

lµ = (1, 1/a(t), 0, 0) , nµ = (1,−1/a(t), 0, 0) , (69)

which have expansions

θl =
2 (ȧr + 1)

ar
, θn =

2 (ȧr − 1)

ar
. (70)

We see that θn = 0 when the comoving radius is r = 1/ȧ and the physical radius is

rphysical = ar = H−1, the usual Hubble radius.‖ The expansion θl is everywhere positive

for r > 0 and ȧ > 0. We can also calculate the variation of the expansions with respect

to the null directions

Llθn =
2 (−ȧ2r2 + rȧ+ ar2ä+ 1)

a2r2
, (71)

which equals

Llθn = 2

(

ȧ

a

)2(

1 +
äa

ȧ2

)

= 2H2 (1− q) (72)

on the horizon r = 1/ȧ. The expansion is accelerating if q < 0. For de Sitter space,

q = −1. Thus, for de Sitter space we have a Past Inner Trapping Horizon (PITH) by the

classification of [4]. This is reasonable because the region around r = 0 is not trapped

(θlθn < 0), so it should be an inner horizon, and a past horizon because beyond the

horizon everything must move outwards, nothing can fall back. The components of the

normal Na to the surface r = 1/ȧ are

Nµ =

(

ä

ȧ2
, 1, 0, 0

)

. (73)

The norm squared of this normal is

NaNa = −
(

ä

ȧ2

)2

+
1

a2
=

1

a2
(

1− q2
)

. (74)

For de Sitter spacetime the horizons are null. In the more general k 6= 0 case, we have

lµ =

(

1,

√
1− kr2

a(t)
, 0, 0

)

, nµ =

(

1,−
√
1− kr2

a(t)
, 0, 0

)

, (75)

which have expansions

θl =
2
(

ȧr +
√
1− kr2

)

ar
, θn =

2
(

ȧr −
√
1− kr2

)

ar
. (76)

‖ The physical horizon radius can also be obtained by rewriting the line element in the form

ds2 = −
(

1−H2R2
)

dt2 +
(

1−H2R2
)

−1
dR2 + R2

(

dθ2 + sin2 θ dϕ2
)

, where R = ar, and finding the

root of g11 = 0.
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Here we have horizons at

r =
1√

ȧ2 + k
. (77)

(Note that in general relativity, due to the Hamiltonian constraint H2 = 8πGρ/3−k/a2,
this radius is always real if the energy density ρ is positive-definite.)

By transforming to the conformal time η defined by a(η)dη = dt, the metric (68)

can be cast in the form

ds2 = a2(η)

[

−dη2 +
dr2

1− kr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

. (78)

This line element is manifestly conformally flat for the spatially flat case k = 0 but,

because the Weyl tensor vanishes in all cases, all FLRW metrics are conformally flat,

even for k 6= 0. So we relate the metrics by a conformal transformation

gFLRW = a2gflat . (79)

so that gflatab = g̃ab = W gab with W = 1/a2(η).

From the point of view of “veiled” general relativity [8], an expanding FLRW

universe is physically equivalent to its flat conformal cousin. This equivalence is

apparently surprising and it helps to consider the variation of units of length lu, time

tu, mass mu, and of the derived units here [9, 11]. In the flat “veiled frame” spacetime

these units are not fixed but scale as l̃u ∼ W 1/2lu = a−1lu, t̃u ∼ W 1/2tu = a−1tu,

m̃u ∼ W−1/2mu = amu (the scaling of derived units is argued by straightforward

dimensional considerations). Despite appearances, gravity is still present in this space

and it acts by shrinking the units l̃u and t̃u instead of making the universe expand as

in the original FLRW space. Thus, we do not have a genuine Minkowski space, but

one with time-dependent units, a fact that must be kept in mind at all times. Actual

measurements are always made with respect to a unit scale. A given time interval, for

example, is recorded by dividing it up into blocks of the time unit tu.¶ There is no

physical difference between a static space with all lengths and times shrinking, or an

expanding FLRW space with fixed units. For example, in this static space in the frame

with varying units, there is cosmological redshift (which is obviously absent in a genuine

Minkowski space with fixed units), caused by the fact that the unit of length l̃u assumes

different values at the different instants of emission and observation of a light signal. It

is instructive to derive this redshift in the flat space with line element

ds̃2 = −dη2 + dr2 + r2
(

dθ2 + sin2 θ dϕ2
)

. (80)

To keep track of the variation of units in the “veiled frame”, divide by the unit of length

squared in this frame and use the fact that l̃u = t̃u (this is merely a choice of units so

that everywhere the measured speed of light is 1),

ds̃2

l̃2u
= − dη2

t̃2u
+

dr2

l̃2u
+
r2

l̃2u

(

dθ2 + sin2 θ dϕ2
)

. (81)

¶ In FLRW space the spatial homogeneity and isotropy select a preferred family of observers, the

comoving observers who see the cosmic microwave background homogeneous and isotropic around

them (apart from small temperature fluctuations δT/T ∼ 5 · 10−5). The comoving time t is the proper

time of these observers, hence it is a geometrically and physically preferred notion of time.
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The time interval between two equal intervals of η, say
∫ η2
η1

dη and
∫ η4
η3

dη such that

η2 − η1 = η4 − η3, will not be measured by a comoving observer to be equal amounts of

time, not because the η intervals are different, but because the units with which they

are compared are changing with time. In the first term on the right hand side the square

of the ratio dη/t̃u appears, but one must compare t-time intervals with the unit t̃u and

η-time intervals with the unit η̃u, hence we convert η to t using an ordinary coordinate

transformation (not a transformation of units) dt = adη, obtaining

ds̃2

l̃2u
= − dt2

a2t̃2u
+

dr2

l̃2u
+
r2

l̃2u

(

dθ2 + sin2 θ dϕ2
)

. (82)

Equal intervals of the t coordinate will be measured as equal time intervals with respect

to the fundamental unit scale. Even though a is a function of t this line element is

still manifestly flat. Consider now a light ray emitted at radius re at time te, which

propagates radially and is received by an observer at r = 0 at time to. Setting ds̃2 = 0

and dθ = dϕ = 0 for radial null geodesics+ one obtains dt
a(t)

= ±dr, where the negative

sign must be chosen for rays propagating from re to r = 0 along the direction of

decreasing r. Integrating between emission and observation yields
∫ to

te

dt

a(t)
= −

∫ 0

re

dr . (83)

Consider now a second pulse emitted at re at time te + δte and received at r = 0 at

to + δto. In the same way, one obtains
∫ to+δto

te+δte

dt

a(t)
= −

∫ 0

re

dr . (84)

Since the right hand sides of eqs. (83) and (84) are equal, so are their left hand sides,
∫ to+δto

te+δte

dt

a(t)
=

∫ to

te

dt

a(t)
, (85)

and one can then write
[
∫ to

te+δte

+

∫ to+δto

to

−
(
∫ te+δte

te

+

∫ to

te+δte

)]

dt

a(t)
= 0 (86)

and
∫ to+δto

to

dt

a(t)
=

∫ te+δte

te

dt

a(t)
. (87)

Assume now that δte and δto are very small, so that a(t) does not change appreciably

from its value a(te) [respectively, a(to)] in the time interval (te, te + δte) [respectively,

(to, to + δto)]; then

δto
a(to)

=
δte
a(te)

(88)

+ A null geodesic (ds2 = 0) in the original frame corresponds to a null geodesic (ds̃2 = Wds2 = 0) in

the “veiled frame” (it is not so for timelike geodesics).
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and, assuming now νe = 1/δte to be the frequency of the signal at emission and

νo = 1/δto the received frequency, both measured with respect to the fundamental

frequency unit 1/t̃u, it is

1

a(to)νo
=

1

a(te)νe
. (89)

The redshift z is then given by

z + 1 ≡ λo
λe

=
νe
νo

=
a(to)

a(te)
≡ ao
ae

(90)

(where λe and λo are the wavelengths at emission and observation, respectively). Then

there is redshift also in flat “veiled frame” space and its derivation parallels completely

the standard derivation of redshift in FLRW space (e.g., [30]). The result agrees with

Ref. [8], in which the cosmological redshift in the veiled frame is derived in a different

way by considering an hydrogen atom and taking into account carefully the local change

in the electron mass deriving from the non-trivial coupling of matter to the conformal

factor W in the veiled frame. This coupling can also be interpreted as a variation of

units with the spacetime point [9] and it is the source of redshift. The distance-redshift

relation in the veiled frame is also derived in Ref. [8], and it coincides, of course, with

the one derived in FLRW space with constant units.

In the flat space of veiled FLRW cosmology the radial null vectors have components

(we can use the coordinates η and r from (78) if k = 0)

lµ = (1, 1, 0, 0) , nµ = (1,−1, 0, 0) . (91)

The expansions of these two null vectors in the flat space are

θl =
2

r
, θn = −2

r
. (92)

We have θlθn < 0 for all finite r, so there are no spherical trapped surfaces in flat space

(in fact there are no trapped surfaces entirely contained in flat space at all). But if we

instead look at the change of the horizon-entropy in the null directions we find

la∇a

(

a2A
)

= ∂η(a
2A) + ∂r(a

2A) = 8πar [(∂ηa) r + a] , (93)

na∇a

(

a2A
)

= ∂η(a
2A)− ∂r(a

2A) = 8πar [(∂ηa) r − a] . (94)

We see that we have a conformal horizon at r = a/(∂ηa). We can convert the coordinates

from η to t by writing ∂ηa = a∂ta. Thus, there is a horizon at r = 1/(∂ta) just as in the

spatially flat FLRW case. We can also compute

la∇a

[

nb∇b(a
2A)
]

= 8πar2∂η∂ηa = 8πa3r2
(

ä+
ȧ2

a

)

= 8πa4r2H2(1− q) . (95)

We obtain exactly the same kind of horizon as above (a Past Inner Trapping Horizon

in the case of de Sitter). The signature of the horizon is the same (as expected) since

the normal is

Nµ =

(

aä

ȧ2
, 1, 0, 0

)

, (96)
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whose norm is given by

NaNa = 1−
(

aä

ȧ2

)2

= 1− q2 . (97)

It may come to a surprise, especially for an astronomer, that the Hubble parameter

(which is also three times the expansion of the timelike worldlines of comoving observers

and a scalar quantity) is not a good observable when studying cosmological horizons

and their location (see, e.g., [31]). However, from the discussion above, it is clear that

H is not a good observable when conformal transformations are used in generalized

(and even in Einstein) gravity. H is changed by conformal transformations and so is

the location of the cosmological horizon, and a more general quantity is needed.

6. Conclusion

If entropy is a useful quantity in time-dependent situations, and possibly also in non-

equilibrium thermodynamics, its applicability may extend beyond event horizons of

static or stationary black holes. Dynamical situations are the rule rather than the

exception and, in certain theories, stationary situations may not even exist. For example,

in the class of f(R) theories designed to explain the present acceleration of the universe

without resorting to dark energy, Minkowski space is not a global solution and one

cannot contemplate asymptotically flat black holes in these theories. When the relevant

field equations are written in a form that mimics the Einstein equations, a cosmological

effective fluid composed of geometric terms is present on the right hand side of these

equations, and causes the universe to accelerate its expansion, so that the role of

Minkowski space as a global solution giving a static background is played instead by the

de Sitter or other FLRW solutions. In this case, black holes are embedded in dynamical

(cosmological) backgrounds and one does not have the luxury of considering static

horizons in a static background. However, the horizon-entropy formula (2) originally

developed for perturbations of stationary systems, gives rise to rather generic horizon-

entropy increase laws for both causal and quasi-local horizons in general dynamical

spacetimes.

Here we have seen how a modification of the trapping horizon conditions can give

quasi-local horizons for which a horizon-entropy increase law can be proven in models

that are related via field redefinitions to Brans-Dicke theory. The location of these

surfaces is invariant under a conformal transformation of the metric, which is not true

of ordinary trapping horizons. It is likely that these results will hold for all theories that

are conformally related to Einstein gravity and for which the horizon-entropy transforms

in the same way as the area. These conditions can be applied to a variety of situations

including finding cosmological horizons in “veiled” Minkowski space with varying units.

In a given spacetime there are many surfaces for which one can define an entropy

increase law. We have examined here three different cases, null causal horizons which

include global event horizons, locally defined geometric horizons including trapping

horizons, and the new proposal based on gravitational horizon-entropy. We have derived
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quasi-local conditions on the rate of increase of the horizon-entropy and shown that this

is non-negative for both causal horizons and the new quasi-local horizons. Although the

governing equation for these two cases is very similar, compare eq. (31) and eq. (38),

there are some differences. The main difference is that in the case of causal horizons it

governs the behaviour of the second derivative of the horizon-entropy and for the quasi-

local horizons it governs directly the first derivative of the entropy. The horizon-entropy

of both types of horizons can shrink if sufficient negative energy is provided. Both types

of horizons can settle down to exact Killing horizons, but only the quasi-local horizons

can start from exact Killing horizons. While ωl = 0 follows trivially for causal horizons,

for quasi-local horizons it requires the additional assumption that the null normal la is

derivable from a double-null foliation.

We have proven that horizon-entropy does not decrease by requiring that all the

individual terms in (31) and (38) are negative. In particular this requires the null

energy condition Tabl
alb ≥ 0 be satisfied for matter fields, rather than the null curvature

condition Rabl
alb ≥ 0. In fact, all that is actually required is that the overall sum of the

terms in (31) or (38) be negative. It is possible that in certain specific scenarios some

of these terms, in particular −Tablalb, are positive, but that overall the horizon-entropy

still increases.

The quasi-local surfaces used to derive the horizon-entropy increase law are in

general not apparent horizons or trapping horizons. Outside of the Einstein frame they

are not foliated by marginally outer trapped surfaces except in the case where they

describe Killing or isolated horizons and in general they do not satisfy θl = 0. They will

though be spacelike surfaces if the horizon-entropy is increasing and null surfaces if it

is constant. In a spacetime that satisfies the null energy condition they will be located

behind the event horizon and so will, in cases like the Brans-Dicke collapse considered

in [25], lie inside the apparent horizon.

It was mentioned in [3] that apparent horizons will not satisfy a horizon-entropy

increase relation and that the acausal behaviour of event horizons is needed to save this

law. The surfaces given by (34) are quasi-locally defined and satisfy a local horizon-

entropy increase law of the form used in [3]. In [32] the validity of the Generalised Second

Law (GSL) was examined for apparent horizons in a string frame two-dimensional model.

This work explicitly included the contribution of both the horizon-entropy and the

entropy of fields outside the horizon and concluded that for coherent quantum states

the GSL was valid but possibly violated for non-coherent quantum states. It is not

known whether the surfaces satisfying (34) will satisfy the GSL. Since they coincide with

trapping horizons in the Einstein frame, if it can be shown that the GSL is violated for

trapping horizons in the Einstein frame then the same will be true for these surfaces.

We have used a dynamical definition of entropy as proposed in [15]. Strictly

speaking this definition is derived only for stationary situations and it is known that

its application to non-stationary situations contains several ambiguities [33, 19]. These

ambiguities are not essential for our derivation, in fact all we require is a definition of

horizon-entropy whose value is invariant under a conformal transformation. Even the
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association of sab with entropy is not essential, only that it transforms invariantly under

a conformal transformation. Throughout this work we have suppressed the factor of 4

in the area-entropy relation, and our results are independent of the precise numerical

value of this factor.

Under a conformal transformation of the metric, the location of the surfaces studied

here remains the same. This is not true of trapping horizons. That the surfaces are

invariant under a conformal transformation, is in a certain sense trivial, because the

horizon-entropy definition used is always equal to the area in the Einstein frame and so

the definitions always pick out the “Einstein frame trapping horizon”. Put simply, we

have

gab → g̃ab = Wgab ,

A→ Ã = WA ,

S → S̃ =
Ã

4W
=
A

4
= S . (98)

But the conditions (34) do not make explicit reference to the Einstein frame and thus

can be applied simply in non-Einstein frames without the need to transform the metric.

While a conformal transformation will always put the theories considered here into

the Einstein frame form of Einstein gravity plus matter, and one could proceed with

traditional trapping horizons, one must accept that in many alternative theories of

gravity this Einstein frame will not be the standard frame with constant units.

We have argued, along with many other authors, that a conformal transformation

of the metric should not change the operationally defined physical features of the

spacetime, provided that one redefines standards of length, time and mass in a position-

dependent way. This is most easily demonstrated in the case of “veiled general relativity”

where metric solutions of ordinary Einstein gravity are subjected to a conformal

transformation. In the simple case of the Schwarzschild spacetime the usual conditions

for a trapping horizon do not always pick out the r = 2M surface. The modified

conditions proposed here do. Thus, the surfaces defined here allow a more operationally

physical interpretation than trapping horizons.
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