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Abstract

We explicitly prove the horizon-entropy increase law for both causal and quasi-
locally defined horizons in scalar—tensor and f(R) gravity theories. Contrary
to causal event horizons, future outer trapping horizons are not conformally
invariant and we provide a modification of trapping horizons to complete the
proof, using the idea of generalized entropy. This modification means that
they are no longer foliated by marginally outer trapped surfaces but fixes the
location of the horizon under a conformal transformation. We also discuss
the behaviour of horizons in ‘veiled’ general relativity and show, using this
new definition, how to locate cosmological horizons in flat Minkowski space
with varying units, which is physically identified with a spatially flat FLRW
spacetime.

PACS numbers: 04.70.—s, 04.70.BW, 04.70.Dy

1. Introduction

The entropy of a black hole is not always given simply by one quarter of its area. In alternative
theories of gravity, such as Brans—Dicke or f(R) theories, the horizon-entropy of the black
hole is given by a more complicated function of the black hole geometry and possible horizon
fields. In such cases, ensuring that the entropy of the black hole is non-decreasing is not
equivalent to ensuring that the area is non-decreasing. A number of authors have been able
to prove an equivalent of Hawking’s area increase theorem for black hole event horizons in
several alternative theories [1-3].

Quasi-local horizons also have an area increase law [4]. The thermodynamic properties
of apparent horizons and their quasi-local associates, dynamical and trapping horizons, have
been investigated in [4, 5] and [6]. In Einstein gravity, the area of a trapping horizon is
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guaranteed to be non-decreasing if the null energy condition is satisfied. This result for the
area is true even in alternative gravity situations, provided the null convergence condition is
substituted for the null energy condition. But this does not guarantee that the horizon-entropy
of the trapping horizon is non-decreasing.

In this paper, we examine situations where the horizon-entropy is not one quarter of the
area. We examine both causal horizons and quasi-local horizons. Causal horizons are the null
causal boundaries of a given spacetime region and include event horizons, which are the past
causal boundary of future null infinity. Quasi-local horizons include dynamical and trapping
horizons, but we also investigate a new definition, closely related to that of a trapping horizon,
that satisfies a horizon-entropy increase law in a range of situations [7]. This new surface has
the important property that it reduces to that of a trapping horizon in cases where the horizon-
entropy is one quarter of the area. It therefore retains all of the previous results for trapping
horizons in the case of Einstein gravity and extends their validity to other theories. We extend
the results in [7] to a much wider class of gravity theories, including scalar—tensor theories
and f(R) theories and also extend the results to a much wider class of horizons, including
ones that are not necessarily spherically symmetric. In addition, we derive a corresponding
horizon-entropy equation for causal horizons that unifies many of the previous results that
have appeared in the literature.

This new horizon definition has the property that under a conformal transformation of
the metric, its location and in particular its relation to the event horizon are unchanged. This
is not true of trapping horizons. The use of conformal transformations is fairly common
in the study of gravity theories. This is particularly true in string theory where conformal
transformations are used to relate the string frame, with a non-minimally coupled dilaton field,
to the Einstein frame®. It has been argued in the literature that, classically, the two frames are
physically equivalent [8—11]. This physical equivalence suggests that the new horizons should
be preferred to trapping horizons if these surfaces are to have physical significance, such as a
role in black hole thermodynamics and Hawking radiation.

The conformal transformation rescales lengths and areas as measured by the metric. The
physical effect of this rescaling is, for example, to change the meaning of mass since the
norm of the four-momentum p“ p, will no longer be constant from point to point or from time
to time. The importance of running units in making the correspondence was emphasized in
[9, 11]. The example of Einstein gravity in a frame where gravity is not minimally coupled to
the matter fields was explicitly examined in [8]. In this case, where there are no ‘fundamental’
scalar fields, the observational predictions are still exactly the same in two different frames.
The authors of [8] use the term ‘veiled general relativity’ to describe this situation.

The plan of this paper is as follows. Section 2 provides background material on horizon-
entropy in modified theories of gravity. Section 3 examines the various proofs for the
increase of this horizon-entropy for both causal horizons and quasi-local horizons such as
trapping horizons. The proofs are discussed for Einstein gravity, Brans—Dicke gravity and
general scalar—tensor and f(R) gravity theories. Here we see that trapping horizons, as
commonly defined, can only guarantee increase of horizon-entropy in the case of Einstein
gravity. However, for the modification given in equations (34), the horizon-entropy law can
be guaranteed in a large class of other theories. This modification makes the location of
the geometrically defined horizon invariant under a conformal transformation, as we discuss
in section 4. This allows us to locate invariantly defined horizons in conformally equivalent

3 Several authors have already noted that they should more properly be called ‘representations’ rather than ‘frames’
(3, 8].
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spacetimes and we demonstrate this for cosmological horizons in section 5. Section 6 contains
a discussion and the conclusions.

2. Horizon-entropy for general gravity theories

There are several ways to derive the entropy that should be associated with a black hole
horizon. For a static spacetime, one can make use of the Euclideanized action. This was used
in [12] to show that static black holes do not obey S = A/4 to linear order in a particular
model of second-order curvature corrections derived from string theory. This technique was
later generalized to all orders for Lagrangians that are an arbitrary function of the Riemann
tensor by Visser [13, 14] who derived the formula

A 3.2,
S = —”+4n/ glel Jqdx, (1)
4 H aRabcd

where integrations should be taken over closed two-spheres, H, with metric g,;, while g7; is
the symmetric metric of the two-dimensional subspace orthogonal to these surfaces, spanned
by null vectors /“ and n* such that gj-b = —l,np — nyl, with n?l, = —1. %, is the ‘matter’
Lagrangian density, which can be constructed as the total Lagrangian density minus the
Einstein—Hilbert term.

Alternatively, one can require the validity of the first law for Killing horizons of any
diffeomorphism-invariant theory. This was done in [15] and gives the result

0.
S=-2x / R 8apfeq~/q d*x + higher derivative terms, 2)
H abed

where £, is the antisymmetric binormal form for the surface H, &,, = l,n, — n,l, and £
is the full Lagrangian density. The higher derivative terms arise for theories that depend on
derivatives of the Riemann tensor and we will ignore them here. The equivalence of this
formula with (1) is obtained by the relation &,,8.y = guld gblc — gL gbld.

What is needed for these formulae is a choice of spacelike surface H, knowledge of
how the Lagrangian density . depends on the Riemann tensor and knowledge of the local
geometry and fields at the surface H. The horizon-entropy has the form of an integral over the
two-dimensional surface of a two-form, § = f 1 Sab> With

0.7

Rcdef

Sab = —2m écdéefgaba (3)
which is just a scalar quantity times the area two-form &, of the surface H. In principle,
a horizon-entropy two-form can be associated with each point of the horizon, although it
depends on which two-surface it is associated with. For the normal Einstein—Hilbert action of
Einstein gravity, where the ‘matter’ Lagrangian is zero and hence the Visser horizon-entropy
is trivial, we have

R
L = Ton” 4)
A L1 e pa ad _be

- c _ c : 5
Ropes 16712(@; 8 8"¢™) )]

thus,
1 acd A

Sqp = —27 ﬁ € Ecd€abs (6)



Class. Quantum Grav. 28 (2011) 175008 V Faraoni and A B Nielsen

and therefore, since 88,4, = —2,

S= A (7

=
with A being the area of H. In the case of scalar—tensor gravity [16], we have
R
L =F (qb)F + other terms independent of Riemann (8)
T
and thus
F(¢)
Sab = Tgab- (9)

When F(¢) is constant over the horizon, for example, for a spherically symmetric surface, we
have

_F@®4

S y) (10)
(cf [17]), while in the case of f(R) gravity [18], we have
R
g 1B (11)
16
and thus
'(R)
s = TP e (12)
Again, in the case where f’(R) is constant over H, this gives
"(R)A
S = f (4) . (13)

In all these cases, the horizon-entropy has the form S = W A for some scalar function W.
The horizon-entropy in [15] was explicitly derived to apply to Killing horizons in a stationary
spacetime. It was suggested in [19] that in certain cases the entropy could also take this
form for non-stationary situations. We will henceforth refer to (2) as the horizon-entropy,
without prejudice to the question of whether it represents a true entropy or not in dynamical
situations. The question then arises as to what kind of surface this horizon-entropy can be
applied to. In non-stationary situations, the event horizon does not in general coincide with
the trapping horizon even though both satisfy an area increase law in Einstein gravity. In the
following section, we consider to what extent the horizon-entropy satisfies an increase law for
non-stationary surfaces.

3. The second law of black hole mechanics

Let us consider a three-dimensional surface that can be foliated by closed spacelike two-
dimensional surfaces (such an object could be an event horizon, a trapping horizon or even
something else). In a four-dimensional Lorentzian signature spacetime, the spacelike two-
surfaces have null normals /“ and n“ that are unique up to scalings. /“ and n“ are conventionally
referred to as the outgoing future-directed null normal and ingoing future-directed null normal,
respectively. The tangent r¢ to the surface, which is normal to the spacelike two-surfaces, can
be written everywhere as a linear combination of /* and n“,

r® = BI" + Cn“. (14)

For a Killing horizon, or a non-stationary event horizon, or general causal horizon, r* would
be the generators of the horizon and would therefore be null with either B = 0 or C = 0 and

4
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in the case of a dynamical horizon, we would have B > 0 and C < 0. A future outer trapping
horizon can have any sign for C. The signature of the three-dimensional surface is just given
by the norm squared of r¢,

rir, = 2BCl%n,, (15)

where, for future directed null normals, [“n, is negative. The discussion here will follow that of
[4] where [ and n® can be chosen such that B and C above are constant on the two-dimensional
surfaces. To fix a direction on the three-dimensional horizon surface, we can choose B > 0.
The horizon will then be spacelike if C < 0, null if C = 0 and timelike if C > 0. The
horizon-entropy will in all these cases be non-decreasing if

/ Losgy > 0, (16)

with £, the Lie derivative along r“. Now one can look at how the horizon-entropy two-form
sqp Varies as one moves along integral curves of r* from one spacelike two-surface to another:

E,sab = B[,[Sab + Cﬁnsub. (17)
Since the entropy two-form can be written as s,, = W g, this equation is equivalent to
LrSap = [B (LW +W6) +C (L, W+ W0O,)] €ap, (18)

where we define the expansion 6; by L;&,, = 6;€,5. Determining, or defining, that the signs
of the scalar terms in £,s,; combine to give an overall non-negative result implies that the
entropy two-form is non-decreasing in the direction of r¢ everywhere on H and thus the
horizon-entropy is non-decreasing along the three-dimensional surface in question. For causal
horizons, this just reduces to the requirement that £%*£;s,;, be non-negative, which can be
related to the equations of motion and an energy condition. In situations where the horizon
is not null, as we will see below, the sign of the Ce® L, 5,5, term can also be evaluated in a
similar manner.

3.1. Einstein gravity

In the usual case of Einstein gravity, we have s,, = €,,/4 and S = A/4. In this case, the
horizon-entropy increase law for event horizons is just the area theorem of Hawking [20, 21].
Since it does not affect the sign of the change in entropy, henceforth we will incorporate the
factor of 4 into A for notational convenience.

For the case of quasi-local horizons, foliated by marginally outer trapped surfaces with
outgoing null expansion 6; = 0 and ingoing null expansion negative, 8, < 0, the variation of
the horizon-entropy two-form is simply

Lrgab = B»Clgab + Cﬁngab
= CO,¢e4p. (19)
If Cis assumed to be negative, the area-entropy is non-decreasing without further assumptions.
This is the case considered for dynamical horizons in [5] since dynamical horizons are required
to be spacelike and by equation (15) this guarantees C < 0.

In the more general case of a future outer trapping horizon, which can have any signature,
the sign of C can be related to the energy conditions via the condition that 6; should be zero
everywhere on the trapping horizon. The conditions for a future outer trapping horizon are [4]

6, =0,
6, <0, (20)
E,ﬁl < 0.
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For a past inner trapping horizon (PITH), one would interchange the ns and the Is and reverse
the sign of the inequalities. The third condition distinguishes trapping horizons from dynamical
horizons. The constancy of the expansion 6; on the horizon gives the condition

L6y =BL6+CL,6, =0. (21)
The Raychaudhuri equation for null geodesic congruences is
L6, = k0, — %012 — 0'12 + a)l2 — Rublalh, (22)

where «; is a measure of the failure of /“ to be affinely parameterized (a ‘surface gravity’
[22]), o; is the shear and wy; is the vorticity. If the null vectors used to define the horizon
are derived from a double-null foliation (this construction is used in [4]), then the vorticity
vanishes identically and for 6, = 0 we have

L6 = —of — Raypl“1, (23)

and we obtain

(o + Rapl“1"). (24)
nYl

For situations satisfying the null curvature condition, R,,1%1* > 0, which can be related to
the null energy condition, T,,/?l” > 0, by the Einstein equations, C is seen to be negative
and thus by (19) the area-entropy of the future outer trapping horizon is non-decreasing, in
which case it is also spacelike. By equivalent reasoning, an area-entropy law can be derived
for PITHs. In the case where a normalization [“n, = —1 is imposed, the same conclusion
about area increase can be reached using a minimum principle [23].

The existence of the R,;,/%I® term in the area law gives a direct local relation between the
curvature at a point and the rate of increase of an area element at that point. However, the shear
and vorticity terms, although locally defined, are related not only to the local properties of the
geometry, but also to the choice of surface passing through the geometry, i.e. of the choice
of null normals I° and n°. It is perfectly possible, for example, that a portion of the horizon
can be growing locally in Schwarzschild spacetime, because of the non-local influence on the
shear and vorticity. This is encapsulated in FOTS property 5 of [23]. In vacuum spacetimes,
the shear can only increase the area of the trapping horizon and the only way for the horizon
to shrink is to develop non-zero vorticity.

3.2. Brans—Dicke theory

Brans—Dicke theory is the prototype alternative theory of gravity with scalar and tensor modes.
The theory was first expressed in a frame in which the particle masses remain constant, the
effective gravitational constant varies from point to point and massive test particles follow
timelike geodesics (Jordan or string frame). In this frame, the action is given by the Lagrangian
density

¢

where w is the Brans—Dicke parameter, not to be confused with the vorticity w;. Such actions
include for example the tree-level low-energy effective actions of certain string theories where

1
L= — (¢R - gvtﬂﬁva(ﬁ) +$mattera (25)
167

®w = —1. Variation of this action with respect to the metric gives the gravitational field
equations

w 1
Gu¢ =8 Ty + E <Va¢vb¢ - zgahvc¢vc¢> + V.V — gathVC¢, (26)

6



Class. Quantum Grav. 28 (2011) 175008 V Faraoni and A B Nielsen

where T, is the energy—momentum tensor of the matter fields. The last two terms arise from

an integration by parts in the variation of the ¢ R term. Contracting the Einstein tensor with /

twice for the above yields

141°V,Vyp
n .

In Brans—Dicke theory, the horizon-entropy two-form is given by s,, = ¢e,p. The
variation of horizon-entropy in the outgoing null direction is then

1V,
LiSap = <91 + p >¢8ab- (28)

8
Rupl1® = ?”Tabzazb + d%(l“vamz + 27)

Since we require ¢ > 0 for the horizon-entropy to be positive, the term (6; +[*V,¢/¢) must
be positive for the horizon-entropy to be increasing for a causal horizon generated by /. The
sign of the [“V,¢ term though cannot immediately be established for a causal horizon. But,
by extending a method used in [3], taking another derivative gives

1“v, 1°v, (1°v, 1
L (9, + ¢) = g+ YD) L ug gy (29)
¢ ¢ ¢
Using the Raychaudhuri equation (22), the equations of motion (26) and
1"V (V) = PVl Vutp +11°V,Vip
= 1l"Vyp +1°1°V, V), (30)
where k; is again a measure of the failure of [ to be affinely parameterized, we obtain

1V, ¢ 1V, ¢\ 0, 5, (w+1) , 87 .
0 = 0, - — - lava - Ta lal'
L’(” ¢ ) K’(” ¢ ) y Tt Ty Ve S

€1y

For a causal horizon with w; = 0, affinely parameterized (x;, = 0) and w + 1 > 0 Brans—
Dicke theory, this quantity will be negative provided the matter 7, satisfies the null energy
condition. The condition w; = 0is guaranteed because the horizon generators are hypersurface
orthogonal to the null horizon and a normalization of the generators can always be chosen so
that k; = 0. If we then assume that the horizon settles down at late times to a Killing horizon,
such that £;s,;, = O at late times, then the term (9; + L v"¢) cannot ever be negative, because
to go from a negative value to zero, its derivative must be positive somewhere in between,
which is excluded by equation (31). Thus, the horizon-entropy must be non-decreasing for
a causal horizon, provided it settles down at late times to a Killing horizon. Noting that this
requires us to assume that the horizon settles down at late times to a Killing horizon, but that
this is sufficient, we do not need to assume that the horizon forms the causal past of future null
infinity. This assumption is not needed in the case of Einstein gravity and can be replaced by
the assumption that the spacetime contains no naked singularities.

In the general case, equation (31) implies that if 6; + ”% were anywhere negative on
the horizon, it would reach an infinite value in a finite parameter distance. Thus, either 6
would become infinite, implying a focal point, or Y49 would become infinite, implying a
discontinuity in ¢. In the former case, a focal point for the null generators of the horizon
is forbidden since the generators of the event horizon can have no future end points. We
can therefore conclude that if ¢ is continuous, 0; + EY4 cannot be negative anywhere on the
horizon. If the causal horizon is the past causal boundary of some set other than future null
infinity, then its generators can only have future end points on the set itself.

For a causal horizon, the change of the horizon-entropy cannot be taken arbitrarily close
to zero in the past if the area remains non-zero. If a null surface is initially a Killing horizon

7
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with zero horizon-entropy change, it cannot return to a Killing horizon after a perturbation.
The equivalent statement in the Einstein case is that the expansion of the horizon is always
decreasing even though it is always positive, so its initial value must be larger than any
subsequent value. The moment at which the logarithm of the horizon-entropy of a causal
horizon is changing, the most lies in the infinite past even though the moment at which the
horizon-entropy itself is changing, the most is not necessarily in the infinite past.

For a trapping horizon, we can again use equation (24) but now, instead of (19), we have

Lrsab = [Blcvc(b + C(nCVL¢ + ¢9n)]€ub‘ (32)

The signs of the terms [“V,¢ and n?V,¢ cannot be guaranteed from the equations of motion.
Ultimately, this is related to the value of r*V,¢ on the horizon. Because of this, the horizon-
entropy can decrease for a trapping horizon [3], even in situations where the matter fields obey
the null energy condition such as considered in [24].

Because the expansion 6, of a null congruence with tangent p“ is related to the variation
of the cross-sectional area two-form, £ ,&,, = 0,&4, the conditions for a future outer trapping
horizon (20) can be re-written as

L. =0,
e Lgap <0, (33)
L (e Ligap) < O.
Consider now, instead of future outer trapping horizons, the following conditions:
L5 = 0,
e Lsap < 0, (34)

L, (e Lisap) < 0.
In ordinary Einstein gravity, this would reduce to the requirements on the null expansions for
a trapping horizon given in (33) since, in this case, s,, = &4 Up to a constant factor. But
in cases where the horizon-entropy is not simply the area, these conditions will in general be
satisfied at different locations of the spacetime. In Brans—Dicke theory, the horizon-entropy
two-form is just s,, = ¢€,; in which case the first condition is satisfied where ¢p6; +1“V,¢ = 0
and the second condition when ¢6,, + n*V, ¢ < 0.
The variation of the horizon-entropy two-form is now
Lrsab = BLISab + Cﬁnsah
= C‘Cnsab
= C(¢0, + ncvc¢)8ab~ (35)
The first term on the right-hand side of the first line is now zero by assumption. The term
(06, + n°V,¢) is negative by assumption and so the sign of the change in horizon-entropy
along the horizon is given by the sign of C again. If C is negative, the horizon is spacelike and
the horizon-entropy increases.

It is possible to determine the sign of C by a similar argument used for trapping horizons.
Since we require the tangent ¢ to generate evolution along a horizon on which £;s,;, = 0, we
have

BL(e" L1Sap)

L, (eL1Scq) .
With the sign of B assumed positive, setting the orientation of ¢, and L, L) negative by
assumption on the horizon, whether the horizon-entropy is increasing or not is just determined
by the sign of the term £; (&P LiSap):

sign(e® L,54p) = —sign(L; (e Lsap)). (37)

C = (36)
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Using equations (22) and (27), we obtain

1 w+1

2 @?
For w + 1 > 0 and matter obeying the null energy condition 7,,,/*/” > 0, the horizon-entropy
is guaranteed to be non-decreasing along surfaces satisfying (34).* The condition in (38) is
very similar to that of (31) for a causal horizon, except now that the term involving «; in
(31) vanishes on a horizon satisfying (34) anyway, and the horizon-entropy is guaranteed to
increase without an assumption that it settles down to a future Killing horizon. We remind the
reader that the location of surfaces for which these conditions hold will in general be different
from causal horizons. Surfaces satisfying (34) will be spacelike for positive energy.

The similarity of (38) to (31) is not surprising since we have

b c
L% Ly5,0) = 21V (9, o1 Z""’) +20L (9, L Z"d’) . (39)

(1“Vp)* — %”Tabl“l”) : (38)

L1 Lisap) = 2¢ ( 0f —of —

The first term is zero by the assumption £° £;s,;, = 0 and the second term is just equation (31).
The right-hand side of (38) is used in the first variation of the horizon-entropy for quasi-local
horizons, through equations (35) and (36), but in the second variation of the horizon-entropy
for causal horizons, through equations (28) and (31). If the right-hand side of (38) ever
becomes positive, then the horizon-entropy of the quasi-local horizons will immediately start
to decrease, but the change of horizon-entropy of a causal horizon may still increase because
in this case it only influences the second variation of the horizon-entropy.

In the case where we impose a cross-normalization [“n, = —1 as is done in [23], we
do not have complete freedom to rescale [“ and n“ so that B and C in (14) are constant. In
this case, the r¢ variation, §,, as defined in [23], is not equivalent to the Lie derivative with
respect to r* for terms such as 6; that depend not just on the spacetime point but also on the
choice of two-surface for which they are defined. The variation of 8; + £;¢ /¢ however splits
into a variation of 6; and a part that is equivalent to the Lie derivative because ¢ is a globally
defined scalar field. In this case, a maximum principle can still be invoked as in [23] since the
variation becomes

c c c
5, (9, + %’) — 1,6, +d*C — 2" d,C + BL; (9, + %) +CL, (9, + %’) , (40)

with notation adapted from [23]. The term involving B is once again (38). In the case where
this term is negative and [ and n“ are both derived from a double null foliation so that «,
vanishes, a maximum principle can be applied (see [23] for further details) to conclude that C
is either constant or everywhere negative and the horizon-entropy is non-decreasing.

3.3. Scalar-tensor and f(R) gravity

The scalar—tensor generalizations of Brans—Dicke theory, described by the action
F@R w@) ,
SST = /d4x\/ —8 |: 167 - T \% ¢Va¢ - V(¢) + Smattera (41)

where the Brans—Dicke coupling @ becomes a function of ¢ and a scalar field potential V (¢)
is introduced, can be discussed in the same way as in Brans—Dicke theory. One can consider

4 In fact, because conditions (34) are satisfied in Brans—Dicke theory by surfaces satisfying 6 = —[“V,¢ /¢, the
0 term can be eliminated in equation (38) and the condition on the Brans—Dicke parameter w becomes w > —3/2.
Thus, this is satisfied by the tree-level effective string actions where @ = —1 and coincides with the lower bound
on the Brans—Dicke parameter in weak gravitational field expansion on a negative tension Randall-Sundrum brane
o > —3/2.
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a new Brans—Dicke field v = F(¢) provided that the function F(¢) admits a regular inverse
F~! (this is not always the case in the literature, in which F(¢) is sometimes found in the form
of a series of even powers of ¢ [25, 26], but specific choices in the literature are motivated by
mathematical, not physical considerations, i.e. by the fact that they allow certain calculations
to be performed). Then action (41) can be recast in the form

Ssr = /d4x«/_ [ﬁ — # V“WV v — U(w):| + Smatter ; (42)

therefore, we limit ourselves to consider action (41) with F(¢) = ¢, which yields the field
equations

8 1 Vv
Gu = ?ﬂ Ty + wd(:f) (V OV — — gah VC‘PV ¢> + 5 VoV — gap D¢) - % 8ab »
(43)
Viv,p= — (827 — 2 vepy 2V 44
a¢—m<7f _ﬂ ¢c¢+¢_¢_ ) (44)

The discussion of horizons in scalar—tensor gravity remains the same as in Brans—Dicke theory
because, by contracting equation (43) twice with the null vector /4, one obtains again equation
(27) (now with @ dependent on ¢). Since the horizon-entropy is again S = ¢ A, one finds
again equations (31) and (38).

Metric modified (or f (R)) gravity, described by the action

Sw6 = T~ d*x /=g f (R) + Smater, (45)
is equivalent to a Brans—Dicke theory with v = 0 and a potential [18]. In fact, setting

¢ = f'(R), V(g) = ¢R(¢) — f(R(9)) (40)
leads to the equivalent action [18]

S = Tg— | IXV=EIOR = V()] + St (@7
(similarly, Palatini f(R) gravity can be recast as an w = —3/2 Brans—Dicke theory with a

potential, but we will not consider it here because of its well-known problems [18]). Since the
potential V (¢) does not give contributions upon double contraction of equation (43) with the
null vector /%, the considerations on horizons made for Brans—Dicke theory can be immediately
extended to f(R) gravity.

4. Horizons under conformal transformations

A conformal transformation of the metric will, in general, change the areas of spacelike two-
surfaces. This in turn will change the location of the trapping horizons given by the above
conditions (33). The conformal transformation relates two different conformal frames if the
metric is scaled by a conformal factor that can vary with spacetime point

8ab —> 8ab = W(x)gab- (48)
The geometric expansion of a null vector [ in any frame is given by
0 = q“"Valy = (g“b + ' + ks >Valbv (49)
(_ncldgcd) (_nfldgcd)
where ¢,” is a projection tensor onto the two-dimensional spacelike surface to which /¢ and n®
are normal. (If [ is defined as globally null, then the third term on the right-hand side vanishes
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identically.) This result holds for a Lorentzian signature manifold independently of whether
the Einstein equations hold. In general, there is freedom to rescale null vectors even without
rescaling the metric. The vanishing of the expansion does not depend on a pure rescaling of
the null vector /[ — WI“, although its value does since under this rescaling, we have

9] — W@l. (50)
Under a conformal transformation of the form (48), we have * = W~'g% and ¢** — g% =
W14 We can fix the normalization of [ by requiring [ = [* with [, = WI, and thus

Valpy = WVl + L,V W — LUV, W + 1,V W — gl VW), (51)

therefore,
*v,w

0, =6, + (52)

The vanishing of 6; for a given surface is therefore not necessarily invariant under a conformal
transformation. Thus, the location of a marginally outer trapped surface satisfying 6, = 0 is
not necessarily invariant. This is despite the fact that the conformal transformation does not
change the coordinates of a given spacetime event nor the path of null rays. The location of
the event horizon, for example, is unchanged. In one frame, the solution of §; = 0 may lie
inside the event horizon and in another frame outside, as discussed in [24].

The vanishing of the expansion is equivalent to the statement that the area is unchanged
under infinitesimal translations along [ via the relation £; g,, = 6; &,5. Since the conformal
factor changes how areas are measured, this criterion no longer selects the same horizon in
the two frames. The area two-form changes as €,, — &, = Weyp. The condition that the
Lie derivative of this ‘conformally transformed area’ be zero is

Liw
L Weg) = |6+ W Wea = 0. (53)

This rule is the same as the transformation in (52). This also makes clear what lies behind
relations (34). In the Einstein frame, the horizon-entropy is just one quarter of the area but
the area is modified in other conformal frames, leading to a modification of the relationship
between horizon-entropy and area. Formula (2) gives an explicit way of calculating this new
horizon-entropy in the new frame and for the class of theories we have investigated that the
entropy is invariant. For example, the gravitational sector in the Einstein frame has the familiar
Einstein—Hilbert form of the action

Suction = / d*x V=gR. (54)

By (2), the horizon-entropy is A/4 in the Einstein frame. In another frame obtained by
8ab —> 8ap = Wgap, the same action will take the form

. _ R 9g,ab B 5 g,ab .
Saction = | d*x/—3 TR A AAAAEEFAA AR (55)

and the horizon-entropy, with W constant on the horizon, will be A/4W. But, since the areas
are related by A = AW, the horizon-entropy will still take the same numerical value in the
new frame (the equality between entropies in the Einstein and the Jordan frames extends to all
theories with action [ d*x /=g f (8ap, Rap, #, Ve®) [27]). As long as the horizon-entropy
transforms in the same way as the metric under a conformal transformation, conditions (34)
will give rise to a surface whose location is invariant and for which one can derive a horizon-
entropy increase law, exactly as one can derive an area increase law for trapping horizons in
the Einstein frame.

11
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The issues that occur can be illustrated with a few examples. One of the cases considered
in [8] is the Schwarzschild spacetime under a conformal transformation with conformal factor
W = A~!. Then the ‘veiled general relativity’ spacetime becomes

. dr?2  r?
ds? = —d* + RN a3, (56)
where A =1—2M/r and dQ% = d#? +sin® @ de? is the line element on the unit two-sphere.
Like the usual form of the Schwarzschild metric in Schwarzschild coordinates, this metric is
valid everywhere in the region r > 2M. The radial null vectors in this transformed metric
have components

lﬂ = (19 A70’ 0)7 nﬂ = (17 _A907 0)7 (57)

and their expansions are, using equation (49),
~ 2 ~ 2
== —3M), by = ——(r —3M). (58)
r r

The marginally outer trapped surfaces, where 6; vanishes, are now found at »r = 3M instead
of r = 2M. But these surfaces do not form a trapping horizon because 6, = 0 here too. The
constant r tube at r = 3M is timelike, but its area is not decreasing because 6, = 6; = 0.
There are no true spherically symmetric trapping horizons in this metric. In fact, in this metric
there are not even any spherically symmetric trapped surfaces, because nowhere do we have
élén > 0.

This result can be generalized by considering conformal factors of the form W (x) = A",
in which case the null vectors are given again by equation (57) and their expansions become

L2 5 2
b = r_z[r —MQ2 - n), g, = _r_z[r —MQ2—n)l. (59)

The marginally outer trapped surfaces can be conformally transformed to any r by a suitable
choice of n. But since the area of the spherically symmetric two-spheres is now A = 4w A"r?,
the horizon-entropy is S = A/W = A™A = 4xr?, and the conditions (34) just give back
trivially the location of the usual horizon, r = 2M.

Similar things can occur with coordinates and conformal factors that are perfectly regular
on the horizon. For example, in Kerr—Schild coordinates, the Schwarzschild metric takes the
form

ds? = —Adr* +2(1 — A)drdr + (2 — A)dr? + r2dQ3. (60)
In these coordinates, the radial null vectors have components
A A
"= <I—E,E,O,O>, n* =(1,-1,0,0), (61)

where n* is affinely parameterized, i.e. n¢V,n” = 0. In this frame, the expansions are, as
expected,

A 2
912 > 9}12__~ (62)
r r
If we choose a conformal factor of the form W(x) = e”\’z, we find
~ ArtA+ A —2Art
b= —m———,
’ (63)

i 200t + 1) e’
n — _f-
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Setting ; equal to zero and expanding for At < 1/M give
r=2M +8xM?* + O(L?). (64)

In this limit, the trapping horizon is close, but not equal to the r = 2M surface, but it is now
also spacelike. The surface r = 2M is still null and is still the location of the event horizon
and again is given simply by conditions (34). The physical horizon is located by (34), not
by (33).

It has been observed in numerical simulations of black hole collapse in Brans—Dicke
theory that the trapping horizon can appear outside the event horizon [24, 28]. This possibility
occurs despite the fact that the Jordan frame of Brans—Dicke theory (25) can be related via
a conformal transformation to Einstein theory with a scalar field that obeys the null energy
condition. In the Einstein frame, the trapping horizon appears exclusively inside the event
horizon, in accordance with a theorem of Hawking and Ellis [21].

Two related issues are involved here. First, unlike the event horizon, the location of the
trapping horizon changes under a conformal transformation. Second, the null energy condition
is not necessarily equivalent to the null curvature condition. (This condition is called the null
convergence condition in [21].) The trapping horizon can appear outside the event horizon in
the string frame, even if the null energy condition is satisfied, because the Einstein equations
do not hold in this frame [24, 28].

The proof that the apparent horizon cannot lie outside the event horizon (the apparent
horizon theorem [21]) is purely geometric and relies only on the validity of the null
Raychaudhuri equation (22) and the geometrical condition R,,[*/® > 0, the null curvature
condition. Even if the matter obeys the null energy condition, the sign of the last term in (27)
can be negative and, therefore, we may have a violation of the null curvature condition. This
is in fact what happens for the surfaces found in [24, 28]. Brans—Dicke theory can be recast
in the Einstein frame via the conformal transformation

2w+ 3 d¢
16w ¢

Here ¢ > 0 in order to guarantee that the effective gravitational coupling G ~ ¢~ remains

positive. In the Einstein frame, the null tangent vectors are unchanged, [ = [, and they are

null with respect to the ‘new’ metric g,; as well as the old one g,;. In the Einstein frame, the
gravitational field equations are

8ab —> 8ab = O Lab> ¢ — ¢ with dé = (65)

Gab = Sﬂ(Tub + vaa)ﬁb(‘ﬁ - %gubg“lﬁc(‘i)?d(})v (66)
where T, = Ty /¢2 and thus
82" Raplela = 872 2" Tuplela + (@1 V)’ (67)

Provided that the matter obeys the null energy condition and @ > 0, the geometry will also
obey the null curvature condition in the Einstein frame. As we have seen, quasi-local horizons
satisfying (34) cannot appear outside the event horizon in any conformal frame if they are
located entirely inside the event horizon in the Einstein frame.

5. Cosmological horizons

The problem of locating the trapping horizons following a conformal transformation appears
not only in black hole spacetimes but also in cosmology in alternative gravity (especially
scalar—tensor and f(R) theories, which can be formally reduced to Einstein gravity plus
non-minimally coupled scalars by a conformal transformation). The line element of a
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spatially homogeneous and isotropic Friedmann-Lemaitre—Robertson—Walker (FLRW) metric
is commonly written in comoving coordinates as

ds? = —dr* +a(r)? <1 P +7r2do* + r?sin®6 d¢2> . (68)
— kr

In the spatially flat case k = 0, we have radial null vectors with components

I"=(1,1/a),0,0), n* =(1,-1/a),0,0), (69)
which have expansions

2(ar +1 2(ar — 1
0 = M’ 6, = M. (70)
ar ar

We see that 6, = 0 when the comoving radius is r = 1/a and the physical radius is

Fohysical = ar = H~!, the usual Hubble radius’. The expansion 6; is everywhere positive

forr > 0 and @ > 0. We can also calculate the variation of the expansions with respect to the
null directions

2(—=a*r? +ra+arti+1)

L6, = S , (71)
which equals
N2 ..
L6, =2 (‘—l> (1 + %) —2H%(1 - ¢) (72)
a a
on the horizon r = 1/a. The expansion is accelerating if ¢ < 0. For de Sitter space, g = —1.

Thus, for de Sitter space we have a PITH by the classification of [4]. This is reasonable
because the region around » = 0 is not trapped (6,8, < 0), so it should be an inner horizon
and a past horizon because beyond the horizon everything must move outwards, nothing can
fall back. The components of the normal N, to the surface r = 1/a are

N, = <% 1,0, o). (73)

The norm squared of this normal is

a a

. a\> 1 1 )
NNg=—=—5) +—==—0-q. (74)

For de Sitter spacetime, the horizons are null. In the more general k # 0 case, we have

V1 —kr? 1 —kr?
=1, X" 0.0), nt= 1, =YX2"%" 0.0], (75)
a(r) a(r)
which have expansions
2(ar + 1 — kr?) 2(ar — V1 —kr?)
0, = , 0, = . (76)
ar ar
Here we have horizons at
1
r= an

VaZ+k
(Note that in general relativity, due to the Hamiltonian constraint H> = 87 Gp/3 — k/a?, this
radius is always real if the energy density p is positive-definite.)

> The physical horizon radius can also be obtained by rewriting the line element in the form ds? = —(1— H2R?) dr>+
(1 — H2R?)~1 dR? + R?(d6? + sin® # dp?), where R = ar, and finding the root of g!! = 0.

14



Class. Quantum Grav. 28 (2011) 175008 V Faraoni and A B Nielsen

By transforming to the conformal time 1 defined by a(n) dn = dt, metric (68) can be cast
in the form
2 2 2 dr? 20102 L win2 2
ds® =a"(n) | —dn +W+r (d6“ +sin“ 0 do-) | . (78)
— kr
This line element is manifestly conformally flat for the spatially flat case £ = O but, because

the Weyl tensor vanishes in all cases, all FLRW metrics are conformally flat, even for £ # 0.
We can relate the metrics to the flat Minkowski metric by a conformal transformation

8FLRW = azgﬂal- (79)

so that gl = 5, = W g, with W = 1/a(n).

From the point of view of ‘veiled’ general relativity [8], an expanding FLRW universe is
physically equivalent to its flat conformal cousin. This equivalence is apparently surprising
and it helps to consider the variation of units of length /,, time #,, mass m,, and of the derived
units here [9, 11]. In the flat ‘veiled frame’ spacetime, these units are not fixed but scale
asl, ~ W2, =a'l,, i, ~ W'2t, = a't, and i, ~ W~'?m, = am, (the scaling of
derived units is argued by straightforward dimensional considerations). Despite appearances,
gravity is still present in this space and it acts by shrinking the units /, and 7, instead of
making the universe expand as in the original FLRW space. Thus, we do not have a genuine
Minkowski space, but one with time-dependent units, a fact that must be kept in mind at all
times. Actual measurements are always made with respect to a unit scale. A given time
interval, for example, is recorded by dividing it up into blocks of the time unit #,.% There is no
physical difference between a static space with all lengths and times shrinking, or an expanding
FLRW space with fixed units. For example, in this static space in the frame with varying units,
there is cosmological redshift (which is obviously absent in a genuine Minkowski space with
fixed units), caused by the fact that the unit of length 7, assumes different values at the different
instants of emission and observation of a light signal. It is instructive to derive this redshift in
the flat space with line element

ds? = —dn? + dr* +r*(d6* + sin? 0 dp?). (80)

To keep track of the variation of units in the ‘veiled frame’, divide by the unit of length squared
in this frame and use the fact that /, = 7, (this is merely a choice of units so that everywhere
the measured speed of light is 1); then
2 2 2 2
& A T 6?4 sin? 0 dg?), 81)
Iz N
The time interval between two equal intervals of 5, say f:}z dn and f n": dn such that
n2 — n1 = ns4 — n3, will not be measured by a comoving observer to be equal amounts
of time, not because the 7 intervals are different, but because the units with which they are
compared are changing with time. In the first term on the right-hand side, the square of the
ratio dn /7, appears, but one must compare 7-time intervals with the unit 7, and n-time intervals
with the unit #,,; hence, we convert 7 to ¢ using an ordinary coordinate transformation (not a
transformation of units) df = a dn, obtaining
ds? dr? dr? r? s .o 2
= +T+7_2(d0 + sin” 6 dop°). (82)
u

T T T an
ll,l a tu lu

6 In FLRW space, the spatial homogeneity and isotropy select a preferred family of observers, the comoving observers
who see the cosmic microwave background homogeneous and isotropic around them (apart from small temperature
fluctuations §7/ T ~ 5 x 1073). The comoving time ¢ is the proper time of these observers; hence, it is a geometrically
and physically preferred notion of time.
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Equal intervals of the ¢ coordinate will be measured as equal time intervals with respect to the
fundamental unit scale. Even though a is a function of ¢, this line element is still manifestly
flat. Consider now a light ray emitted at radius r, at time f,, which propagates radially and
is received by an observer at = 0 at time #,. Setting d§> = 0 and d9 = d¢ = 0 for radial
null geodesics’, one obtains % = =dr, where the negative sign must be chosen for rays
propagating from r, to r = 0 along the direction of decreasing r. Integrating between emission

and observation yields

t, dr 0

Consider now a second pulse emitted at r, at time #, + §¢, and received at r = 0 at ¢, + 6¢,. In
the same way, one obtains

t,+0t, dr 0
—_— = dr. (84)
t,+51, a(t) re
Since the right-hand sides of equations (83) and (84) are equal, so are their left-hand sides,
t,+6t, dz ty dt
/ e / ar (85)
t+51, a(t) 1, a(t)

and one can then write

t, 1,481, to+51, t dr
Lol ()]s = 9
o1, ty t to+51, a(t)

t,+5t, dr t,+0t, dt
= . 87
/t a(r) /z a(t) &7

0

and

Assume now that &z, and &z, are very small, so that a(¢) does not change appreciably from its
value a(t,) (respectively, a(z,)) in the time interval (¢, z, + &t,) (respectively, (z,, t, + 61,));
then
38t 8¢,

at,) — al(t)
and, assuming now v, = 1/6t, to be the frequency of the signal at emission and v, = 1/6¢,
the received frequency, both measured with respect to the fundamental frequency unit 1/7,, it
is

(88)

1
at,)ve,  a(teve

The redshift z is then given by

(89)

Ao Ve alty) _ a,
+l=—=—= = — 90
¢ Ae Vo a(t.) de G0

(where A, and A, are the wavelengths at emission and observation, respectively). Then there
is redshift also in flat ‘veiled frame’ space and its derivation parallels completely the standard
derivation of redshift in FLRW space (e.g., [29]). The result agrees with that of [8], in which
the cosmological redshift in the veiled frame is derived in a different way by considering a
hydrogen atom and taking into account carefully the local change in the electron mass deriving
from the non-trivial coupling of matter to the conformal factor W in the veiled frame. This

7" A null geodesic (ds> = 0) in the original frame corresponds to a null geodesic (d5? = W ds? = 0) in the ‘veiled
frame’ (it is not so for timelike geodesics).
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coupling can also be interpreted as a variation of units with the spacetime point [9] and it is
the source of redshift. The distance-redshift relation in the veiled frame is also derived in [§],
and it coincides, of course, with the one derived in FLRW space with constant units.

In the flat space of veiled FLRW cosmology, the radial null vectors have components (we
can use the coordinates n and » from (78) if k = 0)

"=(1,1,0,0), n* =(1,-1,0,0). (C2))
The expansions of these two null vectors in the flat space are
2 2
o = —, Op = ——. (92)
r r

We have 6,6, < 0 for all finite r, so there are no spherical trapped surfaces in flat space (in fact
there are no trapped surfaces entirely contained in flat space at all). But if we instead look at
the change of the horizon-entropy in the null directions, we find

1V, (a*A) = 3,(a*A) + 3, (a*A) = 8war[(d,a)r +al, (93)

nV,(a*A) = 9,(a*A) — 8,(a*A) = 8war[(d,a)r — al. (94)

We see that we have a conformal horizon at r = a/(9,a). We can convert the coordinates
from 7 to ¢ by writing d,a = ad,a. Thus, there is a horizon at r = 1/(9;a) just as in the
spatially flat FLRW case. We can also compute

-2
19V, [n°Vy(a*A)] = 87mr28,]8na = 8ra’r? (z’i + a_)
a

=8wa*r’H*(1 — q). (95)

We obtain exactly the same kind of horizon as above (a PITH in the case of de Sitter). The
signature of the horizon is the same (as expected) since the normal is

ad
N, = <¥, 1,0, 0) , (96)

whose norm is given by
LN 2
NN, =1— (g) —1-42 97)
a

It may come to a surprise, especially for an astronomer, that the Hubble parameter (which is
also three times the expansion of the timelike worldlines of comoving observers and a scalar
quantity) is not a good observable when studying cosmological horizons and their location
(see, e.g., [30]). However, from the discussion above, it is clear that H is not a good observable
when conformal transformations are used in generalized (and even in Einstein) gravity. H is
changed by conformal transformations and so is the location of the cosmological horizon, and
a more general quantity is needed.

6. Conclusion

If entropy is a useful quantity in time-dependent situations, and possibly also in non-
equilibrium thermodynamics, its applicability may extend beyond event horizons of static
or stationary black holes. Dynamical situations are the rule rather than the exception and, in
certain theories, stationary situations may not even exist. For example, in the class of f(R)
theories designed to explain the present acceleration of the universe without resorting to dark
energy, Minkowski space is not a global solution and one cannot contemplate asymptotically

17



Class. Quantum Grav. 28 (2011) 175008 V Faraoni and A B Nielsen

flat black holes in these theories. When the relevant field equations are written in a form that
mimics the Einstein equations, a cosmological effective fluid composed of geometric terms
is present on the right-hand side of these equations and causes the universe to accelerate its
expansion, so that the role of Minkowski space as a global solution giving a static background
is played instead by the de Sitter or other FLRW solutions. In this case, black holes are
embedded in dynamical (cosmological) backgrounds and one does not have the luxury of
considering static horizons in a static background. However, the horizon-entropy formula
(2) originally developed for perturbations of stationary systems gives rise to rather generic
horizon-entropy increase laws for both causal and quasi-local horizons in general dynamical
spacetimes.

Here we have seen how a modification of the trapping horizon conditions can give quasi-
local horizons for which a horizon-entropy increase law can be proven in models that are related
via field redefinitions to Brans—Dicke theory. The location of these surfaces is invariant under
a conformal transformation of the metric, which is not true of ordinary trapping horizons. It
is likely that these results will hold for all theories that are conformally related to Einstein
gravity and for which the horizon-entropy transforms in the same way as the area, provided the
energy conditions hold in the Einstein frame. These conditions can be applied to a variety of
situations including finding cosmological horizons in ‘veiled” Minkowski space with varying
units. It is not known how these surfaces behave in theories that are not conformally related to
Einstein gravity, nor in theories that contain higher order curvature corrections which cannot
be put in a single scalar—tensor form, such as those derived from higher order corrections in
string theory. However, in the low-energy limit of string theories, often the dominant effects
are due to the dilaton field ¢ and the action can be approximated by

S = /d4x4/—g(ef‘pR+Vc<pVC<p+--~), (93)

formally an @ = —1 Brans—Dicke theory with some stringy matter, and the considerations
of the previous sections on the location of the (black hole or cosmological) apparent horizon
apply as well. This is relevant because of the importance of black holes in string theories.

In a given spacetime, there are many surfaces for which one can define an entropy increase
law. We have examined here three different cases, null causal horizons which include global
event horizons, locally defined geometric horizons including trapping horizons and the new
proposal based on gravitational horizon-entropy. We have derived quasi-local conditions on
the rate of increase of the horizon-entropy and shown that this is non-negative for both causal
horizons and the new quasi-local horizons. Although the governing equation for these two
cases is very similar, compare equations (31) and (38), there are some differences. The
main difference is that in the case of causal horizons, it governs the behaviour of the second
derivative of the horizon-entropy and for the quasi-local horizons, it governs directly the first
derivative of the entropy. The horizon-entropy of both types of horizons can shrink if sufficient
negative energy is provided. Both types of horizons can settle down to exact Killing horizons,
but only the quasi-local horizons can start from exact Killing horizons. While w; = 0 follows
trivially for causal horizons, for quasi-local horizons it requires the additional assumption that
the null normal [ is derivable from a double-null foliation.

We have proven that horizon-entropy does not decrease by requiring that all the individual
terms in (31) and (38) are negative. In particular, this requires the null energy condition
T.»1%1° > 0 be satisfied for matter fields, rather than the null curvature condition R,,/%I* > 0.
In fact, all that is actually required is that the overall sum of the terms in (31) or (38) be
negative. It is possible that in certain specific scenarios some of these terms, in particular
—T,,1%1%, are positive, but that overall the horizon-entropy still increases.
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The quasi-local surfaces used to derive the horizon-entropy increase law are in general not
apparent horizons or trapping horizons. Outside of the Einstein frame, they are not foliated by
marginally outer trapped surfaces except in the case where they describe Killing or isolated
horizons and in general they do not satisfy 6, = 0. They will though be spacelike surfaces if
the horizon-entropy is increasing and null surfaces if it is constant. In a spacetime that satisfies
the null energy condition, they will be located behind the event horizon and so will, in cases
like the Brans—Dicke collapse considered in [24], lie inside the apparent horizon.

It was mentioned in [3] that apparent horizons will not satisfy a horizon-entropy increase
relation and that the acausal behaviour of event horizons is needed to save this law. The surfaces
given by (34) are quasi-locally defined and satisfy a local horizon-entropy increase law of the
form used in [3]. In [31], the validity of the generalised second law (GSL) was examined for
apparent horizons in a string frame two-dimensional model. This work explicitly included
the contribution of both the horizon-entropy and the entropy of fields outside the horizon
and concluded that for coherent quantum states, the GSL was valid but possibly violated for
non-coherent quantum states. It is not known whether the surfaces satisfying (34) will satisfy
the GSL. Since they coincide with trapping horizons in the Einstein frame, if it can be shown
that the GSL is violated for trapping horizons in the Einstein frame, then the same will be true
for these surfaces.

We have used a dynamical definition of entropy as proposed in [15]. Strictly speaking,
this definition is derived only for stationary situations and it is known that its application
to non-stationary situations contains several ambiguities [32, 19]. These ambiguities are not
essential for our derivation, in fact all we require is a definition of horizon-entropy whose value
is invariant under a conformal transformation. Even the association of s, with entropy is not
essential. We only require that it transforms invariantly under a conformal transformation.
Throughout this work, we have suppressed the factor of 4 in the area-entropy relation, and our
results are independent of the precise numerical value of this factor.

Under a conformal transformation of the metric, the location of the surfaces studied here
remains the same. This is not true of trapping horizons. That the surfaces are invariant under
a conformal transformation is in a certain sense trivial, because the horizon-entropy definition
used is always equal to the area in the Einstein frame and so the definitions always pick out
the ‘Einstein frame trapping horizon’. Put simply, we have

8ab —> &ab = Wgap,

A—>A=VlfA, ©99)
. A A
S 85=" —2_
AW~ 4

But conditions (34) do not make explicit reference to the Einstein frame and thus can be
applied simply in non-Einstein frames without the need to transform the metric. While a
conformal transformation will always put the theories considered here into the Einstein frame
form of Einstein gravity plus matter, and one could proceed with traditional trapping horizons,
one must accept that in many alternative theories of gravity, this Einstein frame will not be the
standard frame with constant units.

We have argued, along with many other authors, that a conformal transformation of the
metric should not change the operationally defined physical features of the spacetime, provided
that one redefines standards of length, time and mass in a position-dependent way. This is
most easily demonstrated in the case of ‘veiled general relativity’ where metric solutions of
ordinary Einstein gravity are subjected to a conformal transformation. In the simple case of
the Schwarzschild spacetime, the usual conditions for a trapping horizon do not always pick
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out the r = 2M surface. The modified conditions proposed here do. Thus, the surfaces
defined here allow a more operationally physical interpretation than trapping horizons.
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