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Abstract

We generalize our recent explicit construction of the full hierarchy of Baxter Q-operators of compact spin
chains with su(n) symmetry to the supersymmetric case su(n|m). The method is based on novel degenerate
solutions of the graded Yang–Baxter equation, leading to an amalgam of bosonic and fermionic oscillator
algebras. Our approach is fully algebraic, and leads to the exact solution of the associated compact spin
chains while avoiding Bethe ansatz techniques. It furthermore elucidates the algebraic and combinatorial
structures underlying the system of nested Bethe equations. Finally, our construction naturally reproduces
the representation, due to Z. Tsuboi, of the hierarchy of Baxter Q-operators in terms of hypercubic Hasse
diagrams.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction, motivation, overview, and outlook

Quantum integrability is a very rich and intricate phenomenon, which was, surely somewhat
serendipitously, discovered some 80 years ago by Hans Bethe [1]. Its underpinnings and under-
lying mathematical structures continue to be unearthed, and it is fair to say that no fully general
theory of quantum integrability exists to date. This is unfortunate, since integrability keeps reap-
pearing in surprising and important contexts within theoretical physics. A prime example is the
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AdS/CFT correspondence. An overview of a very recent collection of up-to-date review arti-
cles on this exciting and still quite mysterious appearance is [2]. In view of the sheer variety of
approaches and the manifest lack of an ab initio, transparent, constructive, and self-contained
solution, it should be obvious that the underlying fundamental principles of gauge/string integra-
bility have not been discovered yet.

It so turns out, that even the theory of nearest-neighbor quantum spin chains is not yet com-
plete. This is an important clue, as spin chains appear in the weak coupling limit of the AdS/CFT
system [3]. In [4] we presented an explicit construction of the two Baxter Q-operators of the
su(2) Heisenberg XXX spin chain, historically the first model solved by Bethe’s ansatz [1]. For
a very elementary review, see [5]. While Rodney Baxter introduced the notion of the Q-operator
in his seminal article [6] on the XYZ chain (alias the 8-vertex model, see also his textbook [7]),
the limiting procedure back to the XXX chain is not straightforward at all. In fact, our construc-
tion is completely different from Baxter’s orginal one. In the course of generalizing [4] to the
su(n) case in [8], the Q-operator construction method was put on firm ground. Four of its key
features deserve special mentioning.

The first feature is that the set of su(n) Q-operators is constructed just like any “ordinary”
transfer matrix as the trace over monodromies built from products of Lax operators L(z), just as
in Baxter’s work [6] and in the quantum inverse scattering approach [9], where however the Lax
operators now correspond in general to novel degenerate solutions of the Yang–Baxter equation.
z is the spectral parameter. The fact that these new types of Lax operators were not previously
known is what we had in mind when stating above that the theory of integrable quantum spin
chains has not yet been completed. Bringing them this way into the standard framework [9] al-
lows to naturally include the Baxter Q-operators into the set of all mutually commuting operators
of a given spin chain. It furthermore permits the derivation of the hierarchy of functional fusion
relations on the operatorial level with the help of certain factorization formulas [8]. Our method
therefore directly reproduces and explains the full set of functional equations of the su(n) spin
chain models, which was previously known only on the level of eigenvalues (as opposed to op-
erators), see [10] and references therein.

The second feature is a consequence of the first feature: the new degenerate solutions of the
Yang–Baxter equation lead in general on purely algebraic grounds to bosonic oscillator degrees
of freedom in the auxiliary channel of the Lax operators. These oscillators initially appeared in
the so-called BLZ construction of conformal field theory [11], and our new “Yangian” point of
view [8] therefore also contributes to a deeper explanation of the latter. Note that all physically
sensible representations of bosonic oscillators are infinite dimensional. We find it fascinating that
these representations are needed to fully describe the integrable structure of compact su(n) spin
chain models. We consider this to be an important hint on why spin chains may appear from
quantum sigma models, where infinite-dimensional representations are required as in any other
quantum field theory. This is precisely what happens in the AdS/CFT integrable system [2].

The third feature is a consequence of the second feature: when constructing the Q-operators
by taking a trace over the oscillator degrees of freedom of the monodromies built from the new
types of Lax operators, one needs to include appropriate phase factors exp iΦA in order to ensure
convergence of all matrix elements, as was already stressed in the original BLZ construction [11].
The physical interpretation of the “twist angles” ΦA is in terms of Aharonov–Bohm phase factors
for the n particles of the system. This slightly breaks the su(n) invariance of the chain while
being fully compatible with integrability. In fact, the angles should be considered as a beneficial
device allowing to expose the intricate integrable “inner mechanics” of the model. They may
always be considered as a small regulator, which is easily removed from physical observables
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such as the spectrum. The proper Baxter Q-operators, however, simply do not exist, for good
reasons, without these regulating fluxes. It is interesting to observe that similar phase angles
also naturally appear in the AdS/CFT context, see [12–16] for the most recent references on this
subject.

The final, forth feature is again closely related to the operatorial construction of the hierarchy
of Q-operators constructed from the just discussed previous three features. It is possible to derive
certain Q–Q functional relations for the Q-operators. We suspect that the simplest and deepest
explanation/derivation for these still remains to be found. Going over to the eigenvalues of the
Q-operators, utilizing their analytic structure, which in the case of spin chains is polynomiality
in the spectral parameter z, and taking certain ratios at critical points in the z-plane, one finally
derives the spectrum of the chain in the form of the well-known Bethe equations. No ansatz for
the wavefunction is made. It is important to stress that the analytic structure of the eigenvalues of
the Q-operators, without which the spectrum could not be derived, immediately follows from the
trace-over-oscillator-states construction employed. It is not ad-hoc imposed, as it is (essentially)
the case in the current state-of the-art approaches to the AdS/CFT spectral problem, see [17] (and
in particular the conclusions of this review article), and references therein.

In the current work we generalize the su(n) Q-operator construction of our earlier paper [8] to
the su(n|m) case. Our main motivation is again the fact that such spin chains appear in the form of
“closed sectors” at the one-loop level in the planar AdS/CFT integrable system. In particular, the
“maximally compact closed sector” has symmetry su(3|2) [18,19], see also [3]. A smaller closed
sector, su(2|1), see [20], corresponds at one loop to the famous integrable t–J model, and was first
solved by coordinate Bethe ansatz in [21], and by algebraic Bethe ansatz in [22,23]. The nested
Bethe equations of the general su(n|m) nearest-neighbor magnet were first derived in [24,25],
adapting the nested Bethe ansatz method invented, along with the Yang–Baxter equation as well
as the scattering interpretation of the Bethe ansatz, for the treatment of the multi-species Bose
gas in Yang’s seminal paper [26]. See also [27]. Finally, a further impetus for being interested in
supersymmetric Baxter operators, fully consistent with our just spelled out main motivation, is
that these have been argued in [28] to be relevant for the exact solution of the AdS/CFT spectral
problem.

We shall find that the construction proceeds, modulo a number of tedious further details
mostly related to a multitude of minus signs, very much along the lines of the purely bosonic
case. In particular, the above four salient features remain. Now (first feature) one needs to study
degenerate solutions of the graded Yang–Baxter equation (Section 2) in order to find the Lax
operators needed to build the supersymmetric Baxter operators, and to derive the factorization
formulas appropriate to this case (Section 3). Not surprisingly (second feature), the new Lax
operators now contain a mixture of bosonic and fermionic oscillators, cf. Section 2. Similar oper-
ators have previously appeared in the literature on the graded, q-deformed systems with slq(2|1)

symmetry [29], but here we present the (non-deformed) general sl(n|m) derivation from first
principles (the Yang–Baxter equation). The (super)trace construction (third feature) of the Q-
operators (Section 4) proceeds in similarity to the bosonic case, with some amusing differences.
We shall find that, for a slightly different reason, the twist angles corresponding to the fermionic
particles still need to be non-zero in order to avoid singular equations. In Section 5 we discuss
in some detail the complexification gl(1|1) of the simplest supersymmetric case su(1|1), both
for pedagogical reasons as well as a building block of the general case. As concerns the fourth
feature, the derivation of the Q–Q equations turns out to be much trickier in the supersymmetric
case; we present it in Sections 3.2 and 6. The Bethe equations (Section 7) then follow in much
the same way as in the bosonic case. We end by illustrating our approach in Section 8 in the
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well-known case of the t–J model with su(2|1) symmetry with its Section 6 systems of Bethe
ansatz equations.

As in the su(n) case our method again directly reproduces and explains the full set of func-
tional equations of the su(n|m) spin chain models, which were previously known only on the
level of eigenvalues as opposed to operators, see [30–32]. Here we would also like to point out
that very recently another, apparently both technically and conceptually rather different con-
struction of the su(n|m) Q-operators was proposed in the work [33], albeit with a similar overall
motivation. It would be interesting to understand the relation between this work and our ap-
proach. There are also a number of interesting papers which deal with the construction of Baxter
Q-operators for non-compact spin chains. Apart from the articles cited already in [4,8], two no-
table studies on the non-compact sl(2|1) case are [34,35]. Again, the precise relation to their
approach (if any, it is clear that the method used in these works does not directly apply to com-
pact spin chains) remains to be understood.

One aspect of our construction method we find particularly appealing is that it naturally leads
to the full underlying combinatorial structure of the nested Bethe ansatz of su(n) or su(n|m)

integrable systems. It was discovered by Z. Tsuboi [32] that this structure is best depicted by
so-called Hasse diagrams. These are partially ordered sets of n (or n|m) distinguishable objects.
In the case at hand, the ordering is given by inclusion. This leads to Hasse diagrams with the
connectivity of an (n + m)-dimensional hypercube. The 2n+m vertices of the hypercube corre-
spond to all possible subsets of the original n|m objects, and at each such vertex we have exactly
one Baxter Q-operator. Thus there are 2n+m distinct Q-operators. And indeed, this is also pre-
cisely the possible number of degenerate solutions of the (graded) Yang–Baxter equation we find
in Section 2! There exist (n + m)! different paths starting from the complete set (containing all
objects) down to the empty set (containing no objects). This corresponds to the total number
of possible nested Bethe ansatz systems. These are all fully equivalent, i.e. each system leads
by itself to the exact spectrum, as long as the twist angles ΦA are non-zero. Incidentally, the
above mentioned Q–Q relations relevant to the derivation of the Bethe equations also have a very
beautiful interpretation: They correspond to the plaquettes (four-cycles) of the hypercube.

In conclusion, the methodology for constructing the complete tower of Baxter Q-operators of
compact integrable spin chains with su(n) symmetry extends with small but interesting changes
to the supersymmetric su(n|m) case. The next step will be to include non-compact representa-
tions of the quantum space into our framework, and to construct the Baxter Q-operators of the
N = 4 one-loop spin chain with psu(2,2|4) symmetry, cf. [36].

2. Graded permutations and the graded Yang–Baxter equation

In this initial section we closely follow Section 2 of our previous work [8], for the convenience
of the reader, and in order to extend our conventions to the graded (and thus supersymmetric)
case. The discussion will be terse, and the reader is asked to consult [8] for ampler explanations.
For a nearest neighbor, homogeneous, graded spin chain of length L, where each “spin” (a mis-
nomer, of course) takes any of the n + m values of the fundamental representation of su(n|m),
the Hamiltonian reads

Hn|m = 2
L∑(

1 −
n+m∑

(−1)p(B)e
(l)
ABe

(l+1)
BA

)
, (2.1)
l=1 A,B=1
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with the superindices taking values A,B ∈ 1,2, . . . , n + m. Here eAB denotes the (n + m) ×
(n + m) matrix unit (eAB)ij = δAiδBj and the superscript “(l)” refers to the quantum space of
the l-th “spin” (better: species of lattice particle) in the chain. The parity function p(A) is a map

p : {1, . . . , n + m} → {0,1} (2.2)

defining the grading of the vector space.1 For A ∈ {1,2, . . . , n} we say that the superindex A

takes “bosonic” values, and the grading is defined to be p(A) = 0. For A ∈ {n + 1, . . . , n + m}
the index A takes “fermionic” values, and the grading is defined to be p(A) = 1. As already
mentioned in Section 1, we will consider flux angles ΦA, just as in our previous work [8]. This
translates into the following “quasiperiodic” boundary conditions:

e
(L+1)
AB := ei(ΦA−ΦB)e

(1)
AB, (2.3)

where Φ1,Φ2, . . . ,Φn+m is the set of fixed twist angles. It is easy to show that the Hamiltonian
(2.1) may be rewritten as2

Hn|m = 2
L∑

l=1

(1 − Pl,l+1), (2.4)

where Pl,l+1 denotes the graded permutation operator on adjacent chain sites l, l + 1. It acts by
permuting adjacent species of particles on the lattice, picking up a minus sign iff two fermions
are exchanged, i.e. iff both particles carry a superindex in the set {n+ 1, . . . , n+m}. We see that
this Hamiltonian behaves differently when acting on a homogeneous vacuum state. We have

Hn|m · |B〉 = 0, Hn|m · |F 〉 = 4L|F 〉, (2.5)

where |B〉 is a “ferromagnetic” bosonic vacuum state where any one type of bosonic particle is
placed on all lattice sites (there are n such vacua), while |F 〉 is a fermionic vacuum state where
any one type of fermionic particle is placed on all lattice sites (there are m such vacua).

Let us now proceed as in [8] and derive the general form of linear solutions to the graded
Yang–Baxter equation with gl(n|m) symmetry.3 To this end we represent the quantum space
of the Yang–Baxter equation by the Z2-graded vector space C

n|m which provides us with the
defining relations for the supersymmetric cousin of the previously discussed solutions. Consider
the graded Yang–Baxter equation

R(z1 − z2)L(z1)L(z2) = L(z2)L(z1)R(z1 − z2), (2.6)

which acts in the space V ⊗ C
n|m ⊗ C

n|m, where V denotes a not yet specified space. Then the
intertwiner (R-matrix) R(z) acts linearly on C

n|m ⊗ C
n|m and is defined by

R(z) = z + P with P =
∑
A,B

(−1)BeAB ⊗ eBA, (2.7)

where P is again the just introduced graded permutation, exchanging the states in the two copies
of C

n|m ⊗ C
n|m. It is well known that (2.6) serves as the defining relation of the Yangian algebra

1 In the following we will write in slight abuse of notation (−1)A instead of (−1)p(A) .
2 Actually, in the presence of the fluxes ΦA the “backward” permutation PL,L+1 is special, and should include the

phase factors of (2.3).
3 From now on we will for simplicity consistently work with the complexified algebras gl(n|m) and sl(n|m) instead

of the real form su(n|m). The quantum space is however in this work always an L-fold tensor product of fundamental
representations of su(n|m).
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Y(gl(n|m)) [37]. More specifically, without loss of generality, choosing the L-operators to be of
the form

L(z) =
∑
A,B

(−1)AB+BLAB(z) ⊗ eAB, (2.8)

the Yang–Baxter equation (2.6) immediately leads to the constraining relations

(z1 − z2)
[
LAB(z1),LCD(z2)

]
= (−1)AB+AC+BC

(
LCB(z2)LAD(z1) − LCB(z1)LAD(z2)

)
. (2.9)

Here the brackets denote the supercommutator.4 If we expand LAB(z) in a Laurent series

LAB(z) = L
(0)
AB + L

(1)
ABz−1 + L

(2)
ABz−2 + · · · , (2.10)

we can rewrite (2.9) in the form

[
L

(r)
AB,L

(s)
CD

] = (−1)AB+AC+BC

min(r,s)∑
q=1

(
L

(r+s−q)
CB L

(q−1)
AD − L

(q−1)
CB L

(r+s−q)
AD

)
. (2.11)

In our discussion we will consider solutions to the graded Yang–Baxter equation which are of
the form

LAB(z) = L
(0)
AB + z−1L

(1)
AB, (2.12)

and set all higher terms L
(r)
AB = 0 for r � 2. From (2.11) we find that the elements L

(0)
AB super-

commute among themselves, as well as with the elements L
(1)
AB . Therefore we will assume that

they are Graßmann numbers. Furthermore, using the GL(n|m) invariance of the R-matrix the
entries L

(0)
AB can be transformed to diagonal form

L
(0)
AB = δAI δBI . (2.13)

Here I ⊆ {1, . . . , n + m} denotes an arbitrary set containing |I | elements. The only non-trivial
commutation relations which arise from (2.11) are among the elements L

(1)
AB :[

L
(1)
AB,L

(1)
CD

] = (−1)AB+AC+BC
(
L

(1)
CBL

(0)
AD − L

(0)
CBL

(1)
AD

)
. (2.14)

In the following we assign undotted and dotted indices in order to indicate that they take, re-
spectively, values in the set I and its complement Ī . Furthermore, we firstly introduce the
gl(I ) ≡ gl(p|q) generators5 EAB obeying the usual commutation relations

[EAB,ECD] = EADδCB − (−1)(A+B)(C+D)ECBδAD, (2.15)

and secondly |I | · |Ī | pairs of superoscillators, which supercommute with the generators EAB ,
and satisfy[

ξȦB, ξ
†
CḊ

] = δBCδȦḊ. (2.16)

The commutation relations (2.14) can then be realized with use of the superoscillators (2.16) and
the gl(p|q) generators (2.15) in the following way:

4 The supercommutator is given by [X,Y ] = XY − (−1)p(X)p(Y )YX. The anticommutator will be denoted by [·,·]+
and the commutator by [·,·]− .

5 Where p and q are the number of elements in I with even and odd grading, respectively.
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L
(1)
AB = −(−1)B

(
EAB + HI

AB

); L
(1)

AḂ
= ξ

†
AḂ

; (2.17)

L
(1)

ȦB
= −(−1)BξȦB; L

(1)

ȦḂ
= δȦḂ , (2.18)

with

HI
AB =

∑
Ḋ∈Ī

(
ξ

†
AḊ

ξḊB + 1

2
(−1)A+ḊδAB

)
. (2.19)

The definitions above serve as an evaluation homomorphism of the infinite-dimensional Yangian
algebra (2.11) into a finite-dimensional algebra composed out of gl(p|q) and the superoscilla-
tor algebra defined in (2.16). It follows that any representation of this finite-dimensional algebra
defines a representation of the Yangian as well as a solution of the graded Yang–Baxter equa-
tion (2.6).

For later purposes we arrange the elements LAB(z) in a 2 × 2 block matrix and define6

LI (z) = . (2.20)

We will refer to (2.20) as the linear canonical L-operator. Any first order L-operator with L
(0)
AB

of rank |I | and with non-degenerate L
(1)

ȦḂ
can be brought to this form using the aforementioned

GL(n|m) invariance.

3. Fusion and factorization of L-operators

An essential part of our analysis in the following is based on some remarkable decomposition
properties of the product of two L-operators of the form (2.20). The Yangian Y = Y(gl(n|m)) is
a Hopf algebra, see e.g. [37]. In particular, its co-multiplication

Y → Y ⊗ Y (3.1)

is generated by the matrix product of two L-operators, corresponding to two different copies of
Y appearing on the right-hand side of (3.1). We are interested in the structure of the product

L(z) = L[1]
I (z + ω1)L

[2]
J (z + ω2), (3.2)

where suffices [1] and [2] have been added to emphasize that the matrix entries of the corre-
sponding L-operators act on different spaces, and in consequence supercommute.

The quantity (3.2) for two non-intersecting sets I ∩ J = ∅ will be considered in Section 3.1.
In this case the product (3.2) is linear in the spectral parameter z and belongs to the family of
solutions (2.12) studied in the previous section. Following the same reasoning as in [8], this will
lead to a new instance of the remarkable factorization properties of the L-operators we found
in our earlier work. In turn, in Section 3.2 the product (3.2) is considered for the case in which
I ∩ J �= ∅. This case had not been discussed earlier in [8]. Our analysis will lead to a simple and
elementary derivation of an important set of functional relations in Section 6.

6 The dotted line is not separating fermionic entries from bosonic ones!
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3.1. Fusion: non-intersecting sets

The procedure described below is a generalization of the one presented in [8]. Let us start by
taking I and J to be two non-intersecting sets. By permuting rows and columns one can rewrite
the LI (z) and LJ (z) operators in the following way

L[1]
I (z) = (3.3)

and

L[2]
J (z) = , (3.4)

where

A,B,C ∈ I, Ȧ, Ḃ, Ċ ∈ J, Ä, B̈, C̈ ∈ I ∪ J . (3.5)

As extensively discussed in [8], the co-product of L[1]
I (z) and L[2]

J (z) generates a solution
LI∪J (z) to the Yang–Baxter equation. This is also valid for the graded Yang–Baxter equation.
One finds

L[1]
I

(
z + 1

2

∑
Ḋ∈J

(−1)Ḋ

)
L[2]

J

(
z − λ − 1

2

∑
D∈I

(−1)D

)
= S LI∪J (z)GS −1, (3.6)

which is a rather remarkable factorization formula. The similarity transform

S = exp

[∑
A∈I

∑
Ḃ∈J

∑
C̈∈I∪J

ξ
†[1]
AḂ

(
(−1)Aξ

†[2]
ḂA

+ ξ
†[2]
ḂC̈

ξ
[1]
C̈A

)]
, (3.7)

and the z independent matrix7

G = (3.8)

have been introduced to write LI∪J (z) in the canonical form (2.20)

LI∪J (z) = . (3.9)

Hatted indices take values from the merged ordered set I ∪ J , i.e. Â = (A, Ȧ). The objects Ẽ
ÂB̂

obey gl(I ∪ J ) commutation relations and are of the form

7 Note that ξ ˙ contained in G supercommute with the elements of LI∪J (z).
AB
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ẼAB = E
[1]
AB + ξ

†[1]
AĊ

ξ
[1]
ĊB

,

ẼAḂ = (−1)Ḃξ
†[1]
AḂ

λ − (−1)(Ḃ+Ḋ)(Ḃ+C)ξ
†[1]
AḊ

ξ
†[1]
CḂ

ξ
[1]
ḊC

+ ξ
†[1]
AĊ

E
[2]
ĊḂ

− (−1)Ḃ+CE
[1]
ACξ

†[1]
CḂ

,

ẼȦB = ξ
[1]
ȦB

,

ẼȦḂ = E
[2]
ȦḂ

+ λ(−1)ḂδȦḂ − (−1)(Ȧ+Ḃ)(Ḃ+C)ξ
†[1]
CḂ

ξ
[1]
ȦC

, (3.10)

where summation is understood to be over the range of the repeated indices.

3.2. Fusion: intersecting sets

In this section we consider products of the form (3.2) for general non-intersecting sets I , J

and K . Namely,

L[1]
I∪J (z + ω1)L

[2]
I∪K(z + ω2). (3.11)

In particular we are interested in the relation between

L[1]
I∪J (z + ω1)L

[2]
I∪K(z + ω2) and L[1]

I∪J ′
(
z + ω′

1

)
L[2]

I∪K ′
(
z + ω′

2

)
, (3.12)

for J ∪ K = J ′ ∪ K ′. This analysis leads to a derivation of an important set of functional rela-
tions known as Q–Q relations.8 For a discussion on this point and more functional relations see
Section 6.

Let us take a closer look at (3.11). If the set I is not empty, this product takes the form

z2L̃(0) + zL̃(1) + L̃(2), (3.13)

and as such does not fit into the classification of Lax operators as written in (2.12). To analyze
this more complicated Lax operator, it is convenient to directly restrict the analysis to only a part
of the structure of (3.11). It will be argued that the remaining structure is then uniquely fixed by
the fact that (3.11) is a solution to the Yang–Baxter equation. For simplicity and for the purposes
of Section 6 we will consider LI∪J and LI∪K with E ≡ 0 (see Eq. (2.20)), the general case can
then be analyzed in a similar way. The product (3.11) can be conveniently rewritten as

S
(
z2L(0) + zL(1) + L(2)

)
GS −1, (3.14)

with

L(0) = , (3.15)

L(1) = , (3.16)

JAB = HI
AB + H̃ I∪J

AB − (ω1 + ω2)δAB(−1)B, (3.17)

L
(2)

ÄB̈
= δÄB̈ − (−1)Cξ̃ÄCξ

†
CB̈

, (3.18)

8 To avoid misunderstandings, we recall that in the literature another set of functional relations is sometimes referred
to as Q–Q relations. In this paper Q will always refer to Baxter’s Q-operators.
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where A,B,C ∈ I , Ȧ, Ḃ, Ċ ∈ J ∪ K and Ä, B̈, C̈ /∈ I ∪ J ∪ K . The operator H is defined
in (2.19). The similarity transform S and the matrix G are given in Appendix A together with
the identification of the oscillators from (3.11), and the ones appearing in (3.16). The analysis of
(3.11) is greatly simplified by the following observation:

Proposition. The Yang–Baxter equation (2.6) for

LI 2∪J∪K(z) ≡ (
z2L(0) + zL(1) + L(2)

)
, (3.19)

together with (3.15), (3.16), (3.17), (3.18) fixes all the entries of L(2) uniquely9 up to the choice
of gl(J ∪ K) generators EȦḂ . For this reason it will be denoted by

LRep

I 2∪J∪K
(z|ω1 + ω2), (3.20)

where Rep denotes some representation of the gl(J ∪K) algebra. The entries of LRep

I 2∪J∪K
belong

to the direct product of the universal enveloping algebra of families of superoscillator algebra
and gl(J ∪ K) generators EȦḂ .

A detailed proof of the statement above and the analysis of related structures will be presented
in a separate work. Let us stress a simple but important part of the derivation. On general grounds
the Yangian algebra contains Yangian subalgebras. In the present paper this property takes the
form

Y
(
gl(n|m)

) ⊃ Y
(
gl(I )

) ⊗ Y
(
gl(Ī )

)
. (3.21)

A closer look at (3.14) and (3.15) immediately reveals that the representation of the Yangian
subalgebra Y(gl(Ī )) is of the type (2.12), being a linear function of the spectral parameter. It fits
in the classification scheme of Section 2. For this reason one concludes that10

L
(2)

ȦB̈
= ξ

†
ȦB̈

, L
(2)

ÄḂ
= −(−1)ḂL

(2)

ÄC̈
ξC̈Ḃ , (3.22)

L
(2)

ȦḂ
= −(−1)Ḃ

(
EȦḂ +

∑
C̈

(
ξ

†
ȦC̈

ξC̈Ḃ + 1

2
(−1)Ȧ+C̈δȦḂ

))
, (3.23)

where EȦḂ are gl(J ∪ K) generators and, together with the superoscillators (ξÄḂ , ξ
†
ȦB̈

), super-
commute with all the elements of (3.16). The involved part of the derivation of the proposition
above consists in showing that all the other entries of L(2)

L
(2)

ȦB
, L

(2)

ÄB
, L

(2)

AḂ
, L

(2)

AB̈
, L

(2)
AB, (3.24)

are uniquely fixed by the Yang–Baxter equation. As stated above, the detailed forms of the quan-
tities in (3.24) is built from oscillators and the generators EȦḂ . They do not contain new degrees
of freedom with respect to (3.16) and (3.22). This part of the derivation will be omitted.

The structure just described comes from the Yang–Baxter equation. Using this insight as a
guiding principle one can arrange (3.11) in the form stated in the proposition above choosing

S and G appropriately (Appendix A) in (3.14). An explicit computation fixes the form of the

9 The uniqueness is up to algebra automorphisms. In the present construction they manifest themselves as similarity
transforms S .
10 Compare with (2.17) and (2.19).
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gl(J ∪ K) generators EȦḂ . The realization of gl(J ∪ K) is a special case of (3.10), for conve-
nience we rewrite it here11

EȦ1Ḃ1
= ξ

†[1]
Ȧ1Ċ2

ξ
[1]
Ċ2Ḃ1

− α1(−1)Ḃ1δȦ1Ḃ1
,

EȦ1Ḃ2
= −ξ

†[1]
Ȧ1Ċ2

(
(−1)(Ḃ2+Ċ2)(Ḃ2+Ċ1)ξ

†[1]
Ċ1Ḃ2

ξ
[1]
Ċ2Ċ1

− (α1 − α2)(−1)Ċ2δĊ2Ḃ2

)
,

EȦ2Ḃ1
= ξ

[1]
Ȧ2Ḃ1

,

EȦ2Ḃ2
= −(−1)(Ȧ1+Ḃ1)(Ḃ1+Ċ2)ξ

†[1]
Ċ2Ḃ1

ξ
[1]
Ȧ1Ċ2

− α2(−1)Ḃ2δȦ2Ḃ2
, (3.25)

α1 ≡ ω1 − 1

2

∑
Ḋ2∈K

(−1)Ḋ2 , α2 ≡ ω2 + 1

2

∑
Ḋ1∈J

(−1)Ḋ1, (3.26)

where sums over repeated indices are understood, and Ȧ1, Ḃ1, Ċ1 ∈ J , Ȧ2, Ḃ2, Ċ2 ∈ K . To sum-
marize: for any two non-intersecting sets J ,K such that the set J ∪ K and the quantity ω1 + ω2
are fixed, the product (3.11) takes the same form up to appropriate S and G (see Appendix A)
and gl(J ∪ K) generators given by (3.25).

A particularly interesting case of the fusion considered in this section is the one in which
J ∪ K contains only two elements:

J ∪ K = {A,B}, (3.27)

this can happen in two inequivalent ways, namely

(i) J = {A}, K = {B}, (3.28)

(ii) J = {A,B}, K = ∅. (3.29)

The result above reads respectively

(i) L[1]
I∪A(z + ω1)L

[2]
I∪B(z + ω2) ∼ L

π+
Λ

I 2∪A∪B
(z|ω1 + ω2)G, (3.30)

(ii) L[1]
I∪A∪B

(
z + ω′

1

)
L[2]

I

(
z + ω′

2

) ∼ Lsinglet
I 2∪A∪B

(
z
∣∣ω′

1 + ω′
2

)
, (3.31)

the symbol ∼ relates quantities that differ by similarity transform acting only in the oscillator
space. The explicit form of the gl({A,B}) generators in (3.30) and (3.31), denoted by π+

Λ and
singlet respectively, can be obtained specializing the expressions (3.25) and (3.26). For conve-
nience we write them explicitly in the following:

If p(A) = p(B), gl({A,B}) = gl(2) with generators12

(i)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a†a + 1

2
− (−1)p(A)ω1,

a†((−1)p(A)(ω1 − ω2) − 1 − a†a
)
,

a,

−a†a − 1

2
− (−1)p(A)ω2,

(ii)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(−1)p(A)ω′

1,

0,

0,

−(−1)p(A)ω′
1.

(3.32)

11 The oscillators that realize EȦḂ are not the one explicitly appearing in (3.16) and (3.22).
12 These are E ˙ ˙ generators written in the same order as in (3.25).
AB
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If p(A) �= p(B), gl({A,B}) = gl(1|1) with generators

(i)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c†c − 1

2
− (−1)p(A)ω1,

(−1)p(A)(ω1 − ω2)c†,

c,

−c†c + 1

2
+ (−1)p(A)ω2,

(ii)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(−1)p(A)ω′

1,

0,

0,

(−1)p(A)ω′
1,

(3.33)

where (a,a†) and (c, c†) are bosonic and fermionic oscillators respectively. The results from this
sections will be used in Section 6.

4. Construction of the Q-operators

The purpose of this section is to construct T- and Q-operators. They form a family of operators
commuting with the Hamiltonian (2.1). These operators act on the quantum space which is an
L-fold tensor product13 of the fundamental representations of the algebra gl(n|m),

C
n|m ⊗ C

n|m ⊗ · · · ⊗ C
n|m︸ ︷︷ ︸

L-times

. (4.1)

In this representation solutions of the Yang–Baxter equation (2.6) are (n + m) × (n + m) matri-
ces, acting in the quantum space of a single spin. Their matrix elements are operators in some
representation space V of the Yangian algebra Y(gl(n|m)). This representation space will be
called the auxiliary space. For each solution of (2.6) one can define a transfer matrix

TV (z) = StrV
{

DL(z) ⊗ L(z) ⊗ · · · ⊗ L(z)
}
. (4.2)

The tensor product in (4.2) is taken in the quantum spaces C
n|m, while the operator product

and the trace is taken with respect to the auxiliary space V . The quantity D is a boundary
twist operator acting only in the auxiliary space, i.e. it acts trivially in the quantum space. This
boundary operator is completely determined by the requirement of commutativity of the transfer
matrix (4.2) with the Hamiltonian (2.1), which leads to the following conditions

D
(
L(z)

)
AB

D−1 = ei(ΦB−ΦA)
(
L(z)

)
AB

, A,B = 1, . . . , n + m. (4.3)

Solving the latter for the L-operator (2.20) with the arbitrary set I , one obtains

DI = exp

{
−i

∑
A∈I

ΦAEAA − i
∑
A,B

(ΦA − ΦB)ξ
†
ABξBA

}
, (4.4)

where the last summation is over all oscillators present in LI .
Consider now the most general L-operator (2.20) with an arbitrary set I . Recall that the ma-

trix elements of (2.20) belong to the direct product of the algebra gl(I ) and |I | · |Ī | copies of
superoscillator algebras. We therefore have to define the supertrace over both the superoscilla-
tor representation space as well as over some gl(I ) module. As stressed in [8], the supertrace
is completely determined by the commutation relations (2.16), definition (2.19) and the cyclic
property of the supertrace, the specific choice of the representations is not important as long as
the supertrace exists. It is convenient, however, for the purpose of direct calculations, to specify

13 We define a tensor product as X ⊗ Y = (−1)(A+B)(C+D)XABYCDeAB ⊗ eCD .
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the superoscillator algebra representation. For bosonic oscillators14 (a†,a) we take the infinite-
dimensional Fock representation spanned by the vectors |k〉, k = 0,1, . . . ,∞ which are defined
by

a|0〉 = 0, a†|k〉 = |k + 1〉. (4.5)

For fermionic oscillators (see footnote 14) (c†, c) we take the two-dimensional representation
spanned by the vectors |0̄〉, |1̄〉 and defined by

c|0̄〉 = 0, c†|1̄〉 = 0, c†|0̄〉 = |1̄〉, c|1̄〉 = |0̄〉. (4.6)

Let P(ξ, ξ†) be an arbitrary polynomial of the superoscillators ξ and ξ†. Below it will be conve-
nient to use a normalized supertrace over the representation F ,

ŜtrF
{
eiΦhP

(
ξ, ξ†)} def= StrF {eiΦhP(ξ, ξ†)}

StrF {eiΦh} , (4.7)

where StrF denotes the standard supertrace. On the other hand, we will not spell out the gl(I )

module, the notation Rep will be used to label some unspecified choice. Of course the represen-
tation Rep has to be chosen such that the supertrace exists. For the purpose of this paper we will
only use highest weight representations.

We are now ready to define various transfer matrices, all commuting with the Hamiltonian
(2.1) and among each other. Substituting (2.20) and (4.4) into (4.2) one can define rather general
transfer matrices

XRep

I (z) = eiz(
∑

A∈I (−1)AΦA)Strgl(I )

Rep
ŜtrF 


{
MI (z)

}
, (4.8)

where MI (z) is the corresponding monodromy matrix,

MI (z) = DI LI (z) ⊗ LI (z) ⊗ · · · ⊗ LI (z). (4.9)

Here ŜtrF 
 denotes the normalized supertrace (4.7) over all involved oscillator representations,
while StrRep denotes the supertrace over our chosen but unspecified representation of gl(I ). The
exponential scalar factor in front of the supertrace is introduced for later convenience.15 For the
constructions of the present paper it is natural to distinguish some XRep

I (z) in the family (4.8).
The operator (4.8) will be denoted by

X+
I (z,ΛI ), (4.10)

where Rep is now an infinite-dimensional highest weight representation (Verma-module) π+
ΛI

.

The monodromy matrices X+
I (z,ΛI ) and XRep

I (z) for a given Rep are related.16 The relation
between the two is exactly the same as the one between the gl(I ) characters over the corre-
sponding modules. In the case of finite-dimensional representations of the gl(n) algebra this
relation is nicely encoded in the BGG result [39]. This result has been used in [8] to derive
functional relations among transfer matrices. For the gl(n|m) superalgebra the relation between
infinite-dimensional Verma modules and finite-dimensional representations has apparently been

14 a a† − a†a = 1 and c c† + c†c = 1.
15 The overall normalization of transfer matrices is an interesting issue. For example, the universal R-matrix approach
leads to a normalization involving spectral parameter dependent ratios of gamma functions such that the R-matrices
satisfy certain crossing relations, see e.g. [38] and references therein.
16 All the Casimir operators have to take the same values in Rep and π+ .
ΛI
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extensively studied, but the results are less transparent compared to the gl(n) case due to atypical
representations.17 More comments on this point are postponed to Section 6.

As stressed before the X-operators defined above are rather general transfer matrices. Two
limiting cases of these operators are particularly relevant. If one takes I to be the full set (4.8)
reduces to the standard T-operator

TRep(z) ≡ XRep

{1,...,n+m}(z) = TrRep

{
D L(z) ⊗ L(z) ⊗ · · · ⊗ L(z)

}
, (4.11)

where L(z) = L{1,...,n+m}(z) and Rep is some representation of gl(n|m). The boundary operator
reduces to

D = D{1,2,...,n,n+1,...,n+m} = exp

(
i

n+m∑
A=1

ΦAEAA

)
. (4.12)

The other limit corresponds to the trivial one-dimensional representation of gl(I ). The resulting
operators are called Q-operators

QI (z) = Xsinglet
I (z). (4.13)

The Q-operators are labeled by the set I . There are 2n+m such sets, and therefore the same
number of Q-operators. As already stressed in Section 1, the Q-operators can be conveniently
associated with the nodes of a hypercubical Hasse diagram with order given by inclusion on the
sets I . For more on this, see Section 6.

5. gl(1|1)

Before proceeding to the derivation of functional relations among the transfer matrices con-
structed in the previous section for gl(n|m) spin chains, we will analyze in this section the gl(1|1)

example. This case in conjunction with the gl(2) case serve as building blocks for the higher rank
gl(n|m) algebras. In the following we will put particular emphasis on the differences between
the gl(1|1) and gl(2) cases.

Let us first review the fusion procedure discussed in Section 2 for the gl(1|1) example.
Eq. (3.6) in this case reads

L1(z1)L2(z2) = S Lε(z)GS −1, (5.1)

or more explicitly(
z1 − h1 c†

1

−c1 1

)(
1 c2

c†
2 z2 + h2

)
= ec†

1c†
2

(
z + ε − h1 −2εc†

1

−c1 z − ε − h1

)(
1 c2

0 1

)
e−c†

1c†
2 , (5.2)

where

ε ≡ z1 − z2

2
, z ≡ z1 + z2

2
, hi = c†

i ci − 1

2
, i = 1,2. (5.3)

17 It is worth pointing out that a mechanism analog to atypicality exists also for some infinite-dimensional representa-
tions of gl(n). An example is the conserved current multiplet of the four-dimensional conformal algebra.
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Here all superoscillators are of fermionic type and we denoted them by (c†, c). This formula is
the gl(1|1) analog of Eq. (3.48) of [4]. Following the same construction as in [4], one easily finds

T+
ε (z) = 2i sin

(
Φ1 − Φ2

2

)
Q1(z1)Q2(z2). (5.4)

It is worth stressing that the sine factor appears on the opposite side of the equation as compared
to the gl(2) case. This fact is a direct consequence of

Str e−iφh = 2i sin
φ

2
, Tr e−iφh =

(
2i sin

φ

2

)−1

. (5.5)

To derive the needed functional relations it is important to connect the Q-operators with the
known T, namely

Tsinglet(z) = ei(Φ1−Φ2)zzL. (5.6)

Every T+
ε (z) is constructed as a supertrace over a two-dimensional representation of gl(1|1)

labeled by the central charge ε. Let us review how the singlet (atypical) representation emerges
in this case (see e.g. [40]). If the central charge vanishes, i.e. ε = 0, the Fock vacuum is a one-
dimensional invariant subspace of the two-dimensional fermionic Fock space. For ε = 0 the
gl(1|1) generators then act triangularly in the Fock space.18 Therefore the supertrace splits into
two disjoint contributions. This implies, that

gl(1|1): T+
ε=0(z) = Tsinglet

(
z + 1

2

)
− Tsinglet

(
z − 1

2

)
, (5.7)

where the minus sign comes from the supertrace. It is instructive to compare (5.7) with its gl(2)

analog

gl(2): T+
j (z) = Tj (z) + T+

−j−1(z), 2j ∈ Z�0. (5.8)

Eqs. (5.4), (5.7) immediately imply

2i sin

(
Φ1 − Φ2

2

)
Q{1}(z)Q{2}(z)

= Q{1|2}
(

z + 1

2

)
Q∅

(
z − 1

2

)
− Q{1|2}

(
z − 1

2

)
Q∅

(
z + 1

2

)
, (5.9)

where

Q∅(z) ≡ 1, Q{1|2}(z) ≡ Tsinglet(z). (5.10)

This relation is of a type different from the one we had obtained earlier in the gl(2) case. Interest-
ingly, it can nevertheless still be depicted in an analogous way with the help of a Hasse diagram.
We now get the diagram in Fig. 1, where the dashed lines mean that we add a fermionic index,
while the solid lines are reserved for bosonic indices.

18 The two-dimensional representation is indecomposable but not irreducible.
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Fig. 1. Hasse diagram for the gl(1|1) algebra.

6. Functional relations

In this section we derive functional relations for the Q-operators using results from Sec-
tion 3.2. The main result of the present section are Eqs. (6.11), (6.12) (see [32]).

Using the results from Section 3.1 and following the same reasoning as in [8] one can easily
derive

ΔI (Φ)X+(z,ΛI ) = QA1

(
z + λ′

1

)
QA2

(
z + λ′

2

) · · ·QA|I |
(
z + λ′|I |

)
, (6.1)

where ΔI (Φ) is the usual super-Vandermonde determinant

ΔI (Φ) =
∏

i<j∈B(I)

(
2i sin

(ΦAi
−ΦAj

2

))∏
i<j∈F(I)

(
2i sin

(ΦAi
−ΦAj

2

))
∏

i∈B(I),j∈F(I)

(
2i sin

(ΦAi
−ΦAj

2

)) , (6.2)

and X+ has been defined in (4.10). A beautiful feature of Eq. (6.1) is that the spectral parameter
shifts of each Q-operator become representation labels, generically complex, of the gl(I ) super-
algebra. The gl(I ) representations, denoted by the symbol + and the label ΛI , are of highest
weight type. They are fully determined by the existence of an highest weight state, together with

EAA|h.w.s〉 = (−1)p(A)λA|h.w.s〉, A ∈ I, (6.3)

and in conjunction with the gl(I ) commutation relations. The shifted weights λ′ in (6.1) are
related to the weights appearing in (6.3) via

λ′
A ≡ λA + ρA, ρA ≡ 1

2

( |I |∑
B=A+1

(−1)p(B) −
A−1∑
B=1

(−1)p(B)

)
. (6.4)

Any functional relation among X-operators (4.8) could be in principle derived using (6.1)
together with an entirely representation-theoretical analysis relating the operators XRep for a
given gl(I ) representation Rep to the X+-operators. See the discussion in Section 4. However, in
this paper we will follow a more direct path in order to derive a very important set of functional
relation (see (6.11), (6.12)), namely the so-called Q–Q relations. Our derivation will use results
from Section 3.2, and the rather simple structure of gl(2) and gl(1|1) Verma modules reviewed
in Section 5.

Let us focus on Eqs. (3.30), (3.31). The left-hand side of (3.30), (3.31) gives, upon taking the
appropriate regulated trace according to Section 4,

(i) QI∪A(z + ω1)QI∪B(z + ω2), (ii) QI∪A∪B

(
z + ω′ )QI

(
z + ω′ ), (6.5)
1 1
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Fig. 2. Different types of the Hasse plackets: (a) bosonic–bosonic, (b) bosonic–fermionic, (c) fermionic–fermionic,
(d) fermionic–bosonic.

respectively. What about the right-hand side of the same equation? As stressed in Section 3.2, if
ω1 + ω2 = ω′

1 + ω′
2, the right-hand sides of (3.30), (3.31) differ only by the way the gl(A ∪ B)

algebra is realized and a decoupled G-matrix. When taking traces, Eqs. (3.30), (3.31) respectively
give the following structure of auxiliary spaces

ŜtrF 
Strπ+
Λ

Ŝtrosc in G, (6.6)

ŜtrF 
 , (6.7)

where F 
 is the same in the two cases. The relation between (6.6) and (6.7) neatly reduces to the
relation between the representation π+

Λ and the singlet representation of gl(A ∪ B) in (3.32) and
(3.33). This point has been analyzed in some details in Section 5 for the two rather different basic
cases, namely gl(2) and gl(1|1). The existence of a one-dimensional submodule invariant under
the action of gl({A,B}) generators (i), which in that case is just the Fock vacuum (see (3.32) and
(3.33)) implies

p(A) = p(B), gl(2): ω1 − ω2 = (−1)p(A), (6.8)

p(A) �= p(B), gl(1|1): ω1 − ω2 = 0. (6.9)

This condition, together with the requirement that the action of the gl({A,B}) generators (i) on
this one-dimensional submodule should be the same as the one of the generators (ii) in (3.32)
and (3.33) entirely fixes19 the shifts ω1, ω2, ω′

1, ω′
2. The subtraction of Verma module is then

precisely the same as in (5.8) and (5.7). Upon carefully dealing with the DI factors (see (4.4))
and keeping track of normalizations one immediately obtains the Q–Q relations written below.
As nicely depicted in Fig. 2 four different cases as to be considered separately, namely(

p(A),p(B)
) ∈ {

(0,0); (1,1); (1,0); (0,1)
}
, (6.10)

corresponding to four different types of Hasse plaquettes.
These four diagrams correspond to two distinct types of relations: bosonic–bosonic or

fermionic–fermionic type

(−1)A2i sin

(
ΦA − ΦB

2

)
QI∪A∪B(z)QI (z)

= QI∪A

(
z + 1

2

)
QI∪B

(
z − 1

2

)
− QI∪A

(
z − 1

2

)
QI∪B

(
z + 1

2

)
(6.11)

19 They are fixed up to an overall shift that can be reabsorbed in the definition of the spectral parameter z.
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and bosonic–fermionic or fermionic–bosonic type

(−1)A2i sin

(
ΦA − ΦB

2

)
QI∪A(z)QI∪B(z)

= QI∪A∪B

(
z + 1

2

)
QI

(
z − 1

2

)
− QI∪A∪B

(
z − 1

2

)
QI

(
z + 1

2

)
. (6.12)

This knowledge is enough to draw the Hasse diagram for any algebra gl(n|m). As we will show
in the next section, the relations (6.11) and (6.12) are sufficient to derive the Bethe equations.

We would like to add here an intriguing observation. One immediately notices that the rela-
tions (6.11) and (6.12) look exactly the same if we rename the indices of the Q-operators. In
fact, relation (6.11) tells us that when taking a product of the upper Q-operator with the lower
one in Fig. 2(a), this then equals the difference of products of the right and left Q-operators with
appropriately shifted arguments. The formula (6.12) gives similar information about Fig. 2(b)
if we formally exchange the upper and lower with the right side and left side Q-operators. On
the other hand, if we relabel the Q-operators in Fig. 2(a), the relation stemming from (6.12) will
have the same interpretation as the one of (6.11). This can be seen when clockwise turning the
Hasse plaquette in Fig. 2(b) by 90◦. This rotation changes fermionic lines to bosonic ones, and
inverts the arrows. Analogously, turning the plaquette in Fig. 2(c) by 180◦, we obtain once again
the bosonic-like Hasse plaquette described by the same relation (6.11). This way we can rotate
the entire Hasse diagram such that all lines will be bosonic, and we will end up with the situation
known from the gl(n) Hasse diagram. It is known that such Hasse diagrams can be solved by
determinant formulas. The only difference is that the determinants we will get here will be built
from non-partonic objects, as it was the case for gl(n). We will aptly call the procedure pre-
sented above “bosonization of the Hasse diagram” (compare with [28]). We can also fermionize
a Hasse diagram by rotating it such that all lines will be fermionic. This case leads to determinant
formulas as well.

7. Bethe equations

The derivation of the Bethe equations of the supersymmetric gl(n|m) spin chains from the
hierarchy of Baxter operators proceeds in much the same way as in the gl(n) case [8]. Once
again it is very useful to work with hypercubic Hasse diagrams. We simply have to consider any
path on the Hasse diagram leading from Q{1,...,n+m} to Q∅. Each such path corresponds to a set
of nested Bethe equations. In total there are (n + m)! different paths and thus the same number
of sets of equations. There is one major difference in comparison with gl(n) case. In the latter
all sets of the Bethe equations look the same, in line with the fact that there is a unique Dynkin
diagram for the gl(n) algebra. In the supersymmetric case we have distinct Dynkin diagrams
which differ by the various possible gradings of the diagram nodes. A white node of the diagram
corresponds to a doublet (one positive and one negative root) of bosonic simple roots, and a
crossed node to a doublet of fermionic simple roots of the gl(n|m) algebra. Clearly there is a
minimum of one crossed node, while the other extreme is that all nodes are fermionic. In the
Hasse diagram picture these differences are encoded in the order of dashed and solid lines along
the chosen path.

Now there are two distinct types of equations we get when taking ratios of the Q–Q relations,
which are associated to the plaquettes of the hypercubic Hasse diagram, at special points of the
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spectral parameter z. For the Q–Q relations of type (6.11) we get the same equation as in the
gl(n) case

−1 = QI

(
zI∪A
k − 1

2

)
QI

(
zI∪A
k + 1

2

) QI∪A

(
zI∪A
k + 1

)
QI∪A

(
zI∪A
k − 1

) QI∪A∪B

(
zI∪A
k − 1

2

)
QI∪A∪B

(
zI∪A
k + 1

2

) . (7.1)

On the other hand, for the Q–Q relations (6.12), when evaluating at z = zI∪A
k , we get

1 = QI

(
zI∪A
k + 1

2

)
QI∪A∪B

(
zI∪A
k − 1

2

)
QI

(
zI∪A
k − 1

2

)
QI∪A∪B

(
zI∪A
k + 1

2

) . (7.2)

For a given path we get a, in general, mixed set of equations of both types (7.1) and (7.2),
depending on which path we take. For any node on the path we have to take a look at the Hasse
diagram and check if the incoming and outgoing lines on the path are of the same, or a different
type. In the former situation we write Eq. (7.1), and in the latter Eq. (7.2). This way we can
immediately read off all possible sets of Bethe equations from the Hasse diagram. It is important
to stress that all these (n + m)! sets, despite the fact that they will look rather different, will give
exactly the same solution of our spectral problem.

Let us now rewrite the Bethe equations in their traditional form. It follows from our con-
struction that the Q-operator is a polynomial in the spectral parameter z, with some exponent
normalization factor

QI (z) = eiz(
∑

A∈I (−1)AΦA)
∏
k

(
z − zI

k

)
. (7.3)

We would like to stress once more that this absolutely crucial statement on the analytic structure
of the eigenvalues of the Q-operator is not assumed, but obtained by construction! Plugging this
into the relations (7.1) and (7.2), we will get

e
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(7.4)

for the bosonic–bosonic or fermionic–fermionic node on the Hasse diagram, and

e
(−1)Ai+1 i(ΦAi+1 −ΦAi

) =
∏
k

z
Ii

l − z
Ii−1
k + 1

2
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2
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2

z
Ii

l − z
Ii+1
k + 1

2

(7.5)

for the bosonic–fermionic or fermionic–bosonic node on the Hasse diagram. The Bethe equations
corresponding to the lowest and highest level of the nested system can be obtained using the a
priori knowledge of the Q-operators at the “top” and “bottom” of the Hasse diagram:

Q∅ = 1, Q{1,...,n+m} = eiz
∑

A(−1)AΦAzL. (7.6)

To conclude our solution procedure for the gl(n|m)-spin chain we just state the well-known
expression for the eigenvalues of (2.1) (or equivalently (2.4)) of the Hamiltonian of the graded
spin chain. It only involves the roots zIn+m−1 of any of the n + m possible sets In+m−1 on the
last-level of the nested Bethe equations:

En|m = 2
mn+m−1∑ 1

1 − (
z
In+m−1

)2
or En|m = 4L − 2

mn+m−1∑ 1
1 − (

z
In+m−1

)2
. (7.7)
k=1 4 k k=1 4 k
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Fig. 3. Hasse diagram for the gl(2|1) algebra.

Here mn+m−1 is the number of roots of the QIn+m−1(z) function. The left expression in (7.7) is
for a bosonic vacuum, cf. (2.5), which corresponds to the case where In+m−1 is such that one of
the first n “bosonic” indices is missing from the set {1,2, . . . , n + m}. The right expression in
(7.7) is, in view of the non-trivial vacuum energy of the r.h.s. of (2.5), for a fermionic vacuum,
which corresponds to the case where In+m−1 is such that one of the m “fermionic” indices
{n + 1, n + 2, . . . , n + m} is missing from the set {1,2, . . . , n + m}.

8. gl(2|1)

To illustrate some of the content of the previous sections we will present here the application
of our formalism to the case of the gl(2|1) algebra. In this case both the gl(2) and gl(1|1) Q–Q
relations appear in the analysis. Physically it corresponds to the diagonalization of the t–J model,
which was first solved by Bethe ansatz in [21–23]. A major part of this section can also be found
in other papers, see e.g. [30,29].

For the gl(2|1) algebra we deal with two bosonic indices and one fermionic index. There are
8 different Q-operators

Q∅,Q{1},Q{2},Q{3},Q{1,2},Q{1|3},Q{2|3},Q{1,2|3}, (8.1)

which form the cubic Hasse diagram depicted in Fig. 3. In order to derive Bethe equations for
the gl(2|1) algebra we will be interested in paths starting from Q∅ and leading to Q{1,2|3}. There
are six such paths on the Hasse diagram, while there are three different Dynkin diagrams of
gl(2|1). Each Dynkin diagram corresponds to two paths, related by the gl(2) symmetry between
the bosonic indices 1 and 2. The paths are presented in Fig. 4.

Let us present here the three different sets of Bethe equations. We see that the various types of
Bethe equations correspond to the different distributions of the fermionic nodes on the Dynkin
diagram.20 In the language of the Hasse diagrams it corresponds to the different orders of the
bosonic and fermionic lines on the paths in Fig. 4. We mark the momentum carrying node by
putting 1 next to it.

20 We use the standard notation where an empty node is bosonic and a crossed node is fermionic.
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Fig. 4. All different paths in the Hasse diagram of gl(2|1) algebra.
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1 = Q{1|3}
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z
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(
z
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k + 1

2

) . (8.7)

A final comment about the gl(2|1) algebra is that, according to the discussion from Section 6,
upon rotating the Hasse diagram in Fig. 3 such that the operator Q{3} will be the base of the
cube, we will get a Hasse diagram with just bosonic lines. Such a diagram can be solved in terms
of determinants, which leads us to a determinant formula for all operators. These may all be
written in terms of the lowest two layers of the Hasse diagram, which are given by the operators
Q{3},Q{1|3},Q{2|3}, and Q∅.
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Appendix A. Details for Section 3.2

The G matrix in (3.14) is given by

G = , . (A.1)

The similarity transform S in (3.14) is given by

S = S0 S1 S2 S3, (A.2)

with

S0 = exp
[
(−1)Ȧ1ξ

†[1]
Ȧ1Ḃ2

ξ
†[2]
Ḃ2Ȧ1

]
, (A.3)
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, (A.4)

S2 = exp
[
ξ
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ξ
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(
I −1)
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ξ
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ÄĊ1

]
, (A.5)

S3 = exp
[
ξ
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C̈Ȧ1

]
, (A.6)

IÄB̈ ≡ δÄB̈ − (−1)Cξ
[1]
ÄC

ξ
†[2]
CB̈

. (A.7)

Despite the rather complicated structure of the similarity transform S , the function of its con-
stituents is rather neat. S0 is introduced in order to disentangle the oscillators in the G matrix
from the remaining oscillators in (3.14). S1 is choosen to have L(1) in the canonical form (3.16).
S2 and S3 are introduced in order to have the L(2) elements in Eqs. (3.22), (3.23) in that canonical
form. Let us stress that S2 and S3 do not act on L(1).

A.1. Identification of oscillators

This appendix contains the explicit identification of the superoscillators in Eqs. (3.16), (3.17),
(3.18), (3.22), (3.23) with the superoscillators in (3.11). The identification is

(ξȦ1B
, ξȦ2B

, ξÄB, ξ̃ÄB, ξÄḂ1
, ξÄḂ2

) = (
ξ

[2]
Ȧ1B
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, ξ
[2]
ÄB
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[1]
ÄB

, ξ
[1]
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, ξ
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ÄḂ2

)
. (A.8)

The analogous equation for ξ† is easily obtained.
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