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Abstract: We demonstrate the optical coupling of two cavities without
light transmission through a substrate. As the all-reflective coupling
component, we use a dielectric low-efficiency 3-port diffraction grating.
In contrast to a conventional transmissive coupling component, such an
all-reflective coupler avoids all thermal effects that are associated with light
absorption in the substrate. An all-reflective scheme for cavity coupling is
of interest in the field of gravitational wave detection. In such detectors light
that is resonantly enhanced inside the so-called power-recycling cavity is
coupled to (kilometre-scale) Fabry-Perot resonators representing the arms
of a Michelson interferometer. We realized such an all-reflective coupling
in a table-top experiment. Our findings are in qualitative agreement with
the theoretical model incorporating the characteristics of the 3-port grating
used, and therefore encourage the application of all-reflective cavity
couplers in future gravitational wave detectors.

© 2011 Optical Society of America

OCIS codes: (050.1970) Diffractive optics; (050.2230) Fabry-Perot; (120.3180) Interferome-
try; (230.1950) Diffraction gratings; (230.4555) Coupled resonators; (230.5750) Resonators.

References and links
1. B. P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen, R. S. Amin, S. B. Anderson, W. G. Anderson,

M. A. Arain, M. Araya, H. Armandula, P. Armor, Y. Aso, S. Aston, P. Aufmuth, C. Aulbert, S. Babak, P. Baker,
S. Ballmer, C. Barker, D. Barker, B. Barr, P. Barriga, L. Barsotti, M. A. Barton, I. Bartos, R. Bassiri, M. Bas-
tarrika, B. Behnke, M. Benacquista, J. Betzwieser, P. T. Beyersdorf, I. A. Bilenko, G. Billingsley, R. Biswas,
E. Black, J. K. Blackburn, L. Blackburn, D. Blair, B. Bland, T. P. Bodiya, L. Bogue, R. Bork, V. Boschi, S. Bose,
P. R. Brady, V. B. Braginsky, J. E. Brau, D. O. Bridges, M. Brinkmann, A. F. Brooks, D. A. Brown, A. Brum-
mit, G. Brunet, A. Bullington, A. Buonanno, O. Burmeister, R. L. Byer, L. Cadonati, J. B. Camp, J. Cannizzo,
K. C. Cannon, J. Cao, L. Cardenas, S. Caride, G. Castaldi, S. Caudill, M. Cavagli, C. Cepeda, T. Chalermsongsak,
E. Chalkley, P. Charlton, S. Chatterji, S. Chelkowski, Y. Chen, N. Christensen, C. T. Y. Chung, D. Clark, J. Clark,
J. H. Clayton, T. Cokelaer, C. N. Colacino, R. Conte, D. Cook, T. R. C. Corbitt, N. Cornish, D. Coward,
D. C. Coyne, J. D. E. Creighton, T. D. Creighton, A. M. Cruise, R. M. Culter, A. Cumming, L. Cunningham,
S. L. Danilishin, K. Danzmann, B. Daudert, G. Davies, E. J. Daw, D. DeBra, J. Degallaix, V. Dergachev, S. De-
sai, R. DeSalvo, S. Dhurandhar, M. Daz, A. Dietz, F. Donovan, K. L. Dooley, E. E. Doomes, R. W. P. Drever,
J. Dueck, I. Duke, J-C. Dumas, J. G. Dwyer, C. Echols, M. Edgar, A. Effler, P. Ehrens, E. Espinoza, T. Et-
zel, M. Evans, T. Evans, S. Fairhurst, Y. Faltas, Y. Fan, D. Fazi, H. Fehrmenn, L. S. Finn, K. Flasch, S. Foley,
C. Forrest, N. Fotopoulos, A. Franzen, M. Frede, M. Frei, Z. Frei, A. Freise, R. Frey, T. Fricke, P. Fritschel,
V. V. Frolov, M. Fyffe, V. Galdi, J. A. Garofoli, I. Gholami, J. A. Giaime, S. Giampanis, K. D. Giardina,
K. Goda, E. Goetz, L. M. Goggin, G. Gonzlez, M. L. Gorodetsky, S. Goler, R. Gouaty, A. Grant, S. Gras, C. Gray,

#146632 - $15.00 USD Received 26 Apr 2011; revised 6 Jun 2011; accepted 6 Jun 2011; published 20 Jul 2011
(C) 2011 OSA 1 August 2011 / Vol. 19,  No. 16 / OPTICS EXPRESS  14964



M. Gray, R. J. S. Greenhalgh, A. M. Gretarsson, F. Grimaldi, R. Grosso, H. Grote, S. Grunewald, M. Guenther,
E. K. Gustafson, R. Gustafson, B. Hage, J. M. Hallam, D. Hammer, G. D. Hammond, C. Hanna, J. Hanson,
J. Harms, G. M. Harry, I. W. Harry, E. D. Harstad, K. Haughian, K. Hayama, J. Heefner, I. S. Heng, A. Hep-
tonstall, M. Hewitson, S. Hild, E. Hirose, D. Hoak, K. A. Hodge, K. Holt, D. J. Hosken, J. Hough, D. Hoyland,
B. Hughey, S. H. Huttner, D. R. Ingram, T. Isogai, M. Ito, A. Ivanov, B. Johnson, W. W. Johnson, D. I. Jones,
G. Jones, R. Jones, L. Ju, P. Kalmus, V. Kalogera, S. Kandhasamy, J. Kanner, D. Kasprzyk, E. Katsavounidis,
K. Kawabe, S. Kawamura, F. Kawazoe, W. Kells, D. G. Keppel, A. Khalaidovski, F. Y. Khalili, R. Khan, E. Khaz-
anov, P. King, J. S. Kissel, S. Klimenko, K. Kokeyama, V. Kondrashov, R. Kopparapu, S. Koranda, D. Kozak,
B. Krishnan, R. Kumar, P. Kwee, P. K. Lam, M. Landry, B. Lantz, A. Lazzarini, H. Lei, M. Lei, N. Leindecker,
I. Leonor, C. Li, H. Lin, P. E. Lindquist, T. B. Littenberg, N. A. Lockerbie, D. Lodhia, M. Longo, M. Lor-
mand, P. Lu, M. Lubinski, A. Lucianetti, H. Lück, B. Machenschalk, M. MacInnis, M. Mageswaran, K. Mailand,
I. Mandel, V. Mandic, S. Mrka, Z. Mrka, A. Markosyan, J. Markowitz, E. Maros, I. W. Martin, R. M. Martin,
J. N. Marx, K. Mason, F. Matichard, L. Matone, R. A. Matzner, N. Mavalvala, R. McCarthy, D. E. McClel-
land, S. C. McGuire, M. McHugh, G. McIntyre, D. J. A. McKechan, K. McKenzie, M. Mehmet, A. Melatos,
A. C. Melissinos, D. F. Menndez, G. Mendell, R. A. Mercer, S. Meshkov, C. Messenger, M. S. Meyer, J. Miller,
J. Minelli, Y. Mino, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, O. Miyakawa, B. Moe, S. D. Mohanty,
S. R. P. Mohapatra, G. Moreno, T. Morioka, K. Mors, K. Mossavi, C. MowLowry, G. Mueller, H. Müller-
Ebhardt, D. Muhammad, S. Mukherjee, H. Mukhopadhyay, A. Mullavey, J. Munch, P. G. Murray, E. Myers,
J. Myers, T. Nash, J. Nelson, G. Newton, A. Nishizawa, K. Numata, J. O’Dell, B. O’Reilly, R. O’Shaughnessy,
E. Ochsner, G. H. Ogin, D. J. Ottaway, R. S. Ottens, H. Overmier, B. J. Owen, Y. Pan, C. Pankow, M. A. Papa,
V. Parameshwaraiah, P. Patel, M. Pedraza, S. Penn, A. Perraca, V. Pierro, I. M. Pinto, M. Pitkin, H. J. Pletsch,
M. V. Plissi, F. Postiglione, M. Principe, R. Prix, L. Prokhorov, O. Punken, V. Quetschke, F. J. Raab, D. S. Rabel-
ing, H. Radkins, P. Raffai, Z. Raics, N. Rainer, M. Rakhmanov, V. Raymond, C. M. Reed, T. Reed, H. Rehbein,
S. Reid, D. H. Reitze, R. Riesen, K. Riles, B. Rivera, P. Roberts, N. A. Robertson, C. Robinson, E. L. Robinson,
S. Roddy, C. Röver, J. Rollins, J. D. Romano, J. H. Romie, S. Rowan, A. Rüdiger, P. Russell, K. Ryan, S. Sakata,
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R. Schnabel, B. F. Schutz, F. Seifert, A. M. Sintes, J. R. Smith, P. H. Sneddon, K. A. Strain, I. Taylor, R. Tay-
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31. T. Clausnitzer, E.-B. Kley, A. Tünnermann, A. Bunkowski, O. Burmeister, R. Schnabel, K. Danzmann, S. Gliech,

and A. Duparré, “Ultra low-loss low-efficiency diffraction gratings,” Opt. Express 13, 4370–4378 (2005).
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1. Introduction

Over the past several years an international network of laser-interferometric gravitational wave
(GW) detectors has been built [1–3]. The detectors have reached sensitivities at or close to
their design sensitivities; however, the first detection of a gravitational wave has not yet been
achieved. Sensitivity upgrades of existing detectors are in progress [4–6] while new detectors
such as the Japanese LCGT are being built [7], a southern hemisphere detector AIGO has
been proposed [8] and investigations towards the third generation like the European Einstein
Telescope are being carried out [9].

Present and also planned GW detectors are based on Michelson interferometers, which in-
corporate coupled optical cavities to improve their shot noise limited sensitivity. Fabry-Perot
arm resonators coupled to a so-called power-recycling resonator provide very high light power
build-ups inside the interferometer without decreasing the bandwidth too much. Figure 1 shows
such an interferometer layout [10–14]. For future detectors with further increased light power
build-ups the optical absorption of the transmissive optics might become a sensitivity limit-
ing problem. Light absorption in the substrates causes thermal effects like thermal lensing and
photo-thermo-refractive noise [15–17], and will therefore lead to an upper limit for the circulat-
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ing power. This concerns the balanced beamsplitter and the coupling mirrors to the interferome-
ter arm resonators (see Fig. 1). To reduce the absorption in substrates all-reflective technologies
have been proposed and realized [18–21]. The proposals rely on replacing the transmissive
components with micro-structured dielectric reflection gratings that avoid any light transmis-
sion through the substrate. As another profiting aspect, all-reflective technologies allow the use
of alternative materials with favourable mechanical and thermal properties [23] but possibly
higher optical absorption. In [24] the all-reflective replacement of the balanced beamsplitter of
a Michelson-type interferometer with an appropriate diffraction grating [25] was demonstrated
experimentally. All-reflective cavity couplers proposed can be divided into 2-port-couplers op-
erated in first-order Littrow arrangement, as realized in [19, 20], and 3-port-couplers operated
in second-order Littrow arrangement, as realized in [21]. In [22] a diffractively coupled cavity
in a suspended environment has been demonstrated. Generally, the 3-port grating introduces
an additional port that potentially acts as an additional loss channel; however, it relies on only
low diffraction efficiencies and correspondingly shallow grating structures, which suggests that
cavities with well-defined Gaussian TEM00 modes and very high finesse values are feasible.

in

EM2

EM1

Photodiode

BS

CM2

CM1PRM

Fig. 1. Michelson-type interferometer with power-recycling cavity and arm resonators. The
transmissive beamsplitter (BS) and the coupling mirrors to the arm cavities (CMn) are ex-
posed to high thermal load (red blur). Each arm cavity (coupling mirror CMn and end mir-
ror EMn) together with the power-recycling mirror (PRM) forms a system of two coupled
cavities.

Here, we experimentally demonstrate the all-reflective coupling of a Fabry-Perot resonator
with a power-recycling resonator. The coupling component is a custom made dielectric low-
efficiency 3-port diffraction grating. Based on the theoretical analysis in [26] and the exper-
imentally determined diffraction efficiencies and losses of the grating, we simulate the light
powers at all three output ports of the coupled cavity system in dependence of the cavity detun-
ings. The experimental observations show qualitative agreement with our theoretical model.

In the following we first start with a brief theoretical description of the coupled cavity system
and also discuss our interferometer topology and requirements for the mode matching of the
elliptical beam profiles involved.

2. 3-port grating coupled cavities

In contrast to a conventional coupling mirror, the 3-port grating couples an incoming beam
into three instead of two output ports. Figure 2(a) shows a 3-port grating mounted in second-
order Littrow configuration. The amplitude diffraction efficiencies of each diffraction order are
denoted ηn and the amplitude reflectivity under normal incidence ρ0, respectively. The arm
cavity is then established perpendicular to the grating surface with a small first order diffraction
efficiency as the coupling efficiency to the cavity [see Fig. 2(b)].
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Fig. 2. (a) 3-port grating in second-order Littrow mount. The amplitude diffraction effi-
ciencies are denoted ηn and reflectivity under normal incidence ρ0, respectively. (b) By
inserting a mirror (EM) perpendicular to the grating a 3-port-grating cavity is generated,
with the diffraction efficiency η1 as the coupling efficiency. The light fields are labeled as
follows: The backwards reflected field towards the laser source C1, the intra-cavity field
C2, the forward reflected field at the additional grating port C3 and the transmitted field
T. (c) Inserting the power-recycling mirror PRM in the entrance, a power-recycled 3-port
grating coupled cavity is formed. The light fields are denoted C1PR, C2PR, C3PR and TPR.

The back- and forward-reflected ports are denoted C1 and C3. In [27] the phase relations for
a binary structured grating without asymmetry (blaze) were derived for the lossless case. For a
Fabry-Perot cavity with a 3-port grating as the coupling component as shown in Fig. 2(b) the
amplitude reflection coefficients for the back-reflected field c1, the forward-reflected field c3 as
well as the amplitudes for the intra-cavity field c2 and the transmitted field t are described as

c1 = η2 exp(iφ2)+η2
1 ρ2 exp [i2(φ1 +Φ2)]d2, (1)

c2 = η1 exp(iφ1)d2, (2)

c3 = η0 +η2
1 ρ2 exp [i2(φ1 +Φ2)]d2, (3)

t = iτ2 exp(iΦ2)c2, (4)

where the amplitude reflectance and transmittance of the cavity end mirror as the second
component are given by ρ2 and τ2, respectively. The resonance factor is given by d2 =
[1− ρ0ρ2 exp(i2Φ2)]

−1, and the length L2 of the grating cavity is expressed by the detuning
parameter Φ2 = ωL2/c, where ω is the angular frequency and c the speed of light. One possi-
ble set for the phase shifts of each diffraction order are

φ0 = 0, (5)

φ1 = −1/2arccos
(
(η2

1 −2η2
0 )/2ρ0η0

)
, (6)

φ2 = arccos
(−η2

1/(2η2η0)
)
. (7)

Since the phase shifts depend on the diffraction efficiencies one can derive a minimal/maximal
diffraction efficiency for the zeroth and second diffraction order η0/2 = (1±ρ0)/2. As a conse-
quence the symmetric 3-port diffraction grating can be designed and manufactured with diffrac-
tion efficiencies only within these boundaries. However, independently from the grating’s spe-
cific diffraction efficiencies the implementation of an additional power-recycling mirror with
the amplitude coefficients ρ1 and τ1 between the laser source and the grating forms two coupled
resonators [see Fig. 2(c)]. In the following we will denote the first cavity, formed by the PR mir-
ror and the grating, as the power-recycling cavity (PR cavity), with its parameters Φ1, L1 and
d1, and the second cavity, formed by the grating and the end mirror, as the arm cavity, with its
parameters Φ2, L2 and d2 given above. For such a system the amplitude reflection coefficients
for the back-reflected field c1PR, the forward-reflected field c3PR, the intra-cavity field of the arm

#146632 - $15.00 USD Received 26 Apr 2011; revised 6 Jun 2011; accepted 6 Jun 2011; published 20 Jul 2011
(C) 2011 OSA 1 August 2011 / Vol. 19,  No. 16 / OPTICS EXPRESS  14969



cavity c2PR and the transmitted field tPR are

c1PR = [ρ1 − c1 exp(i2Φ1)]d1, (8)

c2PR = iτ1 exp [i(Φ1 +Φ2)]c2d1, (9)

c3PR = iτ1 exp(iΦ1)c3d1, (10)

tPR = −τ1τ2 exp [i(Φ1 +Φ2)]c2d1, (11)

where cn are the amplitude reflection coefficients of the two-component cavity given above. The
resonance factor of the PR cavity is given by d1 = [1−ρ1c1 exp(i2Φ1)]

−1, and the length L1 of
the PR cavity is expressed by the detuning parameter Φ1 = ωL1/c. A more detailed deduction
and the theoretical investigation of the system can be found in [26].

In current gravitational wave detectors the arm cavities are standing-wave cavities with an
amplitude reflectivity of the end mirror of ρ2

2 ≈ 1. Such a cavity always reflects the light back
into the PR resonator, independently from the detuning of the cavity. This is in contrast to
a 3-port-grating coupled cavity with the additional port C3. Hence, the light fields, that are
back-reflected from the grating cavity and thus recoupled to the PR cavity, firstly depend on
the grating-specific diffraction efficiencies and, secondly, on the tuning of the grating cavity.
Note that the light amplitude reflected from the grating cavity c1 [as given in Eq. (1)], can be
seen as the compound component reflectivity ρc(Φ2) of the grating and the end mirror [26].
In consequence the overall power build-up inside both cavities finally depends on the detuning
of the PR cavity Φ1 and the detuning of the arm cavity Φ2. The additional third port C3PR is a
loss channel showing a characteristic behavior which we present and discuss in the following
experiment.

3. Geometrical considerations

Diffraction at a grating into an order > 0 changes the geometrical parameters of a gaussian
beam if the angle of incidence and the diffraction angle are different. This leads to restrictions
to the geometrical setup of a power-recycled 3-port-grating cavity for a stable resonator.

The arm cavity is a half-symmetric resonator consisting of a spherical end mirror (m) and a
flat grating (g). The two components form a stable resonator if the stability criterion is fulfilled:

0 ≤ gggm ≤ 1 (12)

with

gg = 1− L2

Rc,g
= 1 and gm = 1− L2

Rc,m
, (13)

where Rc,m denotes the radius of curvature of the end mirror and L2 the length of the arm
cavity as the second cavity of the system. Note, that the factor gg of the flat grating is unity,
due to Rc,g = ∞, whereas for the g-factor of the mirror gm, the unequality L2 < Rc,m has to
be fulfilled to meet the stability criterion. In a half-symmetric resonator the beam waist of the
round eigenmode of the cavity is positioned at the flat component [28] with a waist size

w2
0 =

L2λ
π

√
gm

1−gm
. (14)

If a monochromatic TEM00 gaussian beam with round beam profile is incident on a grating
in second-order Littrow configuration, the beam that is diffracted into the first diffraction order
at an emergent angle of 0◦ will be elliptical. The angle of incidence (θin) does not match the
emergent angle (θout) which results in a distortion of the gaussian beam profile in one dimen-
sion. The relation between the waist size of input and output beam in the affected dimension is
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given by:

wout =
cos(θout)

cos(θin)
win. (15)

Therefore the ratio between the x- and y-direction waist sizes is completely determined by the
second-order Littrow angle (here 47.2◦). In order to match the mode of the incoming beam to
the round eigenmode of the arm cavity, the incident beam needs to have a degree of ellipticity
that exactly compensates the beam deformation that is applied to the beam when diffracted into
the first order. As a consequence the radii of curvature of the PR mirror need to be different
in x- and y- direction, because the eigenmode of the power-recycling cavity is elliptical. For a
given eigenmode of the arm cavity and length of the recycling cavity L1, the desired radii of
curvature of the recycling mirror are given by:

Rc,y = L1 +
π2w4

0,y

λ 2L1
, (16)

Rc,x = L1 +
π2w4

0,x

λ 2L1
= L1 +

π2w4
0,y

λ 2L1(cosθin)4 . (17)

The geometrical configuration of our experiment is shown in Fig. 3.

Θ  = 47.2°

Grating EM

PRM

R   = 100.0 cm

w     = 247 μm0,x 
w     = 363 μm0,y

R     = 54.0 cmc,x
R     = 80.0 cmc,y

c

L2 = 81.5 cm

L1 = 49.5 cm

in

Fig. 3. Geometrical configuration of the experiment. The second-order Littrow angle θin
determines the ratio of the waist size at the grating in horizontal and vertical direction w0,x
and w0,y. The length of the arm L2 and the radius of curvature of the end mirror Rc defines
the absolute waist size at the grating. Together with the length of the power-recycling cavity
L1 these parameters determine the radii of curvature of the PR mirror Rc,x and Rc,y.

4. Experimental setup

The experimental setup is shown in Fig. 4. Light from a Nd:YAG laser was spatially filtered
by a ring-mode-cleaner [29]. An electro-optical modulator (EOM) generated a 15 MHz phase
modulation for a Pound-Drever-Hall (PDH) lock [30] of the cavity lengths. We designed and
fabricated [31] a binary dielectric reflection 3-port grating with close to minimal second-order
diffraction efficiency. We chose a grating period of 1450 nm, which provided a second-order
Littrow angle of θin = 47.2◦ and a first oder diffraction angle of θout = 0◦ at the laser wavelength
of 1064 nm. For each dimension two cylindrical lenses were employed to generate the elliptical
beam profile that is needed in order to mode-match the incoming beam to the eigenmode of
the recycling cavity. The table-top experiment was carried out under air, and the cavity and
mirror parameters, including the custom made PR mirror having different radii of curvature in
horizontal and vertical direction, were chosen as described in the previous section and shown
in Fig. 3. A dieletric multilayer system was applied to the PR mirror providing a reflectivity of
ρ2

1 = 0.96. The high-reflectivity end mirror had a transmissivity of τ2
2 = 7ppm. The PR mirror

as well as the end mirror were mounted onto a piezo-electrical transducer (PZT) to linearly
sweep the cavity lengths.
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Fig. 4. Experimental setup of a 3-port-grating cavity with power-recycling. Two cylindrical
lenses for each dimension ln are needed to provide mode-matching to the eigenmode of the
cavity. The spherical lens l0 compensates the distortion due to the PRM substrate. Photo-
diodes at the ports (PDCn) and in transmission of the grating PDGT allow monitoring. The
beamsplitter BS in the entrance allows access to the back-reflected field C1PR.

Initially the grating was characterized via a finesse measurement using the setup discussed
in [20]. The diffraction efficiencies of the grating for s-polarized light were found to be
η2

0 = 0.927± 0.045, η2
1 = 0.0591± 0.003 and η2

2 = 0.0001± 50ppm and the reflectivity of
the grating for normal incidence was ρ2

0 = 0.879± 0.003. The total optical loss of the grating
due to scattering, absorption and residual transmission was determined to A= 0.0027±0.0061.
The grating transmission was independently measured and was found to be τ2

0 = 123ppm. We
used the light transmitted through the grating to monitor the power inside the arm cavity.

When the PR mirror was misaligned with respect to the actual optical axis of the recycling
cavity (e.g. tilted), the mirror acted as an attenuator in front of the arm cavity. In this configu-
ration the arm cavity properties could be determined without being influenced by the recycling
cavity. The finesse of the arm cavity was found to be Farm = 49.3 deduced from the meas-
ured line-width of FWHMarm = 3.73MHz. In a second step we re-aligned the PR mirror and
locked the arm cavity length on resonance using the standard PDH method. We then scanned
the length of the power-recycling cavity and also determined the finesse of the recycling cav-
ity. Note that in this configuration the stabilized arm cavity acted as compound cavity end
mirror with reflectivity ρc(Φ2 = 0) [26]. The measured linewidths of the recycling cavity of
FWHMPR = 5.79MHz yielded a finesse of FPR = 52.3.

5. Power-recycling and cavity detunings

In this section we present measurements of the light power inside the arm cavity and at the two
output ports of the coupled cavity system versus the detunings of the arm cavity and the PR
cavity, respectively. We compare our results with a model that is based on Eqs. (1)–(11) and
measured diffraction efficiencies, mirror reflectivities and losses of the optical components.
Note that our theoretical description of the 3-port-grating assumes zero optical loss [27]. In
order to account for grating loss our model used a transmission of the arm cavity end mirror
that was slightly higher than the actually measured one. Nevertheless, quantitative differences
between our model and our experiment are still expected due to the imperfect matching of input
and cavity modes, respectively.

Generally, the state of the coupled optical system depends on the detuning of both cavities Φ1

and Φ2. We therefore present the results of our model as three-dimensional plots showing light
powers versus detunings [26]. However, in our measurement the detunings were not stabilized
to certain points of the phase space but swept by applying sinusoidal voltages to piezo-electric
transducers behind the cavity mirrors. One of the cavity detunings was varied slowly with a
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frequency below 1 Hz, whereas the other was varied fast with a frequency of about 1 kHz.
From this procedure we derived two-dimensional plots showing light power versus the one
detuning that was varied slowly. However, for any value of the slowly varied detuning, the
voltage from the respective photo diode was sampled with a sufficiently high sampling rate
(over 500000 data points per acquisition) to be able to pick its extreme values that occurred
due to the fast varied detuning. The measured two-dimensional plots therefore correspond to
a projection of our three-dimensional plot onto one of the detuning axes thereby collecting
all maxima and minima along the other axis. The theoretical pictures for comparison with
the experimental data corresponds to ‘side-views’ onto the plain in the three-dimensional plot
along one or the other detuning axis. Note, that we have chosen the side-view-methodology as
a compact description of the experiment without introducing challenging requirements to the
control loop’s precision and stability. The alternative would have been to subsequently lock the
experiment to all possible combinations of cavity detunings and map out the parameter space
in Figs. 5(a) and 6(a).

Figure 5 presents the simulated values of the intra-cavity power versus detunings and the
light power as detected by photo diode PDGT when varying the detunings in the way described
before. The resonance pattern of Fig. 5(a) is periodic in Φ1 modπ and in Φ2 modπ . Power
enhancement is present around a maximum at Φ1 = 90◦ and Φ2 = 0◦. These phases are a con-
sequence of the grating phase relations as introduced earlier, and account for 3-port gratings
with a (close to) minimal value for the second order diffraction efficiency η2

2 [26]. Simulated
and experimental data in Fig. 5(b), 5(c), and 5(d), 5(e), respectively, show a very good qualita-
tive agreement. The existence of isolated, equidistant resonances in Fig. 5 is a special property
of the optical cavity system as investigated here, and is in contrast to a conventional three-
mirror cavity (confer Refs. [26,32]). It is in fact a direct consequence of the additional port C3.
In order to gain a high power build-up in the arm cavity, output at this port has to be avoided.
This happens only if the detunings of the subsystem cavities have particular values (modulo π)
providing destructive interference between the field from the power-recycling mirror and the
field leaking out the arm cavity.

A stable operation of our cavity system at arbitrary points in phase space was not realized,
however, it was realized at the point of maximum power build-up in the arm cavity. The er-
ror signal for the PDH length stabilization of the power-recycling cavity was generated from
the output of photo-diode PDC1. The light power on photo-diode PDGT and the known trans-
missivity of the grating then allowed to determine the light power inside the arm cavity. Our
simulations predicted an additional power build-up due to power-recycling by a factor of 24;
however, the measured value was only 16 times higher than the independently measured power
build-up inside the arm cavity without power-recycling. This deviation mainly originated from
imperfect matching of the light’s input mode and the cavity modes, and experimental instabil-
ities. The cavity system was realized as a table-top experiment under air, which caused jitter
of the input beam as well as length fluctuations and which were not fully compensated by our
control loops. Therefore, on an average a larger amount of light was reflected at the PR mirror.
By contrast the simulation assumed perfect mode-matching.

Figure 6 presents the characterization of the additional port C3 of our cavity system. It shows
simulated and measured light power leaving the coupled system at port C3. Again simulated
and measured data show a high degree of agreement. In Fig. 6(a) it can be seen that for the
detunings that provide the highest power build-up in the arm cavity a minimum light power is
coupled out via port C3. Due to our measurement procedure this minimum is visible only in
the projection onto detuning Φ1. However, stabilizing both cavities to the phase space point of
maximum power inside the arm cavity, as described above, clearly provided a minimum light
power at port C3. The doublet structure of the resonance in Fig. 6 is due to the power-recycling
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Fig. 5. Intra-cavity power build-up in the arm cavity as a function of the detunings Φ1
and Φ2 of the PR cavity and the arm cavity, respectively. Plot (a) shows the 2-dimensional
simulation. Plots (b) and (c) are projections onto one of the axes, respectively. They well
reproduce the experimental data as given in plots (d) and (e). The latter two show the intra-
cavity powers transmitted through the grating as detected by photo diode PDGT. For both
plots one of the cavity lengths was varied slowly whereas the other was varied fast.

effect. When both cavities are far detuned from resonance most of the light is back-reflected
towards the laser source. If the arm cavity is on resonance considerable power build-ups occur
for a relatively wide range of detunings of the power-recycling cavity. But only for the optimum
detuning of the power-recycling cavity (Φ1 = 90◦) destructive interference occurs in port C3
giving rise to the sharp dip as shown in Fig. 6(d).

6. Conclusion

We have demonstrated the diffractive coupling of two optical resonators. In full agreement with
our theoretical work in [26] we have experimentally shown that a dielectric 3-port grating can
replace the transmissive coupling mirror located between a power-recycling cavity and a Fabry-
Perot arm cavity as used in gravitational wave detectors. In combination with an all-reflective
balanced beam splitter as demonstrated recently [24], a power-recycled Michelson interferom-
eter is feasible without having to transmit high powers through internal optical components, as
shown in Fig. 1. Although a 3-port grating as a coupling component of two resonators opens
an additional port, which is the third grating port C3, a significant power-recycling factor was
achieved. Almost no power was lost into the additional port due to destructive interference if
the detunings of the two resonators were chosen properly. Since a 3-port grating introduces
elliptical beam profiles the mode-matching of the coupled cavities was challenging; however,
it could be efficiently realized utilizing a PR mirror with two different radii of curvature in hor-
izontal and vertical dimension. A 3-port grating combines three, instead of the two light fields
at each port. We have carried out a simulation based on measured parameters of the optical
components and found good qualitative agreement between simulated and measured data.
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Fig. 6. Output power at the additional grating port C3PR as a function of the detunings Φ1
and Φ2 of the power-recycling cavity and the arm cavity, respectively. Plot (a) shows the 2-
dimensional simulation. Plots (b) and (c) are projections onto one of the axes, respectively.
They well reproduce the experimental data as given in plots (d) and (e). The latter two show
the output powers as detected by photo diode PDC3. For both plots one of the cavity lengths
was varied slowly whereas the other was varied fast. The different peak heights in Fig. (d)
were due to non-linearities in the PZTs used to vary the cavity lengths.
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