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We introduce a search method for a new class of gravitational-wave signals, namely, long-duration

Oðhours-weeksÞ transients from spinning neutron stars. We discuss the astrophysical motivation from

glitch relaxation models and we derive a rough estimate for the maximal expected signal strength based on

the superfluid excess rotational energy. The transient signal model considered here extends the traditional

class of infinite-duration continuous-wave signals by a finite start-time and duration. We derive a

multidetector Bayes factor for these signals in Gaussian noise using F -statistic amplitude priors, which

simplifies the detection statistic and allows for an efficient implementation. We consider both a fully

coherent statistic, which is computationally limited to directed searches for known pulsars, and a cheaper

semicoherent variant, suitable for wide parameter-space searches for transients from unknown neutron

stars. We have tested our method by Monte-Carlo simulation, and we find that it outperforms orthodox

maximum-likelihood approaches both in sensitivity and in parameter-estimation quality.
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I. INTRODUCTION

Gravitational waves (GWs), predicted by Einstein’s gen-
eral theory of relativity, are expected to be emitted by
spinning neutron stars (NSs) with nonaxisymmetric defor-
mations or currents. Traditionally we distinguish two cat-
egories of GW emission from NSs:

(i) short ‘‘burstlike’’ GWs from NS oscillations, e.g.
fundamental (f-), pressure (p-), Rossby (r-) or w-modes,
which could be excited by a NS glitch. These signals would
typically be in the kHz frequency range and would be
damped on time scales of milliseconds (see [1,2]).
Various data-analysis methods for such high-frequency
bursts have been developed (e.g. see [3,4]) and recently a
search for a GW burst from a glitch in the Vela pulsar has
been performed on LIGO data [5].

(ii) long-duration ‘‘continuous waves’’ (CWs) from non-
axisymmetric deformations or currents in spinning NSs.
These CWs are quasisinusoidal with a well-defined, slowly
varying frequency f, which is typically of order of the NS
spin frequency �: in particular f ¼ 2� for ‘‘mountains’’ or
precession, additionally f � � for precessing NSs, while
f � 4�=3 for r-mode oscillations. In the past decade a
number of data-analysis methods have been developed
and applied to searches for CW signals in the data of
ground-based detectors. These searches typically come in
two flavors, either fully coherently targeting known pulsars
at f ¼ 2�, or semicoherently searching for CWs from
unknown NSs in a large parameter space of frequencies
and sky-positions. See [6] for a review of the astrophysical
models, data-analysis methods and results of searches for
CWs, and for further references.

The traditional CWmodel assumes that these signals are
truly continuous in the sense of a quasi-infinite duration, or
at least of longer duration than the available observation
time, typically Tobs � 1–2 yr. This postulates a spinning
neutron star with a quasistable nonaxisymmetric deforma-
tion, such that the relaxation to the axisymmetric thermo-
dynamic equilibrium happens on long time scales � Tobs.
Alternatively, the nonaxisymmetry can be driven by exter-
nal influences such as accretion in low-mass X-ray binary
systems, or by GW-driven instabilities such as unstable
r-mode oscillations. Both are complex dynamical pro-
cesses that need to be perfectly stable in order to produce
a traditional CW signal.
In the wide gap between burstlike OðmsÞ and truly

continuous Oð1Þ signals, spinning NSs can reasonably
be assumed to emit ‘‘CW’’ signals of intermediate duration
ofOðhours-weeksÞ. We refer to this third category of GWs
from spinning NSs by the oxymoron ‘‘transient CWs.’’ We
can give three plausibility arguments for why it would be
worthwhile to explore this new parameter space: (a) Young
NSs exhibit enigmatic sudden spin-up events called
‘‘glitches’’, followed by a relaxation phase with time scale
between days to months. This shows that internal dynami-
cal processes on these time scales do exist in NSs.
(b) Equilibrium NS configurations are axisymmetric and
GWs from quasistable deviations are expected to be weak:
deformations strong enough to produce detectable GWs on
Earth would therefore seem more likely to be associated
with ‘‘catastrophic’’ transient events. (c) Our astrophysical
understanding of the universe is incomplete. Independently
of any astrophysical models, this range of parameter space
is currently not covered by any other searches and should
therefore be investigated.
The transient-CW signal model is very similar to the

standard CW model, namely, quasisinusoidal emission
with a well-defined, slowly varying frequency of the order
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of the NS spin frequency, f�Oð�Þ. Contrary to CWs,
however, the signal has a definite start-time t0 and a finite
effective lifetime �s, and the signal amplitude h0 can be
modulated by a window-function, for example, an
exponential decay.

While the present study is concerned with extending the
traditional Oð1Þ CW search to finite durations, there is an
independent and complementary effort underway (called
‘‘STAMP’’) to extend the traditional OðmsÞ ‘‘burst’’
searches to longer durations [7]. This ‘‘long burst’’ method
does not assume a parametrized signal model, but instead
tries to find connected time-frequency patterns in the cross-
correlation power between multiple detectors. These tran-
sients can span any duration from seconds to weeks. This
approach will be computationally cheaper and more robust
towards a wider class of unmodeled GW signals, but would
therefore also be expected to be less sensitive towards the
particular class of transient-CW signals considered here.

The plan of this paper is as follows: in Sec. II we discuss
the astrophysical motivation for transient CWs, including a
simple signal-to-noise ratio (SNR) estimate based on the
superfluid excess rotation energy in NSs. Sec. III introdu-
ces the parametrized transient-CW signal model, and
Sec. IV develops the coherent and semicoherent
Bayesian search methods for these signals. Sec. V presents
numerical Monte-Carlo results on the detection efficiency,
and Sec. VI illustrates the performance on parameter esti-
mation. Sec. VII gives a concluding summary. Details on
implementation and computing cost estimates are given in
the appendix A.

II. ASTROPHYSICAL MOTIVATION FOR
TRANSIENT CWS

A. Concrete astrophysical predictions

There are currently very few concrete predictions in the
literature regarding the existence and properties of poten-
tial transient-CW signals from spinning NSs. Notable ex-
ceptions are the recent studies [8,9] of GW emission from
nonaxisymmetric Ekman flow during the post-glitch re-
laxation phase, which typically lasts for days to months
(e.g. see [10]). The authors conclude that GWs from this
mechanism could be detectable with second- or third-
generation ground-based detectors. Another interesting re-
cent idea [11] suggests that giant magnetic flares in
magnetars could trigger polar Alfvén oscillations,
emitting GWs at around �100 Hz and lasting for days to
months, although the details of the underlying physics are
uncertain [12].

One can further speculate on a number of potential
transient-CW emission mechanisms from spinning NSs.
Many ‘‘classical’’ CW mechanisms discussed in the litera-
ture (e.g. see [6] for references) typically have large un-
certainties on the lifetime of the emission, and are therefore
potential sources of transient-CW signals. For example,
free precession of NSs occurs when the spin-axis is

misaligned with the axis of symmetry, and has long been
considered a possible mechanism for CW emission (e.g.
[13]). A more detailed analysis [14] concluded that the
emission from free precession could be damped on a
(highly uncertain) time scale of a few weeks to years.
Young NSs could be deformed by extreme magnetic fields
and result in stronger transient CWs from damped free
precession [15]. Newly-born magnetars with strong toroi-
dal fields could be subject to a magnetic instability pro-
ducing strong GWs on the time scale of several days [16].
Similarly, the strength and time scale of the r-mode GW
instability remain highly uncertain (e.g. see [17] for a
review), despite a number of studies over more than a
decade. This instability could operate on time scales of
days to months in newly-born NSs. As an example, see [18]
for recent work on the large variety of possible scenarios
for the r-mode instability and spin-down-evolution taking
into account nonlinear mode couplings.

B. Energetics and SNR of transient CWs

It is instructive to consider the general relation between
GW energy emitted and the average expected SNR for
transient CWs. This can be useful to derive an order-of-
magnitude estimate of the expected transient-CW SNR in a
simple toy-model.
In the following estimate we assume that the CWs are

emitted by a nonaxisymmetric deformation �ðtÞ of the
quadrupole moment, emitting GWs at frequency f. See
also [19] for a discussion of the relevant relations in the
case of r-modes. The total energy emitted in GWs is
EGW ¼ R

LGWdt, in terms of the GW luminosity LGW

(e.g. see [6]), which is

LGWðtÞ ¼ 1

10

G

c5
ð2�fÞ6I2�2ðtÞ; (1)

where I is the axial moment of inertia, and �ðtÞ is the
dimensionless deviation from axisymmetry of the spinning
NS. G is Newton’s gravitational constant, and c is the
speed of light. We can write the corresponding signal
amplitude h0ðtÞ at the observer as

h0ðtÞ ¼ 4�2G

c4
If2

d
�ðtÞ; (2)

where d is the distance to the NS. Combining Eqs. (1) and
(2), one can eliminate �ðtÞ and write the total GW energy
emitted during a time span T as

EGW ¼ 2�2c3

5G
f2d2

Z T
h20ðtÞdt; (3)

assuming a roughly constant average frequency f. The
expected optimal signal-to-noise ratio (SNR), which will
be defined in Eq. (42), can be averaged over sky-position
and signal polarizations [13,20], to yield
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h�2
oi ¼ 4

25

1

SðfÞ
Z T

h20ðtÞdt; (4)

where SðfÞ is the (single-sided) noise power spectral den-
sity (at the signal frequency f) of the detector (or multi-
detector combination, see [20,21]). By combining Eqs. (3)
and (4), we obtain the average optimal SNR of a transient
CW in terms of the total emitted GW energy EGW, namely

h�2
oi ¼ 2G

5�2c3
EGW

SðfÞf2d2 ; (5)

which agrees with the result given in [22]. An analogous
expression was derived in [23] for the case of r-modes.
This expression is interesting for two reasons: (i) at fixed
frequency f, the expected SNR only depends on the total
GW energy emitted, and not on the time scale of the
emission, i.e. short-strong or long-weak transient CWs of
the same total energy typically result in the same SNR, and
(ii) at fixed emitted EGW, the optimal SNR �o decreases
linearly with increasing GW frequency f, i.e. for the same
transient GW energy, transients from slowly rotating NS
would be easier to detect than from fast rotators.

For convenience we define the dimensionless root-

mean-square amplitude ĥ0 over the time scale T as

ĥ 2
0T �

Z T
h20ðtÞdt: (6)

Note that this quantity is not to be confused with the ‘‘root-
sum-squared’’ amplitude hrss often used to characterize
signal strength in the context of burst searches (e.g. see
[3]), which is defined as h2rss �

R
h2ðtÞdt. The difference is

that hrss has dimension
ffiffi
t

p
and refers to themeasured strain

hðtÞ in a given detector (see Eq. (16)), which is rapidly

oscillating with frequency f. The dimensionless ĥ0, on the
other hand, refers to the intrinsic signal amplitude h0ðtÞ,
which for a transient CW would be slowly varying on a
time scale T. From the definition (42) of the (optimal)
SNR, one can see that �2

o ¼ ð2=SÞh2rss, and therefore
Eq. (4) also yields the relation

hh2rssi ¼ 2

25
ĥ20T: (7)

The quantity ĥ20T is proportional to the GW energy (3), as
well as the average optimal SNR (4), namely

ĥ 2
0T / h�2

oiS / EGW

f2d2
: (8)

C. Transient CWs from superfluid excess energy

As a simple toy-model for the energy available in prin-
ciple for transient CWs from a spinning NS, we consider
the standard two-fluid model, which is at the core of
current attempts to understand pulsar glitches. See [10]
for an overview of the phenomenology of observed pulsar
glitches and the basic two-fluid model.

The observed pulses (arriving with frequency �) are
commonly associated with the rotating NS magnetic field,
which is attached to the crust and the normal fluid interior,
both rotating with angular velocity� ¼ 2��. This normal
component has a moment of inertia Ic, believed to form the
bulk of the total moment of inertia, I � Ic. The basic two-
fluid model assumes that some of the interior neutrons are
superfluid, forming an independent component that rotates
at an (unobserved) angular velocity �s, and which has a
moment of inertia Is, typically believed to be of order
Is=Ic � 10�2 (e.g. see [10]). The normal NS components

slow down at an observed rate _� ¼ 2� _� due to losses of
angular momentum from the electromagnetic emission or
interactions with the surrounding medium. The superfluid,
on the other hand, is believed to be weakly coupled to the

normal component (therefore _�s � 0) and would continue

to spin with angular velocity �s, until the ‘‘lag’’ �� ¼
�s �� ¼ � _��t between the two components reaches a
critical level (see [24] for a more detailed study including
superfluid coupling effects). The time scale �t here could
correspond to the interglitch period, if one assumes that
every glitch restores perfect corotation between the fluids.
At this ‘‘breaking point’’ some type of instability is be-
lieved to occur, resulting in the transfer of angular momen-
tum from the superfluid to the normal fluid. This
would produce the visible ‘‘glitch’’, i.e. a sudden spin-up
�� ¼ 2��� of the observed pulse frequency �. The de-
tails of this instability are poorly understood and various
models have been suggested in the literature, such as the
crust breaking due to the strain exerted by pinned vortices
(e.g. see [25]), the vortex array becoming unpinned due to
theMagnus force (e.g. see [26]), or a two-stream instability
developing due to the dynamical coupling of the two fluids
[27,28]. See also [29] for an alternative mechanism to
vortex pinning that can produce crust strain. Similarly
unclear are the physical mechanisms involved in the ensu-
ing ‘‘relaxation’’ back to a state of preglitch steady-state
spin-down, which typically occurs on time scales of days to
months (see [10]).
During a glitch, the observed normal fluid would spin up

by ��, while the superfluid would spin down by ��s, such
that angular momentum is conserved. Following [24] and
assuming that the moments of inertia are constant during a
glitch, we have

Ic��þ Is��s ¼ 0; (9)

where typically the observed spin-up is up to ��=
�� 10�6 [10]. Note that for fiducial values of Is=
Ic � 10�2 this implies that the superfluid spins down by
��s=���10�4 during a glitch. Besides this angular-
momentum transfer in the glitch, there is some excess
energy Eglitch left. Assuming that corotation between the

two fluids is restored after the glitch, namely ��s ¼
���þ ��, the glitch excess energy can be shown to be
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Eglitch ¼ 1

2
Is��

2
s þ 1

2
Ic��

2 � 1

2
Is��

2
s ; (10)

which agrees with the result in [24], where in the last step
we assumed the fiducial scales Is=Ic � 10�2 and therefore
��=��s � 10�2, which makes the second term negli-
gible. Using Eq. (9), this can also be expressed as Eglitch �
1
2 Ic����. This energy would have to be dissipated di-

rectly in the glitch, for example, by exciting oscillation
modes, which would radiate GWs on short time scales, as
considered in [3,5], or by heating up the NS (e.g. see [30]).

However, after a glitch the NS generally relaxes back to
a steady-state spin-down on a time scale of days to months,
and therefore some (if not all) of the initial excess energy
stored in the faster-rotating superfluid could be driving GW
emission on this relaxation time scale of Oðdays-monthsÞ.
The recent studies of post-glitch spin-up of the fluid NS
core by nonaxisymmetric Ekman flow [8,9] provide one
concrete example for exactly such a mechanism. It is also
conceivable that this hidden energy in the superfluid ‘‘fly-
wheel’’ can lead to transient-CW emission directly, via an
internal instability, without transferring its angular-
momentum to the crust first, i.e. without a visible pulsar
glitch.

The well-known spin-down upper limit on CWemission
from known pulsars [6] assumes that the total steady-state
spin-down energy of the pulsar is emitted as GWs.
Similarly we can consider a ‘‘superfluid upper limit’’ on
transient CWs, where the total superfluid excess energy is
converted into transient CWs, for example, by sustaining
some nonaxisymmetric process that leads to emission at
frequencies f�Oð�Þ. The excess rotational energy Es of
the superfluid is

Es ¼ 1

2
Isð�2

s ��2Þ � 4�2Is���; (11)

where in the last expression we dropped the second-order
energy term (10), which is smaller by ��=� � 10�4. In
the following we return to using the spin frequency �
instead of the angular velocity � ¼ 2��. Note that this
expression happens to be numerically very similar to the
‘‘starquake’’ glitch-energy derived under the assumption of
a spin-up caused by a reduction in the crust’s moment of
inertia (e.g. see [5]), which results in Equake ¼ 2�2I���,

and substituting �� ¼ ðIs=IÞ�� from (9), we obtain
2Equake ¼ Es. For fiducial values of I � 1038 kgm2,

Vela spin frequency �� 10 Hz and a large glitch of
��=�� 10�6, this yields Es � 4� 1042 erg.

We have no direct observational evidence about the size
of the lag �� ¼ 2��� or the superfluid angular velocity
�s. In the simplest models one typically assumes the lag to
be reset to zero after every glitch, starting to build up again
due to spin-down _�. However, this is not necessarily the
case and the lag could accumulate over longer time scales
and be correspondingly larger.

To obtain an upper limit estimate on the signal strength,
we can equate EGW of Eq. (3) with Es given in Eq. (11),
assuming that the GW is emitted at a frequency f ¼ 2�
(corresponding to a nonaxisymmetric deformation). This
corresponds to the extreme case where the built-up excess
superfluid rotational energy drives emission of a transient
CW. Combining this with Eq. (6), we can obtain a super-
fluid transient-CW upper limit estimate in the form

ĥ0
ffiffiffiffi
T

p ¼ 1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5G

2c3
Is
��

�

s
: (12)

Alternatively, if we assume that the total excess angular
momentum is transferred in a glitch, we can use Eq. (9) to
rewrite this in terms of more directly observed glitch
quantities, namely

ĥ 0

ffiffiffiffi
T

p ¼ 1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5G

2c3
I
��

�

s
; (13)

where I is the axial NS moment of inertia, and ��=� is the
observed glitch spin-up. As a third alternative, we can use
the simple two-fluid model for the buildup of the lag,
namely �� ¼ j _�j�t, and parametrize the unknown super-
fluid moment of inertia via Is ¼ �I (with fiducial value
�� 10�2), and obtain the relation

ĥ 0 ¼
ffiffiffiffiffiffiffiffiffi
��t

T

s
hsd; (14)

in terms of the well-known ‘‘spin-down limit’’ hsd, given
by

hsd ¼ 1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5G

2c3
I
j _�j
�

s
; (15)

which is derived from the assumption that the NS spin-
down energy is completely converted into GWs. The rela-
tion (14) shows that the superfluid transient-CW upper
limit can be similar or even higher than the usual pulsar
spin-down limit: a fraction � of the steady-state spin-down
energy is accumulated in the superfluid over an interglitch
time scale �t, and is released on a short time scale T.
Assuming �� 10�2, interglitch periods of �t� 1 yr and
transient-CW time scale of T � 2 weeks, we see from

Eq. (14) that for these values ĥ0 � hsd. This is interesting
as it indicates that the young (and glitching) pulsars with
the most promising spin-down upper limits on CW emis-
sion might also be the most attractive targets for directed
transient-CW searches, for example, the Crab pulsar, Vela,
and J0537-69 (e.g. see Fig. 4 in [6]).

III. SIGNAL MODEL FOR TRANSIENT CWS

The family of transient-CW signals considered here is a
straightforward generalization of the traditional infinite-
duration CW model [13,31], allowing for a finite duration
and nontrivial time-evolution of the overall amplitude h0.
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The set T of extra transient-CW parameters therefore
consists of the start-time t0, characteristic time scale �,
and the type of window function $, i.e. T � f$; t0; �g.
The transient-CW signal family therefore simply consists
of a window function g$ðt; t0; �Þ applied to the standard
CW signal model, namely

hXðt;A; �;T Þ ¼ g$ðt; t0; �ÞA	hX	ðt;�Þ; (16)

were we use implicit summation over the four amplitudes,
	 ¼ 1; . . . 4, andX is an index over different detectors. The
four canonical amplitudes A	 are functions of the CW
amplitude h0, polarization angles cos
, c and the initial
phase �0, i.e. A	 ¼ A	ðh0; cos
; c ; �0Þ. The corre-
sponding basis functions hX	ðt;�Þ are found, for example,

in [32], but their explicit form is not relevant to our
discussion here. The set of Doppler parameters � deter-
mines the time evolution of the signal phase, for example,
the source sky-position n̂ and the GW frequency fðtÞ,
which is generally allowed to be slowly varying with
time. If the CW source is a neutron star in a binary system,
� would also include the relevant orbital parameters of the
system.

In the following we restrict our attention to two simple
types of transient-window functions g$ðtÞ, namely, either
rectangular, denoted as $ ¼ r, i.e.

grðt; t0; �Þ �
�
1 if t 2 ½t0; t0 þ ��
0 otherwise;

(17)

or exponentially decaying, denoted as $ ¼ e, namely

geðt; t0; �Þ �
�
e�ðt�t0Þ=� if t 2 ½t0; t0 þ 3��
0 otherwise;

(18)

where we somewhat arbitrarily truncated the exponential
window at an e-folding of 3, in order to simplify the
practical implementation of this window. This truncation
gives the window a finite duration of 3�, and at the trunca-
tion point the amplitude has decreased by more than 95%
and we can neglect the corresponding loss of SNR.

Following the notation of [21,33], we use boldface to
denote multidetector vectors, i.e. fxgX ¼ xX denotes the set
of data-streams xðtÞ from different detectors X. We can
now conveniently absorb the window function gðtÞ in
Eq. (16) into the definition of new transient basis functions
h0
	, namely

h 0
	ðt;�;T Þ � g$ðt; t0; �Þh	ðt;�Þ: (19)

If we denote � the set of all signal parameters of our search,
i.e.

� � fA; �;T g; (20)

then we can write the transient signal model (16) now more
compactly as

h ðt; �Þ ¼ A	h0
	ðt;�;T Þ: (21)

IV. DETECTION METHOD: ODDS RATIO

A. Hypothesis testing framework

Based on observed data x, we want to decide between
two hypotheses: under the noise hypothesis H G the ob-
served data consists only of Gaussian stationary noise n,
and under the signal hypothesis H S the data contains in
addition a transient-CW signal hðt; �Þ of Eq. (21), namely

H G: xðtÞ ¼ nðtÞ; (22)

H S: xðtÞ ¼ nðtÞ þ hðt; �Þ for any � 2 P; (23)

where P denotes the signal parameter space. Note that the
signal hypothesis (23) is incomplete without the specifica-
tion of a probability distribution for the unknown signal
parameters � over their parameter space P, i.e. a prior
probability Pð�jH SÞ. For simplicity our notation does not
explicitly distinguish between proper probabilities and
probability densities. This difference is implicit in the
type of argument, namely, whether it is discrete, such
that

P
iPðxijIÞ ¼ 1, or continuous, where

R
PðxjIÞdx ¼

1. Furthermore, we sometimes (but not always) explicitly
state I as a conditional in probability statements, denoting
the full set of remaining relevant prior model assumptions
that the probability statement depends on.

B. Gaussian noise and scalar product

For quasisinusoidal CWs (16) in stationary Gaussian
noise we can define a multidetector scalar product [21],
using the notation of [33], as

ðxjyÞ � 2
X
X

S�1
X ðfÞ

Z
xXðtÞyXðtÞdt; (24)

where SXðfÞ is the (stationary) single-sided noise power
spectral density in detector X, which is assumed constant
over a narrow frequency band around the signal frequency
f. This allows us to write the likelihood for the data x in the
Gaussian noise case (22) as

PðxjH GÞ ¼ 
e�ð1=2ÞðxjxÞ; (25)

where 
 is a normalization constant. In the presence of a
signal hðt; �Þ with parameters �, subtracting this signal
from the data x results again in pure Gaussian noise n,
i.e. n ¼ x� hð�Þ, and therefore

PðxjH S; �Þ ¼ 
e�ð1=2Þðx�hð�Þjx�hð�ÞÞ: (26)

The likelihood for the data x containing any signal hðt;�Þ
with � 2 P drawn from the prior Pð�jH SÞ can easily be
obtained (e.g. see [34]) as

PðxjH SÞ ¼
Z
P
PðxjH S; �ÞPð�jH SÞd�; (27)

which is often referred to as the marginal likelihood (and
sometimes as evidence).
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C. Odds ratio and Bayes factor

We can express the odds ratio OSG between signal- and
Gaussian-noise hypothesis for the observed data x as

OSGðxÞ � PðH SjxÞ
PðH GjxÞ

¼ BSGðxÞ PðH SjIÞ
PðH GjIÞ

; (28)

where we used Bayes’ theorem, namely PðajbÞPðbjIÞ ¼
PðbjaÞPðajIÞ, to express OSGðxÞ as a product of the prior
hypothesis odds and the so-called Bayes factor BSGðxÞ,
defined as

BSGðxÞ � PðxjH SÞ
PðxjH GÞ

¼
Z
P
Lðx;�ÞPð�jH SÞd�; (29)

where we used Eqs. (25) and (26) and defined the standard
likelihood ratio as

L ðx; �Þ � PðxjH S; �Þ
PðxjH GÞ

¼ eðxjhð�ÞÞ�ð1=2Þðhð�Þjhð�ÞÞ: (30)

Inserting the transient-CW signal model (21), we can write
this as

logLðx;�Þ ¼ A	x0	 � 1

2
A	M0

	�A�; (31)

where we defined

x0	ð�;T Þ � ðxjh0
	Þ; (32)

M 0
	�ð�;T Þ � ðh0

	jh0
�Þ; (33)

generalizing the corresponding CW quantities, e.g. see
[34], to the transient signal model.

D. Maximum likelihood: the F -statistic

Contrary to the marginalization in Eq. (29) over un-
known parameters �, which follows from the axioms of
probability, the orthodox ‘‘maximum-likelihood’’ ap-
proach consists of an ad-hoc maximization of the likeli-
hood ratioL over the unknown parameters �, i.e. we define
the maximum-likelihood statistic as

LMLðxÞ � max
�

Lðx; �Þ: (34)

Given the explicitly quadratic dependency on A	 in
Eq. (31), this maximization can be performed explicitly,
which results in

lnLMLðxÞ ¼ max
f�;T g

F ðx;�;T Þ; (35)

were we encounter the well-known ‘‘F -statistic’’, which
was first derived in [13] for CW signals. In the present
transient-CW case, the transient F -statistic is obtained
explicitly as

2F ðx;�;T Þ � x0	M0	�x0�; (36)

where M0	� is defined as the inverse matrix of M0
	� of

Eq. (33).
If the data xðtÞ contains a signal sðt;�sÞ, such that x ¼

nþ sð�sÞ, then we can write Eq. (32) as

x0	 ¼ n0	 þ s0	; (37)

with the obvious definitions n0	ð�;T Þ � ðnjh0
	Þ and

s0	ð�s;�;T Þ � ðsð�sÞjh0
	ð�;T ÞÞ; (38)

which depends both on the signal parameters �s ¼
fAs; �s;T sg and the matched-filter parameters f�;T g of
the ‘‘template’’.
Gaussian detector noise nðtÞ has zero mean, i.e.

E½n� ¼ 0, and therefore E½n0	� ¼ 0 and E½x0	� ¼ s0	. One
can also show that the corresponding covariance is
E½n0	n0�� ¼ M0

	�ð�;T Þ, and therefore

E½x0	x0�� ¼ M0
	� þ s0	s0�: (39)

Using this together with Eq. (36) one can further show that
2F follows a �2-distribution with four degrees of freedom
and noncentrality parameter �2, i.e.

E½2F � ¼ 4þ �2; (40)

where the signal-to-noise ratio (SNR) � is expressible as

�2ð�s;�;T Þ ¼ s0	M0	�s0�: (41)

We see from Eq. (38) that the SNR will depend in a
complicated way on the offset between signal parameters
�s and template parameters f�;T g (see [33] for the non-
transient CW case). In the special case of perfectly
matched template parameters, i.e. � ¼ �s and T ¼ T s,
we obtain the so-called ‘‘optimal SNR’’ �o, which can be
expressed as

�2
oð�sÞ ¼ A	

s M0
	�ð�s;T sÞA�

s ¼ ðsjsÞ: (42)

E. Choice of signal priors

In order to fully define the Bayes factor (29), we need to
provide a complete signal hypothesis including the prior
probabilities Pð�jH SÞ for the signal parameters � ¼
fA; �;T g.

1. Prior on Doppler-parameters �

For simplicity we assume that the Doppler-parameters �
are independent of amplitude- and transient parameters
fA;T g, so we can factor the full parameter prior
Pð�jH SÞ into

Pð�jH SÞ ¼ Pð�jH SÞPðA;T jH SÞ; (43)

and so the Bayes factor (29) now reads as

BSGðxÞ ¼
Z

BSGðx;�ÞPð�jH SÞdn�; (44)
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in terms of a ‘‘targeted’’ Bayes factor BSGðx;�Þ for a single
Doppler point �, namely

BSGðx;�Þ �
Z

Lðx;A;T ; �ÞPðA;T jH SÞdAdT :

(45)

In the following we will focus exclusively on the targeted
Bayes factor, and sometimes drop � for simplicity of
notation. The generalization to parameter searches over �
is straightforward as given by Eq. (44).

2. Prior on transient parameters T

Astrophysically it would make sense to assume that the
amplitude h0 of a transient CW is related to its time scale �.
For example, it might be reasonable to suspect that stronger
transient GWs have shorter duration and vice-versa, ac-
cording to some prior on the total transient-CW energy
emitted and on the distance of such sources, cf. Sec. II.
However, given the current lack of concrete astrophysical
predictions to base such priors on, we assume a simple
independent prior PðT jH SÞ for the transient signal pa-
rameters T . A naturally simple choice consists of inde-
pendent uniform priors within some appropriate time
windows, i.e.

Pðt0jH SÞ ¼ Uðt0min; t
0
min þ �t0Þ;

Pð�jH SÞ ¼ Uð�min; �min þ ��Þ;
(46)

where we write uniform probability densities as Uða; bÞ �
1=ðb� aÞ for the parameter falling inside ½a; b� and zero
otherwise. We would also need priors on the window type,
e.g. Pð$ ¼ rjH SÞ ¼ Pð$ ¼ ejH SÞ ¼ 1

2 , in order to

marginalize over $. However, for simplicity we will often
assume a particular window-type $ as given and only
marginalize over t0; �. The effect of assuming an incorrect
window-function within $ 2 fr; eg is numerically studied
in Sec. VB, and appears to entail only mild losses of
detection power.

3. Prior on amplitude-parameters A

Physically reasonable priors on the angle parameters
fcos
; c ; �0g are relatively easy to obtain if we assume
ignorance about the orientation of the spinning neutron star
(e.g. see [34] for a more detailed discussion), namely, by
symmetry one can obtain

Pðcos
jH SÞ ¼ Uð�1; 1Þ;
Pðc jH SÞ ¼ U

�
��

4
;
�

4

�

Pð�0jH SÞ ¼ Uð0; 2�Þ:
(47)

The choice of prior for the overall amplitude parameter h0
is less obvious: one could choose a scale-free Jeffrey’s
prior, or a simpler uniform prior on some physically mean-
ingful domain.

The downside of the isotropic amplitude priors (47) is
that the resulting marginalization over A cannot be per-
formed analytically, and computing the Bayes factor would
require a numerical integration over A in every point
�;T , which will be computationally prohibitive.
However, as shown in [34], by using an unphysical uniform
prior on the 4-vector A	, one can analytically margin-
alize over A and obtain a Bayes factor (45) expressed in
terms of the well-known F -statistic (36).
This choice has the major advantage of simplicity and

computational efficiency, while incurring only small losses
in detection power compared to the more physical prior
(47), as shown in [34]. Given that fast and mature codes
exist to compute F on real detector data (cf. [20,35]), we
choose this prior as a convenient practical approximation.
However, as will be seen in the following, the original

formulation of the uniform A	-prior in [34] leads to a
somewhat weak detection statistic for transient-CW signals
and can be improved by a minor modification. The original
‘‘constant-hmax’’ prior was defined as

PðA	jH SÞ ¼
�
C if h0ðAÞ< hmax;
0 otherwise;

(48)

where hmax is a maximum cutoff amplitude needed in order
to normalize the prior.
TheA-integration in Eq. (45) can be performed analyti-

cally with this prior, provided the data does not cause the
likelihood to peak close to the upper cutoff hmax. Namely,
if the value of the integrand Lðx;AÞ is already negligible
at the cutoff boundary, we can extend the domain to infinity
and obtain a four-dimensional Gaussian integral, namely

Z h0<hmax

Lðx;A;T ÞCd4A � ð2�Þ2CffiffiffiffiffiffiffiffiffiffijMjp eF ðx;T Þ; (49)

where jMj � detM is the determinant of the matrixM	�

of Eq. (33). Using this approximation, we can therefore
write the Bayes factor (45) as

BSGðx;�Þ �
Z ð2�Þ2C

jMj1=2 e
F ðx;T ÞPðT jH SÞdT : (50)

The Jacobian J of the coordinate transformation A	 ¼
A	ðh0; cos
; c ; �0Þ is J ¼ 1

4h
3
0ð1� cos2
Þ3 (see [34]),

and therefore d4A ¼ Jdh0d cos
dc d�0. We can now
determine the normalization constant C as

1 ¼
Z

PðAjH SÞd4A ¼ C
2�2

35
h4max; (51)

and obtain the constant-hmax Bayes factor explicitly as

BSGjhmax
¼ 70

h4max�t
0��

Z eF

jMj1=2 dt
0d�; (52)

where we assumed a fixed window type $. The antenna-

pattern weighting factor jMj�1=2 generally depends on the
sky-position n̂, the transient-window type $, start-time t0
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and time scale �, as seen from Eq. (33). In the case of a
fully targeted search with fixed t0; � and �, as discussed in
[34], the weighting factor is constant and plays no role for
the power of the detection statistic. The fully targeted
Bayes factor is therefore strictly equivalent to the detection
power of the F -statistic.

Interestingly, in the case of transient signals we find that
the presence of this antenna-pattern weighting factor in
Eq. (52) seems to degrade the detection power, and for
some choices of parameter ranges BSGjhmax

performs worse

than the maximum-likelihood statistic (35), namely

Fmaxðx;$Þ � max
ft0;�g

F ðx;$; t0; �Þ: (53)

However, a simple modification of the cutoff boundary in
Eq. (48) allows us to eliminate the antenna-pattern weight-

ing factor jMj�1=2 in Eq. (50). Namely, by introducing an

‘‘SNR-scale’’ �̂ � h0jMj1=8, and using a cutoff �̂ < �̂max

as the outer boundary of the domain instead of the
amplitude-cutoff h0 < hmax, the modified ad-hoc
‘‘F -statistic prior’’ is now

PðA	jH S;T Þ ¼
�
Ĉ if �̂ðAÞ< �̂max;
0 otherwise;

(54)

which results in the new transient Bayes factor

BF ðx;�;$Þ ¼ 70

�̂4
max�t

0��

Z
eF ðx;�;T Þdt0d�; (55)

where in the following we denote BF � BSGj�̂max
as our

detection statistic of choice.
As discussed in Sec. VA, numerical simulations show

that this detection statistic is more powerful than both
BSGjhmax

as well as the orthodox maximum-likelihood sta-

tistic. More work would be required to study these priors in
more detail, and to develop a more physical choice of
priors that would be equally practical.

F. SNR loss due to rectangular-window offsets

Let us consider the effect of an offset in transient-
window parameters T from the signal parameters T s,
assuming perfectly-matched Doppler parameters, i.e. � ¼
�s. The dependence of the matched-filter SNR (41) on
Doppler offsets �s � � has already been studied in great
detail, e.g. see [31,33,36].

In the following we drop � and write Eq. (38) more
explicitly as

s0	ðAs;T s;T Þ ¼ A�
s ðh0

�ðT sÞjh0
	ðT ÞÞ; (56)

and using Eqs. (19) and (24), we can further expand this as

s0	 ¼ 2A�
s

S

Z
h�ðtÞh	ðtÞg$s

ðt; t0s ; �sÞg$ðt; t0; �Þdt; (57)

where we have omitted multidetector summation for sim-
plicity of notation. It will be difficult to make further
analytic progress with this expression in the general case,

but we can analyze the interesting special case of the
rectangular-window function (17), i.e. $s ¼ $ ¼ r. In
this case the window functions simply truncate the integral,
and so we obtain

s0	 ¼ 2A�
s

S

Z t1

t0

h�ðtÞh	ðtÞdt; (58)

where we defined t0 � maxðt0s ; t0Þ, and t1 � minððt0s þ
�sÞ; ðt0 þ �ÞÞ. Note that ½t0; t1� denotes the rectangular
overlap between T s and T , and in the above integral we
assumed t1 � t0, otherwise the expression is zero.
In order to simplify this even further, we note that the

antenna-pattern matrix in Eq. (33) can be written as

M 0
	� ¼ 2�

S
m	�; (59)

where we defined m	� ¼ hh	h�iS, in terms of the multi-

detector time-average h. . .iS introduced in [Eq. (59)] in [33].
The antenna-pattern functions are periodic with period of a
sidereal day, and so the average m	� will be weakly oscil-

latory and converges to a constant for � � 1d. Let us there-
fore approximate m	� as constant for fixed �, i.e.

m	� � �m	�, which allows us to write Eq. (58) as

s0	 � 2��
S

A�
s �m�	; with �� � ½t1 � t0�þ; (60)

where ½. . .�þ is the positivity operator, defined as ½x�þ ¼ x
for x > 0 and zero otherwise. Therefore �� is the length of
overlap between signal and template windows. Using
M0

	� � ð2�=SÞ �m	�, we obtain the mismatched SNR after

substituting into Eq. (41), namely

�2 � �2�
�

2

S
A	

s �m	�A�
s ¼ �2�

��s
�2
o; (61)

in terms of the perfectly-matched ‘‘optimal SNR’’ �o,
defined in Eq. (42). Note that always �� 	 minð�; �sÞ,
and equality only holds in the perfect-match case.
Expressing this in terms of the usual definition of mismatch
m, we obtain

mðt0s ; �s; t0; �Þ � �2
o � �2

�2
o

� 1� �2�
��s

: (62)

The behavior of this approximate mismatch function and
the corresponding measured SNR loss is illustrated
in Fig. 1 for a start-time t0 ¼ 5 days and duration
� ¼ 5 days [37]. Contrary to the well-known mismatch
behavior in Doppler parameters �, the transient mismatch
metric is not differentiable at the perfect-match point � ¼
�s ¼ ��, as seen in Eq. (62) and Fig. 1, where the mismatch
has a kink. Therefore we cannot Taylor-expand the mis-
match around the signal location and define a metric tensor
from the second-order quadratic form. Furthermore, the
mismatch (62) depends not only on the parameter offsets,
but also on the actual value of the signal duration �s.
Therefore the mismatch function is not constant over the

R. PRIX, S. GIAMPANIS, AND C. MESSENGER PHYSICAL REVIEW D 84, 023007 (2011)

023007-8



parameter space. However, it is interesting to note that the
mismatch behaves close to linearly around the point of
perfect match, and we can obtain the first-order variation
of the mismatch (62) as

dmðT sÞ ¼ 2
jdt0j
�s

þ jd�j
�s

; (63)

which shows that the mismatch increases twice as fast for
offsets in start-time t0 than for offsets in time scale �, which
is also seen in Fig. 1. Also, as seen in Fig. 1, the parameters
t0 and � are correlated, and the isomismatch curves close to
the signal are straight lines with steepness jd�=dt0j ¼ �2,
as seen from Eq. (63).

These properties are important for covering the
transient-parameter space with a template bank, where
one tries to use the smallest number of templates while
guaranteeing a certain minimum match for any signal
within the template-space. For our present purpose it will
be sufficient to make sure that the finite step-sizes in t0; �
are fine enough to ensure a reasonable approximation to the
integral (55). The worst-case mismatch (62) occurs for the
shortest time scale �s, so for �min ¼ 0:5 days, say, and a
time-sampling in steps of TSFT ¼ 1800 sec , the worst-
case mismatch will be bounded by m & TSFT=�min � 4%.

G. Semicoherent Bayes factor

Increasing the coherent integration time (or in our case,
the maximal time scale �) in wide parameter-space CW

searches over unknown Doppler parameters � typically
results in a dramatic increase in computing cost. The
reason is that the likelihood function F becomes increas-
ingly finely structured over Doppler parameters �, such
that more and more templates need to be sampled in order
to cover the parameter space (see [31,33,36]). This feature
severely limits the feasible coherence time to �OðdaysÞ
for fully coherent searches over unknown Doppler
parameters.
The usual approach to this problem is to abandon fully

coherent integration of Eq. (24) over the whole observation
time and instead adopt a ‘‘semicoherent’’ approach: this is
typically achieved by relaxing the constraint of a consistent
signal phase over the whole lifetime. Namely, one splits the
observation time Tobs intoN segments of duration�T, such
that Tobs ¼ N�T, and requires phase-coherence only over
each segment �T. The initial phase �0 is part of the set of
four amplitude-parameters A, but for simplicity one re-
laxes the consistency-constraints for all four amplitude-
parameters A	 across different data-segments xðiÞ with
i ¼ 1 . . .N. This corresponds to replacing the four un-
known amplitude parameters A	 by N � 4 unknown
amplitude parameters fA	

ðiÞgNi¼1. Using the product rule

for joint probabilities of independent events, namely
PðfxðiÞgj . . .Þ ¼

Q
N
i¼1 PðxðiÞj . . .Þ, we can express the corre-

sponding semicoherent transient Bayes factor (29) as

Bsc
SGðxÞ ¼

Z
d�

Z
dT Pð�;T jH SÞ

�YN
i¼1

Z
LðxðiÞ;AðiÞ; �;T ÞPðAðiÞjH SÞd4AðiÞ:

(64)

Using the F -statistic prior (54), we obtain

Bsc
F ðx;�;$Þ¼ 1

�t0��

�
70

�̂4
max

�
NZ

eSNðx;�;T Þdt0d�; (65)

where we defined the semicoherent sum SN as

S Nðx;�;T Þ � XN
i¼1

F ðxðiÞ;�;T Þ: (66)

The semicoherent sum can be shown to require substan-
tially fewer templates in parameter space for the same
amount of data analyzed e.g. see [38,39], and can in
many cases achieve a higher sensitivity for wide
parameter-space CW searches at fixed computing cost. In
order to maximize the available computing power, such
searches are performed on large computer clusters and on
Einstein@Home [40], a large public distributed computing
project (e.g. see [41] for an Einstein@Home search on
LIGO data).
Therefore the semicoherent Bayes factor (65) allows for

an efficient and computationally feasible transient-CW

FIG. 1. Approximate mismatch (62) (dashed lines) and mea-
sured SNR loss (solid lines) as functions of the rectangular-
window offsets ft0; �g. The top left plot shows mismatch contour
lines at m ¼ 0:90, 0.75, 0.60, respectively, and the side-panels
show cross-sections of �2=�2

o at fixed t0 ¼ t0s (right panel), and
at fixed � ¼ �s (bottom panel).
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search over a wide Doppler parameter space � of sources
with unknown sky-position, frequency and spin-down.
More work is required to fully develop and study this
approach, as our present analysis is mostly focused on
the coherent method. A semicoherent search for transient
CWs would be very suitable to be performed on the
Einstein@Home computing platform.

V. DETECTION EFFICIENCY

In order to quantify the detection efficiency of different
statistics we perform Monte-Carlo studies with simulated
Gaussian noise and injected signals with parameters drawn
according to their priors. Note that in order to implement
this in the most efficient way, we do not perform end-to-
end simulations from generated artificial data processed
through the whole pipeline. Rather, we more directly syn-
thesize draws of the different statistics from their known
distributions, or compute them from draws of intermediate
data-products. This is possible because we know the dis-
tribution of intermediate data-products in the case of
Gaussian noise. The details of this procedure are described
in Appendix A 4.

A useful method to compare different detection statistics
is to compare their ‘‘receiver-operator-characteristic’’
(ROC), namely, the expected detection probability pdet

versus the false-alarm probability pFA for some signal
population. This follows the spirit of the Neyman-
Pearson criterion, which compares the detection probabil-
ity of different statistics at fixed false-alarm probability.

Note, however, that the traditional way of plotting ROC
curves, namely pdet versus pFA is somewhat unfortunate.
We know a priori that any statistic of positive detection
power satisfies pdet > pFA, and pdet ¼ pFA corresponds to
a complete random guess. Therefore only the upper tri-
angle of the plot is of any interest, and it is more informa-
tive to plot pdet-pFA versus pFA instead, which quantifies
how much better any statistic performs compared to a
random guess.

A. Comparing different amplitude priors

We first consider the detection efficiency of the two
Bayes factors BSGj�̂max

of Eq. (55), and BSGjhmax
of

Eq. (52). These only differ by their cutoff boundary on
the uniform-A	 amplitude priors, as discussed in
Sec. IVE 3. For simplicity we consistently used a rectan-
gular transient window (17) for both the injections and the
search. We performed N ¼ 104 random draws in the noise
case and in the signal case. We estimated the errors on pdet

using a jackknife estimator on 100 subsets, the resulting
estimated 1� errors in the following ROC curves are al-
ways less than dðpdetÞ & 0:02.

The amplitude parameters are drawn according to their
physical priors (47). For the first simulation we fixed the
optimal SNR (42) to �o ¼ 3. This is achieved by rescaling
h0 according to the resulting SNR for drawn values of

fcos
; c ; �0g. We always use the same ranges for the
search and for drawing signal parameters from, and we
consider two sets of transient-window parameter ranges,
namely

range I: � 2 ½0:1; 0:6� days; t0 2 ½0; 9� days;
range II: � 2 ½0:5; 2:5� days; t0 2 ½0; 6� days:

(67)

The results of this Monte-Carlo simulation are shown in
Fig. 2, and we see that the statistic BF � BSGj�̂max

seems to

generally perform better than BSGjhmax
, as discussed in

Sec. IVE 3. For some choices of transient-window ranges
(such as range I), the latter actually performs worse than
the orthodox maximum-likelihood statistic F max, as seen
in the upper plot in Fig. 2. We also note that the detection
probability for signals of equal optimal SNR �o is lower
for range I than for range II. This can be understood from
the substantially larger parameter space associated with

FIG. 2. Detection efficiency of BSGj�̂max
, BSGjhmax

and F max for
injected signals at fixed optimal SNR of �o ¼ 3, using a rect-
angular transient window ($s ¼ r). The curve labeled ’F total’
refers to a standard CW F -statistic search over the full data
span. The upper plot corresponds to transient-window parame-
ters drawn from range I, while the lower plot is for range II, see
Eq. (67). We only plot 1� error-bars for BSGj�̂max

, which are

representative for the size of the errors on the other curves.
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range I, namely �max ¼ 0:6 days in Tobs ¼ 9 days, as
compared to �max ¼ 2:5 days in Tobs ¼ 6 days for
range II. Therefore we can fit Tobs=� ¼ 15 independent
rectangular windows into the observation time in range I,
while for range II this factor is only 2.4. This entails more
independent trials and therefore a higher false-alarm
probability for range I, which reduces the detection power
for signals of the same SNR.

In order to verify that these qualitative conclusions are
not restricted to injections at constant SNR �o, we also
performed these Monte-Carlo simulations for injected sig-

nals at constant amplitude h0=
ffiffiffi
S

p
. Note that this results in a

wide range of injected signal SNRs �o due to the varying
signal durations �. The results of these simulations are
shown in Fig. 3, which qualitatively agree with Fig. 2.

As expected, these results also show that the transient
statistics are substantially more sensitive to transient-CW
signals than a standard ‘‘infinite-duration’’ CW F -statistic
search over the full span Tobs. The quantitative advantage
in recovered SNR depends on the details of the transient
parameter-space, as seen from the mismatch (62), namely,
setting � ¼ Tobs and �� ¼ �s, we find the recovered frac-
tion of �2

o is roughly proportional to the ‘‘duty cycle’’
�s=Tobs of the transient signal with respect to the observa-
tion time Tobs.

B. Comparing rectangular and exponential windows

Another question of interest is how robust the detection
statistic B$

F is, which assumes a particular transient-

window type$, if the transient signal actually has a differ-
ent window type $s. We cannot answer this question in
general, but it is instructive to study the simple case of
type-mismatch between the rectangular and exponential
transient-window types. We inject signals with either rect-
angular (Eq. (17)) or exponential (Eq. (18)) transient win-
dow, and we perform the search using both rectangular
and exponential transient windows, respectively. The
Monte-Carlo parameters are the same as in the previous
section, and we only show the results for the transient
parameters range II of Eq. (67), the qualitative conclusions
are the same for range I. The results of these Monte-Carlo
simulations are shown in Fig. 4. We see that using the
wrong window-type, i.e. $ � $s, results in a loss of
detection power in BF , as expected. However, the loss is

quite moderate, which in practice would favor a search

FIG. 3. Same as Fig. 2, with signals injected at fixed amplitude
h0 ¼ 0:06

ffiffiffi
S

p
and h0 ¼ 0:02

ffiffiffi
S

p
, respectively.

FIG. 4. Detection efficiency for different transient-window
types. The plot shows detection power of the Bayes factor B$

F

and maximum-likelihood statistic F$
max for assumed window-

type $ in the case of injected signals of window type $s.
Transient parameters were drawn from range II of Eq. (67)
with a fixed SNR of � ¼ 3. The upper plot is for rectangular
injected transients ($s ¼ r), while the lower plot is for expo-
nential injected transients ($s ¼ e).
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assuming the simpler and much more computationally
efficient rectangular-window type, $ ¼ r (cf. Sec. A 3),
if the search is computationally limited. If computing cost
is not an issue, for example, in a targeted search for known
pulsars, one could perform both searches and then margin-
alize over $. More importantly, however, these results
suggest that we can hope to be reasonably sensitive also
to transient signals with different time evolutions not con-
tained in $ 2 fr; eg.

It is interesting to note in Fig. 4 that in the case of
injecting rectangular-window signals, i.e. $s ¼ r, the
maximum-likelihood F e

max assuming an exponential
window, can outperform the more correct F r

max-statistic.
A similar effect is seen in the corresponding simulations
for range I, which are not shown here. The origin of this
‘‘anomaly’’ can be traced to the fact that for the same time
scale parameter �, the exponential-window waveform (18)
lasts three times longer than the rectangular-window wave-
form (17). Therefore, the parameter spaces range I and
range II contain substantially more independent trials for
the rectangular-window waveform compared to the expo-
nential one. This results in lower false-alarm probabilities
at fixed threshold for F e

max compared to F r
max. Although

there is a loss in SNR due to window-type mismatch, this
effect is partly weaker than the difference in false-alarm
probabilities, resulting in a partly more powerful detection
statistic. To test this explanation, we have repeated the
Monte-Carlo simulation with empty ranges (i.e. a fixed
transient window), and with ranges where �min > �t0,
such that all waveforms overlap in the transient start-time
range, independently of window-function type. In both
cases the anomaly disappears. Ranges I and II both have
the feature that �min < �t0, such that the waveform-
overlap will be substantially lower for the rectangular-
window compared to the exponential-window waveforms,
resulting in a large difference in independent trials in the
noise case. These observations are consistent with the
explanation that the anomaly is caused by the difference
in independent trials. Interestingly, however, this effect is
not observed for the marginalized Bayes factors, which
always seem to correctly take into account the effective
size of the parameter space.

C. Bayes factor self-consistency condition

One can derive an interesting self-consistency condition
from the general definition (29) of the Bayes factor, which
provides a useful Monte-Carlo test of our implementation:
the probability of obtaining a Bayes factor BSGðxÞ 2
½B0; B0 þ dB� under any hypothesis H i is given by the
probability of obtaining a measurement x in the infinitesi-
mal volume slice 4V 0 � fx: BSGðxÞ 2 ½B0; B0 þ dB�g
under that hypothesis, i.e.

PðB0jH iÞdB ¼
Z
�V 0

PðxjH iÞdnx: (68)

Changing local coordinates from x to y ¼ fBðxÞ; y?g,
where y?denotes n� 1 coordinates on the constant-B0

hypersurface S0 � fx: BSGðxÞ ¼ B0g, this can be written as

PðB0jH iÞ ¼
Z
�S0

PðxjH iÞdS; (69)

where we defined the surface element dS � Jdn�1y? and
we assume that the Jacobian J is non-singular, i.e. J �
j@y=@xj � 0 everywhere inside �V 0. Using the definition
(29) of the Bayes factor, we can substitute PðxjH SÞ ¼
BSGðxÞPðxjH GÞ, and obtain

PðB0jH SÞ ¼
Z
S0

BSGðxÞPðxjH GÞdS

¼ B0

Z
S0

PðxjH GÞdS ¼ B0PðB0jH GÞ; (70)

where we used the fact that BSGðxÞjSo
¼ B0 by definition of

S0. We therefore find a general self-consistency relation for
any Bayes factor, namely

BSGðxÞ � PðxjH SÞ
PðxjH GÞ

¼ PðBSGjH SÞ
PðBSGjH GÞ

: (71)

In the framework of Monte-Carlo simulations [42], this
implies that if we draw random data x according to the
priors assumed in the Bayes factor, the ratio of probability-
densities of obtaining BSG ¼ B0 in the signal- and the
noise-case is identical to B0. If the assumptions are satis-
fied, the signal-distribution of BSG is therefore not inde-
pendent of the noise-distribution, but is uniquely
determined by it. If we know PðBSGjH GÞ, then we also
know the signal distribution, and vice versa.
The resulting self-consistency relation for the odds ratio

(28) is

OSG ¼ PðOSGjH SÞ
PðOSGjH GÞ

PðH SjIÞ
PðH GjIÞ

; (72)

where the prior odds ratio determines the probability of
drawing a sample x from the signal- or noise-population,
respectively. Therefore the odds ratio predicts the ratio of
event densities at any value OSG, rather than the ratio of
normalized probability densities.
Note that in order for Eq. (71) to hold for the transient-

CW Bayes factor BF defined in Eq. (55), one must not

draw signal amplitude parameters A	according to the
physical priors (47), but according to the (unphysical)
F -statistic priors (54) that went into the construction of
BF . The self-consistency relation (71) can equivalently be

expressed as

logBF ¼ logPðlogBF jH SÞ � logPðlogBF jH GÞ; (73)

which is more directly suitable for numerically testing this
relation in a Monte-Carlo simulation. Defining the shortcut
pi � PðlogBF jH iÞ, this can also be written as
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log
pS

pG

¼ logBF : (74)

We have performed a Monte-Carlo simulation generating
values of BF in the noise- and signal-cases, with amplitude

parameters A	 drawn according to the (unphysical)
F -statistic priors (54). Figure 5 shows the resulting dis-
tributions of pSand pG, and the plots of logðpS=pGÞ versus
logBF , which should fall on a straight line of unit slope

according to the self-consistency relation (74). These re-
sults show that the self-consistency relation is increasingly
well satisfied with increasing prior cutoff �̂ max , in

particular we find good agreement for cutoff values above
�̂ max * 10, as illustrated in Fig. 5 . This can be understood

as follows: for smaller values of �̂ max , the noise population

PðBF jH GÞ is biased towards larger values of BF , because

the approximation in Eq. (49) is increasingly violated. In
the noise-only case, the likelihood ratioL will peak some-
where aroundA	 ¼ 0 and fall off according to a Gaussian
(31) with characteristic width of order �ð�̂Þ �Oð1Þ,

modulo geometric factors or order unity. Therefore the
value of L will not be negligible at the cutoff boundary
�̂ max �Oð1Þ, and the extension to infinity will overesti-

mate the integral. Therefore �̂ max � 1 is necessary for the

integral to be well approximated by Eq. (49).

VI. PARAMETER ESTIMATION

Parameter estimation simply consists of computing the
posterior probability for the signal parameters �, given the
observed data x, namely

Pð�jx;H SÞ ¼ cPðxjH S; �ÞPð�jH SÞ; (75)

where c ¼ 1=PðxjH SÞ is a normalization constant inde-
pendent of �. Often one is not interested in a simultaneous
estimate of the full set of parameters �, but only in a subset
�1 
 � without regard for the ‘‘nuisance’’ parameters �2,
where � ¼ f�1; �2g. From the general expression
Pð�1j . . .Þ ¼

R
Pð�1; �2j . . .Þd�2 and Bayes’ theorem (75),

we obtain the marginalized posterior

FIG. 5. Results of Monte-Carlo simulation of the Bayes-factor consistency relation (74), using N ¼ 104 draws, transient range II,
and amplitude priors (54) with cutoff �̂max ¼ 7 (left panel), and �̂max ¼ 14 (right panel), respectively. The upper plots show the
distributions of logBF in the noise case (dashed), and in the signal case (solid), and the lower plots show logðpS=pGÞ, which should

coincide with logBF (dot-dashed line) according to (74). We show the binned histogram values (thin lines) as well as kernel-smoothed

fits (thick lines), and we have restricted the consistency test to a region of good overlap (indicated by vertical dashed lines) between
both distributions in order to avoid numerical problems.
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Pð�1jx;H SÞ /
Z

PðxjH S; �1; �2ÞPð�1; �2jH SÞd�2:
(76)

For our present model the likelihood function (26) can be

expressed as Pðxj�Þ ¼ 
e�ðxjxÞ=2Lðx; �Þ in terms of the
likelihood ratio L of Eq. (31). Using F -statistic priors
(54), we can perform the A	-integration explicitly and
obtain

PðT ; �jx;H SÞ / eF ðx;�;T ÞPðT ; �jH SÞ; (77)

which is a useful starting point for further marginalization.
If we consider a targeted search in Doppler parameter, i.e.
Pð�jH SÞ ¼ �ð�� �sÞ, with an assumed window-
function type $, we can write the posterior probability
for ft0; �g as

Pðt0; �jx;H S; �;$Þ / eF ðx;�;T ÞPðt0; �jH SÞ; (78)

and the respective marginal posteriors on the transient
parameters are simply

Pðt0jx;H S; �;$Þ /
Z

eF ðx;�;T Þd�;

Pð�jx;H S; �;$Þ /
Z

eF ðx;�;T Þdt0;
(79)

where we assumed uniform priors (46) for ft0; �g. The
generalization to marginalization over the window type
$ is straightforward, and yields a weighted sum of these
posteriors with relative prior probabilities of the different
window types, e.g.

Pðt0jx;H S; �Þ /
X
$

Pðt0jx;H S; �;$ÞPð$jH SÞ: (80)

Similarly, parameter-estimation on the window-type $
itself can be expressed as

Pð$jx;H S; �Þ / Pð$jH SÞ
Z

eF ðx;�;T Þdt0d�

/ Pð$jH SÞBF ðx;�;$Þ; (81)

so the window-type specific Bayes factor (55) is
proportional to the relative likelihood of different
window-types $.
In the frequentist framework one often uses maximum-

likelihood estimators for parameter estimation, i.e.
ft0ML; �MLg such that

FIG. 6. Example posteriors (79) on t0 (left column) and � (right column), for an injected rectangular transient-CW signal within
range III, with randomly drawn amplitude parameters at fixed optimal SNR �o ¼ 5 (upper row) and �o ¼ 8 (lower row). The solid
vertical line indicates the injected parameter value, and the dashed vertical line (‘‘ML’’) indicates the maximum-likelihood estimate.
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F ðx; t0ML; �MLÞ ¼ max
ft0;�g

F ðx; t0; �Þ; (82)

for fixed Doppler-point � and window-type $.
The following Monte-Carlo studies use rectangular tran-

sient windows within a wider range than (67), namely

range III: � 2 ½0:5; 14:5� days; t0 2 ½0; 30� days:
(83)

Using the transient-parameter range III, Fig. 6 shows one
example of parameter posteriors (79) and maximum-
likelihood (ML) estimators (82) on t0 and � for injected
signals with SNR �o ¼ 5 and �o ¼ 8, respectively. We see
in Fig. 6 that the time scale of variations in Pðt0jxÞ is
shorter than in Pð�jxÞ. This is due to the combined effect
of the wider plotted range in t0 and the twice smaller
characteristic correlation time scale in t0, as derived in
Eq. (63).

In order to study the quality of transient parameter
estimation as a function of SNR, we performed Monte-
Carlo simulations comparing maximum-posterior estima-
tors (MP), defined as

Pðt0MPjx;H SÞ ¼ max
t0

Pðt0jx;H SÞ;
Pð�MPjx;H SÞ ¼ max

�
Pð�jx;H SÞ;

(84)

and maximum-likelihood estimators (ML) of Eq. (82),
using uniform priors on ft0; �g within range III, and physi-
cal priors (47) on amplitude parameters. For different fixed
values of SNR we perform N ¼ 104 simulated parameter
estimates, and compute the rms errors from t0 � t0s and
�� �s, for ML- and MP- estimators, respectively. We also
compare the results to the error of a pure random guess
within the range ½t1; t1 þ �t�, where �t � t2 � t1. For
uniform priors this is

ðrms½t� ts�Þ2 ¼ 1

�t2

Z t2

t1

dts
Z t2

t1

dtðt� tsÞ2 ¼ �t2

6
:

(85)

For the transient range III this yields random-guess
errors of rms½t0 � t0s� � 12:25 days, and rms½�� �s� �
5:72 days, which are shown in Fig. 7. On the other hand,
for a maximally biased ‘‘guess’’ of � ¼ �min, one finds

rms ½�min � �s� ¼ ��=
ffiffiffi
3

p � 8:08 days: (86)

The results of the parameter-estimation Monte-Carlo simu-
lation are shown in Fig. 7. For low SNRs of � & 7, we see
that the MP estimators perform better than the ML estima-
tors, while for higher SNR the estimation quality of both
estimators converges. We note that for � ! 0 the parame-
ter estimation on t0 converges to a random guess as ex-
pected, but in the case of �ML we notice a substantial
deviation, and to a lesser degree, also for �MP. These
estimates fall closer to a maximally biased � ¼ �min guess,
which indicates an increasing bias in the � estimators for
low SNR, strongly favoring values close to �min. This
surprising effect will be studied in some more detail in
the following section.

Estimation bias on time scale � in pure noise

Figure 8 shows normalized histograms of the parameter
estimates on � in pure Gaussian noise, i.e. for � ¼ 0. These
results confirm the estimation bias towards �min previously
seen in Fig. 7. We have been able to trace this effect to a
surprising fundamental feature of the Gaussian random
walk underlying matched filtering. If we discretize the
integration time as Tj ¼ j�T in steps of �T, then linearity

of the scalar product (32) implies

x0	ðTjÞ ¼ x0	ðTj�1Þ þ �x0	;j; (87)

FIG. 7. Parameter-estimation accuracy: rms-errors on t0 (left panel) and � (right panel) as a function of SNR for maximum-
likelihood (ML) and maximum-posterior (MP) estimates. Each value of SNR corresponds to N ¼ 104 random parameter draws, and
the error bars represent 1� jackknife error estimates. The dotted horizontal line (‘‘rand’’) corresponds to a uniform random guess (85),
and the dot-dashed horizontal line corresponds to a maximally biased � ¼ �min guess (86).
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where �x0	;j is independent of x0	ðTj�1Þ and follows a

Gaussian distribution with zero mean (in the noise case
H G). We see from this expression that the amplitudes x0	
can be interpreted as Gaussian random walks over finite
steps �T in the integration time. The four Gaussian ran-
dom walks fx0	g are combined in the quadratic form (36) to

yield F ðTjÞ, where they are normalized byM	� such that

F follows a �2-distribution with 4 degrees of freedom for
any Tj, independently of the random-walk step j.

We can therefore consider a simpler toy-model, namely,
a one-dimensional normalized random walk, defined as

sn ¼ 1ffiffiffi
n

p Xn
j¼1

�xj; (88)

where the �xj are n independent Gaussian random varia-

bles with zero mean and unit variance, i.e. �xj �
Gaussð0; 1Þ. The random walk (88) is normalized in such
a way that it follows exactly the same distribution at every
step n, i.e. sn � Gaussð0; 1Þ. We denote as s2nmax

the maxi-

mum of s2n over a walk-step window ½n1; n2�, i.e.

s2nmax
� max

n2½n1;n2�
s2n; (89)

and plot the distribution of nmax 2 ½n1; n2� in repeated
trials of such normalized random walks. For example, if
we consider n1 ¼ 50 and n2 ¼ 100, andN ¼ 104 trials, we
obtain the distribution of maxima shown in Fig. 9, which
illustrates a qualitative bias towards nmin, and to a lesser
extent nmax, similar to what was seen in Fig. 8 for the
physical parameter estimation of �. This seems to be a
manifestation of a well-known property of random walks,
namely, Lévy’s arcsine law, which is discussed, for ex-
ample, in Sec. 4.2 of [43].

VII. CONCLUSIONS

We have discussed the case for a transient-CW search,
from the point of view of its astrophysical motivation, and
in order to bridge the gap between short burstlike signals
and traditional infinite-duration CW signals.
We have introduced a simple transient signal model

based on the classical CW signal, modulated by a window
function of finite support. The corresponding Bayes factor
has been derived and implemented, and we have performed
Monte-Carlo simulations to compare its efficiency to the
orthodox maximum-likelihood detection method. These
results show that the Bayes factor is both more sensitive
and more robust than a maximum-likelihood statistic, and
it yields better parameter estimates, at similar computing
cost.
The Monte-Carlo studies presented in this work have

been limited to pure Gaussian noise, and it would be
important to test this method in practice on actual detector
data. In particular one needs to address the question of how
to assign meaningful false-alarm probabilities to detection
candidates in real detector data (see also [5] for an example
of these difficulties).
The search-method discussed here is currently restricted

to nonrepeating transient CWs, and more work would be
required to generalize this approach to allow for repeating
transient-CW signals.
In addition to the fully coherent search method, we have

derived the necessary formalism for a semicoherent tran-
sient search, which could be used to perform an all-sky,
all-frequency wide parameter-space transient search, for
example, running on Einstein@Home. More work is re-
quired to fully develop and implement this approach.
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APPENDIX A: TRANSIENT SEARCH
IMPLEMENTATION

Our numerical implementation of the Bayes factor
BF ðx;�Þ of Eq. (55) consists of two steps:

(1) calculate a discretized F -statistic map F ðx; t0; �Þ
over the search ranges in t0 and �,

(2) compute BF ðxÞ by discretizing the marginalization

integral in Eq. (55) as a sum.

The following two sections provide more details about
these two steps, respectively.

1. Atoms-based F -statistic computation

We discretize the two-dimensional F -statistic map
over the search ranges t0 2 ½t0min; t

0
min þ�t0� and � 2

½�min; �min þ ��� in steps dt0 and d�, respectively.
Namely, we compute the F -matrix

F mn � F ðx; t0m; �nÞ; (A1)

over the Nt0 � N� rectangular grid

t0m ¼ t0min þmdt0; �n ¼ �min þ nd�; (A2)

where Nt0 ¼ �t0=dt0 and N� ¼ ��=d�.
The default for these step-sizes used here are dt0 ¼

d� ¼ 1800 s. If the shortest signals considered are �min �
0:5 days long, then according to Eq. (62) the worst-case
mismatch ism & d�=�min � 0:04, i.e. a 4% loss of squared
SNR.

In the current implementation of the transient-CW
search we use the underlying discretization of the
F -statistic computation in COMPUTEFSTATISTIC_V2

(CFSV2), as described in more detail in [20]. Namely

the F -statistic (36) is computed from M0
	� and x0	 of

Eqs. (32) and (33), which are approximated as sums

x	 � XNSFT

i¼1

gix	;i; M	� � XNSFT

i¼1

g2iM	�;i; (A3)

in terms of the F -statistic ‘‘atoms’’

x	;i � 2
X
X

S�1
X

Z tiþTSFT

ti

xXðtÞhX	ðtÞdt;

M	�;i � 2
X
X

S�1
X

Z tiþTSFT

ti

hX	ðtÞhX� ðtÞdt;
(A4)

where TSFT is the length of the short Fourier transforms
(SFTs) that are used as input data, typically TSFT ¼ 1800 s.
In the above expressions we implicitly assumed that the
transient-window function gðtÞ varies slowly and can be
approximated as constant over the time scale TSFT. For any
chosen Doppler position �, the code first computes the

NSFT atoms fx	;i;M	�;igNSFT

i¼1 over the whole observation

time of interest, which are also the primary input to this
implementation of the standard CW F -statistic. The
F -statistic value F mn for any particular transient parame-
ters ft0m; �ng is then computed from the corresponding
partial sums in Eq. (A3). This approach allows for an
efficient computation of the F mn map in the case of a
rectangular-window function gr of Eq. (17): going from �n
to �nþ1 can be achieved by a single extra addition, namely

x	ðt0m; �nÞ ¼ x	ðt0m; �n�1Þ þ x	;i1 ; (A5)

(and similarly for M	�), where i1 is the atom-index cor-

responding to the time-step t0m þ �n (assuming for simplic-
ity that d� ¼ TSFT).
In the case of the exponential transient window ge of

Eq. (18), the whole sum in Eq. (A3) needs to be recom-
puted for every matrix-element m, n, as the window-
function provides different weights at every point.

2. Transient marginalization integrals

Given the transient matrix Fmn, we can now turn the
integrals in Eqs. (55) and (79) into simple sums. A minor
subtlety arises because of the potential numerical problems
of expressions like eF , which overflow in double precision
for values F > 709. Such values are easily possible for
noisy non-Gaussian data with line-artifacts or for strong
injected signals. It is therefore numerically safer to rewrite
these sums using the discretized maximum-likelihood sta-
tistic value (53), namely

F max � max
mn

F mn; (A6)

and write BF of Eq. (55) as a discretized sum in the form

logBF ðx;�Þ � F max þ c0 þ log
XNt0

m¼1

XN�

n¼1

e�Fmn ; (A7)

where we defined c0 � logð70=ð�̂4
maxNt0N�ÞÞ, and

�F mn � Fmn �Fmax 	 0: (A8)

For large values of F max, some terms e�F mn can now
underflow to zero, but this poses no numerical problems
because these contributions were negligible anyway.
Similarly, we can compute the parameter posteriors (79) as

Pðt0mjx;H SÞ /
XN�

n¼1

e�Fmn ; (A9)

Pð�njx;H SÞ /
XNt0

m¼1

e�F mn ; (A10)

where Fmax only affects the normalization and has been
dropped.
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3. Computing cost

In order to be able to plan which types of searches can be
performed with a reasonable investment of computing cost,
it is useful to have a rough computing-cost model that
allows one to predict the expected run time of any search.

Let us start with the underlying F -statistic implementa-
tion CFSv2 which is used in our current coherent
transient-search implementation described in Sec. A 1.
Note that more efficient F -statistic algorithms do exist,
based on resampling and FFT techniques [44,45].
However, the ‘‘Williams-Schutz’’ method [46] currently
implemented in CFSv2 is well suited to our purpose, as it
is already based on computing the atoms fx	;i;M	�;ig over
SFTs. Nevertheless it will be interesting to study possibly
more efficient transient-CW implementations based on
resampling and FFT techniques.

We can break up the total computing time c
ð1Þ
B for

BF ðx;�Þ at one Doppler point � as follows:

(1) the time catoms to compute the atoms (A4),
(2) the time c$Fmap to compute the F -map (A1) over

ft0; �g for given window-type $, and
(3) the time cmarg to marginalize over the F -map to

obtain the Bayes factor BF ðx;�Þ, using Eq. (A7)

Atoms cost: the time catoms to compute for one Doppler
position � the NSFT ¼ Tdata=TSFT atoms using CFSV2 is
simply

catoms ¼ c0
Tdata

TSFT

; (A11)

where c0 is a machine-dependent timing constant.
F -map cost: the time c$Fmap to compute the Nt0 � N�

matrix of values fF mng, where Nt0 ¼ �t0=dt0, and N� ¼
��=d�. This time can be expressed as

c$Fmap ¼
XNt0

m¼1

XN�

n¼1

c$mn; (A12)

where c$mn is the time required to compute F mn for par-
ticular values m, n, which depends crucially on the type$
of window-function.

Let us first consider the exponential transient window
(18), which corresponds to the generic case where no
special optimizations can be used. Note that at the smallest
time scale index, n ¼ 1, we already had to sum all atoms
corresponding to a time scale �min. However, for every
matrix element we need to recompute this sum, as the
window-weights will be different every time. This intro-
duces a constant computing-time offset cn¼0 ¼ ce�min,
where ce is the machine-dependent time to compute all
atom-additions and window-weights within one unit-time.
From this we can express the cost for computing F mn as
cemn ¼ ceð�min þ nd�Þ, which does not depend on the start-
time index m. Therefore we obtain the total F -map cost as

c eFmap � ce
�t0

dt0
��

d�

ð�min þ ��=2Þ
TSFT

; (A13)

which is quadratic in�� (and where we assumedN� � 1).
In the case of a rectangular transient-window, various

sums are closely related and we can use the optimization of
Eq. (A5) to reduce the computing cost. Namely, every step
n ! nþ 1 in the timescale adds just the cost of one extra
time-step d�. This cost is crd�, where cris the machine-
dependent time to do all sums for a unit timescale in the
case of a rectangular window. For every start-time indexm,
we need to compute the sums up to �min first, costing cr�min.
Summarizing, we can express the accumulated computing
cost crm ¼ �nc

r
m per line of the F mn matrix as crm ¼

cr�min þ crN�d� ¼ cr�max. The total F -map cost is there-
fore

c rFmap ¼ cr
�t0

dt0
ð�min þ��Þ

TSFT

: (A14)

Bayes-factor marginalization: the marginalization (A7)
is a simple sum over the exponentiatedF -map matrix, and
so we can directly write the marginalization cost as

cmarg ¼ c1
�t0

dt0
��

d�
; (A15)

where c1 is the machine-dependent cost of exponentiation
and summation of real numbers. Note that exponentiation
is a very costly operation, and so we use a lookup-table
approximation to reduce this cost.

The total computing cost cð1ÞB for the transient Bayes
factor at one Doppler point � is now expressible as

c ð1ÞB ¼ catoms þ c$Fmap þ cmarg; (A16)

and for a search over N� Doppler points, this would simply
extend as

c
ðN�Þ
B ¼ N�c

ð1Þ
B ; (A17)

where the extra cost of summing these Bayes factors will
be negligible.
We have verified that these timing models are a good

description of the actual performance of the code [47] by
varying the parametersNSFT,�t

0 and��, and by fitting the
measured times to the model. This yields the following
timing constants on an Intel Core2 Duo CPU with
2.60 GHz (Lenovo T61p):

c0 ¼ 1:4� 10�6 sec; c1 ¼ 2:8� 10�8 sec:

cr ¼ 4:2� 10�8 sec; ce ¼ 1:3� 10�7 sec
(A18)

If we target a known pulsar with a transient-CW
search using data from 2 detectors spanning one year
(NSFT ¼ 35; 000), with a time scale range of � 2
½0:5; 14:5� days, using step-sizes dt0 ¼ d� ¼ TSFT ¼
1800 sec , we obtain an estimated computing costs of
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catoms � 0:05 sec; cmarg � 0:3 sec

crFmap � 0:5 sec; ceFmap � 540 sec :
(A19)

We see that such a targeted search would be easy to
perform for all interesting pulsars, even using the much
slower transient exponential window. Comparing this
transient-CW search to a coherent CW search over one
year, we notice that the cost per template � is about 18
times higher than the CW search for a rectangular window,
and about 104 times higher for the exponential window.
Wide parameter-space transient-CW searches will there-
fore be severely limited by computing resources, and a
semicoherent transient-search method as discussed in
Sec. IVG will be required.

4. Synthesizing Monte-Carlo draws

Following the method used in [34], we have imple-
mented an efficient Monte-Carlo simulation method, by
avoiding the generation of the primary data-input of the
search code (time-series or short Fourier transforms), and
instead synthesizing higher-level secondary data-input to

the transient-search functions directly. In our case, we
synthesize the NSFT atoms fx	;i;M	�;ig, which are the

intermediate input-data to the transient-search function.
This approach is very economical in computing resources
and allows us to generate large numbers of Monte-Carlo
draws in a very short time on a single machine. We draw
signal parameters fAs; �s;T sg according to the priors,
and from this we can compute the deterministic signal-
atoms s	;i of Eq. (38) and the antenna-pattern atomsM	�;i

of Eq. (A4). The noise-atoms n	;i are Gaussian random

variables with zero mean and covariance matrix M	�;i.

These can be generated from uncorrelated Gaussian vari-
ates, e.g. by using a Cholesky decomposition on M	�;i.

The data-atoms are then simply x	;i ¼ n	;i þ s	;i, accord-

ing to Eq. (37). Note that we have assumed the transient-
window function to be constant on the atoms’ time scale
TSFT, and therefore we can synthesize standard non-
transient CW atoms. The transient-window function is
applied when computing the F -statistic map, cf. Sec. A
1. All Monte-Carlo simulations used the ‘‘Mersenne
Twister’’ random-number generator GSL RNG MT19937

from GSL [48].
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