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Abstract
In this paper, we present a work in progress toward an efficient and economical
computational module which interfaces between Cauchy and characteristic
evolution codes. Our goal is to provide a standardized waveform extraction
tool for the numerical relativity community which will allow CCE to be
readily applied to a generic Cauchy code. The tool provides a means of
unambiguous comparison between the waveforms generated by evolution
codes based upon different formulations of the Einstein equations and different
numerical approximation.

PACS numbers: 04.20.Ex, 04.25.Dm, 04.25.Nx, 04.70.Bw

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of gravitational waves will brighten unexplored features of our universe that are
otherwise invisible to conventional astronomy and will increase our knowledge about the
very nature of time and space [1]. Gravitational wave detectors are already operating, and
results from the first LIGO and Virgo collaboration were recently published in Nature [2].
The signal predicted by numerical relativity will provide a template bank used for filtering
the noise, indispensable to the success of gravitational wave detectors such as LIGO, Virgo,
and LISA. The current sensitivity levels of the detectors will be improved substantially in
next-generation detection estimated by 2015. Although existing simulations are sufficiently
accurate for populating the parameter space in current searches of ground-based detectors, the
new generation of advanced detectors will be 10–15 times more sensitive by 2015.

Ideally, the emitted gravitational wave signature should be extracted at spatial or null
infinity. However, most present codes impose artificial, finite outer boundaries and are
performing the waveform extraction at finite radius. This method introduces systematic errors,
especially for higher modes, which is the main obstacle in reaching the desired accuracy.
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With the exception of Pretorius [3], who uses coordinates that compactify spatial infinity, all
the other codes use a computational domain with a finite outer boundary and Sommerfeld-
like approximate outer boundary conditions must be imposed, which introduce errors in the
computation of gravitational waves. The choice of proper boundary conditions is complicated
by gauge freedom and constraint preservation [4]. The emitted gravitational wave signature is
calculated at finite distance, using either the Newman–Penrose Weyl scalar ψ4 [5], or the odd
and even parity functions Q+, Qx in the Zerilli–Moncrief formalism [6]. The strain h of the
wave used in detection is obtained performing one time integration from the Zerilli–Moncrief
multipoles, and two time integrations from the Newman–Penrose curvature. The waveform is
affected by gauge ambiguities which are magnified by the integration [7].

Cauchy-characteristic extraction (CCE) [8], which is one of the pieces of the CCM strategy
[9], offers a means to avoid the error introduced by extraction at a finite world-tube. In CCE,
the inner world-tube data supplied by the Cauchy evolution is used as boundary data for a
characteristic evolution to future null infinity I+, where the waveform can be unambiguously
computed by geometric methods. This characteristic initial-boundary value problem based
upon a timelike world-tube [10] has been implemented as a mature evolution code, the PITT
null code [11, 12], which incorporates a Penrose compactification of the spacetime. By itself,
CCE does not use the characteristic evolution to inject outer boundary data for the Cauchy
evolution, which can be a source of instability in full CCM.

The PITT code has been tested to be second-order convergent in a wide range of testbeds
extending from the perturbative regime [13] to highly nonlinear single black hole spacetimes
[12]. However, in cases which require high resolution, such as the inspiral of matter into a
black hole, the error in CCE has been a troublesome factor in the postprocessing phase [14].
This has motivated a recent project [15] to increase the accuracy of the PITT code. Other
results achieved with previous versions of the PITT have been recently reported [16, 17].
Recently, the code underwent major improvements and corrections to previous versions, to
improve accuracy and convergence [18].

Here we test this improved version of CCE on a realistic application involving a Cauchy
evolution of the inspiral and merger of two equal mass non-spinning black holes. We use the
same code specifications described in [15] except that the accuracy of angular derivatives has
been increased to a fourth-order finite difference approximation. The results presented here
are a work in progress toward our goal to develop CCE as a reliable and accurate waveform
extraction tool for the numerical relativity community. This paper addresses the first two
objectives.

• To create a robust and flexible interface between a binary black hole Cauchy evolution
code and a characteristic code for wave extraction at infinity.

• To prove the robustness of the interface by performing precise computations of
gravitational waveforms at infinity from binary black hole, using this Cauchy-
characteristic extraction approach.

We construct an interface that takes the Cartesian data from a Cauchy evolution and
converts it into boundary data on a spherical grid for the characteristic evolution. The data
are evolved to future null infinity, where it is used to compute the gravitational waveform.
The flexibility of the interface is due to implementation of the spectral decomposition of data.
This implementation has been tested with a realistic application involving a binary black hole
inspiral. In section 2 we review the formalism underlying CCE, including enough details of
the patching, evolution and extraction, to make clear the difficulties underlying the calculation
of an accurate waveform at I+. In section 3 we briefly describe the initial data for Cauchy
and characteristic evolution. In section 4, we present the details of the CCE interface which
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Figure 1. Cauchy and characteristic evolution are patched in the vicinity of a world-tube WT ,
embedded in Cauchy evolution.

allows the data from a Cauchy evolution to be used as boundary data on an inner world-tube
for a characteristic evolution to I+, where the waveform is extracted. In section 5, we test
the CCE interface by extracting the waveform from a Cauchy evolution of a binary black hole
inspiral and merger, and by comparing it to the waveform obtained by other standard method
in the current practice.

2. The CCE formalism

2.1. Cauchy-characteristic patching

Characteristic data are provided by the Cauchy evolution on a world-tube WT , free initial
data being given on the initial null hypersurface NI , which sets the metric on the entire initial
cone (figure 1).

The metric data from a Cauchy evolution are interpolated onto a timelike inner world-tube
to extract the boundary data for the characteristic evolution. The characteristic evolution is
embedded into the Cauchy evolution and is extending to future null infinity I+, where the
waveform can be unambiguously computed using the geometric methods developed by Bondi
et al [19], Sachs [20] and Penrose [21]. The extraction process involves carrying out the
complicated Jacobian transformation between the Cartesian coordinates used in the Cauchy
evolution and the spherical null coordinates used in the characteristic evolution (the full details
are given in [22]).

2.2. Characteristic evolution

The characteristic formalism is based upon a family of outgoing null hypersurfaces, emanating
from some inner world-tube, which extend to infinity where they foliate I+ into spherical slices.
We let u label these hypersurfaces, xA (A = 2, 3) be angular coordinates which label the null
rays and r be a surface area coordinate (figure 2).

In the resulting xα = (u, r, xA) coordinates, the metric takesthe Bondi–Sachs form
[19, 20]

ds2 = −
(

e2β V

r
− r2hABUAUB

)
du2 − 2 e2β du dr

− 2r2hABUB du dxA + r2hAB dxA dxB, (2.1)

3
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Figure 2. Ongoing null hypersurfaces emanating from the world-tube and extending to I+.

where hAB is the Bondi–Sachs conformal 2-metric with hABhBC = δA
C . The code introduces

an auxiliary unit sphere metric qAB, with associated complex dyad qA satisfying qAB =
1
2 (qAq̄B + q̄AqB). For a general Bondi–Sachs metric, the full nonlinear hAB is uniquely
determined by the dyad component J = hABqAqB/2, since the other dyad component
K = hABqAq̄B/2 is constrained by the determinant condition 1 = K2 − J J̄ . The spherically
symmetric case characterized by J = 0. We introduce the spin-weighted fields U = UAqA

and Q = QAqA, where

QA = r2e−2 βhABUB
,r (2.2)

as well as the (complex differential) operators � and �̄. Refer to [8, 23] for further details
regarding numerical implementation. The auxiliary variables

ν = �J, B = �β, k = �K (2.3)

are also introduced to eliminate all second angular derivatives. In certain applications this has
been found to give rise to increased accuracy by suppressing the short wavelength error [24].

In this formalism, the Einstein equations Gμν = 0 decompose into hypersurface equations,
evolution equations and conservation conditions on the inner world-tube. As described in more
detail in [25, 26], the hypersurface equations take the form

β,r = Nβ, (2.4)

U,r = r−2 e2βQ + NU, (2.5)

(r2Q),r = −r2(�̄J + �K),r + 2r4�(r−2β),r + NQ, (2.6)

V,r = 1
2 e2βR − eβ��̄ eβ + 1

4 r−2(r4(�Ū + �̄U)),r + NV , (2.7)
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where [23]

R = 2K − ��̄K +
1

2
(�̄2

J + �2J̄ ) +
1

4K
(�̄J̄�J − �̄J�J̄ ) (2.8)

is the curvature scalar of the 2-metric hAB. Those equations have a hierarchical structure in
[J, β,Q,U, V ] such that the right-hand sides, e.g. Nβ[J ] only depend upon previous variables
and their derivatives intrinsic to the hypersurface.

The evolution equation takes the form

2(rJ ),ur − (r−1V (rJ ),r ),r = −r−1(r2�U),r + 2r−1 eβ�2 eβ − (r−1V ),rJ + NJ , (2.9)

where, Nβ , NU, NQ, NV and NJ are nonlinear terms which vanish for spherical symmetry.
Expressions for these terms as complex spin-weighted fields and a discussion of the
conservation conditions are given in [8].

The characteristic Einstein equations are evolved in a domain between an inner radial
boundary at the interior world-tube, and an outer boundary at future null infinity. The
characteristic evolution code implements this formalism as an explicit finite difference scheme,
based upon the compactified radial coordinate:

ξ = r

RE + r
(2.10)

so that ξ = 1 at I+. Here RE is a parameter based upon the extraction world-tube, which
in the CCE module is chosen as the radius of the extraction world-tube, as determined by
R2 = δij x

ixj in terms of the Cartesian coordinates xi used in the Cauchy evolution code. The
boundary data for J, β, U, Q, and V on the world-tube supply the integration constants for
a radial numerical integration of the hypersurface Einstein equations. The finite difference
scheme for integrating the hypersurface and evolution equations is based on the marching
equation for a spherically symmetric scalar field �:

�N − �W − �E + �S = −1

2

∫
	

(
V

r

)
,r

�

r
du dr (2.11)

(see figure 3) where the point N is the ‘new’ point in the evolution scheme, and V is defined
by the spherically symmetric version of the Bondi–Sachs metric given above. The evolution
scheme in the full gravitational case used to determine the metric at the next point on the null
hypersurfaces is modeled after this example (see [12, 24] for details).

2.3. Gravitational radiation calculation

The theoretical derivation of the waveform at infinity is carried out in terms of an inverse
surface-area coordinate 
 = 1/r , where 
 = 0 at I+. In the resulting xμ = (u, 
, xA)

coordinates, the physical spacetime metric gμν (2.1) has the conformal compactification
ĝμν = 
2gμν , where ĝμν is smooth at I+ and takes the form [10]:

ĝμν dxμ dxν = −(e2βV 
3 − hABUAUB) du2 + 2 e2β du d
 − 2hABUB du dxA + hAB dxA dxB.

(2.12)

As described in [15], the Bondi news function N(u, xA) and the Newman–Penrose Weyl tensor
component �(u, xA) = limr→∞ rψ4 which describe the waveform are both determined by
the asymptotic limit at I+ of the tensor field

	̂μν = 1




(
∇̂μ∇̂ν − 1

4
ĝμν∇̂α∇̂α

)

 (2.13)
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Figure 3. The null parallelogram WSEN used to determine the field values at point N, as described
by (2.11).

constructed from the leading coefficients in an expansion of the metric in powers of 


hAB = HAB + 
cAB + O(
2), (2.14)

β = H + O(
2), (2.15)

UA = LA + 2
 e2H HABDBH + O(
2), (2.16)


2V = DALA + 
(e2HR/2 + DADA e2H ) + O(
2), (2.17)

where R and DA are the two-dimensional curvature scalar and covariant derivative associated
with HAB.

The expansion coefficients H, HAB, cAB and LA (all functions of u and xA) completely
determine the radiation field. Before the gravitational radiation is calculated from the metric
in the neighborhood of I+, it is necessary to determine the conformal factor ω relating HAB to
a unit sphere metric QAB, i.e. to an inertial conformal Bondi frame [10] satisfying

QAB = ω2HAB. (2.18)

The news function N(u, xA) is directly computed by the code in terms of the computational
coordinates (u, xA), as opposed to the inertial coordinates (ũ, yA) on I+ corresponding to
an idealized distant observatory. The transformation to inertial coordinates proceeds first by
introducing the conformally rescaled metric g̃μν = ω2ĝμν in which the cross-sections of I+

have unit sphere geometry, in accord with (2.18). Then the rescaled null vector ñμ = ω−1n̂μ

is the generator of time translations on I+, i.e. ñμ∂μ = ∂ũ. The inertial coordinates thus satisfy
the propagation equations

n̂μ∂μũ = ω, n̂μ∂μyA = 0, (2.19)

6



Class. Quantum Grav. 28 (2011) 134006 M C Babiuc et al

where n̂μ∂μ = e−2H (∂u + LA∂xA) in terms of the computational coordinates. The inertial
coordinates are obtained by integrating (2.19), thus establishing a second pair of stereographic
grid patches corresponding to yA. Then the news function is transformed into N(ũ, yA).

The Bondi news function N is given by (2.20):

N = 1
4 e−2iδω−2 e−2H FAFB

{
(∂u + £L)cAB − 1

2cABDCLC + 2ωDA[ω−2DB(ω e2H )]
}
, (2.20)

where £L is the Lie derivative with respect to LA. The Newman–Penrose Weyl tensor
component � is given by (2.21)

� = 1
2ω−3 e−2iδn̂μFAFB(∂μ	̂AB − ∂A	̂μB − �̂α

μB	̂Aα + �̂α
AB	̂μα)|I+ . (2.21)

In the inertial Bondi coordinates, the expression for the news function (2.20) reduces to the
simple form

N = 1
4Q

AQB∂ucAB, (2.22)

and (2.21) reduces to the single term

� = 1
4QAQB∂2

ucAB = ∂2
u∂lJ |I+ . (2.23)

This is related to the expression for the news function in inertial Bondi coordinates by

� = ∂uN. (2.24)

Equation (2.24) holds true in the linearized approximation of the Einstein equations. In the
nonlinear case, the full expression for news and � must be used in the code. This introduces
additional challenges to numerical accuracy due to high-order angular derivatives of ω and
large number of terms.

3. Initial data

3.1. Initial cauchy data

For the Cauchy evolution we used the LazEv code [27, 28] along with the Cactus framework
[29] and Carpet [30] mesh refinement driver. LazEV is an eighth-order-accurate finite-
difference code based upon the Baumgarte–Shapiro–Shibata–Nakamura (BSSN) formulation
[31, 32] of Einstein’s equations, which deals with the internal singularities by the moving
puncture approach [27, 33]. Our simulation used nine levels of refinement with finest resolution
of h = M/53.76, and outer Cauchy boundary at 400 M. The initial data consisted of a close
quasicircular black hole binary with orbital frequency M� = 0.050, leading to more than a
complete orbit before merger (see [34]). We output the metric data on the extraction world-tube
every �t = M/32.

3.2. Initial characteristic data

The initial data for the characteristic evolution consist of the values of J on the initial
hypersurface u = 0. One way of suppressing incoming radiation in the data would be to
set the Newman–Penrose Weyl tensor component �0 = 0 on the initial null hypersurface. For
a perturbation of the Schwarzschild metric, this condition implies no incoming radiation in
the linearized approximation. However, in order to avoid shocks arising from incompatibility
with the Cauchy data on the extraction world-tube ξ = ξE (with ξ given by 2.10), we also
need to require that J and ∂ξJ are continuous. In the linearized approximation, the condition
where �0 = 0 implies that ∂2

ξ J = 0. The combination of those requirements leads to

7
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J = J |ξE
+ (∂ξJ )|ξE

(ξ − ξE), which would imply that J �= 0 at I+. For technical simplicity
we avoid this complication by initializing J according to

J = J |ξE

(ξ − 1)

(ξE − 1)
, (3.1)

which matches the Cauchy data and the derivatives at ξ = ξE and is consistent with asymptotic
flatness. Since this choice of J vanishes at infinity, the initial slice of I+ has a unit sphere
metric so that the conformal factor has the simple initialization ω(0, p, q) = 1.

Given the initial data (3.1), this leads to complete knowledge of the metric on the initial
null cone. Then (2.9) gives an expression for J,ur , which is used to determine J on the ‘next’
null cone, so that the process can be repeated to yield the complete metric throughout the
domain, which extends to I+.

4. Computational interface

We have designed an interface that takes Cartesian grid data from a Cauchy evolution and
converts it into boundary data for characteristic evolution on a spherical grid extending to
I+. We treat each component gμν(t, x

i) of the Cauchy metric as a scalar function in the xi

Cartesian coordinates which are used in the 3 + 1 evolution.
In order to make the interface as flexible as possible for future development as a community

tool for waveform extraction, we have based it upon a spectral decomposition of the Cauchy
data in the region between two world-tubes or radii R = R1 and R = R2, where R = √

δij xixj

is the Cartesian coordinate radius. Then at a given time t = T , we decompose gμν(T , xi)

in terms of Tchebychev polynomials of the second kind Uk(R) and spherical harmonics
Ylm(θ, φ), where (θ, φ) are related to xi/R in the standard way. The Tchebychev polynomials
are conventionally defined as functions Uk(τ) on the interval −1 � τ � 1. Here we map them
to the interval R1 � R � R2 by the transformation

τ(R) = 2R − R1 − R2

R2 − R1

where the extraction shell thickness is determined by the number kMax of Tchebychev
polynomials used. (In tests of binary black holes with mass M we use a relatively small
range R2 − R1 = 10 M, a larger value of kMax would be needed if the range were expanded).
Thus, for R1 < R < R2, we expand

gμν(T , xi) =
∑
klm

Cμν[klm]Uk(R)Ylm(θ, φ). (4.1)

For the applications to waveform extraction given in this paper, it is sufficient to consider
l � lMax, where lMax = 6, and k � kMax, where kMax = 6. The coefficients Cμν[klm] then
allow us to reconstruct a spherical harmonic decomposition of each component of the Cauchy
metric on the extraction world-tube R = RE , i.e.

gμν[lm](T , RE) =
∑

k

Cμν[klm]Uk(RE). (4.2)

This decomposition is carried out at a sequence of Cauchy time steps TN = T0 + N�T , where
�T is chosen to be much smaller than the characteristic time scale of the problem but, for
purposes of economy, larger than the time step used for the Cauchy evolution. A fifth-order
polynomial interpolation is carried out locally over the TN to provide characteristic boundary
data at any time t in analytic form.

The extraction module also requires the derivatives ∂tgμν and ∂Rgμν at the extraction
world-tube. The t-derivative is constructed by a fourth-order-accurate finite-difference stencil

8
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using the surrounding Cauchy times t = TN . The R-derivative is obtained analytically, at each
time level TN, by differentiation of the Tchebychev polynomials.

The spherical harmonic interpolator from the Cartesian to the spherical coordinates is part
of the extraction module, but its resolution is controlled by the Cauchy evolution.

The stereographic coordinates xA = (q, p) used to label the outgoing null rays in the
Bondi metric are matched to the spherical coordinates (θ, φ) induced by the Cartesian Cauchy
coordinates on the extraction world-tube by a standard transformation, using the conventions
in [23]. The value of the surface-area coordinate r in the Bondi–Sachs metric is obtained
on the extraction world-tube from the 2-determinant of the Cartesian metric on the surfaces
t = TN,R = RE . As a result the radius of the Bondi coordinate r �= const on the extraction
world-tube. The metric has to be calculated at a common value of the surface coordinate r,
because the original Cauchy extraction was at constant R. In order to make this calculation
possible, the transformation from Cartesian coordinates (t, xi) to Bondi–Sachs coordinates
(u, r, xA) is carried out via an intermediate Sachs coordinate system (u, λ, xa) [20] where
λ is an affine parameter along the outgoing null rays. The affine freedom allows us to set
λ = 0 on the extraction world-tube R = RE . After carrying out the Jacobian transformation
from (t, xi) to (u, λ, xA), the Cartesian metric and its first derivatives at the extraction world-
tube provide a first-order Taylor expansion in λ (about λ = 0) of the null metric in Sachs
coordinates. The corresponding Taylor expansion of the metric in Bondi–Sachs coordinates
then follows from the computed value of r and ∂λr at λ = 0, which are obtained from the
2-determinant of the Cartesian metric. In order to obtain a first-order Taylor expansion for the
Bondi metric variable β, the hypersurface equation (2.4) must be used to evaluate ∂rβ at the
extraction world-tube. All other metric variables are then initialized consistent with second
order accuracy. Taylor expansions are also needed to start up the radial integration equations
for the auxiliary variables (2.3) used to convert angular derivatives to the first-order form.
These expansions are obtained from applying the �-operator to the Taylor expansion of the
underlying metric. This is a complicated process because the � operator intrinsic to the λ = 0
extraction world-tube is not the same as the � operator intrinsic to the r = const Bondi spheres
(see [18] for a discussion). The low-order intermediate Taylor expansions limit the accuracy
of the result. A new approach that avoids entirely the use of the Taylor expansion and gives
better accuracy is presented in [18]. In the original approach, used for this paper, the resulting
Taylor expansion of the evolution variables is used to fill the points of the Bond–Sachs grid
to start the integration of the characteristic hypersurface and evolution equations (2.4)–(2.9).
The integration proceeds from the extraction world-tube to I+ on a radial grid based upon the
compactified x-coordinate (2.10).

Domain of dependence considerations place a constraint between the characteristic time
step �u and the size of the characteristic grid analogous to the CFL condition for the Cauchy
evolution. For an estimate, consider the Minkowski space case with the conformally rescaled
metric

ds2 = − (1 − ξ)2

R2
E

du2 − 2

RE

du dξ + qAB dxA dxB, (4.3)

where the unit sphere metric takes the form

qAB dxA dxB = 4

1 + p2 + q2
(dp2 + dq2). (4.4)

The past light cone is determined by

du

RE

= −dξ −
√

dξ 2 + (1 − ξ)2qAB dxA dxB

(1 − ξ)2
. (4.5)

9
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Table 1. Convergence rates of the l = 2,m = 2 mode for the metric variables measured near the
peak of the signal (t ≈ 200/M) at the world-tube, for an extraction radius R = 20 M .

Variable RateRe RateIm

β 2.02 2.01
J 2.03 2.00
J,x 2.04 1.99
Q 2.02 2.04
U 2.02 2.02
W 2.01 2.04

For typical characteristic grid parameters, �p = �q = �ξ/4, the resulting restriction is

|�u|
RE

< 8�ξ. (4.6)

For a Cauchy simulation of a binary black hole system of total mass M with timestep
�t = M/32 (sufficient to describe the typical frequencies of a binary system), (4.6) leads to

M

256RE

< �ξ, (4.7)

for the choice of characteristic timestep �u = �t . The corresponding number of radial
gridpoints must roughly satisfy Nξ < 128RE/M . This places no limit of practical concern on
the resolution of the characteristic evolution even for the small extraction radius RE = 20 M.
Thus, for purposes of CCE, there are no demanding CFL restrictions.

The interface was debugged and calibrated using the analytic Schwarzschild metric in
Kerr–Schild coordinates (t, xi),

gμν = ημν +
2m

r
kμkν, (4.8)

where kμ = (−1, xi/r).

5. Results

We present results for the characteristic extracted waveform either in terms of �, related
to the Bondi news by � = ∂uN in the linearized regime, or, when comparing to
the perturbative waveform, in terms of the Newman–Penrose component ψ4. The
relationship between the Cauchy and the characteristic waveforms is (R − 2M)ψ4 = −2�̄.
We decompose the signal in l = 10 spherical harmonic modes but, for illustrative
purposes, we concentrate on dominant (2, 2) and sub-dominant (4, 4) modes. The Cauchy
data were given at the extraction radii R = 20 M, 50 M, 100 M . The relationship
between the Cauchy radius R and the characteristic world-tube radius RE is RE/R =
1 + 1/R + 1/(4R2). The characteristic extraction module was run with the following
specifications: angular gridpoints = radial gridpoints = 60, 120, 240, and timestep �u =
8�t, 4�t, 2�t , where �t = M/32. The test was run until t/M = 385, using fourth-
order accurate angular derivatives, on stereographic patches with circular boundaries and
angular dissipation εJx = 0.001 (see [15] for details on how the angular dissipation is
added to the evolution equation (2.9)). The results are shown for the highest resolution.
Table 1 gives the convergence rates for the world-tube variables obtained with a small extraction
radius RE = 20 M at a time corresponding to the peak of the signal (t ≈ 200 M). The rates

10
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Figure 4. A plot that compares the phase in the (l = 2, m = 2) mode of the Cauchy ψ4 as
calculated using the Null code and the Cauchy code. All plots were translated so that the time of
the maximum in the amplitude agree.

are given for the real and the imaginary parts. All quantities are very close to second-order
convergent, including J,x , which is the term which determines the waveform.

We are reporting only first-order convergence rates at future null infinity I+ for the Bondi
News B and the Weyl complonent �, but the error is relatively small (0.5% during the late
inspiral). From an extraction point of view, these errors are smaller than the error in the
Cauchy code data and are of little concern. The data are not convergent at early time when
high frequencies dominate the error. For a thorough analysis of the causes for the first-order
accurate results and major improvements to the code see [18]. Figure 4 compares the imaginary
and real parts of the (l,m) = (2, 2) mode of the Cauchy ψ4 with the complex conjugate of
the (l,m) = (2,−2) mode of the characteristic �. We obtain very good amplitude match.
Also, we observe improved phase agreement as the extraction radius is increased (from
50 M to 100 M), because the phase error in ψ4 is reduced with the increased extraction
radius.

Figure 5 compares the imaginary and real parts of the (l,m) = (4, 4) mode of the Cauchy
ψ4 with the complex conjugate of the (l,m) = (4,−4) mode of the characteristic �. Here
we see two effects. First, not only the improved phase agreement as RE → ∞, but also
an attenuation of the amplitude due to dissipation of higher-order modes. Also, the noise is
apparent for the (4, 4) mode.

Figure 6 compares the amplitudes and the phases between the absolute value of the
(l,m) = (2, 2) mode of the Cauchy ψ4 extracted at R = 50, and the absolute value of the
(l,m) = (2,−2) mode of the characteristic � for the same extraction radius, at the highest
resolution (N = 200). The difference in amplitude is relatively small, maximum 0.17% of
the Cauchy ψ4 amplitude in the wave zone.

Figure 7 compares the real part of the (l,m) = (2,−2) modes of the characteristic �

extracted at three different extraction radii R = 20 M , R = 50 M and R = 100 M . The
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Figure 5. A plot that compares the phase in the (l = 4, m = 4) mode of the Cauchy ψ4 as
calculated using the Null code and the Cauchy code. All plots were translated so that the time of
the maximum in the amplitude agree.
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Figure 6. A plot of that compares the amplitudes and the phases between the (l, m) = (2, 2) mode
of the Cauchy ψ4 extracted at R = 50, and the (l, m) = (2, −2) mode of the characteristic � for
the same extraction radius.

waveform extracted at R = 20 has the biggest amplitude, and a very small attenuation of the
signal with the radius is observed.
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Figure 7. A plot of that compares the real part of the (l, m) = (2, −2) mode for the characteristic
� extracted at three different radius (world-tubes). The waveforms are translated such that the
maximum of the amplitude corresponds to t/M = 0.

6. Conclusion

We have presented here a method for interfacing outer boundary data from a Cauchy evolution
with inner boundary data for a characteristic evolution so that the waveform can be accurately
extracted at infinity. We have demonstrated how the PITT null code can be interfaced with the
LazEv code, which is a finite-difference BSSN code, to produced calibrated waveforms from
a binary black hole inspiral. The extraction interface has been implemented as a thorn in the
Einstein computational toolkit [35]. In this paper we are reporting only preliminary results
(see [18] improvements). Although we are aware of the deficiencies in the characteristic
waveform extraction tool presented here, there is pressing interest from several numerical
relativity groups to apply the tool to extract waveforms from binary black hole inspirals.
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[23] Gómez R, Lehner L, Papadopoulos P and Winicour J 1997 Class. Quantum Grav. 14 977
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