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Modèlisation-Orléans, MAPMO, Rue de Chartres, 45067 Orléans, France
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Abstract
On the basis of a recently proposed strategy of finite element integration in
time domain for partial differential equations with a singular source term, we
present a fourth-order algorithm for non-rotating black hole perturbations in
the Regge–Wheeler gauge. Herein, we address even perturbations induced by
a particle plunging in. The forward time value at the upper node of the (r∗, t)
grid cell is obtained by an algebraic sum of (i) the preceding node values of
the same cell, (ii) analytic expressions, related to the jump conditions on the
wavefunction and its derivatives and (iii) the values of the wavefunction at
adjacent cells. In this approach, the numerical integration does not deal with
the source and potential terms directly, for cells crossed by the particle world
line. This scheme has also been applied to circular and eccentric orbits and it
will be the object of a forthcoming publication.

PACS numbers: 04.25.Nx, 04.30.Db, 04.30.Nk, 04.70.Bw, 95.30.Sf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the scenario of the capture of compact objects by a supermassive black hole of mass M, the
seized object is compared to a small mass m (henceforth the particle or the source) perturbing
the background spacetime curvature and generating gravitational radiation. A comprehensive

4 Author to whom any correspondence should be addressed.
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introduction to the general relativistic issues related to EMRI (extreme mass ratio inspiral)
sources is contained in a topical volume [1].

Schwarzschild–Droste (SD) [2–5] (see [6] for a justification of this terminology) black
hole perturbations have been hugely developed in the Regge–Wheeler (RW) gauge, before in
vacuum [7] and after in the presence of a particle by Zerilli [8–11]. The first finite difference
scheme in time domain was proposed by Lousto and Price [12]. The initial conditions,
reflecting the past motion of the particle and the initial amount of gravitational waves, were
parametrized by Martel and Poisson [13].

If the gravitational radiation emitted and the mass of the captured object are to be taken
into account for the determination of the motion of the latter, it is necessary to compute the
derivatives of the perturbations that imply the third derivative of the wavefunction �(r∗, t),
see e.g. [14]. For a given accuracy O(h) of the third derivative of �, the error on � itself
should be O(h4). Effectively, the reminder ought to be O(h5) due to the presence in the
mesh of the particle that lowers by one more degree the convergence order of the code for
geometrical effects [15]. We have therefore developed a fourth-order scheme.

The complexity in assessing the continuity of the perturbations at the position of the
particle and the compatibility of the self-force to the harmonic (Lorenz–de Donder5) gauge
[16, 17] has led researchers to convey their efforts to this gauge, as commenced by Barack and
Lousto [19]. Conversely, work in harmonic gauge is made cumbersome by the presence of a
system of ten coupled equations which replace the single wave equation of the RW gauge.

We have proposed [20, 21] a finite element method of integration, in RW gauge, based
on the jump conditions that the wavefunction and its derivatives have to satisfy for the SD
black hole perturbations to be continuous at the position of the particle. We first deal with the
radial trajectory and the associated even parity perturbations, while in a forthcoming paper
we present the circular and eccentric orbital cases, thus referring to both odd and even parity
perturbations.

The main feature of this method consists in avoiding the direct and explicit integration
of the wave equation (the potential and the source term with the associated singularities)
whenever the grid cells are crossed by the particle. Indeed, the information on the wave
equation is implicitly given by the jump conditions on the wavefunction and its derivatives.
Conversely, for cells not crossed by the particle world line, the integrating method might
retain the previous approach by Lousto [22] and Haas [15]. Among the efforts using jump
discontinuities, although in a different context, it is worthwhile to mention those of Haas [15]
and Sopuerta and co-workers [23–25] getting the self-force in a scalar case. For the geodesic
gravitational case, like Sopuerta and co-workers, Jung et al [26] and Chakraborty et al [27]
rely on spectral methods; Zumbusch [28] and Field et al [29] use a discontinuous Galerkin
method; Hopper and Evans [30] work partially in the frequency domain. Among recent
results not based on jump discontinuities but concerning fourth-order time domain codes, the
one proposed by Thornburg [31] deals with an adaptive mesh refinement, while Nagar and
co-workers replace the delta distribution with a narrow Gaussian [32, 33].

For the computation of the back-action, this method ensures a well-behaved wavefunction
at the particle position, since the approach is governed by the analytical values of the jump
conditions at the particle position.

In [21] we have provided waveforms at infinity and the wavefunction at the position of
the particle at first order. Herein, we focus instead on the improvement of the algorithm at
fourth order and refer to [21] for all complementary information. The features of this method
can be summarized as follows.

5 FitzGerald is considered to have also identified the harmonic gauge [18].
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• Avoidance of direct and explicit integration of the wave equation (the potential and the
source term with the associated singularities) for the grid cells crossed by the particle.

• Improvement of the reliability, since analytic expressions partly replace numerical ones
(the replacement is total at first order [20, 21]).

• Applicability of the method to generic orbits, assuming that the even and odd wave
equations are satisfied by �, respectively R, being C−16.

Geometric units (G = c = 1) are used, unless stated otherwise. The metric signature is
(−, +, +, +).

2. The wave equation

The wavefunction (its dimension is such that the energy is proportional to
∫ ∞

0 �̇2 dt), in the
Moncrief form [34] and RW gauge [7], is defined by

�l(t, r) = r

λ + 1

[
Kl +

r − 2M

λr + 3M

(
Hl

2 − r
∂Kl

∂r

)]
, (1)

where K(t, r) and H2(t, r) are the perturbations, and the Zerilli [9] normalization is used for
�l . The wave equation is given by the operator Z acting on the wavefunction

Z�l(t, r) = ∂2
r∗�

l(t, r) − ∂2
t �l(t, r) − V l(r)�l(t, r) = Sl(t, r), (2)

where r∗ = r + 2M ln(r/2M − 1) is the tortoise coordinate and the potential V l(r) is

V l(r) =
(

1 − 2M

r

)
2λ2(λ+1)r3+6λ2Mr2+18λM2r+18M3

r3(λr+3M)2
, (3)

being λ = 1/2(l−1)(l+2). The source Sl(t, r) includes the derivative of the Dirac distribution
(the latter appears in the process of forming the wave equation out of the ten linearized Einstein
equations)

Sl = 2(r − 2M)κ

r2(λ + 1)(λr + 3M)
×

{
r(r − 2M)

2U 0
δ′[r − ru(t)]

−
[
r(λ + 1) − 3M

2U 0
− 3MU 0(r − 2M)2

r(λr + 3M)

]
δ[r − ru(t)]

}
, (4)

U 0 = E/(1 − 2M/ru) being the time component of the 4-velocity, E = √
1 − 2M/ru0 the

conserved energy per unit mass and κ = 4m
√

(2l + 1)π . The geodesic in the unperturbed SD
metric zu(τ ) = {tu(τ ), ru(τ ), θu(τ ), φu(τ )} assumes different forms according to the initial
conditions. For radial infall of a particle starting from rest at finite distance ru0, ru(t) is the
inverse function in coordinate time t of the trajectory in the background field, corresponding
to the geodesic in proper time τ (u stands for unperturbed):

t (ru)

2M
=

√
1 − 2M

ru0

√
1 − ru

ru0

( ru0

2M

) ( ru

2M

)1/2
+ 2arctanh

⎛
⎝

√
2M
ru

− 2M
ru0√

1 − 2M
ru0

⎞
⎠

+

√
1 − 2M

ru0

(
1 +

4M

ru0

) ( ru0

2M

)3/2
arctan

(√
ru0

r
− 1

)
. (5)

The above expressions correspond to those in [14], where some of the errors of the
previously published literature on radial fall are indicated.

6 A C−1 continuity class element, like a Heaviside step distribution, may be seen as an element which after integration
transforms into an element belonging to the C0 class of functions.
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3. Jump conditions

From the visual inspection of the Zerilli wave equation (2), it is evinced that the wavefunction
� is of C−1 continuity class (the second derivative of the wavefunction is proportional to the
first derivative of the Dirac distribution, in itself a C−3 class element). Thus, the wavefunction
and its derivatives can be written as (the l index is dropped henceforth for simplicity of
notation)

� = �+�1 + �−�2, (6)

�,r = �+
,r�1 + �−

,r �2 + (�+ − �−)δ, (7)

�,t = �+
,t�1 + �−

,t �2 − ṙu(�
+ − �−)δ, (8)

�,rr = �+
,rr�1 + �−

,rr�2 + 2
(
�+

,r − �−
,r

)
δ + (�+ − �−)δ′, (9)

�,tt = �+
,t t�1 + �−

,t t�2 − 2ṙu

(
�+

,t − �−
,t

)
δ − r̈u(�

+ − �−)δ + ṙ2
u(�+ − �−)δ′, (10)

�,tr = �+
,tr�1 + �−

,tr�2 +
(
�+

,t − �−
,t

)
δ − ṙu

(
�+

,r − �−
,r

)
δ − ṙu(�

+ − �−)δ′, (11)

where in shortened notation �1 = � [r − ru(t)], and �2 = � [ru(t) − r] are two Heaviside
step distributions, while δ = δ [r − ru(t)] and δ′ = δ′ [r − ru(t)] are the Dirac delta—and
its derivative—distributions, respectively. The dot and the prime indicate time and space
derivatives, respectively.

3.1. Jump conditions from the wave equation

For the computation of back-action effects, we need first-order derivatives of the perturbations
and thus third-order wavefunction derivatives. To this end, we operate directly on the wave
equation, equation (2). The source term is cast in the following form:

S(t, r) = G(t, r)δ + F(t, r)δ′ = G̃ru(t)δ + Fru(t)δ
′, (12)

where G̃ru(t) = Gru(t) − F ′
ru(t)

and one of the properties of the Dirac delta distribution, namely
φ(r)δ′ [r − ru(t)] = φru(t)δ

′ [r − ru(t)] − φ′
ru(t)

δ [r − ru(t)], has been used at the position of
the particle. The subscript implies that we consider the value of a given function at a point
or on the trajectory. The determination of the jump conditions imposes the transformation of
equation (2) into the corresponding equation in the (r,t) domain (the tortoise coordinate can’t
be inverted). Turning to the r variable, we obtain (f = 1 − 2M/r)

∂2
r∗� = ff ′∂r� + f 2∂2

r �

= [
ff ′�+

,r + f 2�+
,rr

]
�1 +

[
ff ′�−

,r + f 2�−
,rr

]
�2 + ff ′(�+ − �−)δ

+ 2f 2(�+
,r − �−

,r

)
δ + f 2(�+ − �−)δ′, (13)

∂2
t � = �+

,t t�1 + �+
,t t�2 − 2ṙu∂t (�

+ − �−)δ − r̈u(�
+ − �−)δ + ṙ2

u(�+ − �−)δ′, (14)

V � = V �+�1 + V �−�2. (15)

The notation [�] stands for the difference (�+ −�−)ru
and a likewise notation is used for the

derivatives at the point ru. Equating the coefficients of δ′, and owing to the above-mentioned
property of the delta derivative for which (�+ − �−)δ′ = [�]δ′ − [�,r ]δ, we obtain the jump
condition for � :

[�] = 1

f 2
ru

− ṙ2
u

Fru
. (16)
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Equating the coefficients of δ, we obtain the jump condition on the space derivative:

[�,r ] = 1

f 2
ru

− ṙ2
u

[
G̃ru

+ (fru
f ′

ru
− r̈u)[�] − 2ṙu

d

dru

[�]

]
, (17)

and therefore the jump condition on the first time derivative:

[�,t ] = ṙu

d

dru

[�] − ṙu[�,r ]. (18)

Since Z�± = 0, the coefficients of �1 and �2 ought to be equal. We thus obtain

[�,tt ] − fru
f ′

ru
[�,r ] − f 2

ru
[�,rr ] + Vru

[�] = 0, (19)

which is an equation with two unknowns. We circumvent the difficulty by using (i) the
commutativity of the derivatives,

[
�,tr

] = [
�,rt

]
, (ii) the transformation d/dt = ṙud/dru, and

write

[�,tt ] = d

dt
[�,t ] − ṙu[�,tr ] = d

dt
[�,t ] − ṙu

{
d

dt
[�,r ] − ṙu[�,rr ]

}

= ṙu

d

dru

[�,t ] − ṙ2
u

d

dru

[�,r ] + ṙ2
u[�,rr ]. (20)

The jump condition on the second space derivative can now be expressed by

[�,rr ] = 1

f 2
ru

− ṙ2
u

{
ṙu

d

dru

[�,t ] − ṙ2
u

d

dru

[�,r ] − fru
f ′

ru
[�,r ] + Vru

[�]

}
. (21)

The other second derivatives are obtained by

[�,tr ] = [�,rt ] = d

dt
[�,r ] − ṙu[�,rr ], (22)

[�,tt ] = d

dt
[�,t ] − ṙu[�,tr ]. (23)

For the third-order derivatives, we derive the wave equation with respect to r and obtain

[�,rrr ] = 1

ṙ2
u − f 2

ru

{
ṙ2
u

d

dru

[�,rr ] − ṙu

d

dru

[�,rt ]

+
(
f ′2

ru
+ fru

f ′′
ru

− Vru

)
[�,r ] + 3fru

f ′
ru

[�,rr ] − V ′
ru

[�]

}
, (24)

while deriving with respect to t, we obtain

[�,ttt ] = ṙ2
u

ṙ2
u − f 2

ru

{
f 2

ru

d

dru

[�,rt ] − ṙ−1
u f 2

ru

d

dru

[�,tt ] + fru
f ′

ru
[�,rt ] − Vru

[�,t ]

}
, (25)

[�,ttr ] = [�,trt ] = [�,rtt ] = d

dru

[�,tt ] − ṙ−1
u [�,ttt ], (26)

[�,trr ] = [�,rtr ] = [�,rrt ] = d

dru

[�,tr ] − ṙ−1
u [�,ttr ], (27)

[�,rrr ] = d

dru

[�,rr ] − ṙ−1
u [�,trr ]. (28)

Finally, we similarly proceed for the fourth derivatives

5
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[�,tttt ] = ṙ2
u

ṙ2
u − f 2

ru

×
{
f 2

ru

d

dru

[�,ttr ] − ṙ−1
u f 2

ru

d

dru

[�,ttt ] + fru
f ′

ru
[�,ttr ] − Vru

[�,tt ]

}
, (29)

[�,tttr ] = [�,ttrt ] = [�,trtt ] = [�,rttt ]
d

dru

[�,ttt ] − ṙ−1
u [�,tttt ], (30)

[�,ttrr ] = [�,trtr ] = [�,trrt ] = [�,rttr ][�,rtrt ] = [�,rrtt ] = d

dru

[�,ttr ] − ṙ−1
u [�,tttr ], (31)

[�,trrr ] = [�,rtrr ] = [�,rrtr ][�,rrrt ]
d

dru

[�,trr ] − ṙ−1
u [�,ttrr ], (32)

[�,rrrr ] = d

dru

[�,rrr ] − ṙ−1
u [�,rrrt ]. (33)

3.1.1. Jump conditions in explicit form. We list hereafter the jump conditions in explicit
form.

Jump conditions.

[�] = κEru

(λ + 1)(3M + λru)
(34)

First-derivative jump conditions.

[�,t ] = − κEruṙu

(2M − ru)(3M + λru)
(35)

[�,r ] = κE
[
6M2 + 3Mλru + λ(λ + 1)r2

u

]
(λ + 1)(2M − ru)(3M + λru)2

(36)

Second-derivative jump conditions.

[�,rr ] = −κE
[
3M3(5λ − 3) + 6M2λ(λ − 3)ru + 3Mλ2(λ − 1)r2

u − 2λ2(λ + 1)r3
u

]
(λ + 1)(2M − ru)2(3M + λru)3

(37)

[�,tr ] = κE
(
3M2 + 3Mλru − λr2

u

)
ṙu

(2M − ru)2(3M + λru)2
(38)

[�,tt ] = − κEM

ru
2 (3M + ruλ)

(39)

Third-derivative jump conditions.

[�,rrr ] = κE

ru(λ + 1)(2M − ru)
3(3M + ruλ)4

[
81(λ + 1)M5 + 9ru(19λ2 + 18E2λ

+ 3λ + 18E2)M4 + 9r2
uλ(7λ2 + 24E2λ − 14λ + 24E2 + 3)M3

+ 3r3
uλ2(7λ2 + 36E2λ − 11λ + 36E2 + 18)M2

+ 3r4
uλ3(8E2λ − 7λ + 8E2 − 1)M + 2r5

uλ3(λ + 1)(E2λ + 3)
]

(40)

6
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[�,trr ] = −κEṙu

ru(2M − ru)
3(3M + ruλ)3

[
27M4 + 6ru(5λ + 9E2 − 3)M3 + 3r2

uλ(5λ

+ 18E2 − 6)M2 + 6r3
uλ2(3E2 − 2)M + 2r4

uλ2(E2λ + 1)
]

(41)

[�,ttr ] = κE

r3
u(2M − ru)(3M + ruλ)2

[
39M3 + 9ru(3λ + 2E2 − 2)M2 + r2

uλ(4λ

+ 12E2 − 13)M + 2r3
uλ2(E2 − 1)

]
(42)

[�,ttt ] = −κEṙu

r3
u(2M − ru)(3M + ruλ)

[
9M2 + 2ru(2λ + 3E2 − 2)M + 2r2

uλ(E2 − 1)
]

(43)

Fourth-derivative jump conditions.

[�,rrrr ] = −3κE

r2
u(λ + 1)(2M[ − ru)

4(3M + ruλ)5

[
567(λ + 1)M7 + 162ru(λ + 1)(6λ + 16E2 − 5)M6

+ 6r2
u(139λ3 + 738E2λ2 − 123λ2 + 162E4λ + 441E2λ

− 171λ + 162E4 − 297E2 + 27)M5 + 12r3
uλ(21λ3 + 252E2λ2 − 85λ2

+ 135E4λ − 24λ + 135E4 − 252E2 + 18)M4 + 3r4
uλ2(21λ3 + 344E2λ2

− 95λ2 + 360E4λ − 340E2λ + 100λ + 360E4 − 684E2 + 24)M3 + 2r5
uλ3 ·

× (88E2λ2 − 47λ2 + 180E4λ − 260E2λ + 25λ + 180E4 − 348E2 − 24)M2

+ 2r6
uλ4(6E2λ2 + 30E4λ − 53E2λ + 23λ + 30E4 − 59E2 + 11)M

+ 4r7
uλ4(λ + 1)(E4λ − 2E2λ − 2)

]
(44)

[�,trrr ] = 3κEṙu

r2
u(2M − ru)

4(3M + ruλ)4

[
135M6 + 27ru(7λ + 32E2 − 6)M5 + 3r2

u ·

× (35λ2 + 396E2λ − 75λ + 108E4 − 144E2 + 18)M4 + r3
uλ(35λ2

+ 612E2λ − 120λ + 432E4 − 594E2 + 72)M3 + r4
uλ2(140E2λ − 45λ

+ 216E4 − 306E2 + 36)M2 + 2r5
uλ3(6E2λ + 24E4 − 35E2 + 9)M

+ 2r6
uλ3(2E4λ − 3E2λ − 1)

]
(45)

[�,ttrr ] = −κE

r4
u(2M − ru)

2(3M + ruλ)3

[
1431M5 + 6ru(251λ + 234E2 − 210)M4

+ 9r2
u(59λ2 + 160E2λ − 148λ + 36E4 − 66E2 + 30)M3 + 6r3

uλ(10λ2

+ 82E2λ − 79λ + 54E4 − 102E2 + 48)M2 + 2r4
uλ2(28E2λ − 27λ + 54E4

− 105E2 + 52)M + 12r5
uλ3(E2 − 1)

2]
(46)

[�,tttr ] = κEṙu

r4
u(2M − ru)2(3M + ruλ)2

[
243M4 + 3ru(61λ + 132E2 − 64)M3 + 3r2

u ·

× (12λ2 + 92E2λ − 49λ + 36E4 − 48E2 + 12)M2 + 2r3
uλ(24E2λ − 15λ

+ 36E4 − 51E2 + 14)M + 6r4
uλ2(E2 − 1)(2E2 − 1)

]
(47)

7
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[�,tttt ] = −κE

r6
u(3M + ruλ)

[
189M3 + 2ru(36λ + 84E2 − 77)M2 + 6r2

u(E2 − 1)(10λ

+ 6E2 − 5)M + 12r3
uλ(E2 − 1)

2]
. (48)

While heuristic arguments [35, 36] have been put forward to show that, for radial fall in
the RW gauge, even metric perturbations belong to the C0 continuity class at the position
of the particle, in [20, 21] we have provided an analysis vis à vis the jump conditions that
the wavefunction and its (first and second) derivatives have to satisfy for guaranteeing the
continuity of the perturbations at the position of the particle. Therein, we have derived the
same jump conditions (34–38) from the inverse relations (expressions giving the perturbations
as a function of the wavefunction and its derivatives) by fulfilment of the continuity conditions
(equal coefficients for the two Heaviside distributions, and null coefficients for the Dirac
distribution and its derivative).

4. The algorithm

The integration method considers cells belonging to two groups: for cells never crossed by the
world line, the integrating method may be drawn by previous approaches explored by Lousto
[22] and Haas [15], whereas for cells crossed by a particle, we propose a new algorithm. The
grid is in the r∗, t domain.

Initial conditions require knowledge of the situation prior to t = 0. At fourth order, the
wavefunction may be Taylor-expanded around t = 0. For the boundary conditions, simplicity
suggests a sufficiently huge grid to avoid unwanted reflections.

4.1. Empty cells

Empty cells are those cells which are not crossed by the particle. In this case, the cell upper
point is obtained by performing an integration of the wave equation over the entire surface
A of the cell, identified by the nodes α, β, γ, δ. We briefly recall the algorithm used by
Haas [15]. Therein, the sole numerical computation to be carried out is represented by the
product of the potential term and the wavefunction V � = g. It is performed via a double
Simpson integral, using points of the past light cone of the upper node α, figure 1. We set
gq = g(r∗

q , tq) = V (rq)�(r∗
q , tq), Vq = V (rq) and �q = �(r∗

q , tq), where q is one of the
points shown in figure 1. The increment h is defined as h = 1

2�r∗ = 1
2�t where �r∗ is the

spatial step and �t is the time step.
We have∫ ∫
Cell

gdA =
(

h

3

)2

[gα + gβ + gγ + gδ + 4(gβγ + gαβ + gδγ + gαδ) + 16gσ ] + O(h6), (49)

where the sum of the intermediate terms between nodes is given by

gβγ + gαβ + gδγ + gαδ = 2Vσ �σ

[
1 − 1

2

(
h

2

)2

Vσ

]
+ Vβγ �β

[
1 − 1

2

(
h

2

)2

Vβγ

]

+ Vδγ �δ

[
1 − 1

2

(
h

2

)2

Vδγ ] +
1

2
[Vβγ − 2Vσ + Vδγ ](�β + �δ) + O(h4). (50)

The last intermediate term gσ in equation (49) is evaluated using given nodes in the past light
cone of α, figure 1:

gσ = 1
16 [8gβ + 8gγ + 8gδ − 4gγ1 − 4gγ2 + gμ1 − gμ2 − gμ3 + gμ4 ] + O(h4). (51)

8
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α

δβ

γ

r∗

t

2h 2h

γ2γ1

μ1 μ2 μ3 μ4

αβ αδ

σ

βγ δγ

(r∗0, t0)

h

Figure 1. Set of points (circles and crosses) used for the integration of the V � = g term in the
vacuum case. The crosses do not overlap with grid nodes; thus the field g at these points, equations
(50, 51), is approximated by the field at the nodes on the past light cone of the grid node α.

For the differential operators, an exact integration simply leads to∫ ∫
Cell

(
∂2
r∗ − ∂2

t

)
�(r∗, t)dA = −4[�α − �β + �γ − �δ]. (52)

Finally, we obtain

�α = −�γ + �β

[
1 − 1

4

(
h

2

)2

(Vσ + Vβ) +
1

16

(
h

2

)4

Vσ (Vσ + Vβ)
]

+ �δ

[
1 − 1

4

(
h

2

)2

(Vσ + Vδ) +
1

16

(
h

2

)4

Vσ (Vσ + Vδ)

]

−
(

h

2

)2
[

1 − 1

4

(
h

2

)2

Vσ

]
[gβγ + gαβ + gδγ + gαδ + 4gσ ]. (53)

For cells adjacent to cells crossed by the particle, the requirement of good accuracy suggests
a different dealing for the computation of gσ , since the past light cone of an adjacent cell can
cross the path of the particle. In such a case, gσ is approximated by non-centred spatial finite
difference expressions [15].

4.2. Cells crossed by the world line

For a given cell, our aim is the determination of the wavefunction value at the upper node, now
rebaptized α0. As in the previous section, we consider 15 points both located in the past light
cone of the point α0 and lying around a chosen point on the discontinuity ru(t), with the intent
of determining �α0 by their linear combination. The non-regularity of the wavefunction due
to the discontinuity obviously entails a different value according to whether the discontinuity
is approached from below (�−, left of the trajectory, figures 2–4) or above (�+, right of
the trajectory, figures 2–4) the particle in radial fall. The same stands for the wavefunction
derivatives. The addition of the jump condition to the value of the e.g. �− (�+) wavefunction
(or derivative of) allows us to equate this sum to the value �+ (�−) of the wavefunction (or
derivative of). This straightforward property turns being helpful for the achievement of the
just mentioned linear combination of 15 points. Incidentally, other linear combinations may

9
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βR
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b b

b

r∗u(t)

r∗u(t)

r∗u(t)

(1a) (1b)

(1c)

α0

α4

α6

βR
1

βR
3

βL
1

βL
3

γL2

γL4

γR2

γR4

μR
3μL

3

νR4νL4

α0

α4

α6

βR
1

βR
3

βL
1

βL
3

γL2

γL4

γR2

γR4

μR
3μL

3

νR4νL4

α2

α2

Figure 2. The three sub-cases for which the particle enters through the [α2β
R
1 ] side and leaves

through the [α0β
L
1 ] side. The elimination of the �−

b derivatives demands, equation (60), the
utilization of 15 points, represented by circles, in the light cone of α0. Numerical efficiency
suggests that the points are taken at both left and right sides of the r∗

u (t) trajectory. In the three
cases, the particle crosses the line [α0α2] at the point b. The background distinguishes two zones:
one where �(r∗ < r∗

u (t), t) = �−(r∗, t), and the other where �(r∗ > r∗
u (t), t) = �+(r∗, t), the

path r∗
u (t) representing the separation between the two zones.

be envisaged, though combinations of points located solely on one side of the discontinuity
are to be avoided.

With reference to figures 2–4, there are three different cases depending upon how the
trajectory of the particle crosses the cell wherein α0 lies. These three cases are further
subdivided into three sub-cases, for a total of nine. In the following, we label by R the points
on the right of the [α0α6] line and by L the points on the left. Dealing with radial fall, and
thereby with a 2D code, the up and down labels might be proper; nevertheless, we stick to
right and left labels, given the orientation of the r∗ axis in figures 2–4. For the first group of
three, the trajectory crosses the [α2β

R
1 ] and [α0β

L
1 ] lines, figure 2; for the second group, the

[α2β
L
1 ] and [α0β

L
1 ] lines, figure 3; finally for the third group, the [α2β

R
1 ] and [α0β

R
1 ] lines,

figure 4.
We start considering the sub-case (1a) shown by figure 2, for which the trajectory crosses

the line [α0α2] at the point b. For compactness of the presentation of the final results, while

10
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Figure 3. The three sub-cases for which the particle enters through the [α2β
L
1 ] side and leaves

through the [α0β
L
1 ] side. The elimination of the �−

a derivatives demands the utilization of 15
points, represented by circles, in the light cone of α0. Numerical efficiency suggests that the
points are taken at both left and right sides of the r∗

u (t) trajectory. In the three cases, the particle
crosses the line

[
βL

1 βR
1

]
at the point a. The background distinguishes two zones: one where

�(r∗ < r∗
u (t), t) = �−(r∗, t), and the other where �(r∗ > r∗

u (t), t) = �+(r∗, t), the path r∗
u (t)

representing the separation between the two zones.

we still adopt the same notation for the jump conditions, namely [�]q for the difference
(�+ − �−)ru=ru(tq ), for the jump derivatives instead, we rely henceforth on the notation[
∂n
r∗∂m

t �
]
q

= (
∂n
r∗∂m

t �+ − ∂n
r∗∂m

t �−)
ru=ru(tq )

, where tq is the coordinate time at the point
q = a, b. We also define the lapse εb = tα0 −tb.

We recall that our aim is the determination of the value of �+
α0

, knowing (i) εb, (ii) the
jump (analytical) conditions on � and its derivatives at the point b, and (iii) the values of �

on a set of 15 points {α, β, γ, μ, ν} at the left and right sides of the world line. A Taylor series
is applied at each point around b up to fourth order, thereby obtaining

�+
α0

=�+(tb + εb, r
∗
b ) =

4∑
n=0

εn
b

n!
∂n
t �+

b + O
(
ε5
b

)
, (54)
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Figure 4. The three sub-cases for which the particle enters through the [α2β
R
1 ] side and leaves

through the [α0β
R
1 ] side. The elimination of the �−

a derivatives demands the utilization of 15
points, represented by circles, in the light cone of α0. Numerical efficiency suggests that the
points are taken at both left and right sides of the r∗

u (t) trajectory. In the three cases, the particle
crosses the line

[
βL

1 βR
1

]
at the point a. The background distinguishes two zones: one where

�(r∗ < r∗
u (t), t) = �−(r∗, t), the other where �(r∗ > r∗

u (t), t) = �+(r∗, t), the path r∗
u (t)

representing the separation between the two zones.

�−
αi

=�−(tb − (ih − εb), r
∗
b ) =

4∑
n=0

(−1)n
(ih − εb)

n

n!
∂n
t �−

b + O(h5), (55)

�±
β

R,L
j

=�±(tb−(jh−εb), r
∗
b ±h) =

∑
n+m�4

(−1)m(±1)n
hn

n!

(jh−εb)
m

m!
∂n
r∗∂

m
t �±

b +O(h5), (56)

�±
γ

R,L
k

=�±(tb−(kh−εb), r
∗
b ±2h) =

∑
n+m�4

(−1)m(±1)n
(2h)n

n!

(kh−εb)
m

m!
∂n
r∗∂

m
t �±

b +O(h5),

(57)

�±
μ

R,L
3

=�±(tb−(3h−εb), r
∗
b ±3h) =

∑
n+m�4

(−1)m(±1)n
(3h)n

n!

(3h−εb)
m

m!
∂n
r∗∂

m
t �±

b +O(h5),

(58)
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�±
ν

R,L
4

=�±(tb−(4h−εb), r
∗
b ±4h) =

∑
n+m�4

(−1)m(±1)n
(4h)n

n!

(4h−εb)
m

m!
∂n
r∗∂

m
t �±

b +O(h5),

(59)

for the indexes running as i = 2, 4, 6, j = 1, 3 and k = 2, 4 and concerning the α, β and
γ nodes, respectively. Our notation implies that the subscript R,L stands for R when the
superscript ± corresponds to +, whereas R,L stands for L when ± corresponds to −. With
reference to equation (54), we obtain

�+
α0

=
4∑

n=0

cn∂
n
t �+

b + O(h5) =
4∑

n=0

cn

(
∂n
t �−

b +
[
∂n
t �

]
b

)
+ O(h5)

= c0�
−
b + c1∂t�

−
b + c2∂

2
t �−

b + c3∂
3
t �−

b + c4∂
4
t �−

b +
4∑

n=0

cn

[
∂n
t �

]
b

+ O(h5). (60)

For an accuracy at fourth order, all quantities O(h5) are disregarded. The sum Ŝ =
c0�

−
b + c1∂t�

−
b + c2∂

2
t �−

b + c3∂
3
t �−

b + c4∂
4
t �−

b , equation (60), is composed by numerical
derivatives of lower order than O(h5), and therefore they cannot be neglected. However, the
computation of high-order derivatives is often accompanied by numerical noise. Therefore,
we replace this sum by a combination of wavefunction values in the α0 light cone.
This is attained in two steps. The former involves taking 15 wavefunction values on
the two sides of the trajectory, that is

{
�−

αi
, �−

βL
j

, �+
βR

j

, �−
γ L

k

, �+
γ R

k

, �−
μL

3
, �+

μR
3
, �−

νL
4
, �+

νR
4

}
,

figure 2. The latter employs the jump conditions to relate the 15 mentioned points with{
�−

αi
, �−

βL
j

, �−
βR

j

, �−
γ L

k

, �−
γ R

k

, �−
μL

3
, �−

μR
3
, �−

νL
4
, �−

νR
4

}
. For the former step, we define the sum S

S =
∑

i

(
Ai�

−
αi

)
+

∑
j

(
BL

j �−
βL

j

+ BR
j �+

βR
j

)
+

∑
k

(
GL

k �−
γ L

k

+ GR
k �+

γ R
k

)
+ML

3 �−
μL

3
+ MR

3 �+
μR

3
+ NL

4 �−
νL

4
+ NR

4 �+
νR

4
, (61)

where
{
Ai ,BL

j ,BR
j ,GL

k ,GR
k ,ML

3 ,MR
3 ,NL

4 ,NR
4

}
are constants.

We observe that the Ŝ sum entails only wavefunction values at the left of the point b on the
trajectory. The jump conditions are once more exploited to relate the two domains r∗ < r∗

u(t)

and r∗ > r∗
u(t). This specifically concerns six points

{
βR

j , γ R
k , μR

3 , νR
4

}
. For instance, at the

point βR
j , we can write

�+
βR

j

=
∑

n+m�4

(−1)m
hn

n!

(jh−εb)
m

m!

(
∂n
r∗∂

m
t �−

b + [∂n
r∗∂

m
t �]b

)
+O(h5)

= �−
βR

j

+
∑

n+m�4

(−1)m
hn

n!

(jh−εb)
m

m!
[∂n

r∗∂
m
t �]b, (62)

where

�−
βR

j

=
∑

n+m�4

(−1)m
hn

n!

(jh−εb)
m

m!

(
∂n
r∗∂

m
t �−

b

)
+O(h5). (63)

By the application of the same transformation to the quantities �+
γ R

k

, �+
μR

3
, �+

νR
3

,

equation (61) becomes

S − �
jump
r∗
u

=
∑

i

(
Ai�

−
αi

)
+

∑
j

(
BL

j �−
βL

j

+ BR
j �−

βR
j

)
+

∑
k

(
GL

k �−
γ L

k

+ GR
k �−

γ R
k

)
+ML

3 �−
μL

3
+ MR

3 �−
μR

3
+ NL

4 �−
νL

4
+ NR

4 �−
νR

4
, (64)
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where �
jump
r∗
u

is an analytic function, composed by the jump conditions at the point b, weighted
by coefficients issued by equation (62) or similar equations.

Having only �− terms on the right-hand side of equation (64), we can finally
search the coefficients

{
Ai ,BL

j ,BR
j ,GL

k ,GR
k ,ML

3 ,MR
3 ,NL

4 ,NR
4

}
that satisfy the equation

Ŝ = S − �
jump
r∗
u

, that is

c0�
−
b + c1∂t�

−
b + c2∂

2
t �−

b + c3∂
3
t �−

b + c4∂
4
t �−

b

×
∑

i

(
Ai�

−
αi

)
+

∑
j

(
BL

j �−
βL

j

+ BR
j �−

βR
j

)
+

∑
k

(
GL

k �−
γ L

k

+ GR
k �−

γ R
k

)
+ML

3 �−
μL

3
+ MR

3 �−
μR

3
+ NL

4 �−
νL

4
+ NR

4 �−
νR

4
. (65)

Using the notation of equations (62) and (63), and by injection of equations (55)–(59), a Taylor
expansion of fourth order at the point b is applied to the right-hand side of equation (65). The
system can be cast in a matrix form

T · P = C, (66)

where P is the unknown 15-vector formed by the coefficients{
Ai ,BL

j ,BR
j ,GL

k ,GR
k ,ML

3 ,MR
3 ,NL

4 ,NR
4

}
P = (

A2,A4,A6,BL
1 ,BL

3 ,BR
1 ,BR

3 ,GL
2 ,GL

4 ,GR
2 ,GR

4 ,ML
3 ,MR

3 ,NL
4 ,NR

4

)t
, (67)

and C is given by the 15-vector

C = (c0, c1, c2, c3, c4, 0, . . . , 0)t , (68)

while T is the (15×15) matrix constructed from the Taylor coefficients in equations (55)–(59)
(see the appendix). By inversion of T, we obtain P and specifically

A2 = −27
5 , A4 = −9

5 , A6 = 1
5 ,

BL
1 = BR

1 = 12
5 , BL

3 = BR
3 = 18

5 ,

GL
2 = GR

2 = −9
5 , GL

4 = GR
4 = −3

5 ,

ML
3 = MR

3 = 2
5 , NL

4 = NR
4 = 0.

The following equivalences path the last stretch of the way

�+
α0

= S − �
jump
r∗
u

+
4∑

n=0

cn

[
∂n
t �

]
b

= S + �
(1)

r∗
u (tb)

, (69)

and explicitly, we obtain

�+
α0

= − 27
5 �−

α2
− 9

5�−
α4

+ 1
5�−

α6
+ 12

5

(
�−

βL
1

+ �+
βR

1

)
+ 18

5

(
�−

βL
3

+ �±
βR

3

)
− 9

5

(
�−

γ L
2

+ �+
γ R

2

)
+ 3

5

(
�−

γ L
4

+ �±
γ R

4

) − 2
5

(
�−

μL
3

+ �+
μR

3

)
+ �

(1)

r∗
u (tb)

, (70)

where �±
βR

3
= �+

βR
3

for sub-case (1a), and �±
βR

3
= �−

βR
3

for sub-cases (1b,1c); �±
γ R

4
= �+

γ R
4

for

sub-cases (1a,1b), and �±
γ R

4
= �−

γ R
4

for sub-case (1c); and �
(1)

r∗
u (tb)

is an analytic function that
for the (1a) sub-case takes the value

�
(1a)

r∗
u (tb)

= −3[�]b − 3(5εb − 14h)

5
[∂t�]b − 3(εb − 2h)(5εb − 18h)

10

[
∂2
t �

]
b

− 5εb
3 − 42hεb

2 + 108h2εb − 96h3

10

[
∂3
t �

]
b

− 5εb
4 − 56hεb

3 + 216h2εb
2 − 384h3εb + 240h4

40

[
∂4
t �

]
b
− 12h

5

[
∂r∗�

]
b
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+
2h3

5

[
∂3
r∗�

]
b
− 12h(εb − 2h)

5

[
∂r∗∂t�

]
b
− 6h

(
εb

2 − 4hεb + 5h2
)

5

[
∂3
r∗∂t�

]
b

+
2h3(εb − h)

5

[
∂2
r∗∂

2
t �

]
b
− 2h

(
εb

3 − 6hεb
2 + 15h2εb − 11h3)

5

[
∂r∗∂3

t �
]
b
.

(71)

The quantity �
(1)
r∗
u

varies according to the different sub-cases: for the sub-case (1b) of
figure 2, the point βR

3 , whereas for the case (1c) the points βR
3 and γ R

4 are in the r∗ < r∗
u

domain. Therefore,

�
(1b)

r∗
u (tb)

= 6

10
[�]b +

3(εb − 4h)

5
[∂t�]b +

3
(
εb

2 − 8hεb + 18h2
)

10

[
∂2
t �

]
b

+
εb

3 − 12hεb
2 + 54h2εb − 66h3

10

[
∂3
t �

]
b

+
εb

4 − 16hεb
3 + 108h2εb

2 − 264h3εb + 246h4

40

[
∂4
t �

]
b

+
6h

5
[∂r∗�]b +

9h2

5

[
∂2
r∗�

]
b

+ h3
[
∂3
r∗�

]
b

+
3h4

20

[
∂4
r∗�

]
b

+
6h(εb − 5h)

5
[∂r∗∂t�]b +

9h2(εb − 3h)

5

[
∂2
r∗∂t�

]
b

+
3h

(
εb

2 − 10hεb + 17h2
)

5

[
∂3
r∗∂t�

]
b

+
9h2(εb − 3h)2

10
[∂r∗∂2

t �]b

+
h3 (5εb − 11h)

5

[
∂2
r∗∂

2
t �

]
b

+
h

(
εb

3 − 15hεb
2 + 51h2εb − 59h3

)
5

[
∂r∗∂3

t �
]
b
,

(72)

�
(1c)

r∗
u (tb)

= 3h2

5

[
∂2
t �

]
b

+
h2(3εb − h)

5

[
∂3
t �

]
b

+
h2

(
6εb

2 − 4hεb − 5h2
)

20

[
∂4
t �

]
b

+
3h2

5

[
∂2
r∗�

]
b

+
h3

5

[
∂3
r∗�

]
b
− h4

4

[
∂4
r∗�

]
b
− 6h2

5
[∂r∗∂t�]b

+
3h2(εb − h)

5

[
∂2
r∗∂t�

]
b
− 3h2(2εb − h)

5

[
∂3
r∗∂t�

]
b

+
3h2

(
εb

2 − 2hεb − 5h2
)

10
[∂r∗∂2

t �]b +
h3(εb + 5h)

5

[
∂2
r∗∂

2
t �

]
b

− h2
(
3εb

2 − 3hεb − 5h2
)

5

[
∂r∗∂3

t �
]
b
. (73)

We thus have obtained, without direct integration of the singular source and the potential
term, the value of the upper node. The equations show three types of terms: the preceding
node values of the same cell, the jump conditions which are fully analytical quantities and the
wavefunction values at adjacent cells. Incidentally, at first order [21], the latter type of terms
disappear and a simpler expression is obtained.

Similar relations are found for the other two remaining cases. For case 2, figure 3, we
obtain (having defined the shift εa = tβR

1
−r∗

a )

�+
α0

= − 27
5 �+

α2
− 9

5�±
α4

+ 1
5�±

α6
+ 12

5

(
�−

βL
1

+ �+
βR

1

)
+ 18

5

(
�−

βL
3

+ �+
βR

3

)
− 9

5

(
�−

γ L
2

+ �+
γ R

2

)
+ 3

5

(
�−

γ L
4

+ �+
γ R

4

) − 2
5

(
�−

μL
3

+ �+
μR

3

)
+ �

(2)

r∗
u (ta)

, (74)
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where �±
α4

= �+
α4

for sub-cases (2a, 2b), and �±
α4

= �−
α4

for sub-case (2c); �±
α6

= �+
α6

for

sub-case (2a), and �±
α6

= �−
α6

for sub-cases (2b, 2c). For the sub-case (2a), �
(2)

r∗
u (ta)

takes the
following value:

�
(2a)

r∗
u (ta)

= 4[�]a − 22h

5
[∂t�]a +

22h2

5

[
∂2
t �

]
a
− 7h3

3

[
∂3
t �

]
a

+
17h4

30

[
∂4
t �

]
a

+
4(5εa − 8h)

5
[∂r∗�]a +

2(εa − h)(5εa − 11h)

5

[
∂2
r∗�

]
a

+
2
(
5εa

3 − 24hεa
2 + 33h2εa − 11h3

)
15

[
∂3
r∗�

]
a

+
(εa − h)

(
5εa

3 − 27hεa
2 + 39h2εa − 5h3

)
30

[
∂4
r∗�

]
a

− 2h(11εa − 17h)

5
[∂r∗∂t�]a − h(εa − h)(11εa − 23h)

5

[
∂2
r∗∂t�

]
a

+
2h2(11εa − 17h)

5

[
∂r∗∂2

t �
]
a
− h(εa − h)2(11εa − 29h)

15
[∂3

r∗∂t�]a

+
h3(εb + 5h)

5

[
∂2
r∗∂

2
t �

]
b
− h3(35εa − 41h)

15

[
∂r∗∂3

t �
]
a
. (75)

For the same preceding reason, the sub-cases (2b, 2c) differ as the points α4 and α6 are or are
not in the r∗ > r∗

u domain. Therefore, we have

�
(2b)

r∗
u (ta)

= 42

10
[�]a − 27h

5
[∂t�]a +

69h2

10

[
∂2
t �

]
a
− 13h3

2

[
∂3
t �

]
a

+
231h4

40

[
∂4
t �

]
a

+
3(7εa − 11h)

5
[∂r∗�]a +

3(εa − h)(7εa − 15h)

10

[
∂2
r∗�

]
a

+
7εa

3 − 33hεa
2 + 45h2εa − 15h3

10

[
∂3
r∗�

]
a

+
(εa − h)

(
7εa

3 − 37hεa
2 + 53h2εa − 7h3

)
40

[
∂4
r∗�

]
a

− 3h(9εa − 13h)

5
[∂r∗∂t�]a − 3h(εa − h)(9εa − 17h)

10

[
∂2
r∗∂t�

]
a

+
3h2(23εa − 31h)

10

[
∂r∗∂2

t �
]
a
− 3h(εa − h)2(3εa − 7h)

10

[
∂3
r∗∂t�

]
a

+
h2(εa − h)(157εa − 109h)

20

[
∂2
r∗∂

2
t �

]
a
− h3(65εa − 69h)

10

[
∂r∗∂3

t �
]
a
,

(76)

�
(2c)

r∗
u (ta)

= 24

10
[�]a − 6h2

5

[
∂2
t �

]
a

+
8h3

5

[
∂3
t �

]
a
− 3h4

10

[
∂4
t �

]
a

+
12(εa − 2h)

5
[∂r∗�]a +

6(εa − 3h)(εa − h)

5

[
∂2
r∗�

]
a

+
2
(
εa

3 − 6hεa
2 + 9h2εa − 3h3

)
5

[
∂3
r∗�

]
a

+
(εa − h)

(
εa

3 − 7hεa
2 + 11h2εa − h3

)
10

[
∂4
r∗�

]
a

+
12h2

5
[∂r∗∂t�]a

+
12h2(εa − h)

5

[
∂2
r∗∂t�

]
a
− 6h2(εa + h)

5

[
∂r∗∂2

t �
]
a
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+
6h2(εa − h)2

5

[
∂3
r∗∂t�

]
a

+
h2(εa − h)(19εa − 7h)

5

[
∂2
r∗∂

2
t �

]
a

+
2h3(4εa − 3h)

5

[
∂r∗∂3

t �
]
a
. (77)

Finally for case 3, figure 4, we have

�−
α0

= − 27
5 �−

α2
− 9

5�−
α4

+ 1
5�−

α6
+ 12

5

(
�−

βL
1

+ �+
βR

1

)
+ 18

5

(
�−

βL
3

+ �±
βR

3

)
− 9

5

(
�−

γ L
2

+ �+
γ R

2

)
+ 3

5

(
�−

γ L
4

+ �±
γ R

4

) − 2
5

(
�−

μL
3

+ �+
μR

3

)
+ �

(3)

r∗
u (ta)

, (78)

where �±
βR

3
= �+

βR
3

for sub-case (3a), and �±
βR

3
= �−

βR
3

for sub-cases (3b, 3c); �±
γ R

4
= �+

γ R
4

for

sub-cases (3a, 3b), and �±
γ R

4
= �−

γ R
4

for sub-case (3c); and �
(3)

r∗
u (ta)

takes the values

�
(3a)

r∗
u (ta)

= −4[�]a +
22h

5
[∂t�]a − 22h2

5

[
∂2
t �

]
a

+
7h3

3

[
∂3
t �

]
a
− 17h4

30

[
∂4
t �

]
a

− 4(5εa − 2h)

5
[∂r∗�]a − 2(εa − h)(5εa + h)

5

[
∂2
r∗�

]
a

− 2
(
5εa

3 − 6hεa
2 − 3h2εa + h3

)
15

[
∂3
r∗�

]
a

− (εa − h)
(
5εa

3 − 3hεa
2 − 9h2εa − 5h3

)
30

[
∂4
r∗�

]
a

+
2h(11εa − 5h)

5
[∂r∗∂t�]a +

h(εa − h)(11εa + h)

5

[
∂2
r∗∂t�

]
a

− 2h2(11εa − 5h)

5

[
∂r∗∂2

t �
]
a

+
h(εa − h)2(11εa + 7h)

15

[
∂3
r∗∂t�

]
a

+
h2(εa − h)(11εa + h)

5

[
∂2
r∗∂

2
t �

]
a

+
h3(35εa − 29h)

15

[
∂r∗∂3

t �
]
a
, (79)

�
(3b)

r∗
u (ta)

= −2

5
[�]a − 14h

5
[∂t�]a +

14h2

5

[
∂2
t �

]
a
− 37h3

15

[
∂3
t �

]
a

+
11h4

6

[
∂4
t �

]
a

− 2(εa − 4h)

5
[∂r∗�]a − εa

2 − 8hεa − 2h2

5

[
∂2
r∗�

]
a

− εa
3 − 12hεa

2 − 6h2εa + 2h3

15

[
∂3
r∗�

]
a

− εa
4 − 16hεa

3 − 12h2εa
2 + 8h3εa + 10h4

60

[
∂4
r∗�

]
a

− 2h(7εa + 5h)

5
[∂r∗∂t�]a − h

(
7εa

2 + 10hεa + h2
)

5

[
∂2
r∗∂t�

]
a

+
2h2(7εa + 5h)

5

[
∂r∗∂2

t �
]
a
− h

(
7εa

3 + 15hεa
2 + 3h2εa − 7h3

)
15

[
∂3
r∗∂t�

]
a

− h2
(
7εa

2 + 10hεa + h2
)

5

[
∂2
r∗∂

2
t �

]
a
− h3(37εa + 29h)

15

[
∂r∗∂3

t �
]
a
, (80)

�
(3c)

r∗
u (ta)

= −[�]a − h[∂t�]a +
h2

10

[
∂2
t �

]
a

+
7h3

30

[
∂3
t �

]
a
− 23h4

120

[
∂4
t �

]
a

+ (h − εa)[∂r∗�]a − 5εa
2 − 10hεa − h2

10

[
∂2
r∗�

]
a
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− 5εa
3 − 15hεa

2 − 3h2εa + 7h3

30

[
∂3
r∗�

]
a

− 5εa
4 − 20hεa

3 − 6h2εa
2 + 28h3εa + 23h4

120

[
∂4
r∗�

]
a

− h(5εa + h)

5
[∂r∗∂t�]a − h(εa − h)(5εa + 7h)

10

[
∂2
r∗∂t�

]
a

+
h2(εa − 7h)

10

[
∂r∗∂2

t �
]
a
− h

(
5εa

3 + 3hεa
2 − 21h2εa − 23h3

)
30

[
∂3
r∗∂t�

]
a

− h2
(
εa

2 − 14hεa − 23h2
)

20

[
∂2
r∗∂

2
t �

]
a

+
h3(7εa + 23h)

30

[
∂r∗∂3

t �
]
a
. (81)

The jump conditions in the tortoise r∗ relate to those previously computed in the r variable
(the relations for mixed derivatives (r∗, t) are easily inferred)

[�,r∗ ] = fru
[�,r ], (82)

[�,r∗r∗ ] = fru
f ′

ru
[�,r ] + f 2

ru
[�,rr ], (83)

[�,r∗r∗r∗ ] = fru
(f ′2 + ff ′′)ru

[�,r ] + 3f 2
ru
f ′

ru
[�,rr ] + f 3

ru
[�,rrr ], (84)

[�,r∗r∗r∗r∗ ] = fru
(f ′3 + 4ff ′f ′′ + f 2f

′′′
)ru

[�,r ] + f 2
ru
(7f ′2 + 4ff ′′)ru

[�,rr ]

+ 6f 3
ru
f ′

ru
[�,rrr ] + f 4

ru
[�,rrrr ]. (85)

5. Numerical implementation

Waveforms at infinity and at the particle position at first order are to be found in [21], as well
as comparisons with other methods. Herein we are concerned on the numerical improvement.
To this end, we have considered a distant observer, located at r∗ = 400(2M). The observer is
reached by a pulse produced by a Gaussian, time-symmetric perturbation

�(r∗, t)t=0 = exp[−(r∗ − r∗
0 )2], (86)

∂t�(r∗, t)t=0 = 0. (87)

Figure 5, obtained for ru0 = 5(2M), shows the waveform produced in the homogeneous
case. The convergence rate is computed as (ε(n)(ξ) is the unknown error function of order
≈ 1)

n = log

∣∣∣∣�(4h) − �(2h)

�(2h) − �(h)

∣∣∣∣
/

log(2) + log |ε(n)(ξ)|/ log(2). (88)

Figure 6, obtained for ru0 = 5(2M), shows the fourth- and second-order convergence
rates (we remind that the first-order code [21] includes empty cells dealt at second order).

6. Conclusions

We have presented a fourth-order novel integration method in time domain for the Zerilli
wave equation. We have focused our attention to the even perturbations produced by a
particle plunging in a non-rotating black hole. For cells crossed by the particle world line,
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Figure 5. The waveform, ru0 = 5(2M), of a Gaussian, time-symmetric initial pulse. The observer
is located at r∗ = 400(2M).

Figure 6. Convergence rates of the fourth- and second-order algorithms, ru0 = 5(2M).

the forward time wavefunction value at the upper node of the (t, r∗) grid cell is obtained by
the combination of the preceding node values of the same cell, analytic expressions related
to the jump conditions, and the values of the wavefunction at adjacent cells. In this manner,
the numerical integration does not deal directly nor with the source term and the associated
singularities, nor with the potential term. In short, the direct integration of the wave equation
is avoided. For empty cells, we refer instead to already published approaches [15].

The scheme has also been applied to circular and eccentric orbits and it will be the object
of a forthcoming publication.

19



Class. Quantum Grav. 28 (2011) 134012 P Ritter et al

Acknowledgments

The referees are thanked for careful reading and suggestions. The authors wish to acknowledge
the FNAK (Fondation Nationale Alfred Kastler), the CJC (Confédération des Jeunes
Chercheurs) and all organizations which stand against discrimination of foreign researchers.

Appendix

Through equation (60), we have determined the value of � at the upper node of the cell as a
function of the analytic jump conditions and of the time derivatives of the wavefunction up
to fourth order. The derivatives are evaluated at the point b and weighted by five coefficients
c0, c1, c2, c3 and c4. Afterwards, the derivatives are converted into a linear combination of
the wavefunction values taken on points at the left and right sides of the trajectory. Indeed,
equation (65) represents such a system of linear equations. By injection of equations (56)–(59)
into equation (65), we obtain

A2T
(0,0)
α2

�−
b + A2T

(0,1)
α2

∂t�
−
b + A2T

(0,2)
α2

∂2
t �−

b + · · · + A2T
(1,3)
α2

∂r∗∂3
t �−

b

+
A4T

(0,0)
α4

�−
b + A4T

(0,1)
α4

∂t�
−
b + A4T

(0,2)
α4

∂2
t �−

b + · · · + A4T
(1,3)
α4

∂r∗∂3
t �−

b

+
...

+

NR
4 T

(0,0)

νR
4

�−
b + NR

4 T
(0,1)

νR
4

∂t�
−
b + NR

4 T
(0,2)

νR
4

∂2
t �−

b + · · · + NR
4 T

(1,3)

νR
4

∂r∗∂3
t �−

b

=

c0�
−
b

+
c1∂t�

−
b

+
c2∂

2
t �−

b

+
c3∂

3
t �−

b

+
c4∂

4
t �−

b

,

(A.1)

where T (n,m)
p represents the Taylor series coefficients at p in the neighbourhood of b and the

indexes correspond to nth space and mth time derivatives. The wavefunction at p is thus given
by

�±
p =

∑
n+m�4

T (n,m)
p ∂n

r∗∂
m
t �±

b + O(h5). (A.2)

An example shows the procedure which is applicable to all cases. We pick the node α2,
equation (55), where T (n,m)

α2
= (−1)n (2h−εb)

n

n! and remind that T (0,0)
p = 1 ∀ p. By grouping the

derivatives, we obtain(
A2T

(0,0)
α2

+ A4T
(0,0)
α4

+ · · · + NR
4 T

(0,0)

νR
4

)
�−
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+(
A2T

(0,1)
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+ A4T
(0,1)
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+ · · · + NR
4 T
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4

)
∂t�
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+(
A2T
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+ A4T
(0,2)
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+ · · · + NR
4 T
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)
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+
...

+(
A2T

(1,3)
α2

+ A4T
(1,3)
α4

+ · · · + NR
4 T

(1,3)

νR
4

)
∂r∗∂3

t �−
b

=

c0�
−
b

+
c1∂t�

−
b

+
c2∂

2
t �−

b

+
c3∂

3
t �−

b

+
c4∂

4
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b

. (A.3)
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By identification, we obtain a linear system, that is cast in the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 · · · 1 · · · 1 · · · 1
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· · · T
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2
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3

· · · T
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4

...
...

...
...

...
...

...
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1

· · · T
(1,3)
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2

· · · T
(1,3)

μL
3

· · · T
(1,3)
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4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A2

...

BL
1
...

GL
2
...

ML
3

...

NR
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
P

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

c1

c2

c3

c4

0
...

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
C

,

(A.4)

where the upper indexes (n,m) cover all combinations such that n+m � 4. Finally, by
inversion of the T matrix, the unknown terms of the P vector are identified.
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