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We study the issue of diffeomorphism symmetry in group field theories (GFT), using the non-

commutative metric representation introduced by A. Baratin and D. Oriti [Phys. Rev. Lett. 105,

221302 (2010).]. In the colored Boulatov model for 3d gravity, we identify a field (quantum) symmetry

which ties together the vertex translation invariance of discrete gravity, the flatness constraint of canonical

quantum gravity, and the topological (coarse-graining) identities for the 6j symbols. We also show how,

for the GFT graphs dual to manifolds, the invariance of the Feynman amplitudes encodes the discrete

residual action of diffeomorphisms in simplicial gravity path integrals. We extend the results to GFT

models for higher-dimensional BF theories and discuss various insights that they provide on the GFT

formalism itself.
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I. INTRODUCTION

Diffeomorphism symmetry is a crucial aspect of the
dynamics of spacetime geometry as described by general
relativity and its higher derivative extensions. It is tied to
the notion of background independence [1], as the intro-
duction of a nondynamical background breaks the full
diffeomorphism invariance. It also imposes strong con-
straints on the allowed dynamics. In fact, for example,
the only diffeomorphism invariant action (in 4d) for a
tensor metric field that involves, at most, its first derivatives
is the Einstein-Hilbert action (with cosmological constant);
and, in a canonical formalism based on intrinsic metric and
conjugate extrinsic curvature, only canonical general rela-
tivity is compatible with the algebra of (the canonical
counterpart of) diffeomorphisms [2].

This fact acquires even more relevance from the point of
view of ongoing efforts to build a quantum theory of
gravity. In background independent approaches [3] aiming
at explaining the very origin of spacetime geometry, start-
ing from ‘‘pregeometric,’’ discrete, or purely algebraic
structures, the correct implementation of diffeomorphism
invariance is a key guiding principle for the very definition
of the microscopic dynamics. A major open problem in
these approaches, such as in simplicial gravity [4], spin
foam models [5], and group field theories (GFT) [6], is to
show how the dynamics reduce to general relativity in a
semiclassical and continuum approximation. A good con-
trol over the (pregeometric analogue of) diffeomorphism
invariance is then essential: provided such an approxima-
tion does not break this symmetry, general relativity should
emerge as the dynamics of the metric field defined in terms

of the fundamental degrees of freedom of the theory, at
least at leading order. If the invariance is only approximate,
still the requirement that it becomes exact in the continuum
limit is an important guiding principle for the definition of
appropriate coarse-graining and renormalization proce-
dures, or to identify the diffeomorphism invariant sector
which should be dominant in the limit [7].
With the smooth manifold of general relativity replaced

by discrete structures, the issue becomes that of identifying
suitable transformations of the pregeometric data,1 leaving
the quantum amplitudes invariant, and encoding the (re-
sidual) action of the diffeomorphism group. This is known
in the context of Regge calculus [9], where an action of
diffeomorphisms at the vertices of the Regge triangulation
has been shown to exist around flat solutions. This is
understood geometrically as the invariance of the Regge
action upon translations of the vertices, in a local flat
embedding of the triangulation in Rd. The invariance is
exact in 3d, where the geometry is constrained to be flat; it
is only approximate in the 4d case and in the presence of a
cosmological constant (see [10] and references therein). In
both cases, the (approximate) invariance can be related to
discrete Bianchi identities. The action of diffeomorphisms
in spin foam models has also been studied in the context of
3d gravity [11]. In this work, it is shown that the discrete
residual of the local Poincaré invariance, classically
equivalent to diffeomorphism invariance, is responsible
for (part of) the divergences of the Ponzano-Regge model.
A related aspect of diffeomorphisms in spin foam models
is the algebraic expression of diffeomorphism invariance in
terms of algebraic identities satisfied by n� j symbols, at
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1In dynamical triangulations [4,8], all such data are fixed to
constant values, and the only analogue of diffeos is the auto-
morphism group of the simplicial complex itself.
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the root of the topological invariance of some models, and
recognized to be an algebraic translation of the canonical
gravity constraints [12,13].

GFTs [6] are a higher-dimensional generalization of
matrix models [14] and provide a second quantization of
both spin network dynamics and simplicial gravity. Their
Feynman diagrams are dual to simplicial complexes; the
amplitudes are given equivalently as spin foam models or
simplicial gravity path integrals [15]. Conversely, any spin
foam model can be interpreted as a Feynman amplitude of
a group field theory [16]. Hence, in the GFT perturbative
expansion, one obtains a sum over (pre)geometric data
weighted by appropriate amplitudes, augmented by a
sum over simplicial complexes of arbitrary topology. In
this paper, we ask ourselves whether the various notions of
diffeomorphism invariance studied in the literature on dis-
crete gravity can be traced back to a symmetry of the group
field theory.

This task had proven impossible to fulfill up to now. The
main reason was the absence, at the GFT level, of explicit
metric variables, on which (discrete) diffeomorphisms
would act. Now, recently, a metric formulation of GFT,
completely equivalent to the usual formulations in terms
of group variables or group representations, has been de-
veloped [15] and used to prove an exact duality between
spin foam models and simplicial path integrals. Here, we
use this formulation to study the action of discrete diffeo-
morphisms in GFT. By doing so, we relate in a clear way
various aspects of diffeomorphism invariance in spin foam
models, canonical loop quantum gravity, and simplicial
gravity. More precisely, we show that there is a set of field
transformations leaving the GFT action invariant, whose
geometrical meaning in the various GFT representations
ties together the symmetry of the Regge action and the
simplicial Bianchi identities, the canonical constraints of
loop quantum gravity (adapted to a simplicial complex),
and algebraic identities satisfied by n� j symbols.

A key feature of this metric formulation, which recasts
GFTs as noncommutative field theories on Lie algebras, is
to reveal and to make explicit the noncommutativity of the
geometry in GFTand spin foammodels [17–19]. The action
of discrete diffeomorphisms described in this paper natu-
rally incorporates this noncommutativity, as it is generated
by a Hopf algebra [20]. Diffeomorphism invariance in GFT
thus takes the formof a deformed (quantum) symmetry. The
definition of deformed symmetries in GFT, also considered
in [21], requires to embed the field theory into the larger
framework of braided quantum field theories [22].

We work in the colored version of the GFT formalism
[23,24], analogous to multimatrix models [14]. The color-
ing can be used [25] to define a full homology for the GFT
colored diagrams2 and to unambiguously associate to it a

triangulated pseudomanifold, that is, complexes with point-
like topological singularities [27]. The color formalism
eliminates more pathological diagrams that are instead
generated by standard GFTs [23]. Strikingly, the coloring
turns out to be also crucial for recasting the perturbative
expansion of the (colored) Boulatov model, with a cutoff in
representation space, in terms of a topological expansion,
and to show that the sum is dominated by manifolds of
trivial topology in the large cutoff limit [28]. This is theGFT
analogue of the ‘‘large-N’’ expansion of matrix models.
These are very strong motivations for introducing coloring
in GFTmodels. In this paper, we give another one: it is only
in the colored framework that the action of discrete diffeo-
morphisms can be encoded into field transformations.
We focus on the topological models—namely, the (col-

ored) Boulatov and Ooguri models for 3d gravity and
4d BF theory. The analysis can, however, be extended to
4d gravity models obtained by imposing constraints on
topological ones [29].
The paper is organized as follows. In Sec. II, we review

the GFT framework in dimension three, in its three known
formulations: the ‘‘group’’ formulation in terms of fields
on a group manifold, the ‘‘spin’’ formulation in terms of
tensors in group representations, and the recent ‘‘metric’’
formulation in terms of fields on Lie algebras. We illustrate
how the duality of GFT representations translates into an
exact duality between spin foam models, lattice gauge
theory, and simplicial path integrals.
In Sec. III, we introduce a set of field transformations

which, we show, leaves invariant the action of the colored
Boulatov for 3d gravity. These transformations are gener-
ated by a Hopf algebra [20], more precisely by the trans-
lational part of a deformation of the Poincaré group. The
definition of deformed (quantum) symmetries on GFT
requires to embed the field theory into the larger frame-
work of braided quantum field theories [22]. We exploit the
invariance of the GFT vertex function to give the geomet-
rical meaning of the symmetry in the three GFT represen-
tations. We find that:
(1) in the ‘‘metric’’ representation, the symmetry re-

flects the invariance under translations of each of
the vertices of the Euclidean tetrahedron patterned
by the GFT interaction.

(2) in the ‘‘group’’ representation, the symmetry ex-
presses the flatness of the boundary connection
that the field variables represent.

(3) in the ‘‘spin’’ representation, the symmetry encodes
the topological identities and recursion relations of
the 6j symbols.

In Sec. IV, we look at the invariance of the GFT ampli-
tudes and explain how the GFT symmetry relates to the
action of diffeomorphisms in simplicial path integrals. The
analysis naturally distinguishes between manifold graphs
and pseudomanifold ones. In the case of manifold graphs,
we show, both geometrically and algebraically, how to

2For alternative definitions of homology of GFT diagrams,
see [26].
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derive discrete Bianchi identities from the invariance of the
vertex and propagator functions.

Finally, in Sec. V, we extend the results to the GFT
model for 4d BF theory and discuss the case of constrained
models for gravity. We conclude in Sec. VI with a discus-
sion of various issues raised by our analysis and new
insights that it provides on the GFT formalism.

II. COLORED GFTs AND METRIC
REPRESENTATION

d-dimensional GFTs [6], in their colored version [23],
are field theories described in terms of dþ 1 complex
fields f’‘g‘¼1���dþ1 defined over d copies of a group G,
with a certain gauge invariance. The index ‘ is referred to
as the color of the fields. Here, we consider the 3d case and
the Euclidean rotation group G ¼ SOð3Þ, so that each field
’‘ is a function on SOð3Þ�3. The gauge invariance condi-
tion reads:

8h 2 SOð3Þ; ’‘ðhg1; hg2; hg3Þ ¼ ’‘ðg1; g2; g3Þ:
(1)

The dynamics is governed by the action S½’� ¼
Skin½’� þ Sint½’�, where the kinetic term couples fields
with the same colors:

Skin½’� ¼
Z
½dgi�3

X4
‘¼1

’‘ðg1; g2; g3Þ’‘ðg1; g2:g3Þ; (2)

where ½dg�n is the product Haar measure on the group
SOð3Þ�n, and ’‘ are the complex conjugated fields. The
interaction is homogeneous of degree four and given by

Sint½’� ¼ �
Z
½dgi�6’1ðg1; g2; g3Þ’2ðg3; g4; g5Þ

� ’3ðg5; g2; g6Þ’4ðg6; g4; g1Þ
þ �

Z
½dgi�6’4ðg1; g4; g6Þ’3ðg6; g2; g5Þ

� ’2ðg5; g4; g3Þ’1ðg3; g2; g1Þ: (3)

The six integration variables in each integral follow the
pattern of the edges of a tetrahedron. A field represents a
triangle, the three field arguments being associated to its
edges (see Fig. 1). The four triangles of the tetrahedron are

marked by distinct colors.3 When the fields with different
colors are all identified ’‘ :¼ ’ to a single real field,
colored GFTs reduce to standard GFTs.
The Feynman expansion of a GFT generates stranded

diagrams, with three strands per propagator, equipped with
a canonical orientation of all lines and higher-dimensional
faces. The propagator and vertex for ’ are drawn in Fig. 2;
the vertex for ’ is obtained by reversing the order of all
labels. While the interaction vertex patterns a tetrahedron
with colored triangles, the propagator glues together tetra-
hedra along triangles of the same color.
Graph amplitudes are built out of propagators and vertex

functions:

P‘ðg; g0Þ ¼
Z

dh
Y3
i¼1

�ðg�1
i hg0iÞ;

Vðg; g0Þ ¼
Z Y4

‘¼1

dh‘
Y6
i¼1

�ððg‘i Þ�1h‘h
�1
‘0 g

‘0
i Þ;

(4)

which identifies the variables along connected strands,
modulo left shift by the gauge variables h arising from
the invariance (1). The vertex function has an interpretation
in terms of lattice gauge theory, where the three group
variables g‘i and the group variables h‘ are viewed as
holonomies along the links of the complex topologically
dual to a tetrahedron, shown in Fig. 3. The g‘i are ‘‘bound-
ary’’ holonomies along the links dual to a triangle ‘. The h‘
are ‘‘bulk’’ holonomies along the links connecting the
triangles to the center of the tetrahedron. The vertex func-
tion simply states that the two-dimensional faces of the
complex dual [in red (light gray) in Fig. 3] are flat. This
implies that the encoding of geometric information in
the model fits a piecewise-flat context, as in simplicial
quantum gravity approaches.

FIG. 1 (color online). Geometric interpretation of the GFT
field.

FIG. 2. 3d GFT propagator and vertex.

3The coloring of each field, and thus of each triangle, by a
single label ‘ can be equivalently converted in a coloring of each
vertex of the tetrahedron by a label in the same range. In this
setting, each field triangle is labeled by the three colors of its
three vertices. This shows that colored GFTs are a field theory
generalization of double-indexed 3d tensor models [30].
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In gluing two tetrahedra, the propagator function iden-
tifies the boundary variables of the shared triangle, up to a
group variable h interpreted as a further parallel transport
through the triangle.

After integration over all boundary variables g, the
amplitude of a closed GFT diagram G takes the form

AG ¼
Z Y

l

dhl
Y
f

�

�Y!
l2@f

hl

�
; (5)

where the products are over the lines l and the faces (loops
of strands) f of the diagram. l and f dually label the
triangles and the edges of the triangulation defined by
the diagram. The ordered products of line variables along
the boundary @f of the faces are computed by choosing an
orientation and a reference vertex for each face f. The
group variables are taken to be hl or h

�1
l , depending on

whether the orientations of l and f agree or not. In terms of
lattice gauge theory, the set of variables ðhlÞl2G gives a

discrete connection on (the complex dual to) the triangu-
lation, giving parallel transports from one tetrahedron to
another. The delta functions in (5) impose this connection
to be flat. The model is already seen then as describing a
discrete version of topological 3d BF theory, discretized on
the simplicial complex dual to the GFT diagram.

The ‘‘spin’’ representation of the GFT is obtained using
the Peter-Weyl expansion of the fields over half-integer
spins labeling the representations of SOð3Þ�3. Because of
gauge invariance, the coefficients are proportional to the

SOð3Þ Clebsh-Gordan coefficients Cj1;j2;j3
m1;m2;m3

; the interac-
tion vertex is expressed in terms of 6j symbols. The
amplitude of a Feynman diagram gives the Ponzano-
Regge spin foam model [31]:

AG ¼ X
fjeg

Y
e

dje
Y
�

8<
: j�1 j�2 j�3

j�4 j�5 j�6

9=
;; (6)

where the spins je label the edges of the triangulation
associated to the diagram, dj ¼ 2jþ 1 is the dimension

of the representation j, and the amplitude is a product of
tetrahedral 6j symbols. Thus, group and spin representa-
tions of the GFT realize explicitly the duality between the

connection (5) and spin foam (6) formulations of the
Ponzano-Regge model [5,32].
A third representation of GFTs, in terms of continuous

noncommutative ‘‘metric’’ variables x 2 suð2Þ � R3, has
been recently developed [15] and shown to realize a further
duality between spin foam models and simplicial path
integrals. Since the geometrical meaning of the symmetries
studied in the next sections is best understood in such a
metric representation, let us briefly recall here its construc-
tion. The representation is obtained using the group Fourier
transform [17,20] of the fields

’̂ ‘ðx1;x2;x3Þ :¼
Z
½dgi�3’‘ðg1;g2;g3Þeg1ðx1Þeg2ðx2Þeg3ðx3Þ;

(7)

expressed in terms of plane-wave functions eg : suð2Þ �
R3 ! Uð1Þ. The definition of the plane wave depends on a
choice of coordinate systems on the group manifold. In the
following, we identify functions of SOð3Þ � SUð2Þ=Z2

with functions of SUð2Þ invariant under g ! �g. Using

the parametrization g ¼ e� ~n� ~� and x ¼ ~x � ~� of group and
Lie algebra elements in terms of the (anti-Hermitian) suð2Þ
generators ~� ¼ ð�1; �2; �3Þ, a convenient representation of
the plane waves is

egðxÞ :¼ ei Trxg; (8)

where the trace is given by Tr�i�j ¼ ��ij. Note that, since

egðxÞ ¼ eg�1ðxÞ ¼ egð�xÞ, the Fourier transform of the

complex conjugate field relates to the complex conjugate
of the Fourier transform as

�̂’‘ðx1; x2; x3Þ ¼ �̂’‘ð�x1;�x2;�x3Þ: (9)

The image of the Fourier transform inherits by duality a
nontrivial (noncommutative) pointwise product from the
convolution product on the group. It is defined on plane
waves as

ðeg ? eg0 ÞðxÞ :¼ egg0 ðxÞ; (10)

and extends componentwise to the product of three plane
waves and by linearity to the whole image of the Fourier
transform.
The first feature of this representation is that the gauge

invariance condition (1) expresses itself as a ‘‘closure
constraint’’ for the triple of variables xi of the dual field.
To see this, we consider the projector P onto gauge invari-
ant fields:

P x’‘ ¼
Z
½dh�’‘ðhg1; hg2; hg3Þ; (11)

and note that

dPx’‘¼ Ĉ?’̂‘; Ĉðx1;x2;x3Þ :¼�0ðx1þx2þx3Þ;
(12)

where �0 is the element x ¼ 0 of the family of functions

FIG. 3 (color online). The ‘‘boundary’’ holonomies g‘i are in
red (light gray), while the ‘‘bulk’’ holonomies h‘ are in blue
(dark gray).
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�xðyÞ :¼
Z
½dh�eh�1ðxÞehðyÞ: (13)

These functions play the role of Dirac distributions in the
noncommutative setting, asZ

½d3y�ð�x ? fÞðyÞ ¼ fðxÞ; (14)

where d3y is the standard Lebesgue measure on R3. We
may thus interpret the variables xi of the dual gauge
invariant field as the closed edge vectors of a triangle in
R3 and further confirm the interpretation of the GFT fields
as (noncommutative) triangles.

The GFTaction can be written in terms of dual fields and
metric variables by exploiting the duality between group
convolution and ? product. Given two functions f, h on

SOð3Þ and bf, ĥ their Fourier transform (7), this duality can
be read in the property

Z
½dg�fðgÞhðgÞ ¼

Z
½d3x�ðf̂ ? ĥ�ÞðxÞ; (15)

where ĥ�ðxÞ :¼ ĥð�xÞ, and d3x is the Lebesgue measure
on R3. Hence, the combinatorial structure of the GFT
action in the metric representation is the same as in group
one, while group convolution is replaced by ? product.
Using the short notation ’̂123

‘
:¼ ’̂‘ðx1; x2; x3Þ, we can

write the action as

S½’̂� ¼
Z
½d3xi�3

X4
‘¼1

’̂123
‘ ? �̂’123

‘

þ �
Z
½d3xi�6’̂123

1 ? ’̂345
2 ? ’̂526

3 ? ’̂641
4

þ �
Z
½d3xi�6 �̂’146

4 ? �̂’345
3 ? �̂’526

2 ? �̂’641
1 ; (16)

where it is understood that ? products relate repeated upper
indices as ’̂i ? ’̂i :¼ ð’̂ ? ’̂�ÞðxiÞ, with ’̂�ðxÞ ¼ ’̂ð�xÞ.

Feynman amplitudes are built out of propagators and
vertex functions:

P‘ðx; x0Þ ¼
Z
½dh�Y3

i¼1

ð��xi ? ehÞðx0iÞ;

Vðx; x0Þ ¼
Z Y4

‘¼1

½dh‘�
Y6
i¼1

ð��x‘i
? eh‘h�1

‘0
Þðx‘0i Þ;

(17)

where the �x are given by (13). These have a natural
interpretation in terms of simplicial geometry, where the
x variables on connected strands encode the metric of the
same edge in different frames, related with each other by
the holonomies h. In building up the diagram, propagator
and vertex strands are joined to one another using the ?
product.

Under the integration over the holonomy variables, the
amplitude of a closed diagram G factorizes into a product

of face amplitudes Af½h�, taking the form of a cyclic ?

product:

Af½h� ¼
Z YNf

j¼0

½d3xj� ~wNþ1
j¼0 ð�xj ? ehjjþ1

Þðxjþ1Þ; (18)

where the product is over the Nf vertices of G (dual to

tetrahedra) in the loop of strands that bound f. The ordered
? product is computed by choosing an orientation and a
reference vertex for the face f; by convention, we set
xNþ1 :¼ x0. The holonomy hjjþ1 parallel transports the

reference frame of j to that of jþ 1. In terms of simplicial
geometry, it encodes the identification, up to parallel trans-
port, of the metric variables associated to the edge dual to f
in the different frames j.
After integration, within all face amplitudes, over all

metric variables xj except for that x0 of the reference

frame, the amplitude of the GFT diagram G takes the
form of a simplicial path integral:

AG ¼
Z Y

l

½dhl�
Y
e

½d3xe�ei
P

e TrxeHe ; (19)

where the products are over the lines of G and the edges of
the dual triangulation, and He :¼ Q!

l2@fe
hl is the holon-

omy along the boundary of the face fe of G dual to e,
calculated from a given reference tetrahedron frame. The
exponential term is the (exponential of the) discrete action
of first-order 3d gravity (which is the same as 3d BF
theory), in Euclidean signature. This gives the definite
confirmation of the interpretation of the xe variables as
discrete triad variables associated to the edges of the
triangulation dual to the GFT Feynman diagram (edge
vectors).
Thus, the metric representation of GFT realizes explic-

itly the duality between spin foam models (5) or (6) and
simplicial path integrals (19), generalizing it to arbitrary
transition amplitudes (corresponding to open GFT dia-
grams) with appropriate boundary terms arising naturally
in the simplicial action in (19), for fixed triad variables at
the boundary, and boundary observables. This result is
general: it extends to BF theories in higher dimensions
and to gravity models obtained as constrained BF theories
(see [15,33]).
The metric representation has, of course, the advantage

of making the (noncommutative, simplicial) geometry of
GFT and spin foam models more transparent. This will be
useful for the understanding of the symmetries studied in
the next section.

III. GFT (DISCRETE) DIFFEOMORPHISM
SYMMETRY

In this section, we introduce a set of field transforma-
tions which, we show, leave the GFT action invariant. We
give the geometrical meaning of such transformations in
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the different representations and show that they correspond
to diffeomorphisms in discrete quantum geometry models.
We also derive yet another GFT representation in terms of
the generators of the symmetry, which are Lie algebra
‘‘position’’ variables associated to the vertices of the sim-
plex patterned by the GFT field.

The noncommutativity of the metric (triad) space plays a
crucial role in the definition and meaning of the symmetry
transformation. This is, in fact, a Hopf algebra (quantum)
symmetry, characterized by a nontrivial action on a tensor
product of fields, due to a nontrivial coproduct. The rele-
vant quantum group here, i.e., in this specific GFT model
for Euclidean 3d gravity with the local gauge group being
SOð3Þ, is a deformation of the Euclidean group ISOð3Þ, the
so-called Drinfeld double DSOð3Þ.4

A. Action of DSOð3Þ on fields on SOð3Þ
The Drinfeld double is defined as DSOð3Þ ¼

CðSOð3ÞÞ 2CSOð3Þ, where the group algebra CSOð3Þ acts
by the adjoint action on the algebra of functions CðSOð3ÞÞ.
It is a deformation of the three-dimensional Euclidean
group ISOð3Þ—more precisely, of the Hopf algebra
CðR3Þ 2CSOð3Þ—where the ‘‘rotations’’ belong to the
group algebra CSOð3Þ and the ‘‘translations’’ are complex
functions in CðSOð3ÞÞ. A general element can be written as
a linear combination of elements f ��, where f 2
CðSOð3ÞÞ and � 2 SOð3Þ. The space of functions on the
group CðSOð3ÞÞ gives a representation of DSOð3Þ, in
which rotations act by adjoint action on the variable and
translations act by multiplication:

�ðgÞ��ð��1xgÞ :¼�ð��1g�Þ; �ðgÞ�fðgÞ�ðgÞ;
�2CðSOð3ÞÞ: (20)

Choosing as a translation element a generating plane wave
labeled by " 2 suð2Þ � R3, the field � gets multiplied by
a phase f"ðgÞ ¼ egð"Þ. Upon the group Fourier transform

introduced in the previous section,

�̂ðxÞ ¼
Z
½dg��ðgÞegðxÞ; (21)

this corresponds to the dual action �̂ðxÞ � �̂ðxþ "Þ. We
will also use the dual action of DSOð3Þ, where rotations
act by inverse adjoint action and plane waves labeled by "
act, by translation, by �".

Up to now, the transformations are the exact analogue of
the usual Poincaré transformations on functions on flat
space, here replaced by the algebra suð2Þ, while momen-
tum space is replaced by the group manifold SOð3Þ. The
deformation manifests itself as a nontrivial action on a
tensor product of fields, due to the nontrivial coproduct
on the translation algebra CðSOð3ÞÞ. Thus,

�1ðg1Þ�2ðg2Þ � 4fðg1 � g2Þ�1ðg1Þ�2ðg2Þ; (22)

where the coproduct 4 is given by

4 fðg1 � g2Þ ¼ fð1Þðg1Þfð2Þðg2Þ ¼ fðg1g2Þ;
8f 2 CðSOð3ÞÞ: (23)

Using the fact that eg1g2ð"Þ ¼ ðeg1 ? eg2Þð"Þ, one can check
that the dual action of the plane wave egð"Þ on a tensor

product is obtained by translating each variable by " and
by taking the ? product of the resulting fields with respect
to ":

�̂1ðx1Þ�̂2ðx2Þ � �̂1ðx1 þ "Þ ?" �̂2ðx2 þ "Þ: (24)

This structure is what replaces the usual translation group
R3, and the deformation is consistent with the noncommu-
tativity of the algebra of functions on suð2Þ � R3 induced
by the ? product.

B. GFT as a braided quantum field theory

In order to allow the Hopf algebra to act on the poly-
nomials of fields defined by the GFT action, the idea is to
embed the theory into the algebraic framework of braided
quantum field theories defined by Oeckl [22]. In short, this
consists of lifting all polynomials of fields to tensor prod-
ucts, in order to keep track of the ordering of the fields and
field variables. Commuting fields or field variables requires
to specify braiding maps B12 : X1 � X2 ! X2 � X1 be-
tween any two copies of the space of fields. The theory is
defined perturbatively as a braided Feynman diagram ex-
pansion, using a braided Wick theorem [22]. In a trivial
embedding of GFTs, where all fields commute, into the
braided framework, the braiding maps are chosen to be the
trivial flip maps:

B12: CðSOð3ÞÞ � CðSOð3ÞÞ ! CðSOð3ÞÞ � CðSOð3ÞÞ
��ðg1Þ ��ðg2Þ � �ðg2Þ ��ðg1Þ:

We emphasize that such trivial embedding does notmodify
the theory.5 It, however, allows us to define Hopf algebra
transformations on the GFT fields.
The possibility of using a nontrivial braiding between

fields or field arguments is not employed in usual GFTs, so
we will stick to the usual formalism in what follows. The
choice of trivial braiding is often made also in the non-
commutative geometry literature, even in the presence of
quantum group symmetries. However, since, in general, the
trivial braiding map does not intertwine the action of the
quantum group symmetry, this choice leads to a breaking
of the symmetry at the level of the n-point functions.
In order to make the full theory symmetric, it is most
natural to use the braiding of the (braided) category of

4The role played by the Drinfeld double in spin foam and GFT
models has been emphasized already, e.g., in [21,34,35].

5In fact, in this setting, the braided Feynmanology is redun-
dant, and the braided amplitudes coincide with the unbraided
ones.
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representations of the quantum group [20]. Thus, in scalar
field theory fully invariant under the Drinfeld double
DSOð3Þ, this braiding is

B12: CðSOð3ÞÞ � CðSOð3ÞÞ ! CðSOð3ÞÞ � CðSOð3ÞÞ
��ðg1Þ ��ðg2Þ � �ðg2Þ ��ðg2g1g�1

2 Þ: (25)

Moreover, the use of a trivial braiding in the presence of
quantum group symmetries has been argued to be the
origin of the (in)famous IR UV mixing [36–38]. Thus,
the choice of braiding does affect the physics of the model
and modifies its Feynman amplitudes.

The view we take in this paper opens the way to a
generalization of GFTs which would include a nontrivial
braiding intertwining the quantum symmetry described
below. We discuss this possibility in the concluding sec-
tion. The suggestion of extending GFTs to fully braided
field theories has been put forward also in the recent work
[21], again following the identification of a quantum group
symmetry in the GFT context.

C. Symmetries of the GFT action

We have recalled above howDSOð3Þ acts on a function
of a single variable. Here, we define a set of transforma-
tions of the GFT fields ’‘ under rotations and translations
which leave the GFT action invariant. As we illustrate in
the different GFT representations in the next subsection,
the translational part of this action, interpreted as ‘‘vertex
translations’’ in the simplex patterned by the field, will
encode the action of discrete diffeomorphisms in GFT.

Let us first point out that the requirement of gauge
covariance restricts the number of independent transforma-
tions that a field transformation T can undergo. Such
transformation is, indeed, well-defined on a gauge invari-
ant field only if it commutes with the projector (11):

P xðTx’‘Þ ¼ TxðPx’‘Þ:
Thus, for instance, the only gauge covariant action of the
rotations in CSOð3Þ�3,

’‘ðg1;g2;g3Þ�’‘ð��1
1;‘xg1;�

�1
2;‘xg2�

�1
3;‘xg3Þ; (26)

is the diagonal one, �i;‘ :¼ �‘. In the metric representa-

tion, gauge covariance simply means that the transforma-
tion preserves the closure �ðx‘1 þ x‘2 þ x‘3Þ of the triangle ‘.
In the case of rotations, one can easily go one step further
and check that the only field transformation that preserves
the kinetic and interaction polynomials is generated by a
single rotation �‘ :¼ �. In the metric representation, this
is the only action of the rotations that respects the gluing of
edge vectors of the tetrahedron patterned by the
interaction.

Let us stress that this symmetry corresponds precisely to
the invariance under local changes of frame in each tetra-
hedron and in each triangle that one expects in 3d simpli-
cial gravity (see Sec. IV). We thus find such an invariance

implemented as the well-known local gauge invariance in
both the simplicial path integral and pure gauge theory
formulation of the GFT Feynman amplitudes, as well as in
their spin foam representation.
We now turn to the more interesting case of translations.

We will define transformations generated by four
suð2Þ-translation parameters "v, where v labels the four
vertices of the interaction tetrahedron, diagrammatically
represented by its dual diagram in Fig. 2. Each vertex of
this tetrahedron is represented by a certain subgraph, which
we call the ‘‘vertex graph’’ [25,39]: the vertex graph for the
vertex v‘ opposite to the triangle of color ‘ is obtained by
removing all the lines which contain strands of color ‘. The
vertex graph of v3 is pictured in Fig. 4: its three lines
pattern the three edges 1, 3, 4 sharing v3.
The vertices opposite to the triangles ‘ ¼ 2, 3, 4 are

represented by identical (after anticlockwise rotation by
�=4, �=2, and 3�=4) diagrams, where 1, 3, 4 are replaced,
respectively, by 3, 5, 1; by 5, 6, 4; and by 6, 1, 2 (in this
order).
To define the action of a translation of the vertex v3, we

equip the lines of the vertex graph with an orientation, as
drawn in Fig. 4. Using this convention, each line has an
‘‘incoming’’ and an ‘‘outcoming’’ external strand. A trans-
lation of v3 generated by "3 2 suð2Þ acts nontrivially only
on the strands of the vertex graph. In the metric represen-
tation, it shifts the corresponding variables x‘i by �"3,
whether the strand i comes in or out of ‘:

x‘i � x‘i þ "3 if i is outgoing;

x‘i � x‘i � "3 if i is incoming;
(27)

in a way that preserves the closure �ðx‘1 þ x‘2 þ x‘3Þ of each
triangle ‘. More precisely, the translationT �3 of the vertex

v3 acts on the dual fields as

T "3x’̂1ðx1;x2;x3Þ :¼w"3’̂1ðx1�"3;x2;x3þ"3Þ;
T "3x’̂2ðx3;x4;x5Þ :¼w"3’̂2ðx3�"3;x4þ"3;x5Þ;
T "3x’̂4ðx6;x4;x1Þ :¼w"3’̂4ðx6;x4�"3;x1þ"3Þ;
T "3x’̂3ðx5;x2;x6Þ :¼ ’̂3ðx5;x2;x6Þ:

(28)

FIG. 4. Vertex graph for the vertex v3.
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The same field transformation can be expressed in a
more explicit way (without star product) in the group
representation, by group Fourier transform, as follows:

T "3x’1ðg1; g2; g3Þ :¼ eg�1
1

g3
ð"3Þ’1ðg1; g2; g3Þ;

T "3x’2ðg3; g4; g5Þ :¼ eg�1
3

g4
ð"3Þ’2ðg3; g4; g5Þ;

T "3x’4ðg6; g4; g1Þ :¼ eg�1
4

g1
ð"3Þ’4ðg6; g4; g1Þ;

T "3x’3ðg5; g2; g6Þ :¼ ’3ðg5; g2; g6Þ:

(29)

The transformation is immediately extended to the com-
plex conjugated fields �’‘ by requiring consistency with
complex conjugacy, using the property of the plane waves
that egð"Þ ¼ eg�1ð"Þ.

We see at first glance in (28) the geometric meaning of
this transformation as a vertex translation, by the way it
affects the arguments of the dual fields interpreted as edge
vectors. When translating a vertex of the triangle, one
translates the two edges sharing this vertex; each edge is
translated in an opposite way due to the orientation of the
edges. If the vertex is shared by many edges, all these edges
are translated accordingly, while taking into account their
orientation. The gauge covariance ofT is manifest in both
representations: in the metric representation, this is be-
cause the shift of the edge variables preserves the closure
of each triangle; in the group representation, this is because
the arguments g�1

j gk of the plane waves are gauge

invariant.
Let us show that these field transformations leave the

GFT action invariant. In fact, they leave invariant the field
polynomials in this action, even before integration over the
field variables. We check this in the group representation.
Following the definition (22) of the translation algebra on a
tensor product of fields, the action of the transformation
T "3 on the interaction polynomials

’1ðg1; g2; g3Þ’2ðg3; g4; g5Þ’3ðg5; g2; g6Þ’4ðg6; g4; g1Þ
results in an overall multiplication by the phase

ðeg�1
1

g3
? eg�1

3
g4
? eg�1

4
g1
Þð"3Þ ¼ eg�1

1
g3g

�1
3

g4g
�1
4

g1
ð"3Þ ¼ 1:

(30)

The interaction term is, therefore, invariant. Clearly, the
ordering of fields and field arguments is crucial. The
kinetic term is also invariant, since T �3 acts on the field

polynomials ’‘ðg1; g2; g3Þ �’‘ðg1; g2; g3Þ, for instance,
when ‘ ¼ 1, by multiplication by the plane wave:

ðeg�1
1

g3
? eg�1

3
g1
Þð"3Þ ¼ ðeg�1

1
g3g

�1
3

g1
Þð"3Þ ¼ 1:

Thus, we have shown that the transformation generated by
translation of the vertex v3 is a symmetry of the GFT
action. We can show similarly the invariance of the action
under translations of the three other vertices v1, v2, and v4

of the tetrahedron.

Before discussing further the meaning of the symmetry
in the next section, let us point out that the four symmetry
generators are not all independent—in other words, the
symmetry is reducible. In fact, there is a global translation
of the four vertices of the tetrahedron under which the
fields transform trivially. Geometrically, this corresponds
to the rather trivial fact that the geometry of a Euclidean
triangle is invariant under a global translation of its verti-
ces. Such a global translation is defined by choosing an
order for the vertices of each triangle. For example, choos-
ing the order v3, v4, v2 for the vertices of the triangle
‘ ¼ 1, a global translation acts on ’1 as

’1ðg1; g2; g3Þ � eg�1
1

g3
ð"Þ ? eg�1

2
g3
ð�"Þ ? eg�1

1
g2
ð�"Þ

� ’1ðg1; g2; g3Þ ¼ ’1ðg1; g2; g3Þ:

D. Invariance of the vertex and diffeomorphisms

We now want to show how the field symmetry (29), and,
more specifically, the invariance of the vertex function, tie
together various notions of (discrete residual of) diffeo-
morphisms studied in the literature. To do so, we probe the
meaning of such invariance in the different GFT represen-
tations. This picture will be completed in the next section,
when we will discuss the invariance of the GFT Feynman
amplitudes and n-point functions.
(i) Metric representation. The vertex function is given

by the formula (17)

Vðx‘i ; x‘0i Þ ¼
Z Y4

‘¼1

½dh‘�
Y6
i¼1

ð��x‘i
? eh‘h�1

‘0
Þðx‘0i Þ:

(31)

Fixing the ordering of the variables to the one de-
fined by the interaction polynomials, this function
can be lifted to the group Fourier dual of a tensor
product in CðSOð3ÞÞ�12, invariant under the (non-
commutative) translation (27). As we have already
emphasized, this transformation is geometrically in-
terpreted as a translation of a vertex of the tetrahe-
dron patterned by the interaction. More precisely, the

function Vðx‘i ; x‘0i Þ imposes the variables x‘i , inter-
preted as edge vectors expressed in different frames,
to match the metric of a Euclidean tetrahedron. The
symmetry expresses the invariance of the matching
condition under a translation of each of the vertices
in an embedding of this tetrahedron in R3. This is
also how the action of discrete residual of diffeo-
morphisms is encoded in 3d Regge calculus.

(ii) Group representation. The vertex function is given
by the formula (4):

Vðg‘i ; g‘0i Þ ¼
Z Y4

‘¼1

dh‘
Y6
i¼1

�ððg‘i Þ�1h‘h
�1
‘0 g

‘0
i Þ:

(32)
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The invariance of this function under translations
(27) of the vertex v3 means that, for all �3 2 suð2Þ,

e Gv3
ð"3ÞVðg‘i ; g‘0i Þ ¼ Vðg‘i ; g‘0i Þ; (33)

where the argument of the plane wave is

Gv3
¼ ðg11Þ�1g13ðg23Þ�1g24ðg44Þ�1g41: (34)

We thus see that translation invariance reflects, in
the group representation, a conservation rule
Gv3

¼ 1. Now, recall that the group field variables

g‘i encode boundary holonomies, along paths con-
necting the center of each triangle ‘ to its edges. In
the interaction term, they define a discrete connec-
tion living on the graph dual to the boundary trian-
gulation of the tetrahedron, which has the topology
of a two-sphere. As illustrated on the right of Fig. 5,
Gv3

is the holonomy along a loop circling the vertex

v3 of the tetrahedron.
Thus, the symmetry under the translation of each
vertex says the boundary connection is flat.

Imposing flatness F ¼ 0 of the boundary connec-
tion is precisely the role of the Hamiltonian and
vector constraints, i.e., the canonical counterpart
of diffeomorphisms, in (first-order) 3d gravity
[40]. Here, we see that the GFT symmetry results
in such a constraint on the tetrahedral wave function
constructed from the GFT field.

(iii) Spin representation. In the spin representation, ob-
tained by Plancherel decomposition into SOð3Þ
representations, the vertex function takes the form
of SOð3Þ 6j symbols. This is a standard calculation,
starting from the tensorial expression of V in the
SOð3Þ representations of spin fj‘i g:

V
j‘i
m‘

i n
‘
i

:¼
Z Y

i

dg‘i dg
‘0
i Vðg‘i ; g‘0i Þ

Y
i;‘

D
j‘i
m‘

i n
‘
i

ðg‘i Þ;

(35)

where Dj
mnðgÞ are the Wigner representation matri-

ces. After a change of variables g‘i ! h�1
‘ g‘i , the

integration over the group elements h‘ present in V
gives projectors onto the invariant tensors:

Z
dh‘D

j‘
1ðh‘ÞDj‘

2ðh‘ÞDj‘
3ðh‘Þ ¼ ji‘ihi‘j; (36)

where the intertwiners i‘ are the normalized
Wigner 3j symbols. The 6j symbol, resulting
from a contraction of four 3j symbols that patterns
a tetrahedron, shows up from the contraction of Vji

with the product of intertwiners
Q

‘i‘ and the
orthogonality of the Wigner matrices.

There is a connection, also pointed out in [12,13,41],
between the flatness constraint described in (ii) and the
topological identities (Biedenhard-Elliot) satisfied by
the 6j symbol, which insures the formal invariance of the
Ponzano-Regge spin foam model under refinement of
the triangulation. To see how the symmetry relates to
such identities, let us make, within the integral (35), the
(trivial) substitution:

Vðg‘i ; g‘0i Þ !
Z

dkeGv3
ðk"3k�1ÞVðg‘i ; g‘0i Þ: (38)

G3 is the vertex holonomy given by (34); the factor in front
of V is the evaluation of a central function whose
Plancherel decomposition is

Z
dkegðk"3k�1Þ ¼ X

j

�jðgÞ�̂jð"3Þ; (39)

where�j is the SOð3Þ character in the spin j representation,
and �̂j ¼ R

dg�jðgÞeg is its group Fourier transform.6 We
also decompose into characters the three delta functions in
the expression of Vðg‘i ; g‘0i Þ [see Eq. (32)] associated to the
edges i ¼ 1, 3, 4 sharing the vertex v3, with the Plancherel
formula �ðgÞ ¼ P

kdk�
kðgÞ. We thus obtain an expression

in terms of the spins j‘i and a sum over four additional spins
ki and j. Elementary recoupling theory then shows that

FIG. 5 (color online). Vertex translation and trivial vertex
holonomy.

6Explicitly, �̂jð"Þ ¼ Jdj ðj"jÞ=j"j, where Jdj is the Bessel func-
tion of the first kind associated to the integer dj :¼ 2jþ 1,
peaked on the value j"j ¼ dj.
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Comparing (36) and (40), we obtain the following identities:

8";

8<
: j1 j2 j3
j4 j5 j6

9=
; ¼ X

ki;j

dk1dk3dk4dj�̂
jð"Þ

8<
: j1 j2 j3

j k1 k3
gf j1 j5 j4

j k4 k1

9=
;
8<
: j3 j6 j4

j k3 k4
gf k1 k3 j2
k4 j5 j6

9=
;: (41)

In turn, these identities imply recursion relations for the
same 6j symbols (see, e.g., [13,42]), interpreted as discrete
versions of the Wheeler-DeWitt equation [12]. More gen-
erally, we expect that our type of analysis, based on GFT
symmetries, can give a systematic way, also for gravity
models in higher dimension, to derive algebraic identities
of the spin foam quantum amplitude from the study of the
GFT symmetries.

This gives a clear interpretation of the symmetry in the
various representations of the GFT, which matches what
we expect from the action of diffeomorphisms in discrete
approaches. Thus, in the metric representation, the sym-
metry encodes the invariance under (noncommutative)
translation of the four vertices of the tetrahedron. In the
group picture, they encode the flatness of the discrete
boundary connection, which is the Wheeler-DeWitt

constraint in connection variables and thus the canonical
diffeomorphism constraints. In the spin picture, they en-
code recursion relations for the fundamental spin foam
amplitudes (6j symbols) and their behavior under coarse-
graining.

E. GFT with vertex variables

We have seen that the invariance of the vertex function
reflects some conservation rules for the holonomies Gv

along loops surrounding the vertices of the tetrahedron
patterned by the interaction. These conservation rules can
be made manifest by integrating out the gauge group
element h‘ in the vertex function. Using three of the six
delta functions in (4) to integrate three of the four integra-
tion variables h‘, we obtain

Vðg‘i ; g‘0i Þ ¼
Z Y4

‘¼1

dh‘
Y6
i¼1

�ððg‘i Þ�1h‘h
�1
‘0 g

‘0
i Þ

¼
Z
½dh4��ððg24Þ�1g25ðg35Þ�1g36ðg46Þ�1g44Þ�ððg11Þ�1g12ðg32Þ�1g36ðg46Þ�1g41Þ�ððg11Þ�1g13ðg23Þ�1g24ðg44Þ�1g41Þ:

Thanks to the normalization of the Haar measure, this
simply gives

Vðg; g0Þ ¼ �ðGv1
Þ�ðGv2

Þ�ðGv3
Þ: (42)

Note that the fourth constraintGv4
¼ 1 is a consequence of

the other three, due to the dependence relation
G�1

v4
ðg3g�1

30 ÞðGv2
Gv3

Gv1
Þðg30g�1

3 Þ ¼ 1 between the four
vertex holonomies. This is the counterpart of the reduc-
ibility of the translation symmetry studied in the previous
section. The dependence relation can be easily understood
as a discrete Bianchi identity for the boundary connection
on the boundary surface of the tetrahedron.

This form of the vertex function suggests yet another
representation of GFT in terms of vertex variables vi 2
suð2Þ instead of edge vectors xi. These vertex variables,
which are the generators of the translation symmetry, are
introduced by plane-wave expansion �ðGvi

Þ ¼R
d3vieGvi

ðviÞ of the delta functions on the group.

Writing each of these plane waves as a cubic term, for, e.g.,

e Gv1
¼ eðg2

4
Þ�1g2

5
? eðg3

5
Þ�1g3

6
? eðg4

6
Þ�1g4

4
; (43)

suggests to recast the GFT interaction in terms of new
fields defined by the Fourier transform
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ĉ 1ðv2; v3; v4Þ :¼
Z

dg1dg2dg3eg�1
1

g2
ðv2Þeg�1

1
g3
ðv3Þeg�1

2
g3
ðv4Þ’1ðg1; g2; g3Þ;

ĉ 2ðv1; v3; v4Þ :¼
Z

dg3dg4dg5eg�1
4

g5
ðv1Þeg�1

3
g4
ðv3Þeg�1

3
g4
ðv4Þ’2ðg3; g4; g5Þ;

ĉ 3ðv1; v2; v4Þ :¼
Z

dg5dg2dg6eg�1
5

g6
ðv1Þeg�1

2
g6
ðv2Þeg�1

4
g2
ðv4Þ’3ðg5; g2; g6Þ;

ĉ 4ðv1; v2; v3Þ :¼
Z

dg6dg4dg1eg�1
6

g4
ðv1Þeg�1

6
g1
ðv2Þeg�1

4
g1
ðv3Þ’4ðg6; g4; g1Þ:

(44)

In terms of these new fields, well-defined on gauge invari-
ant fields Px’‘, the combinatorics of the GFT interaction
patterns now the combinatorics of the four vertices
v1 � � �v4 in the four triangles in a tetrahedron, with a
consequent change in the diagrammatic representation.
Using the short notation ĉ 123 :¼ ĉ ðv1; v2; v3Þ, we, in
fact, obtain

Sint½ĉ � ¼ �
Z
½d3vi�3 ĉ 234

1 ? ĉ 134
2 ? ĉ 124

3 ? ĉ 123
4

þ �
Z
½d3vi�3 �̂c 321

4 ? �̂c
421
3 ? �̂c

431
2 ? �̂c

432
1 :

(45)

Here, the ? product relates repeated indices as ĉ i ? ĉ i ?
ĉ i ¼ ðĉ ? ĉ ? ĉ ÞðviÞ. In each integral, the integration is
over three variables v1, v2, v3 only: the value of v4 is pure
gauge, fixed to an arbitrary value by global translation. A
similar analysis can be performed for the kinetic term. In
terms of the fields ĉ ‘, it is given by

Skin½ĉ � ¼ X
‘

Z
½d3vi�2 ĉ 123

‘ ? �̂c
123
‘ ; (46)

where the integration is over two variables v1, v2 only, the
value of v3 being arbitrarily fixed using translation
invariance.

We do not analyze further this reformulation of the
model in terms of vertex variables, in this paper. We,
however, believe that it will be relevant in many respects.
First, the properties of the GFT following from our diffeo-
morphism transformations should be simpler to analyze in
this formulation, since it is, in fact, on the vertex variables
that these transformations act naturally and in the simplest
way. Second, the formulation of the GFT amplitudes in
terms of vertex variables should simplify the analysis of
their divergences, which are known to be located on three-
bubbles of GFT diagrams—namely, at the vertices of the
triangulation, in addition to a global dependence on the
overall topology of the diagrams [11,26,32,39,43].

IV. FROM GFT TO SIMPLICIAL GRAVITY
SYMMETRIES

We have seen in Sec. II that the amplitude of a Feynman
GFT diagram, in the metric representation, gives the sim-
plicial path integral form of the Ponzano-Regge model. In

this section, we investigate how the GFT symmetry de-
scribed above relates to the discrete residual action of
diffeomorphisms in this model [11].

A. Diffeomorphisms in simplicial path integrals

The amplitude of a closed Feynman GFT diagram G, in
the metric representation, takes the form:

Z� ¼
Z Y

l

dhl
Y
e

d3xee
iS�ðxe;hlÞ; (47)

where � is the simplicial complex dual to G, and Sðxe; hlÞ
is the discrete 3d gravity action

eiS�ðxe;hlÞ :¼ ei
P

e TrxeHe ¼ Y
e

eHe
ðxeÞ: (48)

The variables of this action are a discrete metric fxege2� on
the edges of the triangulation and a discrete connection
fhlgl2G on the lines of G. The group element He ¼Q!

l2@fe
hl is the holonomy along the boundary of the

face fe of G dual to e, computed from a given reference
vertex in @fe. In the case of open diagrams and in the
presence of boundary data fðxÞ, the integrand is obtained
by taking the ? product f ? eiS� , with respect to the
boundary variables fxege2@�.
The action S�ðxe; hlÞ is a discrete version of the contin-

uum action for first-order 3d gravity:

SðB; AÞ ¼
Z

TrB ^ F; (49)

where B is the triad frame field and F is the curvature of the
connection A. We recall in the Appendix the local Poincaré
symmetry of the continuum theory—namely, the SOð3Þ
gauge invariance and translation symmetry:

B!BþdA�
A!A

�������� B!½B;X�
A!AþdXþ½A;X�; F!Fþ½F;X�;

(50)

with both X and � scalars with value in suð2Þ. The trans-
lation symmetry, typical of BF-type theories, is due to the
Bianchi identity dAF ¼ 0. As we show in the Appendix,
the action of diffeomorphisms in 3d gravity is classically
equivalent to (a combination of gauge transformations and)
translation of the frame field.
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The action S�ðxe; hlÞ enjoys a discrete version of these
symmetries [11]. It can, moreover, be shown that, when-
ever � triangulates a three-manifold, the discrete residual
of translation invariance, and hence of diffeomorphism
invariance, in the discrete path integral (47), is partially7

responsible for the large-spin divergences in the Ponzano-
Regge model [11,32].

The discretization of the gauge transformations follows
the usual lattice gauge theory techniques. The generators
�v are labeled by vertices of the GFT graph G—equiv-
alently by tetrahedra in the triangulation �. The holonomy
hl on the oriented lines of G are transformed as hl !
�vs

hl�
�1
vt
, where vs, vt denote the source and target

vertices of the line l. This means, in particular, that the
holonomy He around the boundary of a face fe is trans-
formed as He ! �eHe�

�1
e , where �e is the generator

associated to the reference vertex in @fe from which the
holonomy is computed. The metric variable xe transforms
as xe ! �exe�

�1
e . Such a gauge transformation, under

which the action is clearly invariant, corresponds to a
rotation of the reference frame of the e.

The discrete residual of translation invariance is due to a
discrete analogue of the Bianchi identity satisfied by the
curvature elementsHe. In terms of the GFT diagram and its
dual simplicial complex �, this can be understood as
follows. Given a vertex v 2 �, the set of GFT faces fe
dual to the edges e � v meeting at v defines a cellular
decomposition of a surface Lv, called the link of the vertex
v. In GFT language, the link of a vertex is the boundary of
a three-dimensional ‘‘bubble’’ of the diagram. Whenever
the simplicial complex � defines a triangulated manifold
(as opposed to a pseudomanifold), the link of every vertex
has the topology of a two-sphere. Then, for any ordering of
the edges e � v meeting at v, the curvature elements He

satisfy a closure relation of the type

Y!
e�v

ðkevÞ�1Hek
e
v ¼ 1 (51)

for some group-valued functions kev :¼ kevðhlÞ of the vari-
ables hl on the links l of Lv. The group elements kev are
interpreted as the parallel transport along paths between a
fixed vertex in Lv to the reference vertex of each face fe
from which the holonomyHe computed. We have assumed
here that the orientation of the faces fe agrees with a fixed
orientation of the sphere Lv; if the orientation of fe is
reversed, H�1

e should appear in place of He. Note that no
such closure identity holds when the Lv has a higher genus
topology.

The idea of the works [11,32] was to use the identities
(51) to prove a (commutative) discrete analogue of trans-
lation symmetry for the discrete action S� ¼ P

eTrxeHe.
To do so, the identity (51) is first written in terms of the

projections Pe :¼ TrHe ~� of the curvature elements onto
the Lie algebra:

X
e�v

ðkevÞ�1ðUv
ePe þ ½�v

e ; Pe�Þkev ¼ 0; (52)

where the scalar Uv
e and Lie algebra elements �v

e are
certain (complicated) functions of the Pe’s obtained from
the Campbell-Hausdorff formula [11]. This leads to the
invariance of S� under the following transformation, gen-
erated by �v 2 suð2Þ:

xe � xe þUv
e"

e
v � ½�v

e ; "
e
v�; with

"evð�vÞ ¼ kve�vðkve Þ�1: (53)

Note that, if �v is interpreted as a translation vector in the
reference vertex frame of Lv, "

e
v encodes the same trans-

lation vector parallel-transported in the reference frame of
fe. The transformation (53) is a discrete analogue of the
translation symmetry (50).
In the next section, we show that the discrete Bianchi

identity (51) can be related to a vertex translation symme-
try in a direct way—that is, without any projection to the
Lie algebra—provided one takes into account the noncom-
mutativity of the translation algebra studied in Sec. III A.
This will clarify the relationship between the GFT sym-
metry and the discrete Bianchi identities leading to diffeo-
morphism invariance in the simplicial path integrals.

B. Simplicial diffeomorphisms as quantum
group symmetries

To see how the discrete Bianchi identities are tied to the
invariance under noncommutative vertex translation de-
fined in Sec. III C, let us fix the value xe of the metric in
the exponential of the action (48) for all edges e which do
not touch the vertex v. This defines a function of the
remaining nv variables in suð2Þ, labeled by the nv edges
e � v sharing v. Choosing an ordering of these edges, as in
(51), one can lift this function to an element of the tensor
product CðSOð3ÞÞ�e�v of nv copies of CðSOð3ÞÞ.
Let us now act with the noncommutative translation

xe!xeþ"evð�vÞ; "evð�vÞ¼kve�vðkve Þ�1; (54)

shifting the metric of the edges sharing v by the variables
"ev, defined as in (53). The group elements kve parallel
transport the frame of a fixed vertex in Lv and that of the
reference vertex of the face fe from which the holonomy
He is computed. Upon such a translation, the function (48)
gets transformed into a ? product of functions of �v:Y

e

ei TrxeHe � w
!
e�v

Y
e

ei Trðxeþ"evÞHeð�vÞ: (55)7For a finer analysis of the divergences of the Ponzano-Regge
model, see [26].
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Using the rule (10) for the ? product of plane waves, we see
that such a noncommutative translation acts on the action
term by multiplication by the plane wave:

ei Tr½�vð
Q!

e�v
ðkevÞ�1Hek

e
vÞ� ¼ 1; (56)

which is trivial due to the Bianchi identity (51).
As we have seen in Sec. III C, both the GFT propagator

and vertex functions, which the Feynman integrand (48) is
built upon, are invariant under vertex translation xe !
xe þ �v, for e � v. The generator �v is interpreted as a
translation vector in a given frame. This is the frame
associated to the reference point of the loop circling v,
along which the conserved holonomy is computed. In (30),
for example, this is the frame associated to the edge 1 of the
tetrahedron patterns by the interaction.8

The transformation (55) has the same geometrical mean-
ing: it corresponds to a vertex translation expressed in a
given frame. This frame is the reference vertex frame of the
link Lv. Indeed, recall from the calculation of the Feyman
amplitudes in Sec. II that the variable xe present in the
action term is the edge metric in the reference frame of the
GFT faces fe dual to the e. Using the parallel transports k

v
e ,

one could instead use variables xve , labeling to the same
edge metric but expressed in the reference vertex frame of
Lv. These are defined by xe ¼ kvex

v
e ðkve Þ�1. Now, in this

frame, a vertex translation acts as xve ! xve þ �v. This
amounts to act on the original variables xe by the
‘‘twisted’’ translation xe ! xe þ "ev, where "evð�vÞ ¼
kve�vðkve Þ�1.

Thus, the equality (56), and hence the discrete Bianchi
identity, express the invariance of the exponential of the
action under the (quantum) GFT symmetry defined in the
previous section. Note that, interestingly, the analysis of
the invariance under simplicial diffeomorphisms distin-
guishes the closed GFT diagrams G which define a mani-
fold from those defining only a pseudomanifold. In fact, in
the case of nonmanifold graphs, the triangulation has
vertices v for which the link Lv defines a surface with
nontrivial topology. For such vertices, there is no analogue
of the discrete Bianchi identity (51): the invariance of the
exponential of the action (48) under vertex translation is,
therefore, broken.

The goal of the next subsection is to illustrate how these
rather geometric considerations can be understood in a
purely algebraic way. We will show on a simple example
how the use of braiding techniques could give a systematic
way to derive Bianchi identities from the GFT symmetry.

C. Noncommutative translations, invariance of the
GFT amplitudes, and Bianchi identities

As spelled out in Sec. II, the integrand of a GFT
Feynman amplitude in the metric representation is calcu-
lated by sticking together propagator and vertex functions
along each loop fe of the diagram, using the ? product.
This gives a product loop amplitude [see (18)]Y

fe

~w
Nþ1
j¼0 ð�xje

? ehjjþ1
Þðxjþ1

e Þ: (57)

The exponential of the discrete BF action (48) is then
obtained by integrating, within each loop, over all metric

variables xje, save one xe :¼ x0e. It was shown in the pre-
vious section that the GFT propagator and vertex define
invariant functions under the noncommutative translation
(27). The question we are asking is to which extent the
translation invariance of the propagator and vertex func-
tions induces the invariance (55) and (56) of the action
term. We will only sketch an answer here with a simple
example, leaving the full proof to future work.
Since the transformation is quantum symmetry, it is

crucial, to answer the above question, to keep track of
the ordering of the variables in the calculation of the
Feynman integrand. It is precisely to keep track of this
ordering that the braided quantum field theory formalism
[22] uses a perturbative expansion into braided Feynman
diagrams.
Note that, to study the behavior of (57) under the trans-

lation of a vertex v, it is enough to restrict the product to
the set of loops fe such that e � v. This amounts to
considering the contribution of a subdiagram called a
‘‘three-bubble’’ [23], which represents the vertex v. A
three-bubble, obtained by erasing all lines having strands
of a given color, is a trivalent ribbon graph dual to the link
Lv of a vertex of the dual triangulation.
Figure 6 shows the simplest GFT diagram of order two,

dual to a triangulation of the sphere S3 with two three-
simplices; Fig. 7 shows the three-bubble obtained by eras-
ing all the lines having strands of color 4. The three-bubble
can be drawn as a braided diagram, on the left of Fig. 8: all
vertices are put beside each other, all legs up, in the lower
part of the diagram, in a way that preserves the cyclic order

FIG. 6. Two-vertex Feynman diagram encoding the discretiza-
tion of the sphere S3.

8As made clear using the covariance of the plane wave upon
conjugacy, the same translation expressed in a different frame,
say, that of edge 3, is generated by �0v :¼ k�vk

�1, where k :¼
g�1
3 g1 parallel-transports one frame to another.
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of the legs on the plane; then, the propagator strands, in the
upper part of the diagram, connect the legs with each other.
A convenient way to represent these vertices is as a product
of three ‘‘cups’’ (see Fig. 8):

The Feynman rules to compute the contribution of the
three-bubble to the amplitude are easily read from (17). If
one reabsorb the minus sign and group variables of the
propagator into the vertex, we get a contribution of each
‘‘cup’’

given by

whereas the propagator strands are just noncommutative
delta functions �xðx0Þ.
Upon noncommutative translation x ! xþ �, the

‘‘cup’’ function of two variables xiij; x
j
ij gets transformed as

This can be easily seen by group expansion of the non-
commutative delta functions. One can then convince one-
self that the translation invariance of the vertex function is
then due to the following identities:

Hence, we see that, by construction, the lower part of the
braided bubble diagram defines a translation invariant
function of the metric variables.

Now, the contribution of the three-bubble appears in the
final integrand (57) as a product of loops, as drawn on the
right of Fig. 8.

Going from the left to the right diagrams in Fig. 8 by
‘‘separating the loops’’ induces reordering of the strands—
hence, a reordering of the metric variables. In order to
probe the behavior of (57) under translation, the idea is
to associate to a certain braiding map to the separation of
the loops, induced by the universal R-matrix of DSOð3Þ
given in (25).9 As a direct calculation shows, swapping two

cups (the right one above the left one) with the DSOð3Þ
braiding gives

where

denotes the action of h by conjugacy on the two variables
of the cup:

FIG. 8. Three-bubble drawn (i) as a braided diagram and (ii) as
a product of loops.

FIG. 7. Three-bubble dual to the vertex 4, obtained from Fig. 6
by erasing the strands related to color 4.

9Let us stress that this braiding is merely a technical aid to
keep track of the action of our quantum group symmetry on
functions of several Lie algebra variables and does not corre-
spond here to any nontrivial braiding in the algebra of GFT
fields, which we have chosen to be trivial, as in the standard GFT
framework.
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By construction, swapping the cups in this way intertwines
the translation T �.

Let us now use this braiding to ‘‘separate the loops.’’ The
loop 12�2 �1 is separated as follows:

The next step is to form the loop 23�3 �2 :

Hence, using the DSOð3Þ braiding to separate the loops
finally gives a twisted product of loops:

Since the braiding map intertwines the translation symme-
try, this twisted product defines, by construction, a trans-
lation invariant function of the metric variables. The idea is
then to deduce from this an invariance of the nontwisted
product of loops under a twisted translation. To make this
explicit at the level of the action term, let us integrate (64)
over all the variables, save one in each loop: x112; x

2
23; x

3
31.

We are left with

eiTr½x112H12�eiTr½ðh
�1
�2
h�1x

2
23
h�1
�1
h�2ÞH23�eiTr½ðh

�1
�3
h�1x

3
31
h�1
�1
h�3ÞH31�; (65)

where Hij ¼ h�1
i hjh

�1
�j
h�i denotes the holonomy along the

loop ij �j �i . The invariance of this expression under
the translation xij ! xij þ � expresses the invariance of
the product

ei Tr½x112H1
12�ei Tr½x223H2

23�ei Tr½x112H3
31
�

under the translation xij ! xij þ "ijð�Þ, where
"12ð�Þ :¼ �;

"23ð�Þ :¼ h�1
�2
h�1�h

�1
�1
h�1
�2
;

"31ð�Þ :¼ h�1
�3
h�1�h

�1
�1
h�3:

(66)

In any case, the invariance leads to the identity (56), which
reads here

eH12h
�1
�1
h�2H23h

�1
�2
h�1h

�1
�1
h�3H31h

�1
�3
h�1
ð�Þ ¼ 1: (67)

This equality holding for all �, it gives a Bianchi identity of
the type of (51):

H12h
�1
�1
h�2H23h

�1
�2
h�1h

�1
�1
h�3H31h

�1
�3
h�1 ¼ 1: (68)

We thus derived a Bianchi identity from the translation
invariance of the vertex and propagator functions. In this
analysis, the ‘‘twist’’ elements kve in the Bianchi identity,
geometrically interpreted as parallel transport from a fixed
point to the reference point of each loop, show up in
commuting the variables using the DSOð3Þ braiding.

More generally, we expect an analogous algorithm for
any planar three-bubble; namely, when the link Lv of the
vertex has the topology of a two-sphere. Starting from the
three-bubble drawn as a braided diagram, the bottom part
(a product of ‘‘cups’’) gives, by construction, a translation

invariant function of the metric variables xje. The algorithm
will then define a sequence of topological moves corre-
sponding to the separation of the loops and inducing a

reordering of the variables xje, and associate to it a certain
DSOð3Þ braiding map. This braiding map encodes the
behavior of the amplitude (57) under noncommutative
translation. The example shown above is particularly
simple, as the braided three-bubble does not involve any
crossing of the propagator strands; in general, an additional
rule should be added in the definition of the braiding map,
which would take into account such crossings.
Just as in the above example, the action of such a

braiding map on the function defined by the product of

cups will induce a twisting of the variables xje by certain

group-valued functions kjeðhÞ of the holonomies. A condi-
tion to obtain Bianchi identities, and hence an invariance

of the action term eiS�ðxe;hlÞ, is that these functions do
not depend on the variables j within a loop e: namely,

kje :¼ ke. We conjecture that this condition can be reached
precisely when the three-bubble is planar—namely, when
all the crossings of the braided diagram are removable by
some topological move. In the presence of nontrivial cross-
ings, on the other hand, the braiding map will give an
invariance of the amplitude (57), which will not translate
into any Bianchi identity or an invariance of the action term

eiS�ðxe;hlÞ [obtained from (57) by integration over all the

variables xje, save one per loop]. This reflects a breaking of
the discrete diffeomorphism symmetry whenever the
(closed) GFT graph has nonspherical three-bubbles—
namely, for pseudomanifold graphs.
Whether this conjecture can be proven remains to be

seen: we leave this for future work. It will also be important

DIFFEOMORPHISMS IN GROUP FIELD THEORIES PHYSICAL REVIEW D 83, 104051 (2011)

104051-15



to understand how this analysis is affected by the use of a
nontrivial braiding in the algebra of GFT fields, intertwin-
ing the quantum symmetry.

D. Open diagrams and n-point functions

The geometrical and algebraic analysis of the previous
two sections can be extended to open GFT graphs, with
fixed boundary metric or connection data. An open GFT
graph is dual to a simplicial complex with boundaries. We
have seen that the invariance of the Feynman integrand
(exponential of the action) under noncommutative trans-
lation of a vertex v of this simplicial complex is due to a
discrete Bianchi identity on the link Lv of the vertex. We
showed both geometrically and algebraically that, when v
is in the bulk, the invariance holds only when Lv has a
trivial topology, or, equivalently, when the three-bubble
associated to v is planar.

The same condition applies when the vertex lies at the
boundary. In this case, the link Lv defines an open surface,
whose boundary is a loop circling the vertex v: this is the
link @Lv of v in the boundary triangulation. Now, in the
‘‘group’’ representation, the boundary data encodes a
boundary connection. One can then easily convince oneself
that a discrete ‘‘Bianchi identity’’ on the link Lv simply
says that the holonomy of this boundary connection, along
@Lv, is trivial. Such a discrete Bianchi identity, and hence
the invariance of the Feynman integrand under noncom-
mutative translation of the vertex, hold when the link Lv

has a trivial (disk) topology.
We had already noticed, at the level of the GFT vertex,

that our symmetry implies (in the group representation)
flatness of the boundary connection. In fact, dealing with a
flat boundary connection means that the holonomies along
all (3d) contractible loops are trivial. Now, the loop @Lv

circling the boundary vertex v is contractible precisely
when the link Lv has a trivial topology; the invariance
under translation then holds and expresses precisely that
the holonomy is trivial. Thus, the behavior of the Feynman
integrand under noncommutative translation of the bound-
ary vertices indeed encodes the flatness of the boundary
connection—namely, what we expect as a result of diffeo-
morphism invariance.

More generally, for the GFT graphs dual to manifolds,
the behavior of the Feynman amplitudes under our quan-
tum GFT symmetry is consistent with what we know about

discrete diffeomorphisms at the quantum level from ca-
nonical (discrete) 3d gravity, as well as its covariant path
integral formulation. Since not much is known about the
action of diffeomorphisms in simplicial gravity on pseu-
domanifold, we conclude that we are not missing any
expected feature of discrete diffeomophism invariance, in
our trivially braided GFT formalism, as far as it can be seen
at the present stage of development.
Given the interpretation of our GFT symmetry as the

counterpart of diffeomorphism invariance, it is natural to
ask whether the GFT n-point functions respect the sym-
metry. We know this is not the case: sticking to the usual
GFT formalism, we have used a trivial braiding in the
algebra of fields, which does not commute with the action
of our symmetry transformations. As it is well-known, this
leads generically to a breakdown of the symmetry at the
quantum level. In the context and spirit of the braided
quantum field theory formalism, it would be more natural
to use a nontrivial braiding intertwining the symmetry and
hence fully implement the covariance of the n-point func-
tions. However, the consequences of such a nontrivial
braiding—although currently under investigation—are dif-
ficult to forecast, at this stage. In fact, it should clear from
the above analysis of the amplitudes that the properties of
GFT n-point functions in this trivially braided GFT context
do not seem to indicate inconsistencies, a specific physical
reason why a nontrivial braiding would be necessary, or
any problem with the implementation of diffeomorphism
invariance. On the contrary, none of the expected features
of diffeomorphisms seems to be missing in this formalism.

V. DIFFEOMORPHISMS IN TOPOLOGICAL
MODELS IN HIGHER DIMENSIONS

The analysis of the previous sections can be extended to
higher dimensions, for models describing BF theory, in a
rather straightforward manner. Here, we consider the
Ooguri GFT [41] for 4d BF theory, generalized to include
colors. The variables are complex scalar fields ’‘, with
‘ ¼ 1; � � � ; 5, defined on G�4 ¼ SOð4Þ�4, which satisfy
the gauge invariance condition

8h 2 SOð4Þ;
’‘ðhg1; hg2; hg3; hg4Þ ¼ ’‘ðg1; g2; g3; g4Þ 8‘:

(69)

The action of the model is S½’� ¼ Skin½’� þ Sint½’�, with

Skin½’� ¼
Z
½dg�4 X4

‘¼1

’‘ðg1; g2; g3; g4Þ �’‘ðg1; g2; g3; g4Þ;

Sint½’� ¼ �
Z
½dg�10’1ðg1; g2; g3; g4Þ’2ðg4; g5; g6; g7Þ’3ðg7; g3; g8; g9Þ’4ðg9; g6; g2; g10Þ’5ðg10; g8; g5; g1Þ

þ �
Z
½dg�10 �’5ðg1; g5; g8; g10Þ �’4ðg10; g2; g6; g9Þ �’3ðg9; g8; g3; g7Þ �’2ðg7; g6; g5; g4Þ �’1ðg4; g3; g2; g1Þ: (70)
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Just as in 3d, the above structures have a natural sim-
plicial interpretation. The field ’‘ðg1; . . . ; g4Þ represents a
three-simplex (tetrahedron), its four arguments being asso-
ciated to its boundary triangles. The interaction encodes
the combinatorics of five such tetrahedra glued pairwise
along common triangles to form a four-simplex. The ki-
netic term encodes the gluing of four-simplices along
shared three-simplices.

The group Fourier transform giving the metric represen-
tation is easily extended [15] to functions of (several copies
of) SOð4Þ � SUð2Þ � SUð2Þ=Z2,

’̂‘ðx1; . . . ; x4Þ 	
Z
½dg�4’‘ðg1; . . . ; g4Þeg1ðx1Þ . . . eg4ðx4Þ;

xi 2 soð4Þ � R6: (71)

The plane waves eg � soð4Þ � R6 ! Uð1Þ are defined as

the product of SUð2Þ plane waves, defined in Sec. II, using
the decompositions g ¼ ðg�; gþÞ and x ¼ ðx�; xþÞ
of the group and soð4Þ algebra elements into left and right
components:

egðxÞ ¼ ei Trx�g�ei Trxþgþ : (72)

The ? product is the Fourier dual of the convolution
product of SUð2Þ introduced in Sec. II. The variables x
are geometrically interpreted as bivectors that the standard
lattice BF theory assigns to triangles, in each tetrahedron.
Just as in 3d, the gauge invariance condition (69) is dual,
upon a Fourier transform, to a closure constraint

Ĉðx1; . . . ; x4Þ ¼ �ðP4
i¼1 xiÞ of the four field variables,

imposed by a noncommutative delta function defined as
in (13).

By extending the 3d symmetry analysis to the 4d case,
we will consider the action of rotations and translations of
the quantum double10 DSOð4Þ on the scalar fields ’‘. The
action of the double on fields over the group is the same we
presented in Sec. III A. Thus, an element f ��, with f 2
CðSOð4ÞÞ and � 2 SOð4Þ, acts on a function� 2 CðSOð4ÞÞ
as

�ðgÞ ! �ð��1g�Þ; �ðgÞ ! fðgÞ�ðgÞ (73)

and dually on its group Fourier transform �̂ðxÞ by conju-
gacy and translation of the Lie algebra variable x.

As in the Boulatov case, we easily check that the only
gauge covariant action of rotations which leaves the inter-
action term invariant is the diagonal rotation: In the metric

formulation, gauge covariance simply means that a rotation
preserves the closure �ðP4

i¼1 xiÞ of the bivectors.
The realization of the translation symmetries is analo-

gous to 3d, except that now they act at the edges of the
simplices patterned by the fields, rather than the vertices.
The transformations are thus generated by four soð4Þ trans-
lation parameters "e, where e labels the ten edges of the
interaction four-simplex, diagrammatically represented by
its dual diagram in Fig. 9. Each edge of this four-simplex is
represented by an subdiagram called an ‘‘edge graph’’.
Thus, if e‘‘0 denotes the unique edge that does not belong
to the tetrahedra ‘ or ‘0, the edge graph associated to e‘‘0 is
obtained by removing all the lines which contain strands of
color ‘ or ‘0. The edge graph of e34 is pictured in Fig. 10:
its three lines represent the three triangles 1, 3, 4 sharing
e34.
To define the action of a translation of the edge e34, we

equip the lines of the edge graph with an orientation, as
drawn in Fig. 10. Using this convention, each line has an
‘‘incoming’’ and an ‘‘outcoming’’ external strand. A trans-
lation of e34, generated by �34 2 soð4Þ, acts nontrivially
only in the strands of the edge graph. In the metric repre-
sentation, it shifts the corresponding variables x‘i by ��34,
whether the strand i comes in or out of ‘:

xi � xi � �34 if i is outgoing;

xi � xi þ �34 if i is incoming;
(74)

FIG. 9. 4d GFT vertex.

FIG. 10. Vertex diagram for the edge (34).

10Note that a priori we could choose a bigger quantum group,
like a deformation of the Poincaré group in six dimensions. The
classification of quantum symmetries for noncommutative
spaces has been only partially completed in 4d [44].
Deformations of symmetries for higher-dimensional spaces
have still to be explored. In our case, the choice of the quantum
group of interest is dictated by the kinematical phase space of 4d
BF theory and by its known discrete classical symmetries, which
we want to encode at the GFT level.
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in a way that preserves the closure �ðP4
i¼1 x

‘
i Þ of each tetrahedron. More precisely, the translationT �34 of the edge e34 acts

on the dual fields as

T �34x’̂1ðx1; x2; x3; x4Þ ¼ w�34’̂1ðx1 � �34; x2; x3; x4 þ �34Þ;
T �34x’̂2ðx4; x5; x6; x7Þ ¼ w�34’̂2ðx4 � �34; x5 þ �34; x6; x7Þ;
T �34x’̂5ðx10; x8; x5; x1Þ ¼ w�34’̂5ðx10; x8; x5 � �34; x1 þ �34Þ;

T �34x’̂‘ ¼ ’̂‘ if ‘ ¼ 3; 4:

(75)

The same field transformation is expressed in a more
explicit way (without star product) in the group represen-
tation, as follows:

T �34x’1ðg1; g2; g3; g4Þ ¼ eg�1
1

g4
ð�34Þ’1ðg1; g2; g3; g4Þ;

T �34x’2ðg4; g5; g6; g7Þ ¼ eg�1
4

g5
ð�34Þ’2ðg4; g5; g6; g7Þ;

T �34x’5ðg10; g8; g5; g1Þ ¼ eg�1
5

g1
ð�34Þ’5ðg10; g8; g5; g1Þ;

T �34x’‘ ¼ ’‘ if ‘ ¼ 3; 4: (76)

We see that this transformation matches the intuition
corresponding to translating bivectors [soð4Þ Lie algebra
elements] associated to the triangles of the four-simplex
dual to the GFT interaction vertex, by means of Lie algebra
valued generators associated to its edges. This matches
also the action of diffeomorphisms on the bivectors of
discrete BF theory [recall that the transformations we
have defined take the closure condition (metric compati-
bility) into account].11 It can be checked by direct calcu-
lation that the GFT action (70) is invariant under the above
field transformations.

In fact, one verifies, as in the 3d case, that both kinetic
and vertex functions themselves are left invariant—before
integration. A way to make this invariance manifest is to
extract from, say, the vertex function in group variables the
conservation laws for the holonomies associated to edges
of the four-simplex dual to the GFT vertex. Just as in
Sec. III E, the explicit integration over the group elements
h‘ in the vertex gives

Vðg; g0Þ ¼
Z Y5

i¼1

½dh‘�
Y10
i¼1

�ðg‘i h‘h�1
‘0 ðg‘

0
i Þ�1Þ

¼ �ðG12Þ�ðG13Þ�ðG15Þ�ðG23Þ�ðG25Þ�ðG35Þ;
(77)

where

G12 ¼ g8g
�1
9 g09g

�1
10 g

0
10g

0�1
8 ;

G13 ¼ g5g
�1
6 g06g

�1
10 g

0
10g

0�1
5 ;

G15 ¼ g7g
�1
6 g06g

0�1
9 g9g

0�1
7 ;

G23 ¼ g�1
2 g02g

�1
10 g

0
10g

0�1
1 g1;

G25 ¼ g0�1
3 g3g

�1
2 g02g0�1

9 g9;

G35 ¼ g4g
�1
2 g02g

0�1
6 g6g

0�1
4 :

We recognize here the Gij as the holonomies around the

edges ðijÞ. The delta functions in (77) encode the flatness
conditions which, as expected from the canonical analysis
of discrete BF theory, constrain the connection variables as
a result of the diffeomorphism symmetry.
Note that the holonomies associated to the edges ði4Þ are

missing. This is analogous to the 3d case where the trans-
lations of the four vertices of the tetrahedron are not all
independent; only three of them are. Also, in the 4d case,
the translations of the edges are not all independent, just as
the continuum symmetry can be shown to be reducible
(cf. the Appendix): this is due to the Bianchi identities
satisfied by the boundary connection represented by the field
variables. In fact, one can prove that translating a vertex, i.e.,
translating all edges sharing this vertex, leaves invariant the
interaction term and, by extension, the integrand of the
Feynman amplitude. The true symmetry is, therefore, repre-
sented by the above edge translationsmodulo the translations
of the edges following a vertex translation.
We thus see that, for (the GFT model describing) 4d BF

theory, everything proceeds in parallel with the 3d case, the
only new ingredient being the reducibility of the resulting
symmetry. However, the strategy used here to define the
action of diffeomorphisms in GFT can, in principle, be
extended to the physically more interesting case of 4d
gravity GFT models, obtained by constraining the topo-
logical one [5,6]. In general, we expect that the imposition
of the simplicity constraints will break the full symmetries
of Ooguri’s GFT. It will be interesting to determine
whether there is an eventual remnant symmetry and, if
not, whether the vertex translations become then the rele-
vant, if only approximate, symmetry [29]. In this case, such
a symmetry could admit a good geometric interpretation as
translations of the vertices of a geometric four-simplex in
an embedding 4d flat space, as we expect from diffeo-
morphisms in discrete gravity [7,10].

11Unlike the 3d case, however, we have no geometric descrip-
tion in terms of translating the edges of a four-simplex embedded
in four-dimensional flat space. This is only to be expected, given
that we are dealing with a nongeometric theory and thus with
nongeometric four-simplices.
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VI. ADDITIONAL INSIGHTS

We now discuss additional insights that the newly iden-
tified GFT symmetry provides, concerning various aspects
of the GFT formalism itself. While these are somewhat
secondary results, we believe they confirm the importance
of the new symmetry and suggest that further progress can
be triggered by its identification.

The necessity of coloring. The introduction of coloring
in GFT models in [23] has already been proven useful in
studies of the topological properties of the Feynman dia-
grams generated by such models [24,25,45]—in particular,
for the automatic removal of complexes with some types of
extended singularities that are instead generated by the
noncolored models. Most important, it has been crucial
for the proof that the 3d GFT we have studied admits a
topological expansion of its Feynman diagrams such that
manifold configurations of trivial topology dominate the
sum for large values of the representation cutoff [28].
These important results have important implications for
the program of GFT renormalization and for defining a
GFT generalization of the notion of the (double) scaling
limit of matrix models [39], and thus for the understanding
of the continuum limit. No obvious physical or geometric
relevance, however, had been discovered, until now, for the
same coloring. Our results show, on the other hand, that
coloring is a necessary feature of GFT models for 3d
gravity and general BF theories. In fact, coloring is a
necessary ingredient in the definition of the GFT diffeo-
morphism symmetry we have identified and discussed in
this paper. More precisely, it can be shown that removing
the coloring leads to the immediate breaking of the sym-
metry and that only a restricted translation of the vertices
of the tetrahedron dual to the GFT vertex can be defined as
a field transformation leaving the noncolored action invari-
ant, such as the one identified in [21]. This symmetry,
however, although being a particular combination of the
symmetry transformation we have studied, does not have a
clear simplicial gravity interpretation. Given the interpre-
tation of our GFT symmetry as the counterpart of discrete
diffeomorphisms in simplicial gravity path integrals, the
importance of coloring from the physical/geometrical
point of view becomes instead manifest. In its light, we
recognize the colored Boulatov GFT model as the correct
GFT description of 3d quantum gravity.

A braided group field theory formalism? In this paper,
we have studied the issue of diffeomorphism symmetry
within the standard (colored) group field theory formalism.
In particular, the algebra of fields we have worked with has
been assumed to have trivial braiding [20,22]; i.e., the map
between the tensor product of two fields and the one with
opposite ordering is given by the trivial flip map. At the
same time, however, the symmetry we have identified in
the GFT action corresponds, as we have stressed, to a
quantum group symmetry acting on this space of fields.
As such, its action on the space of fields would naturally

induce, when these are defined as elements in its represen-
tation category, a nontrivial braiding structure [46]. This
also results in a corresponding braided statistics [47]. Most
important, it can be shown that the use of the induced
braiding map in the algebra of fields is necessary, if the
symmetry is to be preserved at the quantum level
[36,37,46], for example, so that the correct Ward identities
for n-point functions follow from the existence of the
symmetry at the level of the action. We will discuss briefly
below whether this is necessary on physical grounds in our
context and what the properties of the n-point functions are
in our trivially braided context. In any case, the above
considerations suggest, at least from a mathematical and
field theoretic perspective, to consider a generalization of
the GFT formalism, beyond the one as noncommutatve
field theories, achieved in [15], to a braided noncommuta-
tive group field theory (see also [21] for further arguments
in this direction). The first issues to tackle, in this direction,
are 1) what is the correct braiding among GFT fields
intertwining our quantum group symmetry, if it exists at
all; and 2) what are the physical consequences of the
implementation of a nontrivial braiding and of the resulting
quantum Ward identities, from the point of view of sim-
plicial quantum gravity, loop quantum gravity, and spin
foam models.
Constraints on GFT model building. Another useful role

that symmetries play in usual quantum field theories is that
they help constraining the allowed field interactions. In
fact, the requirement that the GFT interactions preserve
the quantum group symmetry we identified as discrete
diffeomorphisms rules out some GFT interactions that
could be considered, a priori, as admissible.
We have already discussed above how removing the

coloring form the GFT fields, i.e., considering the original
Boulatov formulation with a single field, breaks the sym-
metry. This can also be understood as a special case of a
larger set of possible GFT interactions within the colored
GFT formulation, that we now see to be ruled out by
symmetry considerations. The colored model we worked
with, for 3d gravity, was based on four different fields ’l,
with l ¼ 1, 2, 3, 4, and the only interaction term was of the
form ’1’3’2’4 (plus complex conjugate), with standard
tetrahedral combinatorics of arguments. The single-color
Boulatov interaction corresponds to terms of the type
’l’l’l’l. A quick calculation shows that, not only such
terms, but any interaction being more than linear in any of
the colored fields (e.g., ’1’1’3’4 or ’1’2’3’2) is not
invariant under our GFT diffeomorphism symmetry. We
are then left with interactions that involve linearly all the d
GFT fields (in models generating d-dimensional simplicial
structures). The ordering of such fields can be chosen at
will (in our trivially braided context).
We can, however, also ask whether the ordering of the

(group or noncommutative) arguments of such fields in the
interaction term can be chosen at will. Different orderings,
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in fact, have been considered in the literature (see [39]). In
colored models, the order of the arguments of the field is
considered as fixed and does not play any special role (the
orientability of the resulting Feynman diagrams is already
ensured by the complex structure and by the requirements
of same-color propagation only [45,48]). Regarding the
interplay between the ordering of arguments and symme-
try, the situation is slightly trickier. It can be seen easily
that, for any given choice of ordering, there exists a (set of)
transformation(s) acting on the dþ 1 fields leaving the
action invariant and corresponding to diffeomorphisms,
in the sense we have discussed. The very definition of the
transformations retains the imprint of the chosen ordering
of field arguments. At the same time, however, it can be
shown that such a transformation would not, in general,
leave invariant a vertex defined by a different ordering nor
an action involving a sum over different orderings. This
means, for example, that the GFT field itself cannot be
defined to be invariant under permutations of its argu-
ments, as this imposition would break its covariance under
the diffeomorphism transformation and then the invariance
of the action. It must be said, however, that a possible way
out of this restriction could be, once more, an appropriate
braiding that relates fields defined with different orderings
of their arguments and, possibly, intertwines our symmetry.
We leave this for future work.

Last, one could consider defining both higher-order
interaction terms, i.e., terms of order higher than dþ 1
involving colored fields, with various choices of pairing of
field arguments, as well as other terms still of order dþ 1,
but defined by nontetrahedral combinatorics of arguments.
Our symmetry severely constrains model-building of this
type. We have not performed yet a complete analysis.
However, we have considered some examples. One inter-
esting example of an alternative interaction term, the so-
called ‘‘pillow’’ term, has been introduced in [49] and
studied further in [43]. It has the following form (in its
colored version):

þ ��

4!

Y6
i¼1

Z
dgi½�1ðg1; g2; g3Þ�2ðg3; g4; g5Þ

��3ðg4; g2; g6Þ�4ðg6; g5; g1Þ�: (78)

So, it is given by the same type of vertex function, i.e., a
product of delta functions on the group, enforcing the
identification of edge variables among four triangles, as
in the standard tetrahedral term. However, the combinato-
rial pattern is now different and corresponds to two pairs of
triangles glued to one another along two edges in each pair
and along one single edge between the two pairs. The
interest in the addition of such a term lies in the fact that
it turns the (noncolored) Boulatov model into a Borel
summable one [with some restrictions on the coupling
constant � and with a different (worse) scaling behavior].
It can be proven, however, that this term is not invariant

under GFT diffeos and thus is not an admissible modifica-
tion of the action of the model, in the colored case.
We stress again that the above considerations would be

modified by the introduction of a nontrivial braiding
among fields, with a corresponding generalization of the
GFT formalism. However, not knowing the correct braid-
ing structure, it is impossible to be more definite about
what the modifications would be.

VII. CONCLUSIONS

Using the recently introduced noncommutative metric
formulation of group field theories, we have identified a set
of GFT field transformations, forming a global quantum
group symmetry of the GFT action and corresponding to
translations of the vertices of the simplices dual to the GFT
interaction vertex, in a flat space embedding. The analysis
of the action of these transformations at the level of the
GFT Feynman amplitudes, which are given, in this metric
formulation, by simplicial gravity path integrals, shows
that the transformations we identified correspond to (the
discrete analogue of) diffeomorphisms for fixed simplicial
complex satisfying manifold conditions and leave the same
amplitudes invariant thanks to discrete Bianchi identities,
whose GFT origin we are now able to exhibit. Moreover,
for open Feynman diagrams dual to simplicial manifolds
with boundaries, we have shown that the same transforma-
tions enforce the flatness of the boundary connection and
thus encode the simplicial version of the canonical gravity
constraints, as expected.
While we focus on the case of 3d Riemannian gravity,

we also show how our results generalize straightforwardly
to BF theories in higher dimensions. Thus, our results, on
the one hand, match those obtained, concerning discrete
diffeomoprhisms, in the context of simplicial gravity (e.g.,
Regge calculus) and, on the other hand, improve them by
both embedding them within a more general context and
rephrasing them in purely (quantum) field theoretic lan-
guage. An immediate advantage of this embedding is the
clear way in which we can now link to one or another
various aspects of diffeomorphism invariance in spin foam
models, canonical loop quantum gravity, and simplicial
gravity, previously discussed in the literature and now
understood to be all consequences and manifestations of
the same GFT field symmetry: the symmetry of the Regge
action and the simplicial Bianchi identities (manifest in the
metric representation of GFTs), the canonical constraints
of loop quantum gravity (adapted to a simplicial complex,
best seen in the group picture), and the algebraic identities
satisfied by nj symbols and at the root of the topological
invariance of state sum (spin foam) models (obtained from
the GFT symmetry in representation space).
Our analysis also provides some new insights on the

GFT formalism itself. These include the need for coloring
in the GFT formalism, from the point of view of simplicial
gravity symmetries; the possible role of braiding in this
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class of models, and thus in simplicial gravity path inte-
grals and spin foam models, and the potential interest in a
braided group field theory formalism; the issue of Ward
identities and the relation of the same with canonical
quantum gravity constraints and recursion relations for 6j
and 10j symbols; and the use of the GFT symmetries we
identified for constraining the possible interaction terms
that can be added to the standard GFT vertex.

We believe that the GFT symmetry we identify can also
play a useful role concerning ongoing work on GFT renor-
malization and, possibly, for the extraction of continuum
gravity from GFT models.
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APPENDIX: BF ACTION AND ITS SYMMETRIES

In this appendix, we recall the standard basic facts about
the symmetries associated to the BF action.

We work with a d-dimensional manifold M, equipped
with a principal bundle associated with the semisimple Lie
groupG. The Lie algebra ofG is noted as g and is equipped
with a nondegenerate Killing form which we note as tr. A is
the connection, i.e., a one-form with value in g, of the
principal bundle, and we note as F ¼ dAþ A ^ A the
curvature two-form of the connection A. dA is the covariant
derivative, defined in terms of the connection A. We now
introduce to B a ðd� 2Þ form with value in a Lie algebra g.
The BF action is built using the Killing form tr on g:

SBF ¼
Z

trðB ^ FÞ: (A1)

The equations of motion are

dAB ¼ 0; F ¼ 0: (A2)

The action is invariant under both translation of the B field
and the gauge transformations. The infinitesimal gauge
transformations are given by

A ! Aþ �L
XA ¼ Aþ dAX ¼ Aþ dX þ ½A; X�;

B ! Bþ �L
XB ¼ Bþ ½B; X�: (A3)

X 2 g is a scalar field with value in g. The B field is,
therefore, transforming under the adjoint action of G. The

curvature F is also transforming under the adjoint action,
and it is thus easy to check that the action is invariant under
these gauge transformations.
Thanks to the Bianchi identity dAF ¼ 0, the action is

also left invariant if we translate the B field by dA�, where
� is a ðd� 3Þ form with value in g:

A ! Aþ �T
�A ¼ A;

B ! Bþ �T
�B ¼ Bþ dA� ¼ Bþ d�þ A ^�:

(A4)

There is, however, a possible redundancy for the transla-
tions if d 
 4. Indeed, assuming d 
 4, consider the d� 4
form V with value in g; then, � and �0 ¼ �þ dAV gen-
erate on shell the same transformation, since dA� ¼ dA�

0,
due to d2AV ¼ ½F; V�. This last term is zero on shell.
The BF action is clearly invariant under the diffeomor-

phisms, since it is purely topological. Let us consider
explicitly the (infinitesimal) action of the diffeomor-
phisms. Considering a vector field 	, the infinitesimal
action of the diffeomorphisms is given by the Lie deriva-
tive L	. We have, therefore,

B ! L	B ¼ dð
	BÞ þ 
	ðdBÞ;
A ! L	A ¼ dð
	AÞ þ 
	ðdAÞ;

(A5)

where we have introduced the interior product 
	, which
satisfies, in particular,


	ð!1^!2Þ¼ 
	ð!1Þ^!2þð�1Þp!1^
	ð!2Þ; (A6)

with !1 and !2, respectively, a p and a q form. These
transformations can actually be related to the previous
transformations (A3) and (A4). We have that


	ðdABÞ ¼ 
	ðdBÞ þ 
	ðA ^ BÞ
¼ 
	ðdBÞ þ ½
	ðAÞ; B� � A ^ 
	ðBÞ;


	ðFÞ ¼ 
	ðdAÞ þ 
	ðA ^ AÞ ¼ 
	ðdAÞ þ ½
	ðAÞ; A�:
(A7)

Taking X ¼ 
	B and� ¼ 
	A, we can reexpress the action
of the diffeomorphisms as

L	B ¼ �L

	A

Bþ �T

	B

Bþ 
	ðdABÞ;
L	A ¼ �L


	A
Aþ �T


	B
Aþ 
	ðFÞ:

(A8)

This means that on shell (A2), the diffeomorphism action is
equivalent to the translation (A4) and gauge transformation
(A3).
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