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ABSTRACT

We investigate a purely stellar dynamical solution to the Final Parsec Problem. Galactic nuclei
resulting from major mergers are not spherical, but show some degree of triaxiality. With N -body
simulations, we show that massive black hole binaries (MBHB) hosted by them will continuously
interact with stars on centrophilic orbits and will thus inspiral—in much less than a Hubble time—
down to separations at which gravitational wave (GW) emission is strong enough to drive them to
coalescence. Such coalescences will be important sources of GWs for future space-borne detectors such
as the Laser Interferometer Space Antenna (LISA). Based on our results, we expect that LISA will
see between ∼ 10 to ∼ few×102 such events every year, depending on the particular MBH seed model
as obtained in recent studies of merger trees of galaxy and MBH co-evolution. Orbital eccentricities
in the LISA band will be clearly distinguishable from zero with e & 0.001− 0.01.

Subject headings: black hole physics — galaxies: nuclei — stellar dynamics — gravitational waves

1. INTRODUCTION

Massive black hole binaries (MBHBs) are one of the
most interesting sources of gravitational waves (GWs)
for future space-borne detectors such as the Laser Inter-
ferometer Space Antenna (LISA). They are expected to
coalesce under the strong emission of GWs, after stellar-
and/or gas-dynamical processes bring them to separa-
tions small enough (aGW ∼ 10−3 pc) that GW emission
is efficient in making them coalesce in less than a Hubble
time (Milosavljev́ıc & Merritt 2003; Armitage & Natara-
jan 2005). It is still an open problem whether MBHB
coalescences are generic and prompt, or whether long-
lived binaries are the norm.

The paradigm for MBH binary evolution, after a
merger of gas-poor galaxies, consists of three distinct
phases (Begelman, Blandford & Rees 1980). First, the
two MBHs sink towards the center due to the dynamical
friction exerted by the stars. This process continues after
they form a bound pair at a semimajor axis separation
a ∼ rh, where rh is the binary’s influence radius defined
to be the radius which encloses twice the mass of the bi-
nary in stars. It stops when the binary reaches the hard
binary separation a ∼ ah (Quinlan 1996; Yu 2002)

ah :=
Gµr
4σ2

∼ 1

4

q

(1 + q)2
rh, (1)
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where µr is the binary’s reduced mass, σ is the local
1D velocity dispersion, q = M•,2/M•,1 is the binary’s
mass ratio. Secondly, for a . ah, as dynamical friction
becomes inefficient in further driving the inspiral, it is in-
stead the slingshot ejection of stars, following three-body
scattering with the binary, that dominates. Thirdly, the
binary eventually reaches a separation aGW at which the
loss of orbital energy to GW emission drives the final
coalescence. The transition from the first to the second
phase is prompt provided that the mass ratio of the rem-
nants is not too small q = M2/M1 & 0.1 (Colpi & Dotti
2009; Callegari et al. 2011). In contrast, the subsequent
transition from the second to the third phase could con-
stitute a bottleneck for the binary evolution towards final
coalescence. This is the so-called Final Parsec Problem.

In quasi-steady spherical stellar environments, the bi-
nary’s hardening rate s(t) ≡ d/dt(1/a) slows down sig-
nificantly once it reaches separations a few times below
∼ ah (Quinlan & Hernquist 1997; Milosavljev́ıc & Mer-
ritt 2003; Berczik et al. 2005). In these spherical and
gas-poor nuclei, two-body relaxation is the only mecha-
nism for populating the binary’s loss cone 7, but being a
slow diffusive process, it is only in low-luminosity galax-
ies harboring MBHs of mass M• . few × 106M� that
central relaxation times are short enough to drive the bi-
nary to coalescence in less than a Hubble time (Merritt
et al. 2007).

But spherical models are a worst case scenario—and
not a very realistic one at that! Merger remnants will
generally be irregular with some degree of triaxiality
and, even if triaxiality would only be a rather mild and
transient phenomenon, it may suffice to bring the bi-
nary down to aGW (Merritt & Poon 2004). Berczik
et al. (2006) and Berentzen et al. (2009) studied tri-
axial, rotating models of galactic nuclei using N -body
simulations—including the full post-Newtonian correc-

7 The loss cone is the region of phase space corresponding,
roughly speaking, to orbits that cross the binary, i.e. with angular
momentum J . Jlc =

√
GM12fabin, where f = O(1) (Lightman

& Shapiro 1977).
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tions to the MBHB. They have shown that MBHBs in
such models do indeed coalesce in much less than a Hub-
ble time. The next logical step is to study mergers of
galactic nuclei to investigate if the latter results still hold
true under more realistic models and initial conditions.

In this Letter, we use N-body simulations to show
that: (1) in merging nuclei, the hardening rate is N -
independent—allowing the extrapolation of N -body re-
sults to real galaxies; (2) the triaxiality depends on the
orbital parameters of the progenitor galaxies: prolate
shapes occur when the merger is almost radial, while an
oblate morphology is the result of a less radial merger;
(3) MBHs become bound with high eccentricities (up
to e ∼ 0.95); (4) the eccentricity tends, on average,
to increase in good agreement—often quantitative—with
Quinlan (1996) predictions; (5) high eccentricities assist
the MBHB into promptly coalescencing in much less than
a Hubble time; (6) eccentricities in the LISA band are
likely to be distinguishable from zero (e & 0.001− 0.01)
even though GW circularizes the orbits, and will also be
quite large (0.4 . e . 0.8) in the Pulsar Timing Array
(PTA) band.

2. MODELS AND INITIAL CONDITIONS

We have performed two sets of N -body experiments.
In both sets, galactic nuclei are represented by spheri-
cally symmetric Dehnen models (Dehnen 1993; Tremaine
et al. 1994). These models have a central power law den-
sity profile, ρ(r) = (3 − γ)MT /4πr

γ(rb + r)4−γ , with
logarithmic slope γ and a break radius rb which are both
set equal to one. The total mass of each nucleus is set
MT = 1, and we adopt units where G = 1. The total
mass of the binary MBH M12 = M•,1 + M•,2, and we
take q = M•, 2/M•, 1 = 1. We study unequal mass MBH
coalescences in parallel papers (Berczik et al. 2011; Preto
et al. 2011).

The set (A) consists of a single spherical nucleus where
two MBHs are placed symmetrically about the center, on
an unbound orbit, with initial separation ∆r0 = 2, initial
angular momentum L/Lc = 0.5, where Lc is the angular
momentum of the local circular orbit. The set (B) con-
sists on the equal-mass merger of two initially bound—
but well-separated—spherical nuclei, each of which has a
single MBH at the center with zero initial velocity with
respect to its nucleus. For B, the initial separation ∆r0
refers to both nuclei taken as if they were point masses
located at each center of mass. The half-mass radius of
each nucleus is r1/2 ≈ 2.41; accordingly, and in order
to have an initial configuration with two well separated
nuclei, while minimizing the computing time, we set the
initial separation equal to 20. For the initial orbital an-
gular momentum of the binary nuclei, we have taken two
values L/Lc = 0.14 and 0.6 given the nearly-parabolic
encounters typical of major galaxy mergers seen in cos-
mological simulations (Khochfar & Burkert 2006). Dur-
ing the first pericenter passages, the MBH separations
are ∆rBH ∼ 0.2 ∼ 0.1r1/2 and ∆rBH ∼ 2.2 ∼ r1/2,
respectively. Table 1 lists the runs and adopted param-
eters.

We have performed the N -body simulations using the
parallel ϕ-GPU code. This is a yet unpublished vari-
ant of the parallel direct N-body code ϕ-GRAPE (Harfst
et al. 2007), which uses GPU accelerator cards on parallel
clusters (Berczik et al. 2011). It includes a fourth-order

M12\N 64K 128K 256K 512K 1M

0.005 λsph λsph λsph λsph λsph
0.1 λsph λsph λsph λsph —

0.005 λ2 λ2 λ2 λ2 λ2
0.01 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 —
0.02 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 —
0.1 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 —

TABLE 1
N-body integrations. 1st column: mass of the MBH binary;

Other columns: particle number N ; First two lines:
simulations of spherical nuclei; Last four lines:

Simulations of merging nuclei; λ = L/Lc measures the
initial orbital angular momentum of the MBH binary

(λsph = 0.5 for spherical nuclei), or otherwise it measures
the initial orbital angular momentum of the merging

nuclei (λ1 = 0.14 for near-radial merger and λ2 = 0.6 for
less radial merger). All nuclei have γ = 1; all binaries

have equal mass q = M•,2/M•,1 = 1.

Hermite integration scheme, with block time steps, anal-
ogous to NBODY1 (Aarseth 2003).

The code does not include regularization of close en-
counters, and softening of the gravitational interaction
is adopted instead. The softening length has to be cho-
sen small enough that it reproduces the refilling of the
binary’s loss cone by two-body relaxation. After some
testing, we adopt a softening length ε = 10−4 in model
units. We set the time step parameter (Aarseth 2003)
to η∗ = 0.01 for the field stars and ηBH = 0.001 for the
BHs. Furthermore, we force the MBHs to be advanced
synchronously at all times with the smallest step. With
the parallelized version of the ϕ-GPU code, one can study
models with very large number N of particles and the re-
sults agree with NBODY4 (Aarseth 2003) as far as single
stars and distant encounters are concerned. For the high
velocity dispersions present in nuclei with a MBH, the
effect of close encounters between field stars is negligi-
ble for the bulk evolution of the stellar system (Preto &
Amaro-Seoane 2010).

3. MBH EVOLUTION IN SPHERICAL VERSUS IN
MERGING NUCLEI

The stars that drive the orbital decay of a hard MBHB
are those that enter the loss cone orbits. The MBHB’s
hardening rate is thus determined by the product of the
flux of stars entering the loss cone with the average ki-
netic energy they receive when ejected—at the expense
of the MBHB’s orbital energy—through the slingshot
mechanism. Denoting by Flc(E, t) the time-dependent
flux into the loss cone and by 〈∆E(E)〉 the mean kinetic
energy imparted to stars which are scattered off by the
binary, the hardening rate is given by (Yu 2002)

d

dt

(
1

a

)
=

2m∗
GM12µr

∫ +∞

0

dE〈∆E(E)〉Flc(E, t), (2)

where E = GM12/r + Φ∗(r) − 1/2 v2, and Φ∗(r) is the
gravitational potential due to the stars. The mean ki-
netic energy 〈∆E(E)〉 is given by

〈∆E(E)〉 ∼ 〈C〉Gµr
a
, (3)

where 〈C〉 ≈ 1.25 is a dimensionless quantity which was
measured from three-body scattering experiments (Quin-
lan 1996). Therefore, the hardening rate s(t) can be
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Fig. 1.— Binary hardening. Upper panel: in a spherical nucleus,
s(t) decreases with N . Middle panel: in a merging nucleus, s(t) is
N-independent. Lower panel: hardening rates as a function of N
for different M12. Being much smaller, 〈s〉 of the M12 = 0.1 binary
has been multiplied by 100 to better fit in the plot. Labels ’s’ for
spherical and ’m’ for merger.

rewritten as

s(t) ≡ d

dt

(
1

a

)
≈ 2m∗〈C〉

M12a

∫ +∞

0

dEFlc(E, t). (4)

The time evolution of the flux Flc(E, t) depends on
the symmetries of the gravitational potential—and on
the orbit families it supports—of the nuclei in ques-
tion. In principle, Flc(E, t) in the spherical case can
be obtained from Fokker-Planck calculations that take
into account the diffusion of stars in phase space (Mer-
ritt et al. 2007; Preto & Amaro-Seoane 2010). Here
we derive simple scaling relations which are useful in
interpreting the N-body results. For each energy E,
Flc(E, t) ∝ n(E, t)/Trlx(E, t) where n(E, t) is the num-
ber of stars of energy E per unit energy and Trlx(E, t)
is the local two-body relaxation time; the latter scales as
Trlx ∝ σ3/ρm∗ (Spitzer 1987). The flux of stars into the
loss cone is expected to peak around rh (Perets & Alexan-
der 2008), so we evaluate these quantities there. Hence,

σ2
h ∼ G(M(< rh) + M12)/rh ∼ 3GM12/rh ∝ M

1/2
12 —

where rh ∝ M
1/2
• follows from the M• − σ relation

(Ferrarese & Ford 2005). Then, σ3
h ∝ M

3/4
12 obtains.

On the other hand, for a fixed galaxy mass, we have

m∗ ∝ 1/N and therefore Trlx ∝ M
3/4
12 N/ρ. Since in our

N-body models, ρ(r) and n(E, t) are unchanged and only
σ changes as M12 is varied, we find that the hardening
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Fig. 2.— Triaxiality T and mass flattening ε = (a−c)/a of merg-
ing nuclei. Shown are merging binaries of total mass M12 = 0.005
with L/Lc = 0.6 (upper panel), M12 = 0.01 and 0.02 with
L/Lc = 0.14 (almost radial mergers, in the middle and lower pan-
els). T and ε are measured in five mass shells between r = 0 and
r = 2.5, each of width ∆r = 0.5. Triaxiality decreases over time,
the faster the heavier the binary is. Mass flattening is constant.

rate scales with M12 and N as s ∝M−7/412 N−1. The case
of a triaxial nucleus is different: J for each star is not
conserved, thus stars may precess into the loss cone on
a time scale Tpr � Trlx (Merritt & Poon 2004); and Tpr
will depend only on the global gravitational potential of
the galaxy. In this case, the mass flux into the loss cone
m∗Flc(E, t) ∝ m∗n(E, t)/Tpr(E, t), and also s(t), will be
independent of the number N of stars.

In Figure 1, we see that s(t) is N-dependent in a spher-
ical nucleus, while it is N -independent in the merging
one. In the former case, s(t) ∝ N−α, with α = 0.45 and
0.75 for binaries of M12 = 0.005 and 0.1. These results
can be interpreted as follows. In the empty loss cone
limit (α = 1), the stars repopulate the loss cone at a rate
∝ T−1rlx much lower than the that with which they are

ejected by the binary, which is ∝ T−1dyn. In the full loss

cone limit (α = 0), stars enter the loss cone at a rate
which is similar to the rate at which they are ejected by
the binary. A measure for the loss cone refilling rate is
given by (Lightman & Shapiro 1977)

q(E) ≡
(
δJ

Jlc

)2

, (5)

where δJ is the mean change in J , per orbital period,
of a star on a low-J . In the limit when q(E) � 1, the
loss cone is said to be empty; while q(E) � 1 in the
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Fig. 3.— Long term eccentricity evolution. Red and green
lines represent NB and semi-analytic evolution without radiation
reaction. Blue and magenta lines correspond to semi-analytic
solution, including radiation reaction, for M12 = 106M� and
M12 = 108M�, respectively.

full loss cone limit. For a given nucleus, and for r > rh,
we expect δJ to be independent of M12. As a result,
the weaker dependence of 〈s〉 on N for lighter binaries,

placed in a spherical nucleus, follows from q ∝ M
−1/2
12 ;

at the same E, q(E) of the M12 = 0.005 binary is ∼ 4.5
larger than that of the M12 = 0.1 one. We would need to
use a larger N for the lighter binaries, 〈s〉 ∝ N−0.45, to
enter deep into the empty loss cone limit 〈s〉 ∝ N−1; the
heavier binary, 〈s〉 ∝ N−0.75, almost reaches this limit.
The dependence of 〈s〉 on M12 is more straightforward
to interpret. For the spherical case, the lighter binary
is expected to harden at a rate ∼ 207/4 higher than the
heavier, which is indeed the case. In the merger case,
m∗Flc(E) is N -independent and therefore 〈s〉 ∝ M−112 .
Since the mass ratio between the binaries is 2, 〈s〉 also
differs by a corresponding factor of two.

Following Merritt & Poon (2004), we measure the tri-
axiality of the nucleus with T = (a2 − b2)/(a2 − c2). 8

Figure 2 depicts the evolution of T and of the flatten-
ing ε = 1− c/a for several mass shells of merging nuclei.
The value of T of each remnant, immediately after the
merger, depends on the initial L/Lc. In the case of a near
radial merger, L/Lc = 0.14, the remnant is prolate and
evolves over time towards an oblate spheroidal shape;
for L/Lc = 0.6 the remnant is an oblate spheroid from

8 Models with T = 0.25 and 0.75 correspond to moderately
oblate and prolate shapes, respectively.
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the very beginning. The triaxiality decreases over time,
and the rate at which it changes is faster the larger M12

is. The triaxiality remains significant, in the inner mass
shells, until the binary reaches the relativistic phase in all
models with the smallest (and more realistic) values of
M12, and also in most of the other cases. The flattening
ε ∼ 0.2 is constant throughout in all cases, so the asymp-
totic shape of the merger is that of an oblate spheroid.
We conclude that the rather mild triaxiality created dur-
ing the merger supports a family of centrophilic orbits
that keep the loss cone full (α = 0) at all times until the
binary reaches relativistic separations ∼ aGW .

4. ECCENTRICITY EVOLUTION AND TIME SCALES FOR
COALESCENCE

The hardening rate, due to the slingshot ejection of
stars, is found to be in our N -body simulations es-
sentially independent of the binary’s orbital elements,
while that due to GWs is strongly dependent on them:
d/dt(1/a)GW ∼ |ȧ/a2|GW ∝ a−5(1 − e2)−7/2 (Peters
1964). As a result, the time a binary takes to coalesce
depends strongly on its eccentricity. In paper I, we did
follow this evolution self-consistently with N-body simu-
lations of rotating King models. Since such calculations
are extremely CPU-intensive, we estimate the full evolu-
tion using a semi-analytic approach (Quinlan 1996). The
advantage is that we can calibrate the average hardening
rate 〈s〉 with our N-body simulations—which would re-
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main a free parameter otherwise—, and thus make quan-
titative predictions on both the coalescence times and the
long term eccentricity evolution.

The evolution of the MBHB orbital elements, including
the effect due to orbital energy lost to GWs, is given by

d

dt

(
1

a

)
=
d

dt

(
1

a

)
st

+
d

dt

(
1

a

)
GW

de

dt
=

(
de

dt

)
st

+

(
de

dt

)
GW

. (6)

The GW terms are given in Peters (1964). The eccen-
tricity evolution, driven by the stars, is obtained from
three-body scattering experiments(

de

dt

)
st

= K(e) a 〈s〉, (7)

where K(e) = e(1−e2)k0(k1+k2e) and the constants are
taken from Quinlan (1996). In order to assess the qual-
ity of the fits to the N -body results, Figure 3 compares
the N -body evolution of the binary with that obtained
from the semi-analytic model. We take as initial condi-
tions for the integration of equations (6) an instant of
time in the early hard binary phase. Given the differ-
ences between our N -body models and the assumptions
embodied by the semi-analytic description the agreement
is quite remarkable.

We then include the GW terms due to radiation reac-
tion to compute the time it takes for the binary to coa-
lesce. To scale our models to binaries with M12 = 106M�
and M12 = 108M�, we adopt the most recent observa-
tional values for the mass normalization of the Milky
Way nucleus, M(< 1pc) = 106M� (Schödel et al. 2009)
and use the M• − σ relation to extrapolate to different
MBH masses. The results are shown in the upper panel
of Figure 4. We see that coalescence times range between
Tcoal ∼ 107 yrs and ∼ few × 108 yrs. These times are
not longer that the mean time between successive major
mergers. In contrast, for a spherical nucleus, coalescence
times for the lower mass would become ∼ few × Gyr,
while binaries with & 108M� would stall (Preto et al.
2011).

We also follow the long term evolution of the eccentric-
ity. In the N -body runs, the binaries become bound with
high eccentricities (up to e ∼ 0.95) on average—in agree-
ment with previous works (Berentzen et al. 2009; Preto
et al. 2009). Since LISA will be sensitive to the inspiral
signal of 106M� binaries, it is important for data analy-
sis purposes to estimate whether they will enter the band
with non-negligible eccentricity (e & 10−4) (Porter &
Sesana 2010). The middle panel of Figure 4 displays the
distribution of eccentricities at a = 100RSchw

9—most
binaries will not be fully circularized by then. We ex-
pect therefore that the eccentricity in the LISA band will
be non-negligible. Finally, the lower panel of Figure 4

depicts the eccentricity distribution at fGW = 2forb =
10−8Hz for the PTA band. We see that eccentricities
are quite high—peaking at e ∼ 0.6. The results pre-
sented here concerning the coalescence times and eccen-
tricity growth corroborate recent three-body scattering
studies—which had to treat the average hardening rate
〈s〉 as a free parameter (Sesana 2010).

5. SUMMARY

With our results, we are moving closer towards a con-
sistent solution to the Final Parsec Problem, and thus
of providing a dynamical substantiation to the cosmo-
logical scenario where prompt coalescences are assumed
during the course of galaxy evolution (Sesana et al. 2007;
Volonteri 2010). Our results suggest that the formation
of eccentric binaries, followed by a quick orbital decay,
could result from the expected development of global
non-axisymmetries in galaxies after they merge. Our gas-
poor merger models show only rather mild departures
from axisymmetry and a small amount of rotation; we be-
lieve that stronger departures from axisymmetry—to be
expected from higher amount of rotation—, and the pres-
ence of gas will only reinforce our conclusions. It seems,
therefore, probable that prompt coalescences result from
mergers of irregular galaxies expected to be common at
high redshift. Based on our prompt MBHB coalescence
results, we expect that LISA will see ∼ 10 − few × 102

events per year depending on the MBH seed model
(Sesana et al. 2009; Volonteri 2010). Moreover, even
though GWs circularizes the MBHBs during the late rel-
ativistic phase of inspiral, they are likely to have some
residual (e & 0.001− 0.01) eccenticity when entering the
LISA band and a broad distribution (0.4 . e . 0.8) in
the PTA band.
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