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ABSTRACT

We investigate a purely stellar dynamical solution to the Final Parsec Problem. Galactic nuclei resulting from major
mergers are not spherical, but show some degree of triaxiality. With N-body simulations, we show that equal-mass
massive black hole binaries (MBHBs) hosted by them will continuously interact with stars on centrophilic orbits
and will thus inspiral—in much less than a Hubble time—down to separations at which gravitational-wave (GW)
emission is strong enough to drive them to coalescence. Such coalescences will be important sources of GWs
for future space-borne detectors such as the Laser Interferometer Space Antenna (LISA). Based on our results for
equal-mass mergers, and given that the hardening rate of unequal-mass binaries is similar, we expect that LISA will
see between ∼10 and ∼ few × 102 such events every year, depending on the particular massive black hole (MBH)
seed model as obtained in recent studies of merger trees of galaxy and MBH co-evolution. Orbital eccentricities in
the LISA band will be clearly distinguishable from zero with e � 0.001–0.01.

Key words: black hole physics – galaxies: nuclei – gravitational waves

1. INTRODUCTION

Massive black hole binaries (MBHBs) are one of the most
interesting sources of gravitational waves (GWs) for future
space-borne detectors such as the Laser Interferometer Space
Antenna (LISA). They are expected to coalesce under the strong
emission of GWs, after stellar- and/or gas-dynamical processes
bring them to separations small enough (aGW ∼ 10−3 pc) that
GW emission is efficient in making them coalesce in less than
a Hubble time (Milosavljević & Merritt 2003; Armitage &
Natarajan 2005). It is still an open problem whether prompt
MBHB coalescences are generic, or whether long-lived binaries
are the norm.

The paradigm for MBH binary evolution, after a merger of
gas-poor galaxies, consists of three distinct phases (Begelman
et al. 1980). First, the two massive black holes (MBHs) sink
toward the center due to the dynamical friction exerted by the
stars. This process continues after they form a bound pair with
semimajor axis a ∼ rh, where rh is the binary’s influence radius
defined to be the radius that encloses twice the mass of the
binary in stars. It stops when the binary reaches the hard binary
separation a ∼ ah (Yu 2002):

ah := Gμr

4σ 2
∼ 1

4

q

(1 + q)2
rh, (1)

where μr is the binary’s reduced mass, σ is the one-dimensional
velocity dispersion, q = M•,2/M•,1 is the binary’s mass ratio.
Second, for a � ah, as dynamical friction becomes inefficient
in further driving the inspiral, it is instead the slingshot ejection
of stars that dominates. Third, the binary eventually reaches
a separation aGW at which the loss of orbital energy to GW
emission drives the final coalescence. The transition from the
first to the second phase is prompt provided that the mass ratio
of the remnants is not too small, q = M2/M1 � 0.1 (Colpi
& Dotti 2009). In contrast, the subsequent transition from the

second to the third phase could constitute a bottleneck for the
binary evolution toward final coalescence. This is the so-called
Final Parsec Problem.

In quasi-steady spherical stellar environments, the binary’s
hardening rate s(t) ≡ d/dt(1/a) slows down significantly
once it reaches separations a few times below ∼ah (Quinlan
& Hernquist 1997; Milosavljević & Merritt 2003; Berczik
et al. 2005). In these spherical and gas-poor nuclei, two-
body relaxation is the only mechanism for populating the
binary’s loss cone,7 but being a slow diffusive process, it
is only in low-luminosity galaxies harboring MBHs of mass
M• � few × 106 M� that central relaxation times are short
enough to drive the binary to coalescence (Yu 2002; Merritt
et al. 2007).

But spherical models are a worst case scenario. Merger
remnants will generally be irregular with some degree of
triaxiality and, even if triaxiality would only be a rather mild and
transient phenomenon, it may suffice to bring the binary down
to aGW (Yu 2002; Merritt & Poon 2004). Berczik et al. (2006)
and Berentzen et al. (2009) studied triaxial, rotating models of
galactic nuclei using N-body simulations. They have shown that
MBHBs in such models coalesce in much less than a Hubble
time. The next logical step is to study mergers of galactic nuclei
to investigate whether the latter results still hold true under more
realistic models and initial conditions.

In this Letter, we use N-body simulations to show that: (1) in
merging nuclei, the hardening rate is N-independent—allowing
the extrapolation of N-body results to real galaxies; (2) the
triaxiality depends on the orbital parameters of the progenitor
galaxies: prolate shapes occur when the merger is almost
radial, while an oblate morphology is the result of a less
radial merger; (3) MBHs become bound with high eccentricities

7 The loss cone is the region of phase space corresponding to orbits that cross
the binary, i.e. with angular momentum J � Jlc = √

GM12f abin, f = O(1)
(Lightman & Shapiro 1977).
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Table 1
N-body Integrations

M12\N 64K 128K 256K 512K 1M

0.005 λsph λsph λsph λsph λsph

0.1 λsph λsph λsph λsph · · ·
0.005 λ2 λ2 λ2 λ2 λ2

0.01 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 · · ·
0.02 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 · · ·
0.1 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 · · ·

Notes. First column: mass of the MBH binary; other columns: particle number
N; first two lines: simulations of spherical nuclei; last four lines: simulations
of merging nuclei; λ = L/Lc measures the initial orbital angular momentum
of the MBH binary (λsph = 0.5 for spherical nuclei), or otherwise it measures
the initial orbital angular momentum of the merging nuclei (λ1 = 0.14 for
near-radial merger and λ2 = 0.6 for less radial merger). All nuclei have γ = 1;
all binaries have equal mass q = M•,2/M•,1 = 1.

(up to e ∼ 0.95); (4) the eccentricity tends, on average,
to increase, in good agreement—often quantitative—with the
Quinlan (1996) predictions; (5) high eccentricities assist the
MBHB into promptly coalescencing in much less than a Hubble
time; and (6) eccentricities in the LISA band are likely to be
distinguishable from zero (e � 0.001–0.01) even though GW
circularizes the orbits, and will also be quite large (0.4 � e �
0.8) in the Pulsar Timing Array (PTA) band. While we were
finishing the write-up of this Letter, we have learned of another
paper with similar results regarding the N-independence (Khan
et al. 2011).

2. MODELS AND INITIAL CONDITIONS

We have performed two sets of N-body experiments. In both,
galactic nuclei are represented by spherically symmetric models
(Dehnen 1993; Tremaine et al. 1994). These models have a cen-
tral power-law density profile, ρ(r) = (3 − γ )MT rb/4πrγ (rb +
r)4−γ , with logarithmic slope γ . The total mass of each nucleus
is set MT = 1; we adopt units where G = rb = 1. The total
mass of the binary is M12 = M•,1 + M•,2, we take q = 1.

The set (A) consists of a single spherical nucleus where
two MBHs are placed symmetrically about the center, on an
unbound orbit, with initial separation Δr0 = 2, initial angular
momentum L/Lc = 0.5, where Lc is the angular momentum
of the local circular orbit. The set (B) consists on the merger
of two initially bound—but well-separated—spherical nuclei,
each of which has a single MBH at the center with zero
initial velocity with respect to its nucleus. For B, the initial
separation Δr0 refers to both nuclei taken as if they were point
masses. The half-mass radius of each nucleus is r1/2 ≈ 2.41;
accordingly, in order to initially have well-separated nuclei,
while minimizing the computing time, we set Δr0 = 20. For
the initial orbital angular momentum of the binary nuclei,
we have taken two values L/Lc = 0.14 and 0.6 given the
nearly parabolic encounters typical of major galaxy mergers
from cosmological simulations (Khochfar & Burkert 2006).
During the first pericenter passages, the MBH separations are
ΔrBH ∼ 0.2 ∼0.1r1/2 and ΔrBH ∼ 2.2 ∼ r1/2, respectively.
Table 1 lists the runs and adopted parameters.

We have performed the N-body simulations using the parallel
ϕ-GPU code. This is an unpublished variant of the parallel direct
N-body code ϕ-GRAPE (Harfst et al. 2007), which uses GPU
accelerator cards on parallel clusters. It includes a fourth-order
Hermite integration scheme, with block time steps, analogous to
NBODY1 (Aarseth 2003). The softening length has to be chosen

small enough that it reproduces the refilling of the binary’s
loss cone by two-body relaxation. We adopt a softening length
ε = 10−4. We set the time step parameter to η∗ = 0.01 for
the stars and ηBH = 0.001 for the black holes (BHs). We force
the MBHs to be advanced synchronously at all times with the
smallest step.

3. MBH EVOLUTION IN SPHERICAL VERSUS IN
MERGING NUCLEI

The stars driving the orbital decay of a hard MBHB are those
that enter the loss cone orbits. The MBHB’s hardening rate
is thus determined by the product of the flux of stars entering
the loss cone with the average kinetic energy they receive when
ejected—at the expense of the MBHB’s orbital energy—through
the slingshot mechanism. Denoting by Flc(E, t) the time-
dependent flux into the loss cone and by 〈ΔE(E)〉 the mean
kinetic energy imparted to stars which are scattered off by the
binary, the hardening rate is given by (Yu 2002)

d

dt

(
1

a

)
= 2m∗

GM12μr

∫ +∞

0
dE〈ΔE(E)〉Flc(E, t), (2)

where E = GM12/r + Φ∗(r) − 1/2 v2, and Φ∗(r) is the
gravitational potential due to the stars. The mean kinetic energy
〈ΔE(E)〉 is given by

〈ΔE(E)〉 ∼ 〈C〉Gμr

a
, (3)

where 〈C〉 ≈ 1.25 is a dimensionless quantity obtained from
three-body scattering experiments (Quinlan 1996). Therefore,
the hardening rate s(t) can be rewritten as

s(t) ≡ d

dt

(
1

a

)
≈ 2m∗〈C〉

M12a

∫ +∞

0
dEFlc(E, t). (4)

The time evolution of the flux Flc(E, t) depends on the symme-
tries of the gravitational potential—and on the orbit families it
supports. In principle, Flc(E, t) in the spherical case can be ob-
tained from Fokker–Planck calculations that take into account
the diffusion of stars in phase space (Merritt et al. 2007; Preto &
Amaro-Seoane 2010). Here we derive simple scaling relations
which are useful in interpreting the N-body results. For each en-
ergy E, Flc(E, t) ∝ n(E, t)/Trlx(E, t), where n(E, t) is the num-
ber of stars of energy E per unit energy and Trlx(E, t) ∝ σ 3/ρm∗
is the two-body relaxation time (Spitzer 1987, p. 191). The flux
of stars into the loss cone is expected to peak around rh (Perets
& Alexander 2008), so we evaluate quantities there. Hence,
σ 2

h ∼ G(M(<rh) + M12)/rh ∼ 3GM12/rh ∝ M
1/2
12 —where

rh ∝ M1/2
• follows from the M•–σ relation (Ferrarese &

Ford 2005). Then, σ 3
h ∝ M

3/4
12 obtains. On the other hand,

for a fixed galaxy mass, we have m∗ ∝ 1/N and therefore
Trlx ∝ M

3/4
12 N/ρ. Since in our N-body models, ρ(r) and n(E, t)

are unchanged and only σ changes as M12 is varied, we find that
the hardening rate scales with M12 and N as s ∝ M

−7/4
12 N−1. The

case of a triaxial nucleus is different: J for each star is not con-
served, thus stars may precess into the loss cone on a timescale
Tpr 
 Trlx (Yu 2002; Merritt & Poon 2004); Tpr depends only
on the global gravitational potential. In this case, the mass flux
into the loss cone m∗Flc(E, t) ∝ m∗n(E, t)/Tpr (E, t), and also
s(t), will be independent of N.
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Figure 1. Binary hardening. Upper panel: in a spherical nucleus, s(t) decreases
with N. Middle panel: in a merging nucleus, s(t) is N-independent. Lower panel:
hardening rates as a function of N for different M12. 〈s〉 of the M12 = 0.1 binary
has been multiplied by 100. Labels “s” for spherical and “m” for merger.

In Figure 1, we see that s(t) is N-dependent in a spherical
nucleus, while it is N-independent in the merging one. In the
former case, s(t) ∝ N−α , with α = 0.45 and 0.75 for binaries
of M12 = 0.005 and 0.1, respectively. These results can be
interpreted as follows. In the empty loss cone limit (α = 1), the
stars repopulate the loss cone at a rate ∝ T −1

rlx much lower than
that with which they are ejected by the binary, which is ∝ T −1

dyn.
In the full loss cone limit (α = 0), stars enter the loss cone at
a rate which is similar to the rate at which they are ejected by
the binary. A measure for the loss cone refilling rate is given by
(Lightman & Shapiro 1977)

q(E) ≡
(

δJ

Jlc

)2

, (5)

where δJ is the mean change in J, per orbital period, of a star on
a low-J. In the limit q(E) 
 1, the loss cone is said to be empty,
while q(E) � 1 in the full loss cone limit. For a given nucleus,
and for r > rh, we expect δJ to be independent of M12. As a
result, the weaker dependence of 〈s〉 on N for lighter binaries,
placed in a spherical nucleus, follows from q ∝ M

−1/2
12 ; at the

same E, q(E) of the M12 = 0.005 binary is ∼4.5 larger than that
of the M12 = 0.1 one. We would need to use a larger N for the
lighter binaries, 〈s〉 ∝ N−0.45, to reach the empty loss cone limit
〈s〉 ∝ N−1; the heavier binary, 〈s〉 ∝ N−0.75, almost reaches this
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Figure 2. Triaxiality T and mass flattening of merging nuclei. Shown are binaries
of M12 = 0.005, L/Lc = 0.6 (upper panel); M12 = 0.01, 0.02, L/Lc = 0.14
(middle and lower panels). T and ε are measured in five shells between r = 0
and r = 2.5, of width Δr = 0.5. Triaxiality decreases over time, faster for heavy
binaries. Mass flattening is constant.

limit. The dependence of 〈s〉 on M12 is more straightforward to
interpret. For the spherical case, the lighter binary is expected to
harden at a rate ∼207/4 higher than the heavier, which is indeed
the case. In the merger case, m∗Flc(E) is N-independent and
therefore 〈s〉 ∝ M−1

12 . Since the mass ratio between the binaries
is 2, 〈s〉 also differs by a factor of two.

We measure the triaxiality of the nucleus with T = (a2 −
b2)/(a2 − c2). Figure 2 depicts the evolution of T and of the
flattening ε = 1−c/a for several mass shells of merging nuclei.
The value of T, immediately after the merger, depends on the
initial L/Lc. In the case of a near-radial merger, L/Lc = 0.14,
the remnant is prolate and evolves over time toward an oblate
spheroidal shape; for L/Lc = 0.6 the remnant is an oblate
spheroid from the very beginning. The triaxiality decreases over
time, and the rate at which it changes is faster the larger M12
is. The triaxiality remains significant, in the inner mass shells,
until the binary reaches the relativistic phase in all models with
the smallest (and more realistic) values of M12, and also in most
of the other cases. The flattening ε ∼ 0.2 is constant throughout
in all cases, so the asymptotic shape of the merger is that of an
oblate spheroid. We conclude that the rather mild triaxiality
created during the merger supports a family of centrophilic
orbits that keep the loss cone full (α = 0) at all times until
the binary reaches relativistic separations ∼aGW.
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4. ECCENTRICITY EVOLUTION AND TIMESCALES
FOR COALESCENCE

The hardening rate, due to the slingshot ejection of stars, is
in our N-body simulations independent of the binary’s orbital
elements, while that due to GWs is strongly dependent on them:
d/dt(1/a)GW ∼ |ȧ/a2|GW ∝ a−5(1− e2)−7/2 (Peters 1964). As
a result, the binary’s coalescence time Tcoal depends strongly
on its eccentricity. In Paper I, we did follow this evolution
self-consistently with N-body simulations of rotating King
models. Since such calculations are extremely CPU-intensive,
we estimate the full evolution using a semi-analytic approach
(Quinlan 1996). The advantage is that we can calibrate the
average hardening rate 〈s〉 with our N-body simulations—which
would remain a free parameter otherwise—and thus make
quantitative predictions on both the coalescence times and the
long-term eccentricity evolution.

The evolution of the MBHB orbital elements, including
orbital energy lost to GWs, is given by

d

dt

(
1

a

)
= d

dt

(
1

a

)
st

+
d

dt

(
1

a

)
GW

de

dt
=

(
de

dt

)
st

+

(
de

dt

)
GW

. (6)

The GW terms are from Peters (1964). The eccentricity evolu-
tion, driven by the stars, is obtained from scattering experiments:

(
de

dt

)
st

= K(e) a 〈s〉, (7)

where K(e) = e(1 − e2)k0 (k1 + k2e) and the constants are taken
from Quinlan (1996). In order to assess the quality of the fits
to the N-body results, Figure 3 compares the N-body evolution
of the binary with that obtained from the semi-analytic model.
We take as initial conditions for the integration of Equations (6)
an instant of time in the early hard binary phase. Given the
differences between our N-body models and the assumptions
embodied by the semi-analytic description the agreement is
quite remarkable.

We then include the GW terms due to radiation reaction to
compute Tcoal. To scale our models to binaries with M12 =
106 M� and M12 = 108 M�, we adopt the most recent observa-
tional values for the mass normalization of the Galactic center,
M(<1 pc) = 106 M� (Schödel et al. 2009) and use the M•–σ
relation to extrapolate to different MBH masses. The results are
shown in the upper panel of Figure 4. We see that coalescence
times range between Tcoal ∼ 107 yr and ∼ few × 108 yr. These
are not longer than the mean time between successive major
mergers. In contrast, for a spherical nucleus, Tcoal ∼ few × Gyr
for M12 = 106 M�, while binaries with �108 M� would stall
(M. Preto et al. 2011, in preparation).

Our coalescence times are significantly shorter than those
reported by Khan et al. (2011). The approximations they make in
computing Tcoal lead to an overestimation by factors of ∼10 for
e � 0.75, and ∼4 for e ∼ 0.5. Contrary to what is observed with
post–Newtonian (PN) MBHBs (Berentzen et al. 2009; Preto
et al. 2009), their Tcoal is dominated by the GW inspiral phase.
Another difference is that we scale our models using the M•–σ
relation, while they do not. We are currently pursuing N-body
simulations including PN terms to the binary’s motion in order
to resolve this discrepancy.

We also follow the long-term evolution of the eccentricity.
In the N-body runs, the binaries become bound with high
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Figure 3. Eccentricity evolution. Red and green lines represent N-body and
semi-analytic evolution without radiation reaction. Blue and magenta lines
correspond to semi-analytic solution, including radiation reaction, for M12 =
106 M� and M12 = 108 M�, respectively.

eccentricities (up to e ∼ 0.95) on average—in agreement with
previous works (Berentzen et al. 2009; Preto et al. 2009).
Since LISA will be sensitive to the inspiral signal of 106 M�
binaries, it is important for data analysis purposes to estimate
whether they will enter the band with non-negligible eccentricity
(e � 10−4; Porter & Sesana 2010; Shapiro Key & Cornish
2010). The middle panel of Figure 4 displays the distribution
of eccentricities at a = 100RSchw

8—most binaries will not
be fully circularized by then. We expect therefore that the
eccentricity in the LISA band will be non-negligible. Finally,
the lower panel of Figure 4 depicts the eccentricity distribution
at fGW = 2forb = 10−8 Hz for the PTA band. We see that
eccentricities are quite high—peaking at e ∼ 0.6. The results
presented here concerning coalescence times and eccentricity
growth corroborate recent three-body scattering studies—which
had to treat the average hardening rate 〈s〉 as a free parameter
(Sesana 2010).

5. SUMMARY

With our results, we are moving closer toward a consistent
solution to the Final Parsec Problem, and of providing dynam-
ical substantiation to the cosmological scenario where prompt

8 RSchw = 2GM12/c
2, where c is the speed of light, is the Schwarzschild

radius.
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coalescences are assumed during the course of galaxy evolution
(Sesana et al. 2007; Volonteri 2010). Our results suggest that
the formation of eccentric binaries, followed by quick orbital
decay, could result from the expected development of global
non-axisymmetries in galaxies after they merge. Unequal-mass
mergers have similar 〈s〉 (M. Preto et al. 2011, in preparation;
P. Berczik et al. 2011, in preparation). As a result, if there is a
bottleneck to coalescence, it results from the long timescale
associated to the formation of a bound pair in an unequal-
mass galaxy merger—especially if q � 0.1 (Callegari et al.
2011).

Our gas-poor merger models show only rather mild departures
from axisymmetry and a small amount of rotation; stronger
departures from axisymmetry—to be expected from higher
amount of rotation—and the presence of gas will likely reinforce
our conclusions. It seems, therefore, probable that prompt
coalescences result from mergers of irregular galaxies expected
to be common at high redshift. Based on our prompt MBHB
coalescence results, we expect that LISA will see ∼10 to few ×
102 events per year depending on the MBH seed model (Sesana
et al. 2009; Volonteri 2010). These conclusions need to be
qualified in one respect: the effect of gas could be rather
subtle. Several effects may result from the presence of gas: (1)
circularization of the unbound MBH trajectories may lead to the

formation of circular binaries (Dotti et al. 2007), however, bar
instabilities may affect this conclusion (Begelman & Shlosman
2009); (2) gas torques may increase the (bound) binary’s
eccentricity; and (3) the outer, cooler regions of a circumbinary
disk may fragment, producing a fresh supply of (mostly) bound
stars to interact with the binary (Cuadra et al. 2009).

Finally, even though GWs circularize the MBHBs during the
late relativistic phase of inspiral, they are likely to have some
residual (e � 0.001–0.01) eccentricity when entering the LISA
band and a broad distribution (0.4 � e � 0.8) in the PTA
band.
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