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Abstract
LISA will detect gravitational waves from tens to hundreds of systems
containing black holes with mass in the range 104 M�–107 M�. Black
holes in this mass range are not well constrained by current electromagnetic
observations, so LISA could significantly enhance our understanding of the
astrophysics of such systems. In this paper, we describe a framework for
combining LISA observations to make statements about massive black hole
populations. We summarize the constraints that LISA observations of extreme-
mass-ratio inspirals might be able to place on the mass function of black holes
in the LISA range. We also describe how LISA observations can be used to
choose between different models for the hierarchical growth of structure in the
early Universe. We consider four models that differ in their prescription for the
initial mass distribution of black hole seeds, and in the efficiency of accretion
onto the black holes. We show that with as little as 3 months of LISA data, we
can clearly distinguish between these models, even under relatively pessimistic
assumptions about the performance of the detector and our knowledge of the
gravitational waveforms.
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1. Introduction

Current measurements of black hole (BH) masses are almost exclusively for systems with
mass above ∼106 M�. The shape of the mass function for less massive BHs is expected to
retain a signature of the initial mass distribution of the seeds from which BHs grow, which is
erased at the high-mass end by the effects of accretion [1]. In addition, it is not known if the
tight correlations observed between the properties of high mass BHs and their host galaxies
extend down to lower masses [2], which has important consequences for our understanding of
the co-evolution of galaxies and BHs. Probing BHs in the mass range 104 M� < M < 107 M�
is thus crucial to our understanding of the growth of structure, and LISA [3] is one of the
few instruments that has the potential to observe such systems. LISA is expected to see a
few tens of massive BH mergers (MBHMs) per year [4, 6] and as many as several hundred
extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive BHs in
the centres of galaxies [5]. The MBHMs can be observed throughout the Universe, while
the EMRIs will only be seen at low redshift, z � 1, but LISA will be able to measure the
parameters of both kinds of event to unprecedented precision [6–8].

The mass function of BHs in the LISA range is uncertain due to the lack of direct
observations. If the BH population traces the active galaxy population, then the mass function
should turn over for M � 3 × 106 M� [9]. However, if the L–σ and M–σ relations derived for
more massive galaxies can be extrapolated to lower masses, the observed galaxy luminosity
function would imply a flat BH mass function in this range [9]. Applying corrections to Sloan
Digital Sky Survey measurements of the velocity dispersion instead yields a mass function
that increases towards lower masses [10]. Overall the present uncertainty in the slope of the
quiescent BH mass function for M � 107 M� is at least ±0.3 [11]. LISA EMRI observations
could therefore play an important role in pinning down this slope in the low-redshift Universe.

LISA MBHM events will occur following mergers of the host galaxies of the BHs, and
thus trace the hierarchical growth of structure. Models of structure formation are tuned to
match existing observations, and therefore make similar predictions for mergers at the high
mass end of the BH mass function, but differ significantly for lower masses. In particular,
both ‘light seed’ [12] and ‘heavy seed’ [13] models are consistent with existing data. It is
unlikely that observations in the electromagnetic spectrum will rule out either class of models
in the next decade, so LISA could make important contributions to our understanding of the
early epoch of galaxy formation.

LISA will be able to make very precise measurements of the parameters of individual
EMRI and MBHM systems that are observed [6–8]. Precise measurements for single systems
are very important for fundamental physics [14], but it is the full set of events that are seen
which will carry the most important information for astrophysics. In this paper, we describe
a method to combine this information in order to make astrophysical statements, which is
based on a Bayesian framework using a parametric model for the probability distribution of
observed events. LISA model selection using MBHMs was also considered in [15] using
the non-parametric Kolmogorov–Smirnov test to compare parameter distributions. While our
conclusions are broadly similar, the framework presented here is more general and can be
easily extended to other problems.

This paper is organized as follows. In section 2 we describe our approach to using LISA
to place constraints on astrophysical models. This includes a discussion of the statistical
framework used for model selection and a description of how we model LISA instrumental
effects, i.e. the completeness of LISA observations and the parameter estimation errors that
arise from noise in the detector. In section 3.1 we summarize the constraints that LISA EMRI
observations could place on the shape of the BH mass function in the LISA range. These
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results were previously described in [11] but we briefly review them here for completeness.
In section 3.2, we describe how LISA can be used to choose between different models for the
hierarchical growth of structure. We illustrate this using four different models that differ in
their seed mass distributions and accretion prescriptions. These results are new and appear
here for the first time. In section 4 we discuss our results and possible extensions of this work.

2. Methods

Our aim is to make inferences about the population of BHs in the Universe based on LISA
observations. Bayes theorem relates the posterior probability p(�λ|D,M) for the parameters
�λ of a model M given the observed data D, to the likelihood p(D|�λ,M) of seeing that data
under model M with parameters �λ, and the prior π(�λ) for the parameters �λ:

p(�λ|D,M) = p(D|�λ,M)π(�λ)

Z
, where Z =

∫
p(D|�λ,M)π(�λ) dNλ. (1)

In this context, the model M is a description of the population of BHs in the Universe; the data
are the parameters of the sources that LISA detects and the uncertainty in the distributions
comes from the fact that mergers occur stochastically in the Universe—a given model will
predict the rate at which LISA events occur but cannot predict the exact systems that LISA
will observe.

To compute the likelihood, p(D|�λ,M), we can imagine dividing the parameter space of
possible signals into bins, labelled by i. The data, D, is the number of events, ni, observed
in each bin i. A particular model will predict the rate, ri(�λ), at which events in a particular
parameter bin occur in the Universe. As the events start at random times, the number of events
occurring in a given bin during the LISA mission will be drawn from a Poisson probability
distribution with rate ri(�λ). Events in different bins are independent and so if we temporarily
ignore LISA selection effects and parameter estimation errors, the likelihood of seeing the set
of events D = {ni} is

p(D|�λ,M) =
K∏

i=1

(ri(�λ))ni e−ri (�λ)

ni!
. (2)

It is possible to take the continuum limit of this expression by letting the bin volume approach
zero. The above expression then becomes a product of the point probabilities of the events
observed, normalized by the total number of events the model predicts.

For model selection, i.e. to choose the model that provides the best description of the
observed data, we use the evidence, which is the quantity Z appearing in the denominator of
Bayes theorem, equation (1). To compare models A and B, we compute the odds ratio (see,
for example, [16])

OAB = ZAP (A)

ZBP (B)
(3)

in which P(X) denotes the prior probability assigned to model X. If OAB � 1 (OAB � 1),
model A (model B) provides a much better description of the data.

The fact that we use an imperfect detector to make the observations introduces two
complications into the analysis. First, the dataset is not complete—LISA sees only a certain
subset of the events that occur during the mission. Second, the presence of noise in the detector
introduces errors into the parameter estimates.

The incompleteness of the LISA observation means that only a certain fraction of the
events that occur in a given bin in the parameter space will be detected. If the completeness
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is known as a function of the source parameters, then this can be included in the likelihood
computation by replacing ri(�λ) by the effective observed rate, r̃i (�λ) = Ci ri(�λ), in equation (2),
where Ci is the completeness in bin i. In our analysis, we assume a simple signal-to-noise ratio
(SNR) cut model for completeness. We assume that 100% of events with matched-filtering
SNR ρ > ρthresh are detected, and that 0% of events with ρ < ρthresh are detected. This is a
reasonable model if ρthresh is set moderately high, since if events with SNR less than ρthresh

were actually detected, they could just be excluded from the analysis. The parameters of
events with lower SNR tend to be more poorly determined and thus do not contribute much to
model discrimination, so there is little change in the results when such events are excluded.

Instrumental noise leads to imperfect parameter measurement. In the analysis of actual
LISA data, we will derive a posterior probability distribution (pdf) for the parameters of the
sources. Using this, the likelihood can be obtained by integrating the continuum version
of equation (2) over the pdf [11]. An equivalent approach, which is more convenient for
scoping out LISA’s potential, is to suppose that each source is assigned to the bin in which
the maximum a posteriori probability lies, and to fold the parameter uncertainty into the
effective rate of observed events, r̃i (�λ), in each bin. In practice, r̃i (�λ) can be computed
by generating a large number of realizations of the set of events that LISA observes. For
each event in each realization the parameter uncertainty may be modelled as a Gaussian,
p(�λ) ∝ exp

(−�ij

(
λi − λi

0

)(
λj − λ

j

0

)/
2
)
, centred on the true parameters, �λ0. A fractional

rate δr̃i = ∫
Bi

p(�λ)dNλ is assigned to each bin Bi . This is similar in principle to the LISA
‘error kernel’ described in [17]. The parameter error comes primarily from detector noise,
but additional errors arise from weak lensing, which changes the apparent luminosity distance
of sources at higher redshift, and from uncertainties in the cosmological parameters used to
convert from luminosity distance to redshift. These can be included in the redshift–redshift
component of �−1 by writing �−1

zz = (�N)−1
zz + �z2

WL + �z2
cos, where N, WL, cos denote the

contributions from noise, weak-lensing and cosmological parameter uncertainty, respectively.
We model the weak-lensing error using results in [18] and the cosmological error following
[19]:

�z2
cos =

(
∂DL

∂z

)−2 [(
�D2

L

D2
L

+
�H 2

0

H 2
0

)
D2

L + �
2
�

(
∂DL

∂
�

)]
, (4)

and we assume that �H0/H0 = �
�/
� = 0.01 by the time LISA flies.

3. Results

3.1. Extreme-mass-ratio inspirals

This preceding framework was used in [11] to explore the constraints that LISA EMRI
observations could place on the BH mass function at low redshift. This analysis made various
assumptions—an SNR cut of ρthresh = 30 was used to define the completeness function; all
EMRIs were assumed to be on circular and equatorial orbits, which meant that the completeness
could be determined from the observable lifetime of a particular EMRI, as defined in [5];
parameter estimation errors were ignored in the analysis, but included in the generation of
realizations of the LISA data; the data were taken to be measurements of the central BH mass
M and source redshift z only; and the scaling of the intrinsic EMRI rate per BH was assumed
to be known and given by results in [20]. Assuming a simple power-law mass function,
A0(M/M∗)α0 , and that all BHs have spin a = 0.9, it was found that LISA could measure
the parameters to a precision �A0 ≈ 0.5

√
10/Nobs and �α0 ≈ 0.2

√
10/Nobs if Nobs events

were observed. This compares very well to the current precision, ∼ ± 0.3, on the slope of the
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BH mass function, particularly given that these models typically predict ∼100s of observable
EMRI events.

Using a redshift-dependent ansatz for the mass function, A0(1+z)A1(M/M∗)α0−α1z, it was
found that LISA would not be able to place reasonable constraints on the evolution parameters
A1, α1. This is because the majority of EMRI events will be detected at low redshift, z � 1.
The main caveat in these results is the assumption that the mass-dependence of the EMRI rate
will be known by the time LISA flies. These results can also be interpreted as the precision
with which the convolution of the mass function with the EMRI rate can be determined. More
work is required to determine if combined EMRI and MBHM observations can decouple these
effects and perhaps measure evolution in the mass function.

3.2. Comparable mass BH mergers

LISA observations of MBHMs can be used to choose between different models for the growth
of structure. There are various models for the hierarchical assembly of galaxies, but these
have been tuned to fit existing electromagnetic observations which do not constrain BHs in
the mass range of interest to LISA. The models therefore make quite different predictions for
the expected set of LISA events, which means that LISA has the potential to discriminate
between them. We consider four different models, which differ in the prescription for the
masses of the initial seeds from which BHs grow and in the prescription for accretion onto the
BHs. We consider two ‘light seed’ models [12], in which BH seeds of mass ∼100 M� form
as remnants of metal-free stars at redshift z � 20, and two ‘heavy seed’ models [13], in which
seeds with mass ∼105 M� form directly from the collapse of massive protogalactic disks in
the redshift range 10 � z � 15. In each case, we consider two accretion prescriptions [21]:
(i) ‘coherent’ accretion, in which material accreting onto the BH tends to have similar angular
momentum [22, 23], which could occur if the large-scale structure of the feeding material is
in a disc-like configuration [24, 25]; (ii) ‘chaotic’ accretion, in which there are many short
accretion episodes with different angular momentum spin axes in each one [26]. The four
models are summarized in table 1. We chose these four models to allow easier comparison
to the literature. The same four models were used to explore LISA parameter estimation
[6] and in previous work on using LISA for model selection [15]. The accretion model
primarily leads to different expectations for the BH spins (intermediate-high, a ∼ 0.6–0.9, in
the coherent case; low, a < 0.2, in the chaotic case). In this work we ignore BH spin, but the
accretion prescription also leaves an imprint on the component masses. The models assume
that the mass-to-energy conversion efficiency, ε, depends on BH spin only, so the two models
predict different average efficiencies of ∼20% and ∼10%, respectively. The mass-to-energy
conversion directly affects mass growth, with high efficiency implying slow growth, since for
a BH accreting at the Eddington rate, the BH mass increases with time as

M(t) = M(0) exp

(
1 − ε

ε

t

tEdd

)
, (5)

where tEdd = 0.45 Gyr. The ‘coherent’ versus ‘chaotic’ models thus allow us to study how
different growth rates affect LISA observations.

We will again use an SNR cut, ρthresh, to characterize whether an event is detectable or
not, and we will make both optimistic and pessimistic assumptions about LISA in terms of the
number of data streams that are available for data analysis. At low frequency two independent
data streams can be constructed from the data stream of a single LISA constellation, but one
of these data streams could be lost if there is a failure on one of the three satellites in the
constellation. We will therefore consider four possible scenarios: (i) one independent data
stream, ρthresh = 8; (ii) one independent data stream, ρthresh = 20; (iii) two independent data
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Table 1. Description of the four models used in this analysis. The last column gives the expected
number of events observed by LISA in 1 year. These were computed under the optimistic
assumptions about the detector, (iii), described in the text, and the bracketed numbers were
computed under the most pessimistic assumptions about the detector, (ii) in the text. While the
SNRs in this paper were computed using non-spinning waveform templates, the numbers here
agree well with those quoted in [6], which were computed using spinning waveform templates and
including higher harmonic corrections.

Model Seed mass prescription Accretion prescription LISA events per year

SE VHM (light seeds) coherent 37 (18)
SC VHM (light seeds) chaotic 40 (21)
LE BVR (heavy seeds) coherent 24 (22)
LC BVR (heavy seeds) chaotic 21 (18)

streams, ρthresh = 8; (iv) two independent data streams, ρthresh = 20. Scenarios (ii)/(iii) are
the most pessimistic/optimistic. Additionally, we include only systems that merge within the
LISA observation window in the analysis, and we consider five different possible lengths of
the LISA dataset used in the analysis (3 months, 6 months, 1 year, 18 months and 2 years). It
is unlikely that LISA will only take data for a few months if it works at all, but these results
illustrate what we will be able to say after 3 months of observation, after 6 months and so on.

To carry out model selection, we must compute the likelihood of the data under the various
models, as given by equation (2). For the current analysis, we use only three parameters to
characterize each system: the total mass, M, the mass ratio, q, and the source redshift, z.
We compute the expected rate of observed events in each bin accounting for errors in the
parameter estimation as described in section 2. We compute parameter estimation errors using
the Fisher matrix approximation for quasicircular, non-spinning BH binary inspirals modelled
in the restricted post-Newtonian approximation, following [19]. Cosmological parameter
uncertainties and weak lensing errors are folded in as described above. The fact that we are
ignoring spins, eccentricity and higher harmonics in our analysis has two consequences. First,
our estimates for the signal-to-noise ratio for each source are pessimistic, because spins and
higher harmonics of the signal (which are neglected in our model) usually increase the energy
radiated and the mass reach of the detector. Second, spin encodes important information about
the history of a particular BH, and in particular its accretion history [21]. This could help
resolve models where BHs are ‘born equal’ but grow via different mechanisms. In this sense
our results should be considered conservative.

The four models we use do not have free parameters, so we cannot determine a posterior
probability distribution on the model parameters. Instead, we can use equation (3) to decide
which model provides the best description of the data. The models we are comparing
have all been constructed to be consistent with existing constraints from observations in
the electromagnetic spectrum, so there is presently no reason to prefer one model over the
others. We therefore assume equal prior probabilities on all models, so the odds ratio reduces
to the likelihood ratio

�AB = p(D|M = A)

p(D|M = B)
. (6)

It is clear that when �AB � 1, model A should be preferred. What value of �AB is sufficient to
make such a statement? This can be answered by looking at the distribution of �AB over many
realizations of model A and model B. We generate a realization of model X by drawing events
from the underlying population, applying the appropriate SNR cut, and adding in parameter
errors to each event. We can then compute the likelihoods for this event set under model A
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Figure 1. We show the distribution of the logarithm of the likelihood ratio, ln(�AB), for
comparison of model SE to model SC using 3 months of LISA data (left panel) and using
1 year of data (right panel). The curves labelled ‘FAP distribution’, where FAP stands for
‘false alarm probability’, describe realizations drawn from the ‘wrong’ model (SC). Those labelled
‘detection rate distributions’ describe realizations drawn from the ‘right’ model (SE). We note
that the distribution for 1 year of data is somewhat broader than that for 3 months. This is not
unexpected, since more events are expected in 1 year of data, and both the mean and the variance
of the underlying Poisson distribution increase with the total number of events.

and model B and hence calculate �AB . In figure 1 we show the distribution of ln(�AB) in
1000 realizations each of model A and model B.

As we would expect, when the realization is drawn from model A, �AB tends to be greater
than 1, while when it is drawn from model B, �AB tends to be less than 1. For a given choice
of threshold on �AB , points in the model A histogram to the right of that threshold represent
‘detections’, i.e. realizations in which model A would be chosen over model B when model
A was correct. Points in the model B histogram are ‘false alarms’, i.e. realizations in which
model A is chosen over model B when in fact model B is correct. The histograms become
better separated when using a longer segment of LISA data, since we have more events in that
case. Another way to represent this information is through a receiver operator characteristic
(ROC) curve, which shows ‘detection’ probability versus ‘false alarm’ probability (FAP). For
a given threshold on �AB , the detection probability is the fraction of realizations of model
A that lie to the right of that threshold, while the false alarm probability is the fraction
of realizations of model B that lie to the right. In figure 2, we show the ROC curves for all
possible comparisons between the four models, using 3 months of LISA data and with the most
pessimistic scenario, (ii), for the detector performance. The ROC curve is a frequentist way to
represent the performance of an algorithm, but it encodes similar information to the Bayesian
approach of assigning probabilities of p(D|M = A)/[p(D|M = A) + p(D|M = B)] and
p(D|M = B)/[p(D|M = A) + p(D|M = B)] to models A and B, respectively. Note that
the false alarm and detection rates are per LISA observation: a FAP of 0.1 indicates that if a
LISA observation of this duration was repeated independently ten times, we would expect to
incorrectly choose model A only once.

It is clear from figure 2 that even using as little as 3 months of data, LISA can easily choose
between the four models. With the exception of the SE/SC and LE/LC comparisons, each pair
of models shows a detection rate in excess of 80% at a 1% false alarm rate. Models SE and SC
are most difficult to distinguish with a detection rate of only 50% at a 10% false alarm rate,
followed by models LE and LC with a detection rate of 60% at that FAP. This is to be expected
as these pairs of models have the same seed mass distribution and differ only in the accretion
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Figure 2. Receiver operator characteristic curves for different model comparisons. These were
computed as described in the text for a fixed LISA mission duration of 3 months and assuming
detector scenario (ii), i.e. one data channel only and ρthresh = 20.
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Figure 3. As figure 2 but now for a fixed model comparison (SE versus SC), but varying the length
of the LISA observation for fixed detector scenario (ii) (left) and varying the detector scenario for
a fixed LISA observation of 3 months (right).

prescription, so the distribution of masses for the events are quite similar (this pessimistic
conclusion would most likely change if we included spins in our model waveforms). In the
other cases, the mass distributions are quite distinct so the accurate mass measurements that
are possible with LISA allow discrimination of the models with only a handful of events.
In the left panel of figure 3 we consider the SE to SC comparison and detector scenario (ii)
only and show how the ROC performance depends on the length of the observation. We see
that our ability to distinguish models increases rapidly with the duration of the observation.
For a 1 year observation we can distinguish SE and SC with a rate of ∼80% for an FAP of
5%, which is comparable to what can be achieved using a 3 month observation for the other
comparisons.
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In the right panel of figure 3 we again restrict to the SE to SC comparison, but now fix
the observation to 3 months and show how the performance depends on the detector scenario.
There is a relatively modest increase in performance for the more optimistic detector scenarios.
At an FAP of 10%, the detection rate increases from ∼50% to ∼70% going from the most
pessimistic to the most optimistic scenario. The detector performance has a relatively weak
effect since many of the events with the greatest distinguishing power have very high SNR
and can be seen under any scenario. The use of two data streams rather than just one increases
the SNR of an event with given parameters and reduces the parameter estimation errors that
arise due to instrumental noise. It is clear from figure 3 that both of these are important,
since both of the two data stream curves lie above both of the one data stream curves. If the
SNR increase alone was important, we would expect the two data stream, SNR = 20 curve
to lie between the one data stream curves, as SNR = 20 in two data streams corresponds to
SNR ≈ 14 in each data stream.

In [15], the authors also studied MBHM model selection with LISA. They considered
the same four models and used the non-parametric Kolmogorov–Smirnov test to compare the
distributions of one or two parameters between models. Their conclusions were broadly the
same, i.e. that LISA can tell between models very easily. The approach described here has
several advantages over theirs: we have a parametric model using the reasonable assumption
of a Poisson distribution in each bin; we use the distribution of all model parameters
simultaneously to compare models (3 parameters in this case, but the framework is easily
extendable to more); the present framework naturally extends to parameterized models for the
underlying BH population, as used in the EMRI case, and, as described in section 2, once
actual LISA data are available, we will be able to fold the measured uncertainties in the source
parameters into the analysis, rather than relying on theoretical estimates.

4. Discussion

We have described a framework for using the set of events observed by LISA to constrain
models of the massive BH population in the Universe. Using EMRI events, we should be able
to constrain the slope of a parametric model for the mass function of BHs in the LISA range
to a precision of ∼ ± 0.2 with just ten observed events and this improves with the number of
observed events as N

−1/2
obs . EMRI events alone will not be able to constrain any evolution of

this mass function with redshift. LISA MBHM events can be used to choose between different
models for the assembly of structure in the Universe. Assuming that the LISA events were
drawn from one of four simple models, we have shown that we would be able to confidently
identify the correct model after collecting as little as 3 months of LISA data. BHs in the
LISA mass range, 104 M�–107 M�, are not well constrained by current data, and so LISA has
the potential to significantly improve our understanding of such systems and how they were
assembled.

These preliminary results could be extended in several ways. The parameter space
considered in the EMRI case should be expanded to explore what we can learn from EMRI
measurements of BH spins and the eccentricities, inclinations, etc of EMRI orbits. MBHM
waveform models including the merger/ringdown signal [27] and spin precession dynamics
should improve our ability to distinguish between models. It will also be important to explore
whether LISA EMRI and low-z MBHM observations together can probe the redshift evolution
of the mass function and break the degeneracy between the mass function and the mass scaling
of the EMRI rate.

In the MBHM model selection context, the four models considered were deliberately
chosen in [6] to be as different as possible in order to provide ranges for the parameter
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estimation accuracies that might be achieved by LISA. It is therefore perhaps unsurprising
that LISA will be able to distinguish these models very easily. The real Universe is likely to
be a hybrid between light and heavy seed models, so it will be informative to explore more
realistic mixtures between the present (oversimplified) seeding and accretion prescriptions.
Indeed, if parameters can be introduced into the models that characterize the input physics
(e.g. the seed mass distribution and accretion efficiency), we could determine the precision
with which LISA will be able to measure such parameters. The results described here provide
a clear illustration of the significant astrophysics that can be done with LISA observations and
indicate that it will be worthwhile to carry out such more sophisticated analyses.
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