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D-85748 Garching, Germany

E-mail: fumiko.kawazoe@aei.mpg.de

Received 12 November 2010, accepted for publication 24 March 2011
Published 15 April 2011
Online at stacks.iop.org/JOpt/13/055504

Abstract
We derive relationships between various types of small misalignments in a triangular optical
cavity and associated geometrical eigenmode changes. We focus on the changes of beam spot
positions on cavity mirrors, the beam waist position and its angle. A comparison of analytical
and numerical results shows excellent agreement. The results are applicable to any triangular
cavity close to an isosceles triangle, with the lengths of two sides much bigger than the third,
consisting of a curved mirror and two flat mirrors (the curved mirror is the distant one) yielding
a waist equally separated from the two flat mirrors. This cavity shape is most commonly used in
laser interferometry. The analysis presented here can easily be extended to more generic cavity
shapes. The geometrical analysis not only serves as a method of checking a simulation result,
but also gives an intuitive and handy tool to visualize the eigenmode of a misaligned triangular
cavity.

Keywords: interferometer, alignment, ring cavity, gravitational wave

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Optical cavities are widely used in the field of laser
interferometry, and longitudinal length shifts of a cavity mirror
and the resulting change in the phase of the resonating field are
well known. However, in the case where suspended mirrors
are used, such as in gravitational wave detectors, angular
shifts play a crucial role in the detector performance; their
knowledge ensures clean length control signals. Angular
shifts of the cavity mirrors and resulting eigenmode changes
in the circulating Gaussian beam of a plane cavity were
geometrically analyzed in [1], and the results are used, together
with results from simulation work, to obtain error signals to
control the alignment of various cavity mirrors. Recently
we designed a triangular optical cavity for the purpose of
frequency stabilization for the AEI 10 m Prototype [2], and
in the process of designing an alignment control system, a
geometrical analysis for this cavity was performed. The cavity
is close to an isosceles triangle, with the lengths of two sides
much bigger than the third, consisting of a curved mirror

placed at the corner where the two equal sides cross, and two
flat mirrors, yielding a waist halfway between the two flat
mirrors. This cavity shape is most commonly used in laser
interferometry, and the results presented here can easily be
extended to more generic cavity shapes. In this paper we
first derive the relations of small mirror misalignments and the
resulting changes in the eigenmode. By small misalignments
we mean the regime where a lateral shift is smaller than
the waist radius and the angular deviation smaller than the
divergence angle of the beam. The results are shown in terms
of beam spot position changes on all the cavity mirrors, the
waist position changes and the waist angular shifts. They carry
sufficient information for designing an angular control system.
We then compare the results with those of two simulation tools
and show that they are in excellent agreement with each other.

2. Types of misalignments

Figure 1 shows the schematic of a triangular cavity when
aligned. Two flat mirrors are relatively close together and are
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Figure 1. Schematic of an aligned triangular cavity within the x–y
plane. Also defined are the two coordinate axes ya and yc that are
fixed on the flat mirrors Ma and Mc, respectively. Mirror Mb has a
radius of curvature of R.

labeled Ma and Mc, while the curved mirror is far away, has a
radius of curvature R and is labeled Mb. The position where
the beam hits the mirror Mi (with i standing for a, b, or c)
is given by Pi , as well as the waist position by Pw, followed
by the associated coordinates within the x–y plane. Here, we
also introduce a coordinate system attached to each of the flat
mirrors (ya and yc) for convenience. The two equal angles of
the beam at Ma and Mc and the small half-angle at Mb are given
by γ and φ, respectively. Due to the shape of the triangle the
following approximations hold and are used throughout this
paper unless otherwise noted:

γ = π/2 − φ ≈ π/2 (1)

φ � 1. (2)

Angular degrees of freedom in horizontal and vertical
directions for the three mirrors produce six modes of
misalignments.

Misalignment angles of mirror Mi are given by αi for
horizontal directions (angles around the z axis, sometimes
also called yaw or rotation) and βi for vertical directions
(inclination angle with respect to the x–y plane, sometimes
also called pitch or tilt). A positive angle is formed by
counter-clockwise rotation around the z axis for horizontal
misalignments, and around the y axis, ya axis and yc axis for
vertical misalignment of Mb, Ma and Mc, respectively. We take
linear combinations of these two flat mirror misalignments to
form common and differential modes: α± = (αa ± αc) and
β± = (βa ± βc) and consider equal-amount tilts for the two
mirrors. The changes in the waist position and the beam spot
position on mirror Mi are denoted by �kw and �ki , with k
being the corresponding x or y coordinates. An angular change
of the beam between the two flat mirrors is denoted by θ . Since
we consider only small misalignments, these changes are also
small. Hence we use the following approximation throughout
this paper: θ � 1 and O(�kn) = 0 for n � 2. All types
of misalignments are summarized and the associated section
numbers are listed in table 1.

3. Horizontal misalignments

3.1. Misalignment in α−

Misalignments in α−, i.e. opposite rotations around the z axis,
keep the cavity symmetric to the x axis and, hence, cause a

Figure 2. Cavity eigenmodes of the aligned case (lighter colored
triangle) and the case misaligned by α− (darker colored triangle).
The opposite rotations around the z axis cause a symmetric change in
the eigenmode.

Table 1. Summary of types of misalignments and associated section
numbers.

Type Description Section

α− Difference of the flat mirrors in horizontal 3.1
αb Curved mirror in horizontal 3.2
α+ Common of the flat mirrors in horizontal 3.3
βb Curved mirror in vertical 4.1
β+ Common of the flat mirrors in vertical 4.2
β− Difference of the flat mirrors in vertical 4.3

symmetric change in the eigenmode. In figure 2, the original
and the new eigenmodes are shown by the lighter (yellow)
and darker colors (this color rule is applied throughout this
paper), and the x and y coordinates of the spot positions on
the mirrors are shown. Because of the symmetry it is obvious
that �xa equals �xc and �xw, and due to the approximation
given by equation (1), |�ya| also equals |�xa|. The angle of
incidence on the flat mirrors changes by − 1

2α−, as indicated
by the dashed normal on one mirror surface. The large angle
γ ′ changes by −α−, yielding a change by α− in half the small
angle φ (�φ = −α−). From looking at the shaded area in
figure 2 we get

�yc ≈
√

L2 + d2 sin �φ ≈
√

L2 + d2 · �φ

= −
√

L2 + d2 · α−. (3)

Therefore we derive the following relations between the spot
position changes and the misalignment angle:

�xa = �xc = −�ya = �yc = �xw = −
√

L2 + d2 ·α− (4)

and hence the angle deviation θ at the waist is zero.
To summarize, a misalignment in +(−)α− causes a shrink

(stretch) of the eigenmode along the x axis, yielding the
eigenmode to keep its isosceles shape, but change its shape
in a way that it becomes more ‘fat’ (‘thin’). As a result, the
waist position shifts in the x direction by an amount that is
approximately proportional to the distance between the curved
mirror and the two flat mirrors.

3.2. Misalignment in αb

Figure 3 shows a hypothetical misaligned cavity caused by αb,
i.e. a rotation of Mb around the vertical axis. In this case, there
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Figure 3. Cavity eigenmodes of the aligned and the misaligned cases
by αb. We start with a general, and hence hypothetical, case where
the pivot and the bisecting point of the non-congruent side do not
match, and later show that they do coincide. The changes of the two
larger angles (γ ) are of equal size but with opposite sign, hence the
small angle φ′ stays unchanged.

Figure 4. Closer view of the two flat mirrors and the pivot. It still
shows the hypothetical eigenmode where the pivot and the bisecting
point do not match.

is no obvious symmetry axis. One can expect changes in the
positions of the beam spots on the mirrors and of the waist, as
well as an angle deviation at the waist. We introduce a pivot,
where the non-congruent side of the aligned and the misaligned
eigenmodes cross, indicated by the thick circle. We start with
an arbitrary location of the pivot, and will shortly show that it
coincides with the bisecting point of the non-congruent side.

The angle of incidence on the flat mirrors changes by
the same amount θ , but with opposite sign, resulting in the
following changes of the large angles: γ ′ = γ + 2θ and
γ ′′ = γ − 2θ . Hence the small angle stays unchanged:
φ′ = 2φ.

Looking at the flat mirrors, as shown in figure 4, and
applying the approximation given by equation (1), one sees that
�xa = −�ya and �xc = �yc. The following set of equations
describes the shift of the spot positions:

�xa = la sin θ (5)

�xc = lc sin θ (6)

2d = la cos θ − lc cos θ − |�ya| − |�yc| (7)

= (la − lc) cos θ − (|�xa| + |�xc|)
≈ la − lc − (|la| + |lc|)θ (8)

where la and lc are the distances from the pivot to Pa and Pc

along the beam, respectively. The left-hand side of equation (7)

Figure 5. Closer view of the two flat mirrors. Here, the pivot and the
bisecting point coincide, and the y coordinate of the pivot is denoted
by �yp.

Figure 6. Radius vectors of the aligned and the misaligned cases.
They cross at the point Pr , from which the angle deviation and the
pivot location are calculated.

is constant, hence the right-hand side must be independent of
θ , yielding the following relations:

la = −lc (9)

|la| = |lc| = d/ cos θ ≡ l (10)

�xa = −�xc = −�ya = −�yc = −l sin θ

= − d tan θ ≈ −dθ. (11)

This automatically means that the pivot (Pp) bisects the non-
congruent side, as shown in figure 5, where the changes in
the location of the pivot are denoted by �xp and �yp. It also
shows the details around the flat mirrors, from which the pivot
location with respect to the original waist is given by

�xp = O(θ2) = 0 (12)

�yp = d − l cos θ + �ya = dθ (13)

Connecting the beam spot on the curved mirror (Pb) and the
bisecting point (the pivot, or Pp), one can see that it bisects the
beam angle at Mb into φ, as shown in figure 6. This means that
the line passes through the center of curvature, (Pcoc), whose
coordinate along the y axis is given by

�ycoc = R · αb. (14)

3
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Figure 7. Length information needed to calculate θ and the spot
position change on Mb.

a

a

c

c

Figure 8. Locations of the new spot positions on the mirrors. By
using them the new waist location is calculated.

Focusing on the shaded triangles shown in figure 6, one can see
that θ ′ = −θ and, comparing the two triangles, one can also
see that θ ′′ = θ ′ = −θ . The radius vectors of the aligned and
misaligned mirrors, indicated by the dotted lines in figure 6,
cross at point Pr . By focusing on the triangle consisting of
the original waist (Pw), the pivot (Pp) and Pr , as shown in the
lower triangle in figure 6, one can see that the x coordinate of
the point Pr is given by

�xr = dθ/ tan θ ≈ d. (15)

Figure 7 lists all the length information that is needed to
calculate the angle θ and the spot position on Mb. These are
given by the following set of equations:

θ ≈ tan θ = −Rαb/(R − L − d) (16)

�xa ≈ d Rαb/(R − L − d) (17)

�xb = O(�y2
b) = 0 (18)

�yb = −(L + d) tan −θ ≈ (L + d)θ

= Rαb · (L + d)/(R − L − d). (19)

Having calculated the new spot positions on the mirrors,
we now calculate where the new waist is. In order for
the wavefront curvature of the beam to match the radius of
curvature of the curved mirror Mb, the path lengths from the
waist to the mirror Mb via Ma and via Mc should be the same,
i.e. in figure 8 it should be Sa + Da = Sc + Dc = S + d . By
calculating the distances Sa and Sc in the following equations,
we also obtain the distances Da and Dc:

Sa = {(L − dθ)2 + (d − Lθ)2}1/2

≈
√

L2 + d2

(
1 − 4Ldθ

L2 + d2

)1/2

θ2 = 0

≈
√

L2 + d2

(
1 − 2L dθ

L2 + d2

)
2Ldθ

L2 + d2
� 1

= S − 2 dθ d2/L2 = 0 (20)

Da = S + d − Sa = d + 2 dθ (21)

Figure 9. Cavity eigenmodes of the aligned and the misaligned (α+)
cases.

Figure 10. Closer view on the change in one of the larger angles, γa.

In a similar way

Sc = {(L + dθ)2 + (−d − Lθ)2}1/2 = S + 2 dθ (22)

Dc = S + d − Sc = d − 2 dθ. (23)

Hence, the new waist location is given by the following:

�xw = O(θ2) = 0 (24)

�yw = (d +dθ− Da) cos −θ ≈ −dθ = −d Rαb/(R−L−d).

(25)
To summarize, a misalignment in +(−)αb causes a

clockwise (counter-clockwise) rotation of the non-congruent
side around the bisecting point, yielding the long sides to rotate
synchronously. As a result all the beam spot positions change
by the amounts given by the radial distances, with the bisecting
point being the origin of the system of radial coordinates.

3.3. Misalignment in α+

In the case of α+, i.e. concordant rotations around the z axis,
there is no obvious symmetry line, thus we will start from a
general case. Changes in the spot positions, the beam angle
at the waist and the two larger angles are defined as shown
in figure 9. Figure 10 focuses on the beam angle change on
mirror Ma. Drawing helping lines, such as the one that is
parallel to the aligned beam (indicated by the light colored
thick dotted line), as well as lines that are normal to both the
aligned and the misaligned mirror surfaces (indicated by the
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Figure 11. Ancillary angles: β, η and ω, which are used to calculate
θ .

light thin and dark thin dotted lines, respectively), one can see
that half of γa is given by γa/2 = γ /2 + θ − α+/2. Hence

γa = γ + (2θ − α+). (26)

In a similar manner, γc is given by

γc = γ − (2θ − α+). (27)

This means that the sum of the two angles stays unchanged,
yielding no change in the small angle φ′. Then the line that
connects Pb with the center of curvature of Mb (from here on
this is called the radius ) should bisect the short side, due to the
fact that d � L. The bisecting point is indicated by the square
point in figure 11. Here, we introduce some ancillary angles τ

and η, together with ω, which is the angle of the radius with
respect to the aligned case. Focusing on the shaded area, one
can see that the ancillary angles are given by

τ = φ + ω and (28)

η = φ + τ = 2φ + ω. (29)

η can be expressed using γ if one focuses on the shaded
triangle shown in figure 12, introducing a new ancillary angle
γ ′

a = γ + θ , and it is given by

η = π − (γ ′
a + γc) = π − {(γ + θ) + γ − (2θ − α+)}

= π − 2γ + θ − α+. (30)

By comparing equations (29) and (30) the angle ω is given by
the following equations:

π − 2γ + θ − α+ = 2φ + ω (31)

ω = π − (2γ + 2φ) + θ − α+ = θ − α+. (32)

In order to gain additional information to finally calculate
θ , we focus on some lengths as shown in figure 13. The pivot
(Pp) is indicated by the thick circle and changes in its location
are denoted by �xp and �yp, and the two lengths from the
pivot to the two beam spots by la and lc. Changes in the
coordinates of the beam spot position on Ma are given by the
following equations:

�xa = −la sin θ ≈ −laθ (33)

�ya = −�xa

tan (π/2 − γ /2 + α+/2)
≈ 1 − α+/2

1 + α+/2
laθ

≈ (1 − α+)laθ (34)

a

c

Figure 12. Yet another ancillary angle γ ′
a to calculate η.

Figure 13. Length relations around the flat mirrors. From this the
lengths la and lc from the pivot to the beam spots on the two mirrors
are calculated.

and �xc and �yc by

�xc = lc sin θ ≈ lcθ. (35)

�yc = �xc

tan (π/2 − γ /2 − α+/2)
≈ 1 + α+/2

1 − α+/2
lcθ

≈ (1 + α+)lcθ. (36)

The length of the non-congruent side is then expressed by the
following:

2d = la cos θ + �ya + lc cos θ + �yc

≈ la + lc − {la − lc − (la + lc)α+}θ. (37)

Since the left-hand side of equation (37) does not depend on the
misalignment angle θ , the angle-dependent term of the right-
hand side should be zero, hence

la − lc − (la + lc)α+ = 0. (38)

From equations (37) and (38) the following relations can be
obtained:

la = d(1 + α+) (39)

lc = d(1 − α+). (40)

5
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Figure 14. Length relations around the flat mirrors, including the
pivot location. From this the spot position changes on the flat mirrors
are calculated.

With this knowledge we can calculate the location of the pivot
in the following way:

�xp = O(θ2) = 0 (41)

�yp = lc cos θ + �yc − d ≈ d(θ − α+). (42)

The location of the bisecting point, as shown in figure 14, can
be calculated in a similar way and the coordinates are given by

�xB = O(θ2) = 0 (43)

�yB = d cos θ+�yc−d ≈ (1+α+)(1−α+) dθ ≈ dθ. (44)

Then, focusing on the triangle that consists of the center of
curvature, the waist (in the aligned case), and the bisecting
point (indicated by the right part of the shaded area in
figure 11), one can obtain another relation for ω and θ which
is given by

ω ≈ tan ω = dθ/(R − L). (45)

From equations (32) and (45) one can finally obtain the relation
between θ and α+:

θ = R − L

R − L − d
· α+. (46)

Using θ , the spot positions on the three mirrors (see
equations (33)–(36)) can further be calculated. This yields the
following equations:

�xa = −d(1 + α+)θ ≈ − d(R − L)

R − L − d
· α+ (47)

�ya = (1 − α+)�xa ≈ d(R − L)

R − L − d
· α+. (48)

Figure 15. 3D view of a triangular cavity. Ma and Mc are the flat
mirrors, and Mb has a radius of curvature of R. The position where
the beam hits the mirror Mi is denoted by Pi .

And in similar ways

�xc = d(R − L)

R − L − d
· α+ (49)

�yc = d(R − L)

R − L − d
· α+ (50)

and
�xb = O(�y2

b) = 0 (51)

�yb = R · ω = R · (θ − α+) = d R

R − L − d
· α+. (52)

Then the waist location can be calculated in the same way as
shown in equations (20)–(25), and the following can be shown:

Sa = {(L +�xa)
2 + (d +�ya −�yb)

2}1/2 ≈ S − (dθ +�yp)

(53)
Da = d + dθ + �yp. (54)

In a similar way we obtain

Sc = S + (dθ + �yp) (55)

Dc = d − dθ − �yp. (56)

Therefore the new waist location is given by

�xw = O(θ2) = 0 (57)

�yw = (d + �ya − Da) cos θ ≈ −�yp = − d2

R − L − d
· α+.

(58)
To summarize, a misalignment in +(−)α+ causes a

counter-clockwise (clockwise) rotation of the non-congruent
side around a point that does not coincide with the bisecting
point. This yields a clockwise (counter-clockwise) rotation ω

(which is very small compared to the misalignment angle α+)
of the geometrical axis of a corner reflector consisting of the
two flat mirrors. As a result, the eigenmode changes in a ‘non-
uniform’ way, with each spot position change being smaller
than the misalignment case of αb.

4. Vertical misalignments

When considering vertical misalignments, it is necessary to
view the cavity as a 3D body, as shown in figure 15. Notations
of all the properties are the same as those shown in figure 1.

6
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Figure 16. Cavity eigenmodes of the aligned (lighter colored
triangle) and the misaligned by βb (darker colored triangle) cases.
This type of misalignment does not affect the mirror alignment in the
y direction, hence the eigenmode changes only along the z axis.

Figure 17. Projection of the triangular cavity onto the x–z plane. It
allows one to view the cavity as a plane cavity. The eigenmode is
defined by the line that is orthogonal to the flat mirror and passes
through the center of curvature.

4.1. Misalignment in βb

A misalignment around the y axis by βb, as shown in figure 16,
does not affect the mirror alignment in the y direction, hence
there is no change in eigenmode in that direction. Then it is
possible to project the cavity onto the x–z plane for simplicity,
as shown in figure 17, and treat it as a plane cavity. The
eigenmode of the cavity is defined by the line that is orthogonal
to the flat mirrors and passes through the center of curvature,
as described in [1]. It is obvious that the eigenmode is
also orthogonal to the curved mirror, yielding the shifts in z
direction of all of the spot positions to have the same size. The
normal vector on the mirror Mb is tilted by βb, hence the center
of curvature, whose z coordinate is denoted by zcoc, shifts by
�zcoc = −βb · R. Therefore we have the following relations:

�xa = O(β2
b ) = 0 (59)

�za = �zb = �zc = �zw = �zcoc = −βb · R. (60)

To summarize, a misalignment in +(−)βb causes an
downward (upward) shift of the center of curvature along
the z axis, yielding a simultaneous shift of the plane of
the eigenmode by an amount proportional to the radius of
curvature of the curved mirror.

4.2. Misalignment in β+

Similar to βb, β+ has no effects in the y direction, as shown
in figure 18. However, since the ya axis and the yc axis are

Figure 18. Cavity eigenmodes of the aligned and the misaligned
(β+) cases. This type of misalignment does not affect the mirror
alignment in the y direction, hence the eigenmode changes only
along the z axis.

Figure 19. Projection of the triangular cavity onto the x–z plane. It
allows one to view the cavity as a plane cavity. The eigenmode is
defined by the line that is orthogonal to the flat mirrors and passes
through the center of curvature. In the right part, an enlarged cut-out
around one flat mirror is shown.

rotated by ±( π
2 − γ

2 ) ≈ ±π
4 around the z axis with respect

to the y axis, respectively, the projection of a misalignment
by β+/2 around the two axes becomes 1

2β+/
√

2. Section 4.10
(pp 100–102) of [3] gives a detailed explanation of this effect
by using vector algebra and we will not describe it in this paper.
For convenience, we introduce an effective misalignment angle
βeff = β+/

√
2. The projection of the flat mirrors is rotated by

βeff/2 around the y axis and the effect is doubled because of the
two reflections; hence, seen as a plane cavity, the misalignment
angle is given by βeff, as shown in figure 19. The eigenmode
of this cavity is defined by the line that passes through the
center of curvature and intersects the flat mirrors orthogonally,
as described in [1]. The angle formed by the eigenmodes of the
aligned and misaligned cases is denoted by θ in figure 19 and
it becomes obvious that θ = βeff when one focuses around the
area of the flat mirrors, as shown in the enlarged cut-out in the
right part of figure 19. Therefore the following equations yield
the spot position changes:

�xa,b,c, and w = O(β2
+) = 0 (61)

�za = �zc = �zw = βeff ·(R− L) = β+ ·(R− L)/
√

2 (62)

�zb = βeff · R = β+ · R/
√

2. (63)

To summarize, a misalignment in +(−)β+ causes a
counter-clockwise (clockwise) tilt of the geometrical axis of
the two flat mirrors around the center of curvature. As a result
the cavity plane tilts around the y axis through the center of
curvature.

7
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Table 2. Horizontal misalignment comparison.

Ma Mc Mb Waist

Type Method �x �y �x �y �x �y �x �y θ

αb Geom. analy. 0.205 −0.205 −0.205 −0.205 0 −13.970 0 0.205 −1.370
OPTOCAD 0.206 −0.202 −0.206 −0.202 0 −13.974 0 0.209 −1.370
IFOCAD 0.206 −0.202 −0.206 −0.202 0 −13.974 0 0.209 −1.370

α− Geom. analy. −10.051 10.051 −10.051 −10.051 0 0 −10.051 0 0
OPTOCAD −10.051 9.902 −10.051 −9.902 0 0 −10.051 0 0
IFOCAD −10.051 9.902 −10.051 −9.902 0 0 −10.051 0 0

α+ Geom. analy. −0.151 0.151 0.151 0.151 0 0.205 0 −0.001 1.005
OPTOCAD −0.151 0.149 0.151 0.149 0 0.206 0 −0.003 1.005
IFOCAD −0.151 0.149 0.151 0.149 0 0.206 0 −0.003 1.005

Table 3. Vertical misalignment comparison.

Ma Mc Mb Waist

Type Method �x �z �x �z �x �z �x �z θ

βb Geom. analy. 0 −37.800 0 −37.800 0 −37.800 0 −37.800 0
IFOCAD 0 −37.800 0 −37.800 0 −37.800 0 −37.800 0

β− Geom. analy. 0 −0.106 0 0.106 0 0 0 0 0.707
IFOCAD 0 −0.106 0 0.106 0 0 0 0 0.702

β+ Geom. analy. 0 19.622 0 19.622 0 26.729 0 19.622 0
IFOCAD 0 19.770 0 19.770 0 26.930 0 19.770 0

Figure 20. Cavity eigenmodes of the aligned and the misaligned
(β−) cases. The beam spot position and the waist position stay
unchanged.

4.3. Misalignment in β−

Here, mirrors Ma and Mc rotate around the ya and yc axes
by ±1/2β−, respectively, as shown in figure 20. When the
two opposite misalignment angles on mirrors Ma and Mc are
projected onto the x–z plane, they appear as rotations around
the y axis by ±βeff/2, respectively, yielding no change along
the z axis on the curved mirror Mb. On the other hand, when
they are projected onto the y–z plane, as shown in figure 21,
they both appear as rotations around the z axis by βeff/2,
yielding shifts along the z axis in the beam spot positions on
the two flat mirrors by the same amount, but with opposite sign.
Note that here βeff ≡ −β−/

√
2. These spot position changes

are symmetrical along the y axis, thus they yield no change in
the beam spot position on the curved mirror along the y axis,
nor a change in the waist position (which is equidistant from
the two spot positions) along the y axis and x axis. Hence the
spot on the curved mirror and the waist remains unchanged,
indicating that the new eigenmode is formed by rotating the

Figure 21. Projection of the triangular cavity onto the y–z plane.
The plane of the cavity is rotated around the x axis by θ . However,
the lengths of all sides of the triangle remain unchanged.

aligned eigenmode around the x axis by θ , yielding no change
in the lengths on any sides of the triangle.

The inclination angle of the beam between the two flat
mirrors with respect to the x–y plane is denoted by θ in
figure 21. Focusing on the isosceles triangle, as indicated
by the shaded triangle in the figure, whose equal angles are
denoted as μ, the inclination angle is given by the following
equations:

μ = π/2 + βeff/2 (64)

θ = π − 2μ = −βeff. (65)

Therefore the beam spot position shifts on the two mirrors are
calculated to be

�za = −�zc = d · βeff = −d · β−/
√

2. (66)

To summarize, a misalignment in +(−)β− causes no
change in the spot position on the curved mirror and a
clockwise (counter-clockwise) rotation of the non-congruent
side around the x axis. As a result, the plane of the eigenmode
rotates around the x axis.
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5. Result and comparison

Tables 2 and 3 show the results from the geometrical analysis,
and compare them to the simulation results obtained by using
two simulation tools. The values are the proportionality
coefficients and have units of m rad−1 for spot positions and
rad rad−1 for angles. One is OPTOCAD [4] and the other is
IFOCAD [5]. We used them to trace the Gaussian beam through
our triangular cavity model that has the design parameters for
the AEI 10 m Prototype reference cavity. These parameters
are given as follows: R = 37.8 m, L = 10.05 m and
d = 0.15 m. By inserting these values into our geometrical
model, we obtained the corresponding numerical values. Due
to the fact that OPTOCAD is two-dimensional we used it for
simulating only the horizontal misalignment types.

6. Conclusion

The discrepancies between the geometrical analysis and the
simulations are divided into two groups: one comes from
the first-order effect caused by using γ = π/2 instead of
assigning the real value, while the other comes from the non-
first-order effects. The discrepancies for the beam positions
on the two flat mirrors in the horizontal direction and all of
the discrepancies in the vertical direction belong to the former
group. Thus they become zero by assigning the real value
for γ . The beam position on the curved mirror and the waist
position in the horizontal direction belong to the latter group.
Thus they are not completely eliminated by assigning the real
value for γ . However, all of the discrepancies shown in the
tables are negligible for the design of an alignment control
system for a triangular cavity, due to the fact that couplings
of residual alignment noise caused by these discrepancies

into length control signals are negligible. The results of
the geometrical analysis are in excellent agreement with the
simulation results, showing sufficient accuracy for the design
of an alignment control system for a triangular cavity. This
analysis can easily be extended to a cavity with a more
general shape if one follows the equations derived in this
paper and modifies the method of approximation properly. The
geometrical analysis not only serves as a method of checking
a simulation result but also gives an intuitive and handy tool to
visualize the eigenmode of a misaligned triangular cavity.
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