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1 Facultad de Matemática, Astronomı́a y Fı́sica, FaMAF, Universidad Nacional de Córdoba,
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Argentina
2 Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Mühlenberg 1,
D-14476 Potsdam, Germany

E-mail: dain@famaf.unc.edu.ar and gabach@famaf.unc.edu.ar

Received 19 August 2010, in final form 28 January 2011
Published 28 February 2011
Online at stacks.iop.org/CQG/28/075003

Abstract
We prove the existence of a family of initial data for Einstein equations which
represent small deformations of the extreme Kerr black hole initial data. The
data in this family have the same asymptotic geometry as extreme Kerr. In
particular, the deformations preserve the angular momentum and the area of
the cylindrical end.

PACS numbers: 04.70.−s, 04.20.Jb, 04.20.Dw

1. Introduction

Black holes are one of the most spectacular predictions of general relativity. There is growing
experimental evidence that indicates that black holes do indeed exist in nature. Among the
most impressive ones is the evidence for the existence of a supermassive black hole in the
center of our galaxy (see the review article [37]).

In vacuum, the only stationary black hole is expected to be the Kerr black hole,
characterized by the mass m and the angular momentum J (see [13] and references therein for
updated results on this problem). The Kerr black hole satisfies the inequality m �

√|J |. The
limit case m = √|J | is called the extreme black hole. It represents the stationary black hole
with maximum amount of angular momentum per mass unit. The extreme limit

√|J | → m is
singular because the geometry of the spacetime changes at the limit. This is somehow to be
expected since the extreme case is the borderline between a black hole and a spacetime with
a naked singularity (i.e. the Kerr solution with 0 < m <

√|J |).
There exist relevant reasons to study extreme black holes. The first one is that there is

good experimental evidence for the existence of nearly extreme black holes in the universe
(see [35] for experimental evidence of a black hole with J/m2 > 0.98). Then, it is important
to understand the dynamics of black holes near the extreme limit. The second reason is less
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clear but, we believe, equally important. As it often happens in physical theories, solutions that
arise as asymptotic limits are simpler than other solutions and they provide useful insights into
the theory. In the set of solutions of Einstein equation, extreme black holes represent a kind
of barrier that divides black holes and naked singularities. From the pure classical point of
view, there is evidence that extreme black holes have some special properties that make them
simpler than non-extreme ones (see the discussion in [21]). Also from a completely different
perspective, namely holographic dualities, particular features of extreme black holes play an
important role (see [4, 27], see also the review article [3]). It appears that extreme black holes
have a deep mathematical structure that is still to be uncovered.

Finally, there is a third reason to study extreme black holes. In the problem of extreme
black hole initial conditions (which is the subject of this paper), a particular kind of geometry
appears: geometries with cylindrical ends. These geometries have proven to be very useful in
numerical computations of black hole collisions; they are called ‘trumpet’ initial conditions in
this context. It is important to emphasize that the presence of a cylindrical end does not imply
that the initial data are stationary (in particular, it does not imply that the data are the extreme
Kerr black hole initial data). The cylindrical end imposes only asymptotic conditions to the
data. Non-stationary cylindrical initial data have been constructed numerically in [24, 28, 32].
In [23, 26] their existence has been proved analytically. Numerical studies (see [28–30])
suggest that binary black holes with cylindrical geometries are simpler to evolve than initial
data with multiple asymptotically flat ends (also called ‘punctures’ in numerical relativity).

As a first step to understand the dynamics near an extreme Kerr black hole, in this paper
we study small deformations of the extreme Kerr black hole initial conditions. We prove the
existence of a family of initial data that are close to extreme Kerr initial data. In particular,
the asymptotic geometry of these initial data is the same as the extreme Kerr geometry. These
data are, generically, non-stationary. It is important to emphasize that the existence of these
initial conditions is, a priori, by no means obvious due to the character of the extreme Kerr
geometry.

We would also like to comment on the mathematical techniques used in the proof of
our results. The proof of our main theorem essentially deals with existence and uniqueness
of solutions of the Lichnerowicz equation. This equation has been extensively studied in the
literature. See the review article [6] and references therein. In particular, different kinds of
boundary and asymptotic fall-off conditions have been analyzed for this equation: closed
manifolds [31], asymptotically flat manifolds [11] and asymptotically flat manifold with an
inner horizon [17, 34]. However, there are no results concerning cylindrical fall-off conditions.
One of the goals of this paper is precisely to initiate the study of this kind of boundary condition.
Using adapted coordinates, the fall-off conditions at the cylindrical end translate into singular
behavior of the conformal factor at the origin. To deal with it, we have to use non-standard
functional spaces with weight both at infinity and at the origin. This is one of the main technical
difficulties of this problem.

The paper is organized as follows. We begin in section 2 with a review of some of the main
properties of the extreme Kerr black hole. Then we state our main result avoiding technical
details. We also discuss how the cylindrical geometry is preserved along the evolution. In
section 3 we state our main theorem in a precise form and prove it. We conclude the paper
with a discussion of some relevant open problems in section 4. Finally, we have included three
appendices. In appendix A we prove a decay property of the Sobolev spaces used in our proof.
In appendix B we prove a property of the extreme Kerr initial data which plays a central role
in the proof. Appendix C is a brief summary of the implicit function theorem, which is the
central analytical tool used in the proof.
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Figure 1. Conformal diagram of the Kerr black hole in the non-extreme case.

2. Main result

Consider the Kerr black hole with mass m and angular momentum J. In the non-extreme case
(i.e. m >

√|J |) the maximal analytical extension of the metric has the well-known global
structure shown in figure 1 (see [7, 8] and also [9]). Take the spacelike surface S drawn in this
figure. This surface runs from one spacelike infinity (denoted by i0) to the other. The topology
of this surface is S = S

2 ×R. The triple (S, hij ,Kij ), where hij is the induced intrinsic metric
on S and Kij is the second fundamental form of S, constitute an initial dataset for Einstein
equations. That is, they are solutions of the constraint equations

DjK
ij − DiK = 0, (1)

R − KijK
ij + K2 = 0, (2)

where D and R are the Levi-Civita connection and the Ricci scalar associated with hij, and
K = Kijh

ij . In these equations the indices are moved with the metric hij and its inverse hij .
The Riemannian manifold (S, hij ) has two asymptotically flat ends (see figure 2).

This asymptotic geometry is identical to the analogous slice of Kruskal extension for the
Schwarzschild black hole. The surface S in figure 1 corresponds to a slice t = 0 of
the Boyer–Lindquist coordinates (t, r̃, θ, φ) in Kerr metric (see appendix B). It intersects
the bifurcation sphere (denoted by a dark dot in figure 1 and by a dark circle in figure 2).
The slice is isometric across this sphere. The bifurcation sphere on the slice is both a minimal
surface and an apparent horizon. In these coordinates, spacelike infinity i0 is represented by
the limit r̃ → ∞. The intrinsic metric and the second fundamental form satisfy the standard
asymptotically flat fall-off conditions

hij = δij + o(r̃−1/2), ∂hij = o(r̃−3/2), (3)

Kij = O(r̃−3), (4)

as r → ∞, where δij is the flat metric. The strong fall-off behavior of the second fundamental
form implies that the linear momentum of the initial data vanishes. The angular momentum is
contained in the term O(r̃−3) of Kij .

The maximal development of the initial dataset (S, hij ,Kij ) is shown in light gray in
figure 1. This region does not cover the whole analytical extension (as in the case of
Schwarzschild’s) and it has a smooth boundary in the spacetime. This boundary is known

3
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Figure 2. Embedding diagram of a two-dimensional slice (t = const., θ = π/2) of the extended
non-extreme Kerr solution. The dark circle in the middle represents the minimal surface (throat)
connecting two asymptotically flat ends.

i0
S

Event horizon

ic

Singularity

Figure 3. Conformal diagram for the extreme Kerr black hole. The cylindrical end is denoted
by ic.

as the Cauchy horizon. In dark gray the domain of outer communications is shown, which is
bounded by the black hole event horizon.

In the extreme case m = √|J |, the global structure of the spacetime changes. The maximal
analytical extension is shown in figure 3. The spacelike surface S has the same topology S

2 ×R

as in the non-extreme case; however, the asymptotic geometry of the Riemannian manifold
(S, hij ) is different. It has one asymptotically flat end and one cylindrical end, see figure 4. The
cylindrical end asymptotically approaches the event horizon. Contrary to the asymptotically
flat case, this end is in the strong field region of the spacetime. Note that (S, hij ) is a complete
Riemannian manifold without boundary which lies completely in the black hole exterior
region. Let us take a closer look at the structure of the cylindrical end. In isotropic coordinates
(r, θ, φ), with r := r̃ − m (see appendix B), the induced metric on S has the form

h0
ij = �4

0h̃
0
ij , h̃0 = e2q0(dr2 + r2 dθ2) + r2 sin2 θ dφ2, (5)

4
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Figure 4. Embedding diagram of a two-dimensional slice (t = const., θ = π/2) of the extreme
Kerr solution. There is an asymptotically flat end (top) and an asymptotically cylindrical end
(bottom).

where �0 and q0 are given by equation (B.6) in appendix B. The extrinsic curvature is given
by

K0
ij = 2

η
S(iηj), Si = 1

η
εijkη

j ∂kω0, (6)

where ηi is the axial Killing vector, η the square of its norm (see equation (B.2)), εijk denotes
the volume element with respect to the metric hij and ω0 is given by (B.7). The advantage of
this particular form of writing K0

ij is that it is easy to check from (6) that K0
ij satisfies the

momentum constraint (1). We will discuss and use this fact in section 3. In particular, we have
that K0

ij is trace-free:

K0 = 0. (7)

That is, these initial data are maximal surfaces.
In isotropic coordinates, the asymptotically flat end is given by the limit r → ∞ and

the cylindrical end by the limit r → 0. The radial coordinate r is a good coordinate in
the asymptotically flat end since the metric and the extrinsic curvature take the asymptotic
form (3).

On the other hand, in the limit r → 0 the conformal factor �0 blows up. This is, however,
just a coordinate problem. To see this, let s = − ln r; then, the cylindrical end corresponds to
s → ∞, and the metric has the form

h0 = (
√

r�0)
4(e2q0(ds2 + dθ2) + sin2 θ dφ2). (8)

The functions
√

r�0 and q0 are smooth and uniformly bounded in the whole range
−∞ < s < ∞ (see lemma B.2). In particular, the Riemannian manifold

(
S, h0

ij

)
has bounded

curvature.
It is interesting to note (although we will not make use of it) that the metric (8) and the

second fundamental form (6) have a well-defined limit s → ∞ as initial data. Namely

h0 = m2(1 + cos2 θ)(ds2 + dθ2) +
4m2 sin2 θ

(1 + cos2 θ)
dφ2 as s → ∞, (9)

where we have used the limits (B.10)–(B.11). The extrinsic curvature K
ij

0 has the form (6)
where ω0 is replaced by its limiting value (B.12) and all the other quantities are computed
with respect to the metric (9). These are in fact solutions of the constraint equations (1)–(2).
They isolate the cylindrical geometry cutting off the asymptotically flat end. In particular,
the metric (9) has a non-negative Ricci scalar, given by the limit (B.13) and it has another
symmetry, namely translations in s. These limit initial data are slices t = constant of the
four-dimensional vacuum geometry described in [4], known as the the near-horizon extreme
Kerr. This geometry has also been studied in [9] (see equation (5.63) in that reference).
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A relevant parameter for extreme black hole data is the area of the cylindrical end. Consider
the area A(r) of the surfaces r = constant of the metric (5). In the limit r → 0 we have

A0 = lim
r→0

A(r) = 8πm2. (10)

For extreme Kerr, this corresponds to the area of the black hole event horizon. Finally, for
completeness, let us mention that the ergoregion on S is given in these coordinates by

0 < r < m sin θ. (11)

We have described a particular class of initial datasets for the extreme Kerr black hole
which run from ic to i0. There exist similar initial datasets in Reissner–Nordström and Kerr–
Newman black holes. Remarkably enough, for a Schwarzschild black hole there also exist
initial data that have the same asymptotic geometry (see [29] and references therein). All these
examples are stationary. Moreover, all these data arise as a singular limit in which the geometry
changes. The first numerical evidence for the existence of non-stationary cylindrical data with
a similar structure as the one described above was given in [24] and the first analytical proof
was provided in [23, 26]. These data are also obtained as a singular limit from non-extreme
data. The point we want to address in this paper is as follows: given extreme Kerr initial data,
does there exist a neighborhood of similar data? The following theorem, which constitutes the
main result of this paper, gives an affirmative answer to this question.

Theorem 2.1. Let
(
S, h0

ij , K
0
ij

)
be the extreme Kerr dataset described above with angular

momentum J and mass m = √|J |. Then there is a small λ0 > 0 such that for −λ0 < λ < λ0

there exists a family of initial datasets (S, hij (λ),Kij (λ)) (i.e. solutions of the constraints on
S) with the following properties.

(i) We have hij (0) = h0
ij and Kij (0) = K0

ij . The family is differentiable in λ and it is close to
extreme Kerr with respect to an appropriate norm which involves two derivatives of the
metric.

(ii) The data have the same asymptotic geometry as the extreme Kerr initial dataset. The
angular momentum and the area of the cylindrical end in the family do not depend on λ;
they have the same value as in

(
S, h0

ij , K
0
ij

)
, namely J and 8π |J |, respectively.

(iii) The data are axially symmetric and maximal (i.e. K(λ) = 0).

In section 3 we provide a more precise version of this theorem (theorem 3.1). Let us
discuss here other relevant properties of the initial data family (S, hij (λ),Kij (λ)).

We mention that the angular momentum of the family remains constant, the total mass
however is not. As a consequence of the general theorems [12, 22] we have the following
inequality for all λ:

m(λ) �
√

|J |, (12)

with equality only for λ = 0 (i.e. for extreme Kerr). This family realizes the local minimum
behavior of extreme Kerr studied in [18].

Inequality (12) allows us to define the following positive quantity:

E(λ) = m(λ) −
√

|J |. (13)

The energy E provides (if we assume cosmic censorship) an upper bound for the total amount
of radiation emitted by the system at null infinity for these initial data (see the discussion in
[21]).

Let us consider now some aspects of the evolution of these data. In the asymptotically flat
case, it is well known that the asymptotic behavior (3) is preserved by evolution if we impose
appropriate fall-off conditions for the lapse and shift. This is of course important, since it is

6
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related to conservation of total mass in the spacetime. The natural question is whether this kind
of persistence under evolution also holds for the cylindrical asymptote. To study this question
we need non-stationary data as the ones constructed here.

Let us consider a member of the family for some λ �= 0 (we will suppress the λ in the
notation in the following). Take a short period of time t; then, we have

hij (t) ≈ hij (0) + ḣij (0)t, (14)

Kij (t) ≈ Kij (0) + K̇ij t, (15)

where dot denotes the time derivative. The time derivatives ḣij , K̇ij can be computed using
the evolution equations

ḣij = 2αKij + Lβhij , (16)

K̇ij = ∇i∇jα + LβKij + α
(
2Kk

i Kjk − KKij − Rij

)
, (17)

where α and βi are the lapse and shift of the foliation, L denotes the Lie derivative and Rij is
the Ricci tensor of hij. Lapse and shift can be of course arbitrarily prescribed, independently
of the initial conditions. We want to argue that if we chose the lapse and shift with appropriate
decay conditions at the cylindrical end, then the cylindrical fall properties are preserved along
the whole foliation. This is completely analogous to the asymptotically flat case.

If we want to preserve the cylindrical geometry under the evolution, we must have

lim
s→∞ ḣij = 0, lim

s→∞ K̇ij = 0. (18)

From equations (16) to (17) we deduce the conditions for the lapse

lim
s→∞ α = lim

s→∞ ∂α = lim
s→∞ ∂2α = 0, (19)

and the shift

lim
s→∞ βi = lim

s→∞ ∂βi = 0, (20)

where ∂ denotes partial derivatives with respect to the space coordinates. Note that for
the particular Boyer–Lindquist foliation in extreme Kerr these requirements are satisfied
(see equations (B.8)–(B.9) in appendix B). Conditions (19) and (20) are analogous to the
asymptotically flat conditions for lapse and shift.

In this paper, we have assumed vacuum for simplicity. We expect that an analogous result
as theorem (5) holds for the Kerr–Newman extreme black hole. In that case, inequality (12)
should be replaced by it generalized charged version recently proved in [14, 15].

3. Proof of the main result

A particular feature of axial symmetry is that it allows one to reduce the constraint equations
(1)–(2) to just one scalar equation for a conformal factor (the so-called Lichnerowicz equation).
This procedure is well known (see, for example, [22] and references therein). Let us briefly
review it. Consider the metric

h̃ij = e−2q(dr2 + r2 dθ2) + r2 sin2 θ dϕ2, (21)

where q = q(r, θ) is an arbitrary function. This metric will be used as a conformal background
for the physical metric hij . We first discuss how to construct solutions of the momentum
constraint (1) from an arbitrary axially symmetric potential ω(r, θ). Consider the following
tensor:

K̃ij = 2

ρ2
S̃(iηj), (22)

7
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where

S̃i = 1

2ρ2
ε̃ijkηj ∂kω, (23)

and ε̃ijk denotes the volume element with respect to h̃ij , D̃ is the connection with respect to
h̃ij and ρ = r sin θ is the cylindrical radius. The indices on tilde quantities are moved with h̃ij

and its inverse h̃ij . The tensor K̃ij is symmetric, trace free and satisfies the following equation
(see, for example, the appendix in [16]):

D̃iK̃
ij = 0 (24)

for arbitrary q and ω. Equation (24) essentially solves (up to a conformal factor) the momentum
constraint (1). Assume that we have a solution � of the Lichnerowicz equation

�h̃� − R̃

8
� = − K̃ij K̃

ij

8�7
, (25)

where �h̃ is the Laplacian with respect to h̃ij and R̃ is the Ricci scalar of h̃ij . To solve equation
(25) we need to impose appropriate boundary conditions. In our case, these conditions are
asymptotic flat fall-off conditions at infinity (i.e. in the limit r → ∞) and conditions at the
origin r = 0 that represent the cylindrical end. Both conditions will be incorporated in the
definition of the weighted Sobolev space used in the proof of theorem 3.1, as we will explain
below.

Consider the rescaling

hij = �4h̃ij , Kij = �−2K̃ij . (26)

Then, as a consequence of (24) the pair (hij ,Kij ) satisfies the constraints (1)–(2). That is,
the problem reduces to solving equation (25). This equation can be written in the following
remarkably simple form in axial symmetry

�� = − (∂ω)2

16ρ4�7
− �2q

4
�, (27)

where � and �2 are flat Laplace operators in three and two dimensions, respectively
(see (B.14)). In particular, extreme Kerr initial data satisfy this equation, namely

��0 = − (∂ω0)
2

16ρ4�7
0

− �2q0

4
�0. (28)

The idea is to perturb equation (27) around the extreme Kerr solution by taking

q0 + λq, ω0 + λω (29)

for some fixed functions q and ω and small λ, and then to find a solution u defined by

� = �0 + u. (30)

Inserting (29) and (30) in equation (27) and using (28) we obtain our final equation

G(λ, u) = 0, (31)

where we have defined

G(λ, u) = �u +
(∂w0 + λ∂w)2

16ρ4(�0 + u)7
− ∂w2

0

16ρ4�7
0

+ λ
�2q

4
(�0 + u) +

�2q0

4
u. (32)

Then, theorem 2.1 is a direct consequence of the following existence theorem for
equation (31).

8
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Theorem 3.1. Let w ∈ C∞
0 (R3 \ �) and q ∈ C∞

0 (R3 \ {0}). Then, there is λ0 > 0 such that
for all λ ∈ (−λ0, λ0) there exists a solution u(λ) ∈ H

′2
−1/2 of equation (31). The solution u(λ)

is continuously differentiable in λ and it satisfies �0 + u(λ) > 0. Moreover, for small λ and
small u (in the norm H

′2
−1/2) the solution u(λ) is the unique solution of equation (31).

We have used the following notation: � denotes the axis ρ = 0, C∞
0 (�) are smooth

functions with compact support in � and H
′2
−1/2 denotes the Sobolev weighted spaces defined

in appendix A.
This theorem provides existence of the perturbed solution, which directly proves item (i) of

theorem 2.1. The norm mentioned there is the weighted Sobolev norm H ′2
−1/2. By construction,

the solution obtained is axially symmetric. It is also maximal, since the tensor (22) is trace
free. That proves item (iii). To prove item (ii) we note that by hypothesis the perturbation ω

vanishes at the axis, and hence the angular momentum of the family of initial data is the same
as in the unperturbed extreme Kerr’s data (see the discussion in [22]). The perturbation u lies
in the Sobolev space H ′2

−1/2 and hence (see lemma A.1) it decays at infinity and at the origin
as o(r−1/2). The decay of u as r → ∞ ensures that the perturbation is asymptotically flat at
infinity. Note that the perturbation will change the mass of the original extreme Kerr data since
this decay condition allows a non-zero O(r−1) term for u. On the other hand, the behavior of
u at the origin ensures that it does not modify the cylindrical geometry of the extreme Kerr
initial data, since it has a stronger decay rate there. Recall that for the unperturbed conformal
factor we have limr→0

√
r�0 = g(θ) > 0 (see equation (B.10)). In particular, the area of the

cylindrical end (which is determined by the integral of the function g(θ)) is preserved by the
perturbations. That is, the area does not depend on λ.

Proof. The proof uses the implicit function theorem (see theorem C.1 in appendix C; in the
rest of the proof we will follow the notation introduced in that theorem) for the map G defined
in equation (32). The proof is divided into two steps.

In the first step, we find the appropriate Banach spaces X, Y and Z required by theorem
C.1, together with the neighborhoods U ⊂ X and V ⊂ Y , such that G : V × U → Z defines
a C1 map. The delicate part of this step is to take into account in the definition of the Banach
spaces the fall-off behavior at infinity and the singular behavior at the origin of the background
functions �0, q0 and ω0. In particular, it is clear from the equation that we cannot expect the
solution u to be regular at the origin, and hence standard Sobolev spaces are not appropriate.
Also the presence of the singular background functions �0, q0 and ω0 in the map G prevents
one from using standard theorems (for example the chain rule in Sobolev spaces) to prove
that G is C1. We need to explicitly compute the functional partial derivatives from their very
definition as a limit. This makes this part of the proof laborious. The asymptotic behavior of
the background Kerr’s functions is typical of any data with one asymptotically flat end and
one cylindrical end and that is the main ingredient needed in this step.

In the second step, we prove that the derivative D2G(0, 0) is an isomorphism between
Y and Z. In this part we use very specific properties of extreme Kerr initial data (namely,
lemma B.1) which are not valid for generic cylindrical data. See the comment after the proof
of lemma B.1. This step represents the key part of the proof.

Step 1. To handle both the fall-off behavior at infinity and the singular behavior at the origin of
the functions �0, q0 and ω0 we will make use of weighted Sobolev spaces defined in appendix
A. We choose X = R, Y = H ′2

−1/2 and Z = L
′2
−5/2. We also choose U = R. It is clear that the

map G is only defined when �0 + u > 0. Hence, we need to find an appropriate neighborhood

9
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V of 0 in the Banach space Y such that this condition is satisfied. Let us consider V given by
the open ball

||u||H ′2
−1/2

< ξ, (33)

where the constant ξ is computed as follows. From lemma A.1 we have that for u ∈ V,
√

r|u| � C0ξ, (34)

where the constant C0 is a Sobolev constant independent of u. By lemma B.2 we have
√

r�0 �
√

m. (35)

Then, if we choose ξ such that
√

m

C0
> ξ > 0, (36)

we have that for all u ∈ V,
√

r(�0 + u) �
√

m − C0ξ > 0. (37)

The constant ξ will remain fixed for the rest of the proof.
We first prove that G : R × V → L

′2
−5/2 is well defined as a map. That is, we need to

check that for λ ∈ R and u ∈ V we obtain G(λ, u) ∈ L
′2
−5/2. Let us compute the norm L

′2
−5/2

of G(λ, u). Using the definition (32) and the triangle inequality, we get

‖G(λ, u)‖L′2
−5/2

� ‖�u‖L′2
−5/2

+

∥∥∥∥λ∂ω (2∂ω0 + λ∂ω)

16ρ4(�0 + u)7

∥∥∥∥
L′2

−5/2

+
λ

4
‖(�0 + u)�2q‖L′2

−5/2

+

∥∥∥∥ (∂ω0)
2

16ρ4

[
1

(�0 + u)7
− 1

�7
0

]∥∥∥∥
L′2

−5/2

+
1

4
‖u�2q0‖L′2

−5/2
. (38)

From the definition of the H
′2
−1/2-norm it is clear that the first term on the right-hand side of

(38) is bounded. For the second and third terms we use the hypothesis that ω has compact
support outside the axis and q compact support outside the origin together with the lower
bound (37) to conclude that these terms are also bounded. The delicate terms are the last two.

For the fourth term we proceed as follows. Using the following elementary identity for
real numbers a and b:

1

ap
− 1

bp
= (b − a)

p−1∑
i=0

ai−pb−1−i , (39)

we find that

r−4

(
1

�7
0

− 1

(�0 + u)7

)
= uH, (40)

where H is given by

H =
6∑

i=0

(
√

r(�0 + u))i−7(
√

r�0)
−1−i . (41)

Using inequalities (35) and (37) we obtain

H � C, (42)

10
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where the constant C depends only on the mass parameter m of the background extreme Kerr
solution. In the following we will generically denote by C constants depending at most on m.
Then, we have∥∥∥∥ (∂ω0)

2

ρ4

[
1

(�0 + u)7
− 1

�7
0

]∥∥∥∥
L′2

−5/2

�
∥∥∥∥ C

r6
(r4uH)

∥∥∥∥
L′2

−5/2

(43)

= C ‖u‖L′2
−1/2

� C ‖u‖H ′2
−1/2

. (44)

Where we have used the bound (B.20) in lemma B.2 to bound the factor with ω0 in the
first inequality in (43). The last inequality in (43) comes from the definition of the weighted
Sobolev space H ′2

−1/2.
For the fifth term, which involves q0, we use the bound (B.21) in lemma B.2, to find

‖u�2q0‖L′2
−5/2

� C

∥∥∥ u

r2

∥∥∥
L′2

−5/2

= C ‖u‖L′2
−1/2

� C ‖u‖H ′2
−1/2

. (45)

These computations show that all norms involved in ‖G(λ, u)‖L′2
−5/2

are finite; hence,

G : R × V → L′2
−5/2 is a well-defined map.

We will now prove that G is C1 between the mentioned Sobolev spaces. Let us denote
by D1G(λ, u) the partial Fréchet derivative of G with respect to the first argument evaluated
at (λ, u) and by D2G(λ, u) the partial derivative with respect to the second argument. By
definition, the partial derivatives are linear operators between the following spaces:

D1G(λ, u) : R → L′2
−5/2, (46)

D2G(λ, u) : H ′2
−1/2 → L′2

−5/2. (47)

We use the notation D1G(λ, u)[γ ] to denote the operator D1G(λ, u) acting on γ ∈ R. That
is, D1G(λ, u)[γ ] defines a function on L′2

−5/2. In the same way we denote by D2G(λ, u)[v]
the operator acting on a function v ∈ H ′2

−1/2.
We propose as candidates for these partial derivatives the following linear operators:

D1G(λ, u)[γ ] =
(

2(∂w0 + λ∂w) · ∂w

16ρ4(�0 + u)7
+

�2q

4
(�0 + u)

)
γ, (48)

D2G(λ, u)[v] = �v +

(
−7(∂w0 + λ∂w)2

16ρ4(�0 + u)8
+ λ

�2q

4
+

�2q0

4

)
v. (49)

These operators arise by taking formally the following directional derivatives to the map G:

d

dt
G(λ + tγ, u)|t=0 = D1G(λ, u)[γ ], (50)

d

dt
G(λ, u + tv)|t=0 = D2G(λ, u)[v]. (51)

To prove that the map G : R × V → Z is C1 we need to prove the following items.

(i) The linear operators (48) and (49) are bounded, namely

‖D1G(λ, u)[γ ]‖L′2
−5/2

� C1|γ |, (52)

‖D2G(λ, u)[v]‖L′2
−5/2

� C2 ‖v‖H ′2
−1/2

, (53)

where the constants C1 and C2 do not depend on γ and v, respectively.

11
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(ii) The operators (48) and (49) are continuous in (λ, u) with respect to the operator norms.
That is, for every δ > 0 there exists ε > 0 such that

|λ1 − λ2| < ε ⇒ ‖D1G(λ1, u) − D1G(λ2, u)‖L(X,Z) < δ (54)

and

‖u1 − u2‖H ′2
−1/2

< ε ⇒ ‖D1G(λ, u1) − D1G(λ2, u2)‖L(Y,Z) < δ, (55)

where the operator norms used on the right-hand side of these inequalities are defined in
appendix C.

(iii) The operators (48) and (49) are the partial Fréchet derivatives of G (see the definition in
appendix C). That is,

lim
γ→0

‖G(λ + γ, u) − G(λ, u) − D1G(λ, u)[γ ]‖L′2
−5/2

|γ | = 0 (56)

and

lim
v→0

‖G(λ, u + v) − G(λ, u) − D2G(λ, u)[v]‖L′2
−5/2

‖v‖H ′2
−1/2

= 0. (57)

By performing similar computations as above it is straightforward to prove (i) and also
the following estimate:

‖D1G(λ1, u) − D1G(λ2, u)‖L′2
−5/2

� C|λ1 − λ2|, (58)

where C does not depend on λ1 and λ2. From inequality (58) the continuity with respect to λ

follows equation (54) of item (ii). In fact, estimate (58) is a bit stronger since it gives uniform
continuity.

Continuity in the u direction is more delicate. Using again the identity (39) we have

r−9/2

(
1

(�0 + u1)
− 1

(�0 + u2)

)
= (u2 − u1)H, (59)

where

H =
7∑

i=0

(
√

r(�0 + u1))
i−8(

√
r(�0 + u2))

−1−i . (60)

Using that u1, u2 ∈ V and the lower bound (37) we obtain

H � C. (61)

We use the upper bound (B.20), together with (61) to find

‖D1G(λ, u1) − D1G(λ2, u2)‖L′2
−5/2

� C

∥∥∥∥v(u1 − u2)

r3/2

∥∥∥∥
L′2

−5/2

. (62)

We bound the right-hand side of (62) as follows∥∥∥∥v(u1 − u2)

r3/2

∥∥∥∥
L′2

−5/2

=
(∫

R3

v2(u1 − u2)
2

r
dx

)1/2

, (63)

=
(∫

R3

(
√

rv)2(u1 − u2)
2

r2
dx

)1/2

(64)

� C ‖v‖H ′2
−1/2

(∫
R3

(u1 − u2)
2

r2
dx

)1/2

(65)

12
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� C ‖v‖H ′2
−1/2

‖u1 − u2‖H ′2
−1/2

. (66)

Equation (63) is just the definition of the L′2
−5/2-norm and equation (64) is a trivial

rearrangement of factors. The crucial inequality is (65) where we have used lemma A.1.
Finally, line (66) trivially follows from the definition of H ′2

−1/2-norms. Hence, we obtain our
final inequality

‖D1G(λ, u1) − D1G(λ2, u2)‖L′2
−5/2

� C ‖v‖H ′2
−1/2

‖u1 − u2‖H ′2
−1/2

. (67)

From this inequality, the continuity (55) follows.
We now prove (iii). The first limit (56) is straightforward. The delicate part is the second

limit (57). We will follow a similar argument as in the previous calculation. We first compute

G(λ, u + v) − G(λ, u) − D2G(λ, u)[v]

= (∂ω0 + λ∂ω)2

16ρ4

(
1

(�0 + u + v)7
− 1

(�0 + u)7
+

7v

(�0 + u)8

)
. (68)

We have

r−9/2

(
1

(�0 + u + v)7
− 1

(�0 + u)7
+

7v

(�0 + u)8

)
= v2H, (69)

with

H = 1

(
√

r(�0 + u + v))7(
√

r(�0 + u))8

∑
i+j+k=6

i,j,k�0

Cijk(
√

r�0)
i(

√
ru)j (

√
rv)k, (70)

where Cijk are numerical constants. To bound H we use the upper and lower bounds for �0

given by (B.19) and the fact that u, v ∈ V (and hence they satisfy the bound (34)). We obtain

|H | � C
(r + m)6/2

(
√

(r + m) − C0ξ)15
� C. (71)

Then, we have

‖G(λ, u + v) − G(λ, u) − D2G(λ, u)[v]‖L′2
−5/2

� C

∥∥∥∥ r9/2v2H

r6

∥∥∥∥
L′2

−5/2

, (72)

=
∥∥∥∥ v2

r3/2

∥∥∥∥
L′2

−5/2

. (73)

Using the same argument as we used in equations (63)–(66) we finally get the desired estimate

‖G(λ, u + v) − G(λ, u) − D2G(λ, u)[v]‖L′2
−5/2

� C
(‖v‖H ′2

−1/2

)2
. (74)

From (74) it follows (57).

Step 2. We will prove that D2G(0, 0) : H ′2
−1/2 → L′2

−5/2 is an isomorphism. We write this
linear operator in the following form:

D2G(0, 0)[v] = �v − αv, (75)

where

α = 7
(∂ω0)

2

16ρ4�8
0

− �2q0

4
. (76)
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By lemma B.1 we have that α = hr−2 where h is a positive and bounded function in R
3.

In [26] it has been proved that under such conditions for α the map (75) is an isomorphism
between H ′2

−1/2 and L′2
−5/2.

We have satisfied all the hypothesis of the implicit function theorem. Hence, there exists
a neighborhood W = (−λ0, λ0) of the origin in R such that the conclusion of theorem 3.1
holds.

Remarks. We have imposed the perturbation functions ω and q to have compact support.
This can be relaxed by requiring appropriate fall off conditions at the axis and at the origin.

The axially symmetric data considered here are not the most general ones, since we are
assuming in the form of the metric (21) that the axial Killing vector is hypersurface orthogonal
on the surface S (but, of course, has a non-zero twist in the spacetime). This simplification
allows one to use the explicit expressions (22) for the second fundamental form. We expect that
this result can be generalized without this assumption. However, it is important to emphasize
that given data such as that constructed in this theorem, the time evolution described in
section 2, under the condition for lapse and shift (19)–(20), will develop initial data with
the same asymptotic geometry for which the Killing vector is not surface orthogonal. And
hence we get from our family also non-trivial initial data for which the Killing vector is not
hypersurface orthogonal.

4. Final comments

We have proven the existence of an initial data family close to extreme Kerr black hole initial
data. This family represents the natural initial data to study the evolution near an extreme black
hole in axial symmetry, in the spirit of [20, 25].

There also exist relevant open problems that can be addressed at the level of the initial
data. As we have seen in section 2, the extreme Kerr black hole data lie outside the black
hole region and hence they contain no trapped surfaces. Does the family (S, hij (λ),Kij (λ))

contains trapped surfaces for λ > 0? If these data have no trapped surfaces, then there is a
chance that they also lie outside the black hole region. This can, of course, only be answered
after the whole evolution has been analyzed. On the other hand, if there are trapped surfaces,
then the data necessarily penetrate the black hole. The formation of trapped surfaces for
arbitrary small λ > 0 will indicate that extreme Kerr data are a very special element in the
family (S, hij (λ),Kij (λ)). In that case, this kind of data could be very useful in the study
of geometric inequalities which relate angular momentum and area of trapped surfaces (see
section 8 in the review article [33]).
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Appendix A. Weighted Sobolev spaces

The Bartnik’s weighted Sobolev spaces W
′k,p

δ [5] are appropriate for studying geometries with
one cylindrical and one asymptotically flat end. These functional spaces have weights both at
infinity and at the origin.

The weighted Lebesgue spaces L
′p
δ are defined as the completion of C∞

0 (Rn\{0}) functions
under the norms

‖f ‖′
p,δ =

(∫
R3\{0}

|f |pr−δp−n dx

)1/2

. (A.1)

The weighted Sobolev spaces W
′k,p

δ are defined in the usual way

‖f ‖′
k,p,δ =

m∑
0

‖Djf ‖p,δ−j . (A.2)

In this paper we only use the cases n = 3 and p = 2; we have denoted these spaces by
H ′k

δ = W
′k,2
δ and the norms by ‖f ‖L′2

δ
= ‖f ‖′

2,δ and ‖f ‖H ′k
δ

= ‖f ‖′
k,2,δ .

The next lemma plays a crucial role in the proof of theorem 3.1.

Lemma A.1. Assume u ∈ W
′k,p

δ with n − kp < 0; then we have the following estimate:

r−δ|u| � C ‖u‖′
k,p,δ . (A.3)

Moreover, we have

lim
r→0

r−δ|u| = lim
r→∞ r−δ|u| = 0. (A.4)

We will use this lemma only for the particular cases p = 2, n = 3, k = 2 and δ = −1/2;
we state however the proof for the general case since it can have other applications.

Proof. This proof is adapted from [5], theorem 1.2, where the statement is proved for weighted
spaces at infinity (namely, W

k,p

δ spaces in the notation of [5]).
Let BR be the ball of radius R centered at the origin, and let AR be the annulus

AR = B2R \ BR . We define the rescaled function

uR(x) := u(Rx). (A.5)

Then, the fundamental scaling property of the spaces W
′k,p

δ (cf the equation after equation
(1.3) in [5]) is given by

‖uR‖k,p,δ;A1 = Rδ‖u‖k,p,δ;AR
, (A.6)

where we have used the same notation as in [5] for norms over subsets of R
n.

We have

sup
AR

r−δ|u| = sup
A1

R−δr−δ|uR|, (A.7)

� CR−δ‖r−δuR‖k,p;A1 , (A.8)

� CR−δ‖uR‖′
k,p,δ;A1

, (A.9)

= C‖u‖′
k,p,δ;AR

. (A.10)
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The line (A.7) is a trivial change of coordinates. For inequality (A.8) we have used the standard
Sobolev estimate on the bounded domain A1, which is valid for n − kp < 0. We have denoted
the standard Sobolev norm on a domain � by ‖ · ‖k,p;�. It is important to note that the constant
C does not depend on R, since the domain A1 does not either. The inequality in (A.9) is trivial
because on the domain A1 the two norms (standard and weighted) are equivalent. Finally, in
(A.10) we applied the scaling property (A.6).

Consider the set of annulus A2j and define uj = u|A2j
. It is clear that

u =
∞∑

j=−∞
uj . (A.11)

Then, we use the estimate (A.7) on A2j and sum over all j :

(sup r−δ|u|)p �
∞∑

j=−∞
(sup r−δ|uj |)p � C

∞∑
j=−∞

‖uj‖′p
k,p,δ, (A.12)

= C‖u‖′p
k,p,δ (A.13)

which proves (A.3).
To prove (A.4) we observe that the sum

∑∞
j=−∞(sup r−δ|uj |)p is an infinite sum of

positive real numbers which is bounded; hence, in the limit we must have

lim
j→±∞

(sup r−δ|uj |) = 0, (A.14)

which is equivalent to (A.4). �

Appendix B. Properties of extreme Kerr initial data

The spacetime metric for extreme Kerr black hole in Boyer–Lindquist coordinates (t, r̃, θ, φ)

is given by

g = −� sin2 θ

η
dt2 + η(dφ − � dt)2 +

�

�
dr̃2 + � dθ2 (B.1)

where η is the square norm of the axial Killing vector

ημ =
(

∂

∂φ

)μ

, η = gνμημημ, (B.2)

given by

η = (r̃2 + a2)2 − a2� sin2 θ

�
sin2 θ. (B.3)

The functions � and � are given by

� = (r̃ − m)2, � = r̃2 + a2 cos2 θ, (B.4)

and � is the angular velocity

� = 2a2r̃ sin2 θ

η�
. (B.5)

Here a = J/m is the angular momentum per unit mass, and we consider the extreme case√|J | = m. Note that for extreme Kerr we have two possible values for the angular momentum
J = ±m2 (and hence a = ±m).
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Take a surface t = constant, define the radius r as r = r̃ − m. From (B.1) we deduce that
the intrinsic metric on this surface has the form (5) with

e2q0 = � sin2 θ

η
, �4

0 = η

ρ2
. (B.6)

The twist potential of the Killing vector ημ is given by

ω0 = 2J (cos3 θ − 3 cos θ) − 2Jm2 cos θ sin4 θ

�
. (B.7)

The lapse function and shift vector for this foliation are given by

α = r√
� + a2(1 + 2a(r + a)/�) sin2 θ

, (B.8)

βφ = −2a2 sin2 θ(r + a)

�3
r2. (B.9)

The following asymptotic limits are interesting:

lim
r→0

√
r�0 =

(
4m2

1 + cos2 θ

)1/4

, (B.10)

lim
r→0

e2q0 =
(

1 + cos2 θ

2

)2

, (B.11)

lim
r→0

ω0 = − 8J cos θ

1 + cos2 θ
, (B.12)

lim
r→0

R = 2 sin2 θ

m2(1 + cos2 θ)3
. (B.13)

We take the opportunity to correct a misprint in equation (A.15) of [2]. There is a missing
exponent 3 in the denominator of this formula; it should be the same as equation (B.13).

In the following, we use � to denote the flat Laplace operator in three dimensions; the
two-dimensional Laplacian �2 is given by

�2 = 1

r
∂r(r∂r) +

1

r2
∂2
θ . (B.14)

The next lemma plays a crucial role in the proof of theorem 3.1.

Lemma B.1. Let q0 and �0 be given by (B.6) and ω0 by (B.7). Then the function α defined in
(76) has the form α = hr−2 where h � 0 and h is bounded in R

3.

Proof. From the Hamiltonian constraint

− �2q0

4
= ��0

�0
+

(∂w0)
2

16η2
(B.15)

and the stationary equation satisfied by extreme Kerr’s initial data (see [2])

��0

�0
= − (∂ω0)

2

4η2
+

(∂�0)
2

�2
0

(B.16)

we obtain

− �2q0

4
= − 3

16

(∂w0)
2

η2
+

(∂�0)
2

�2
0

. (B.17)
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Therefore,

α = (∂ω0)
2

4η2
+

(∂�0)
2

�2
0

, (B.18)

which is clearly a non-negative quantity. By an explicit calculation it can be seen that α is
in fact a strictly positive function. Since we do not need this property for our purposes, we
omit the details. Also by explicit means, we note that α is O(r−2) at the origin, and O(r−4)

at infinity, being otherwise bounded. Thereby, there must exist a positive function h such that
α = hr−2. �

It is important to note that in the proof of lemma B.1 we have used the fact that extreme
Kerr satisfies the stationary Einstein equations and also that the topology of extreme Kerr
allows us to choose these coordinates. In particular, the proof fails for non-extreme Kerr. See
a similar discussion in [19] at the end of p 6868.

Lemma B.2. Let �0, q0 and ω0 be defined by (B.6) and (B.7), and assume that m > 0. Then
we have the following bounds:√

m �
√

r + m �
√

r�0 �
√

2
√

r + m, (B.19)

(∂ω0)
2

ρ4
� 116

m4

r6
, (B.20)

|�2q0| � 90

r2
. (B.21)

Proof. Inequality (B.19) has been proved in [2] (see equations (10) and (12) in this reference).
We have

(∂ω0)
2 = 4m4ρ6F

r8�4
(B.22)

where

F = 4r2a4r̃2 sin2(2θ) + (3r̃4 + a2r̃2 + a2(r̃2 − a2) cos2 θ)2 (B.23)

and r̃ = r + m. Then,

F � 4r2a4r̃2 + (3r̃4 + a2r̃2 + a2r̃2)2 � 29(r + a)8. (B.24)

We also find, bounding � � (r + a)2 and ρ � r , that

(∂ω0)
2 � 4a4ρ429(r + a)8

r6(r + a)8
= 116

m4

r2
. (B.25)

Finally, using the explicit expressions for �0 and ω0 one can check, after a laborious but
straightforward calculation, the bound on |�2q0|. �

Appendix C. The implicit function theorem

To facilitate the readability of the paper and also to fix the notation, we reproduce in this
appendix well-known results on differential calculus in Banach spaces (see, for example,
[1, 10], and also the more introductory text books [36, 38]).

Let X and Z be Banach spaces. Let A : X → Z be a linear bounded operator. We denote
by L(X,Z) the set of all linear and bounded operators from X to Z. The set L(X,Z) is itself a
Banach space with the operator norm defined by

‖A‖L(X,Z) = sup
‖x‖�=0

‖A(x)‖Z

‖x‖X

. (C.1)
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Let x be a point in X and let G be a mapping from a neighborhood of x into Z. Then G is called
Fréchet differentiable at the point x if there exists a linear operator DG(x) ∈ L(X,Z) such
that

lim
v→0

‖G(x + v) − G(x) − DG(x)[v]‖
‖x‖X

= 0. (C.2)

The map G is called continuously differentiable (i.e. C1) if the derivative DG(x) as an element
of L(X,Z) depends continuously on x. Namely, for every δ > 0 there exists ε > 0 such that

‖x1 − x2‖X < ε ⇒ ‖DG(x1) − DG(x2)‖L(X,Z) < δ. (C.3)

Let X, Y and Z be Banach spaces and let G be a map G : X × Y → Z; in a similar way, we
define the partial derivatives with respect to the first argument by D1G(x, y) and with respect
to the second argument by D2G(x, y).

Theorem C.1 (Implicit function theorem). Suppose U is a neighborhood of 0 in X, V
is a neighborhood of 0 in Y and G : X × Y → Z is C1. Suppose G(0, 0) = 0 and
D2G(0, 0) : Y → Z define a bounded operator and it is an isomorphism. Then, there exists
a neighborhood W of the origin in X and a continuously differentiable mapping f : W → Y

such that G(x, f (x)) = 0. Moreover, for small x and y, f (x) is the only solution y of the
equation G(x, y) = 0.
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Les Houches, 1972) (New York: Gordon and Breach) pp 57–214
[10] Choquet-Bruhat Y, de Witt-Mortte C and Dillard-Bleick M 1977 Analysis, Manifolds and Physics (Amsterdam:

North-Holland)
[11] Choquet-Bruhat Y, Isenberg J and York J W Jr 1999 Einstein constraint on asymptotically euclidean manifolds

Phys. Rev. D 61 084034 (arXiv:gr-qc/9906095)
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