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The calculation of the self force in the modeling of the gravitational-wave emission from extreme-mass-

ratio binaries is a challenging task. Here we address the question of the possible emergence of a persistent

spurious solution in time-domain schemes, referred to as a Jost junk solution in the literature, that may

contaminate self-force calculations. Previous studies suggested that Jost solutions are due to the use of

zero initial data, which is inconsistent with the singular sources associated with the small object, described

as a point mass. However, in this work we show that the specific origin is an inconsistency in the

translation of the singular sources into jump conditions. More importantly, we identify the correct

implementation of the sources at late times as the sufficient condition guaranteeing the absence of Jost

junk solutions.
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Extreme-mass-ratio inspirals are one of the most impor-
tant sources of gravitational radiation for the future space-
based observatory Laser Interferometer Space Antenna
(LISA). They consist of a stellar compact object inspiral-
ling into a massive black hole [(MBH); with mass in the
rangeM ¼ 104–107M�]. They are long lasting sources that
in the last year before plunge can spend of the order of 105

cycles inside the LISA frequency band [1]. To extract these
signals from the future LISA data stream we require very
precise theoretical waveform templates, as the signal-to-
noise ratio accumulates slowly with time [2]. To achieve
such precision we need a very accurate description of the
slow inspiral, which can be seen as due to the action of a
local force, the self force. The computation of the self force
is a challenge since we need to regularize the gravitational
perturbations created by the stellar compact object, which
is modeled as a point mass. Nevertheless, during the last
decade there has been significant progress in the self-force
program (see [3,4] for reviews) and different methods to
compute it have been developed. Of particular relevance is
the computation of the gravitational self force in the case of
a nonrotating MBH, both for circular and eccentric orbits
[5,6], using time-domain methods.

The aim of this letter is to clarify an issue related to time-
domain self-force calculations: The appearance of the so-
called Jost junk solutions discussed recently in [7], which
can contaminate time-domain calculations of the self force,
limiting their accuracy. Here, following [7], we show that
such solutions are not a generic feature of time-domain
schemes, but rather a result of the use of trivial zero initial
data combined with a particular implementation of the
singular sources associated with the point mass. We then

identify the specific ingredients responsible for the even-
tual appearance of the spurious solution and point out a
straightforward solution, eliminating in this way concerns
about the generation of this kind of persistent junk con-
tamination when calculating the self force.
The self force is determined by the gravitational pertur-

bations created by the point mass as it orbits the MBH,
what we call the retarded field, whose computation is the
main numerical task in time-domain self-force schemes.
The retarded field is singular at the location of the point
mass and needs to be regularized by using analytic expres-
sions for the singular field (see, e.g. [8]). The retarded field
is described by a system of coupled wave-type equations
that derive from the perturbed Einstein’s equations, which
means that their structure depends on the gauge adopted.
Not all the gauges are suitable for self-force computations.
The principal part of the wave-type equations that

govern the retarded field is common to most gauges. For
nonrotating MBHs, each spherical harmonic component
obeys decoupled 1þ 1 wave equations whose structure is
captured by the following model equation:

½�@2t þ @2r� � VðrÞ��ðt; rÞ ¼ Sðt; rÞ
¼ fðrÞ½Gðt; rÞ�ðr� rpðtÞÞ þ Fðt; rÞ�0ðr� rpðtÞÞ�; (1)

where fðrÞ ¼ 1� 2M=r, M is the MBH mass, r� is the
tortoise coordinate r� ¼ rþ 2M ln½r=ð2MÞ � 1�, and
rpðtÞ is the particle’s radial motion. This model equation

consists of a 1þ 1 wave operator �@2t þ @2r� , a potential

term, VðrÞ�, and a singular source term Sðt; rÞ. Equa-
tion (1) has the form of the master equations that rule
perturbations of different fields in Schwarzschild space-
time. They are tied to a particular set of gauges, but in other
gauges the principal structure of the equations that govern
the dynamics of the perturbations is similar. Therefore,
we will use the model Eq. (1) in order to analyze the
appearance of the Jost junk solution, as done in [7].
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Without loss of generality, we deal with the case of circular
orbits (rp ¼ const).

Time-domain schemes address the resolution of Eq. (1)
as an initial-boundary value problem by prescribing initial
conditions on a time slice together with appropriate bound-
ary conditions along the evolution. Appropriate initial data
(ID) at a finite time are not known for Eq. (1). A common
practice consists of setting trivial ID, namely

�jt¼to ¼ ð@t�Þjt¼to ¼ 0: (2)

This ID is inconsistent with the singular structure of the
source and corresponds to a solution that is not continuous
in time at t ¼ to. As a consequence, when solving (nu-
merically) Eq. (1) an initial burst of junk radiation is
produced and one must wait until it has been radiated
away in order to compute the self force. This strategy relies
on the assumption that junk radiation is actually radiated
away. In this sense, Ref. [7] addresses the question of
whether the use of trivial ID can give rise to spurious
solutions persistent in time. To answer this question a
double complementary numerical and analytical approach
is adopted in [7] that we reanalyze below.

(a) Numerical approach. The impact of inconsistent
ID is assessed by constructing, first, a solution to Eq. (1)
with trivial ID, referred to as�Impulsive. Second, the sources

in Eq. (1) are modified to make them compatible with
trivial ID. This is achieved by a smooth switch on in
time of the sources

FS
�ðt; rÞ � �ðt; �ÞFðt; rÞ; GS

�ðt; rÞ � �ðt; �ÞGðt; rÞ; (3)

where �ðt; �Þ smoothly interpolates between 0 and 1,
at initial and late times, i.e. �ðto; �Þ ¼ 0 and �ðt; �Þ ¼ 1
(for t � �). The solution obtained with trivial ID and
smooth sources (3) is referred to as �Smooth. At late times,
t � �, a numerical function �N

Jost is defined as

�N
Jost � �Impulsive ��Smooth: (4)

The function�N
Jost has the following properties [9]: (i) It is

time independent: @t�
N
Jost ¼ 0, 8t. (ii) It has a

jump at the particle: ½�N
Jost�p ¼ �f�1

p Fðto; rpÞ, where

fp � fðrpÞ. (iii) The spatial derivative, @r��
N
Jost, is con-

tinuous at r ¼ rp.

(b) Analytical approach. Motivated by the numerical
approach, one constructs the analytical function �A

Jost as

�A
Jost � �A;�

Jost �� þ�A;þ
Jost �þ; (5)

where �þ � �ðr� � r�pÞ, �� � �ðr�p � r�Þ, being � the

Heaviside step function, and �A;�
Jost and �A;þ

Jost solve the
homogeneous, stationary version of Eq. (1)

½@2r� � VðrÞ��A;�
Jost ¼ 0; (6)

such that ½�A
Jost�p ¼ �f�1

p Fðto; rpÞ. This means (see be-

low) that �A
Jost satisfies an inhomogeneous version of

Eq. (6) with a stationary singular source given by
�fpFðto; rpÞ�0ðr� rpÞ. Differences between �N

Jost and

�A
Jost are shown to vanish within numerical precision in

[7]. Thus, we refer to a single Jost function, �Jost.
From this analysis we conclude that at late times, when

the time switch-on function�ðt; �Þ equals 1 and the sources
for �Impulsive and �Smooth coincide, their difference should

be a solution to the homogeneous version of Eq. (1).
However, this is in conflict with the fact that, as discussed
above, �Jost solves a (stationary) version of Eq. (1) with a
singular distributional source. Certainly, this contradiction
arises from the use of inconsistent sources and ID. But
more importantly, it also suggests strongly that, at late
times, one is actually solving two different systems for
�Impulsive and �Smooth, namely, with different sources. To

assess this point we now discuss the implementation of
Eq. (1) in [7].
In the particle-without-particle (PwP) approach to

Eq. (1), introduced in [10,11] and further discussed in
[7,12,13], the point mass is placed at the boundary between
two integration domains. Then, one solves a homogeneous
problem in each domain and the singular sources in Eq. (1)
are translated into jump conditions at the particle. To
illustrate this it is convenient to rewrite Eq. (1) as a
first-order hyperbolic system (cf. Refs. [13,14] for a
second-order formulation). To that end, we introduce the
fields [15]

� � @t�; ’ � @r��; (7)

and Eq. (1) becomes a system for the vector ð�; �; ’Þ
@t�¼�; @t�¼@r�’�VðrÞ��Sðt;rÞ; @t’¼@r��:

(8)

In the PwP approach we perform the splitting

� ¼ ���� þ�þ�þ; (9)

� ¼ ���� þ�þ�þ; (10)

’ ¼ ’��� þ ’þ�þ þ ½��p�ðr� � r�pÞ; (11)

where the Dirac term of ’ follows from consistency be-
tween the definition of ’ in (7) and the expression for �
in (9). Inserting expressions (9)–(11) in system (8) we
obtain homogeneous systems of equations for the fields

@t�
�¼��; @t�

�¼@r�’
��VðrÞ��; @t’

�¼@r��
�

(12)

and jump conditions to communicate them across the
particle

½��pðtÞ ¼ f�1
p Fðt; rpÞ; (13)

½��pðtÞ ¼ f�1
p ð@tFÞðt; rpÞ; (14)

½’�pðtÞ ¼ Gðt; rpÞ � f�1
p ð@r�FÞðt; rpÞ: (15)

This whole system, i.e. homogeneous Eqs. (12) and
jumps (13)–(15), is equivalent to the original Eq. (1). Two
remarks are in order, regarding the system (12)–(15). First,
not all initial conditions are consistent with the source
Sðt; rÞ, since trivial ID violates the jump conditions (13)–
(15). Second, jumps ½��p and ½��p contain redundant
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information since, consistently with the definition of � in
(7), ½��p is the time derivative of ½��p. However, it is
crucial to realize that the jump condition (14) for ½��p
does not account for the initial value of ½��p. Therefore,
if the evolution scheme fails to implement the condition

½��pðtoÞ ¼ f�1
p Fðto; rpÞ; (16)

it is no longer equivalent to the model Eq. (1). In [7,13], this
equation is written in first-order form in terms of the
variables ð�; �; ’Þ, as in (13)–(15), but the equations for
� and ’ are now

@t� ¼ @r�’� VðrÞ�� J’�ðr� � r�pÞ;
@t’ ¼ @r��þ J��ðr� � r�pÞ;

(17)

where J’ ¼ ½’�p, and J� ¼ ½��p. The jump conditions

can be recovered by multiplying the equations by a test
function, integrating (by parts) between r� � � and r� þ �,
and taking the limit � ! 0. However, system (17) does not
explicitly enforce the jump condition on ½��p. More

precisely, the jump condition on ½��p is expected to be

implemented by enforcing ½��p, which means that ½��p is

enforced up to an initial condition: Only the value of @t½��p
is enforced. Since � is coupled to the rest of the system
through the potential term, VðrÞ�, this has consequences
on the whole system. In conclusion, the evolution system
(17) is not equivalent to Eq. (1).

Another observation is that trivial ID is confusing: From
the source perspective we must impose the condition (16),
but from the point of view of the ID it seems reasonable to
choose ½��pðtoÞ ¼ 0. This confusion is just a consequence

of the inconsistency between the singular source term and
trivial ID that we pointed out above.

The main observation of this work is that Jost junk
solutions appear as a consequence of implementing a
finite jump condition, ½��p, by enforcing an infinitesimal

condition in time (the jump differential equation @t½��p ¼
½��p), without simultaneously imposing the initial value of

½��p that is consistent with the singular source [Eq. (16)].

Therefore, the prescription to eliminate Jost junk solutions
is simple: To enforce the initial value ½��pðtoÞ along the

evolution so that the sources are correctly implemented.
In light of this discussion the results and conclusions in

[7] are correct. In particular, it is concluded there that Jost
junk solutions are not numerical artifacts but rather they
are related to the implementation of the singular source
term. However, the discussion about the specific reason
underlying the appearance of a Jost solution is not con-
clusive, as the failure to enforce the initial condition (16) is
not identified as the underlying cause. Nevertheless, a way
of avoiding the problem is proposed in [7], consisting of a
redefinition of ’ [16]

~’ ¼ ’þ ½��p�ðr� � r�pÞ: (18)

Then, the equations for ð�; ~’Þ become

@t� ¼ @r� ~’� VðrÞ�� J’�ðr� � r�pÞ � J��
0ðr� � r�pÞ;

@t ~’ ¼ @r��; (19)

with J� ¼ ½��p. No Jost solutions are found in the

implementation of these equations with trivial ID for
ð�; ~’;�Þ, and it is concluded in [7] that such kind of
contamination is not generic. The reason is clear from
the conclusions we have reached: system (19) implements
the finite condition (13) on ½��p, including (16), whereas

system (17) does not. Actually, system (19) is equivalent to
the second-order model Eq. (1), and this statement is
independent of any discussion about ID [17]. An alterna-
tive way to understand the contrast between systems
(17) and (19) is to note that trivial ID for ~’ and ’ have
(cf. [16]) completely different content. Whereas the ambi-
guity stemming from the inconsistency between singular
sources and trivial ID was resolved in the case of (17) by
keeping trivial ID and ignoring the �0 term (by ignoring the
value of ½��pðtoÞ), in system (19) one instead prioritizes

the correct implementation of the singular source from
t ¼ to at the (minimal) price of modifying the trivial ID
on ’ through (18) and ~’jt¼to ¼ 0, which is equivalent to

(16). In relation to this we make a statement that we discuss
later: Preserving the singular source at late times [and this,
in certain implementations of (1) like (17) and (19), de-
pends critically on the correctness of the source at t ¼ to]
systematically removes the Jost junk solution, indepen-
dently of the ID.
The problem discussed here is generic in the sense that it

affects any linear system with distributional Dirac-delta
sources in which (i) the sources are translated into jumps of
the fields, and (ii) these jumps are implemented infinitesi-
mally in time through an evolution equation. Consistency
with the original system of equations demands the explicit
enforcement of the initial value of the jump, otherwise a
Jost junk solution will be present.
To illustrate this point, we consider the computation

of the self force in the simplified scenario corresponding
to a charged scalar particle orbiting a nonrotating MBH.
The spherical harmonic modes of the retarded scalar field,
�‘m, satisfy the model Eq. (1) with the following identi-
fications: � ¼ r�‘m, F ¼ 0, and G ¼ f�1S‘m [see, e.g.
[11], for the expressions of VðrÞ and S‘mðt; rÞ]. With this,
we can use the first-order reduction of Eqs. (8) or the
one presented in [12] based on characteristic variables,
ð�; u; vÞ, with ðu; vÞ ¼ ð�� ’;�þ ’Þ. Applying the
splitting of the PwP approach [Eqs. (9)–(11)] we obtain
homogeneous equations and jump conditions:

@t�
� ¼ ðu� þ v�Þ=2; ½��pðtÞ ¼ 0;

@tu
� ¼ �@r�u

� � VðrÞ��; ½u�pðtÞ ¼ �Gðt; rpÞ;
@tv

� ¼ @r�v
� � VðrÞ��; ½v�pðtÞ ¼ Gðt; rpÞ: (20)

The crucial point here is the implementation of jumps
½u�pðtÞ and ½v�pðtÞ. In [12] two different strategies have

been adopted: (I) Finite jumps ½u�pðtÞ and ½v�pðtÞ are
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directly enforced in the evolution and trivial ID is used;
(II) The time derivatives of the jumps, d½u�p=dt and

d½v�p=dt, are imposed as extra evolution equations using

the method of lines. Here, trivial ID cannot be employed
and one must ‘‘impose initially the values of the jumps
[. . .], since during the evolution the only input about them
is the information on their derivatives’’ (cf. discussion in
Sec. Vof [12]). Instead, appropriately modified ID is used
[note the similarity to the discussion of system (19)].

Therefore, a natural question is whether or not a Jost
junk solution appears when taking the difference between
the solutions obtained by implementing approaches (I) and
(II) but using trivial ID in both cases. Figure 1 shows the
results obtained from the numerical implementation with
the techniques discussed in Ref. [12], which confirm our
conclusion that Jost junk solutions correspond to incorrect
implementations of the distributional sources, rather than
to (trivial) ID inconsistent with the sources.

Hitherto, we have focused mainly on consistency
issues at initial times. In order to get a deeper insight,
we paraphrase the main discussion above in terms of
solutions at late times. The only relevant element in the
analysis at late times is the correct implementation of the
sources, the choice of ID playing no role. In particular, any
intermediate-time data can be taken as valid ID. From this
perspective, the crucial impact of the failure in passing the
initial value of the field jumps [18] is the incorrect imple-
mentation of the sources, which differ from the correct
ones at late times. Then, one is solving a different problem.

The reason why a Jost solution appears when evaluating
�N

Jost [Eq. (4)] in [7] is because the smooth time switch-on

function, �ðt; �Þ, guarantees the correct implementation of
the late time sources in the solution�Smooth when adopting
a strategy in which the source is implemented through
an evolution equation for the jumps with zero initial
values. To illustrate this, let us consider a field � with

jump condition ½��p ¼ J�ðtÞ and its smoothed version

½~��p ¼ �ðt; �ÞJ�ðtÞ. If we implement the jumps using evo-

lution equations, d½��p=dt ¼ J0� and d½~��p=dt ¼ ð�J�Þ0,
respectively, both with zero initial values, ½��pðtoÞ ¼
½~��pðtoÞ ¼ 0, we obtain

½��p ¼ J�ðtÞ � J�ðtoÞ;
½~��p ¼ �ðt; �ÞJ�ðtÞ � �ðto; �ÞJ�ðtoÞ

¼ �ðt; �ÞJ�ðtÞ ’ J�ðtÞ ðfor t � �Þ: (21)

This shows conclusively that �Smooth solves Eq. (1) at late
times with the correct source term, whereas �Impulsive is

contaminated by a Jost solution [cf. point (ii) in the
discussion after Eq. (4)].
Time switch on in self-force calculations. Although the

smooth switch on is not the critical element in the discus-
sion of the Jost solution [19], it certainly improves the
consistency between the source and the ID [which can be
critical in certain implementations of the model Eq. (1)].
First, it reduces the initial burst of junk radiation, addressed
in detail in [7]. Second, it improves the calculation of the
self force in certain implementations. In [7] a similar point
was addressed: The calculation of the gauge invariant
gravitational-wave fluxes of energy and angular momen-
tum. Regarding the self force itself, we have computed it
for the case of a charged scalar particle in circular orbits
using the mode sum regularization scheme [8]. The re-
tarded field is evolved using the system (20) and trivial
ID in the approach (I), i.e. with the direct enforcement of
the finite jumps ½u�p and ½v�p (this is an example of a

correct implementation of the source term while using
trivial ID and, as expected, no Jost solution appears). On
the other hand, the instantaneous switch on of the source
term produces high-frequency numerical noise with a very
slow time decay (the decay time scale is much larger than
the orbital time scale) and deteriorates significantly the
accuracy of the self force. This noise can be eliminated
by increasing the resolution of the computations or by
using a numerical filter. However, a more efficient and
better adapted method is the smooth switch on of the
source, which produces dramatic improvements in
the computation of the self force. In Fig. 2 we illustrate
the calculation of the self force, with and without time
switch on of the sources, for a particle at the last stable

circular orbit (rp ¼ 6M) after two orbits, i.e. for t > 2 �
Torb ¼ 2 � 2�ðr3p=MÞ1=2 	 184:69M, once the initial un-

physical burst has been radiated away. Outgoing boundary
conditions discussed in [11,12] are imposed at the bounda-
ries [r�inner 	 �292M, r�outer 	 307M], whose location

guarantees their causal disconnection from the particle up
to the final evolution time tfin ¼ 250M.
To conclude, we have analyzed the risk of contamination

of time-domain self-force calculations by Jost junk solu-
tions as a consequence of using trivial ID inconsistent
with the distributional sources, which has produced some

FIG. 1 (color online). Jost solution built by subtracting solu-
tions to system (20) in approaches (I) and (II) for the jump
implementation (cf. text) and using trivial ID in both cases.
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confusion in the community. We have shown that no Jost
solution is generated as long as the distributional Dirac-
delta sources are faithfully implemented at late times.
Indeed, the inconsistency between trivial ID and distribu-
tional sources introduces a genuine ambiguity in the evo-
lution system: either one modifies the sources to make
them compatible with the trivial ID, or one accepts the
use of inconsistent ID and prioritizes the implementation

of the correct sources (at late times). In this specific sense,
the conclusion in [7] stating that the presence of Jost
solutions is not a numerical artifact, but actually depends
on the implementation of the system, is correct. However,
it is not a generic feature of these systems and hence can be
easily avoided. Here, we have first identified unambigu-
ously the specific origin of Jost solutions in implementa-
tions of jump conditions due to Dirac-delta sources,
namely, the failure to enforce the correct initial value in
the evolution equations for the jumps. Second, our final
conclusion is that no contamination of the retarded solution
by Jost junk solutions happens as long as (late time)
sources are correctly implemented, and this is conceptually
independent of the ID and/or the use of a smooth time
switch on. As a by-product of the analysis, we have shown
that the use of a smooth time switch on of the sources
[7,13] prevents the high-frequency noise that spoils self-
force calculations in some numerical schemes.

We would like to thank A. Harte and B. Wardell for
insightful comments. J. L. J. acknowledges support from
the Alexander von Humboldt Foundation. C. F. S. acknowl-
edges support from the Ramón y Cajal Programme of
the Spanish Ministry of Education and Science (MEC)
and by a Marie Curie International Reintegration Grant
No. MIRG-CT-2007-205005/PHY (FP7). P. C.M. is sup-
ported by the Spanish Ministry of Science and Innovation
(MICINN). We also acknowledge financial support from
Contracts No. ESP2007-61712 (MEC), No. FIS2008-
06078-C03-01/03 (MICINN), and No. FQM2288 and
No. FQM219 (Junta de Andalucı́a).

[1] L. S. Finn andK. S. Thorne, Phys.Rev.D 62, 124021 (2000).
[2] J. R. Gair et al., Classical Quantum Gravity 21, S1595

(2004).
[3] E. Poisson, Living Rev. Relativity 6, 7 (2004), http://

www.livingreviews.org/lrr-2004-6.
[4] L. Barack, Classical Quantum Gravity 26, 213001 (2009).
[5] L. Barack and N. Sago, Phys. Rev. D 75, 064021 (2007).
[6] L. Barack and N. Sago, Phys. Rev. D 81, 084021 (2010).
[7] S. E. Field, J. S. Hesthaven, and S. R. Lau, Phys. Rev. D

81, 124030 (2010).
[8] L. Barack, Y. Mino, H. Nakano, A. Ori, and M. Sasaki,

Phys. Rev. Lett. 88, 091101 (2002).
[9] ½��p denotes a jump of a function � at r ¼ rp, i.e.

½��p � lim�!0ð�ðrp þ �Þ � �ðrp � �ÞÞ.
[10] P. Canizares and C. F. Sopuerta, J. Phys. Conf. Ser. 154,

012053 (2009).
[11] P. Canizares and C. F. Sopuerta, Phys. Rev. D 79, 084020

(2009).
[12] P. Canizares, C. F. Sopuerta, and J. L. Jaramillo, Phys. Rev.

D 82, 044023 (2010).

[13] S. E. Field, J. S. Hesthaven, and S. R. Lau, Classical
Quantum Gravity 26, 165010 (2009).

[14] C. F. Sopuerta and P. Laguna, Phys. Rev. D 73, 044028
(2006).

[15] Note the opposite sign convention in the definition of �
here as compared to � in [7,13].

[16] Note that this is precisely the redefinition needed for
consistency with (11), in particular, for trivial ID for ’�.

[17] Note a secondary source of ambiguity associated with the
incorrect implementation of the finite jump ½��p that
renders expression for ½’�pðtÞ in Eq. (13) of [13] (with
_rp ¼ €rp ¼ 0) nonequivalent to our expression (15), there-
fore, introducing a potential new source of error.

[18] The initial value of the jump is part of the implementation
of the sources and, hence, it is prior to and independent
from the choice of ID. Only in some particular implemen-
tations, like the one in [7], both issues are linked.

[19] The critical element is the correct implementation of the
source term at late times, the smooth switch on just
providing a particular manner of guaranteeing this.

FIG. 2 (color online). Radial and time components of the self
force as a function of time, with (‘‘On’’) and without (‘‘Off’’)
time switch on of the sources (rp ¼ 6M). Note that the Off case

does not even allow the recovery of the second significant digit
in �r ¼ 1:677
 10�4, �t ¼ 3:609
 10�4 (see e.g. [11]).

ARE TIME-DOMAIN SELF-FORCE CALCULATIONS . . . PHYSICAL REVIEW D 83, 061503(R) (2011)

RAPID COMMUNICATIONS

061503-5

http://dx.doi.org/10.1103/PhysRevD.62.124021
http://dx.doi.org/10.1088/0264-9381/21/20/003
http://dx.doi.org/10.1088/0264-9381/21/20/003
http://www.livingreviews.org/lrr-2004-6
http://www.livingreviews.org/lrr-2004-6
http://dx.doi.org/10.1088/0264-9381/26/21/213001
http://dx.doi.org/10.1103/PhysRevD.75.064021
http://dx.doi.org/10.1103/PhysRevD.81.084021
http://dx.doi.org/10.1103/PhysRevD.81.124030
http://dx.doi.org/10.1103/PhysRevD.81.124030
http://dx.doi.org/10.1103/PhysRevLett.88.091101
http://dx.doi.org/10.1088/1742-6596/154/1/012053
http://dx.doi.org/10.1088/1742-6596/154/1/012053
http://dx.doi.org/10.1103/PhysRevD.79.084020
http://dx.doi.org/10.1103/PhysRevD.79.084020
http://dx.doi.org/10.1103/PhysRevD.82.044023
http://dx.doi.org/10.1103/PhysRevD.82.044023
http://dx.doi.org/10.1088/0264-9381/26/16/165010
http://dx.doi.org/10.1088/0264-9381/26/16/165010
http://dx.doi.org/10.1103/PhysRevD.73.044028
http://dx.doi.org/10.1103/PhysRevD.73.044028

