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We investigate the stationary end-state obtained by ewplaicollapsing spherical star with the gauges rou-
tinely adopted to study puncture black holes. We compareritestate of the collapse with the trumpet solution
found in the evolution of a single wormhole slice and show tha two solutions closely agree. We demonstrate
that the agreement is caused by the use of the Gamma-driftec@idition, which allows the matter to fall in-
wards into a region of spacetime that is not resolved by tmeemical grid, and which simultaneously finds the
stationary coordinates of the trumpet outside the matter.

I. INTRODUCTION in the two foliations have a different topology. Even regtri
ing our attention to the vacuum region of the collapsing spac
time and assuming a Killing slice compatible with the “1+1log

| lapse condition, itis not obvious that the resulting slici e
exactly that reported in[3]. Finally, the collapsing maite

The possibility of obtaining stable evolutions of relasivi
tic compact objects within the framework of numerical re

ativity relies crucially on the choice of suitable coordma ide th t hori s ob dto di butati
gauge conditions. In particular, the well-knowanctureap- side theé apparént horizon IS obServed to disappear butatis n

proach relies on the gauge conditions to deal with explicitdear whether this reflects a physical or a numerical belnavio

coordinate singularities present in the computational@iom Ve therefore seek answers to the following questions:
These gauge conditions are built upon the “1+log” lapse con() How well do the two endstates agree? (ii) Where does
dition [1] and the “Gamma-driver” shift condition[2], and the matter go af_ter the apparent ho_nzon is formed_? (iii) _How
allow the coordinate singularity (puncture) to be advected!© the gauges find a stationary slicing of a spacetime without
across the grid by the shift/[3-7]. Hereafter we will refer to @ explicit time-like Killing vector? In order to addresete

these gauge conditions as {encture gauges. guestions we evolve the spacetime of a star collapsing to a

. ... black hole using a “1+log” slicing condition and two variant
It has been showal3, El_Z] that, for a single puncture W'th'of the Gamma-driver shift condition. The different resualts
out linear momentum or spin, the wormhole topology of the

puncture initial datal[13] ceases to be resolved by the meswen cqmpar_eai;uanutatwelywnh the trumpet solution, a_nd
acetime diagrams are constructed to follow the motion of

in the code. Instead, the mesh approaches an asymptotica e matter. Overall we find that the two spacetimes tend to a

cylindrical stationary, solution,e., thetrumpetsolution. The s . . .
. w common stationary solution at late times and that this agree
puncture gauges can thus be viewed as a sort of “natural ex-

cision” which squeezes the singularity into an unresoheed r mentis primavily caused by the shift condition, which pushe

gion of the computational domain. It is nowadays commonlyg”d_polnts away from regions of high curvature, prevegtin

I ; . the matter from being resolved on the numerical mesh.
used in binary black hole simulations by many groups follow- : .
ing [€,7]. The plan of the paper is as follows. In Sdct. Il we briefly

. review our numerical methods, presenting the numerical re-
The puncture gauges have furthermore been tested in

&lts and their interpretation in Selctl I11. Our conclusiame
number of codes solving also the equations of relativisfic h D

. o summarized in Sedi_1V, while we dedicate the Apperdix A
dr_odynamlcsl_[_jgg]. !t has bee_n found effective in han'to a description of our method for constructing spacetime di
dling the black hole which forms in the collapse of a neu-

o _ agrams for spherical spacetimes.
tron star [15/ 20,_21], and in binary systems in general (seeg P P

e.g. [16/ 17 19, 24, 23] and references therein).[ I [15], in

particular, it was first shown with three-dimensional (3D)s

ulations that when using the puncture gauges, no speci tre 1. NUMERICAL SETUP

ment beyond standard artificial dissipation for the metaig-v

ables is ngcessary to follow Stably the black-hole fornmatio We perform numerical simulations both in exp|icit Spher-

and evolution. ical symmetry by means of the one-dimensional (1D) code
In this paper we show that the numerical evolution, withdescribed in.[24] and in 3D by means of BAMTTER [25].

the puncture gauge, of a collapsing spherical star appesachThe latter is developed extending the hydrodynamics solver

the trumpet solution at late times. This result is not tfifte  the spherical code into the BAM code [26]. More specifically,

a number of reasons. First, because in the collapsing spacere solve the full set of Einstein equations in the 1 formal-

time, and in particular in the portion filled by matter, these ism coupled to general relativistic hydrodynamics (GRHD).

no time-like Killing vector and it is not clear how a statiopa In our spherically-symmetric simulations we adopt both the

end-state can be found. Second, at the continuum level, tiBSSNOK and Z4c formulations of the Einstein field equations

two spacetimes are clearly different since, for exampieesl  (see [24] for details), while in 3D we use only the BSSNOK
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formulation.

As mentioned above, our gauges are built upon the “1+log” —1t=0.0M
condition [1] for the lapser and the Gamma-driver condition 2 - -~ 1=60.0M
for the shift3? [2] written in the form s - - 1=82.5M

4 R 8 t=300.0M
oo = fla; — oK, Q)
B = st —npt+ BB 5, 2 4 5
where we always choose, = 2/«, with eitherps = 1 or 1r

us = o andn = 2/M. The Gamma-driver conditiof](2)
may be obtained as the first integral of what is implemented in
most numerical-relativity codes. A comparison of the behav 5 0.5
ior of the condition[(R) with the standard form in the evoduti
of puncture black holes is presented/ih [4]. ‘ ‘ ‘ ‘ ‘
For the evolution of the matter we adopt the Valencia flux- 0 1 2 3 4 5
conservative formulation of the equations of GRHDI [27-29]
for a perfect fluid. A property of flux-conservative formu-
lations is that they preserve (exactly in the continuum} cer
tain integral quantities such as the total rest-mass of tt, fl

My, or its momentum and energy density. The equations of = 0.2 e T~

state (EoS) employed to describe the fluid are the idealdgas o / el -

the polytropic EoS [28]: no significant differences wererfdu ol==-—====->o--- . -
when using one or the other. 0 1 2 3 4 5

In both codes the numerical evolution in time relies
on the method-of-lines with Runge-Kutta integrators and
finite difference approximations. The GRHD equationsFIG. 1: Radial profiles of the rest-mass dengitftop panel), of the
are solved by means of a high-resolution shock—capturin%alose function (middle panel), and of the shiff = 5" (bottom
(HRSC) scheme based on the Local Lax-Friedrich (LLF) anel) at some representf’itlve_tln_wes of the evolution. Nudé at
central schemé [80] combined with Convex-EssentiaIIy-Nont ~ 50 M an apparent horizon is first found and thattby: 300 M

. . the amount of matter on the final time slice is essentially ithéhe
Oscillatory (CENO)|[311] reconstructioh [24,125]. atmosphere

In analogy with[15] and in contrast to_[24], we do not find '
it necessary to excise the hydrodynamical variables indhe c
lapse evolutions. Artificial Kreiss-Oliger dissipationddded

in the evolution of the metric fields following the standardp  the vacuum simulations we use standard puncture takta [13]
cedure[[26]. Instead, we find it important to set the GRHDin isotropic coordinates and with an ADM mass which is the
eigenvaluesto zero if unphysical values are computedéteig same as that of the star.

value excision”). Note that th|§ is com.patlble with the. US€ The simulations in 1D were performed on a grid with uni-
of the LLF central scheme, which requires only an estimatgorm spacing with resolutiond, = 0.02,0.01,0.005. The

of the local speed. Unphysical values can be produced in gimylations in 3D, on the other hand, were performed impos-
neighborhood of the center of the collapse, due to numericghg an octant symmetry on a cell-centered Cartesian grid wit
errors. In 3D simulations we also found it important to set ag fixed mesh refinement levels, with the resolutions of finest

ceiling on the Lorentz factol in order to prevent the code |evel given byAyy, = 0.05,0.03125,0.025, and where the
from crashing after the formation of the apparent horizon. | (egglution doubles from one level to the next.

particularv is set to the ceiling valu&V..; = 10'° when
(and only when) the velocity becomes larger than the speed
of light. Simulations employing the excision of the hydredy
namical quantities were also performed. In this case, the ma
ter variables are set to the atmosphere value in a smallrregio
well inside the apparent horizon. As expected, no diffeesnc ~ We next describe the results of the different numerical sim-
were found. In the following we focus on simulations without ulations. Before that, however, it is useful to recall sorhe o
excision. the basic properties of the evolutions that from the purctur
The initial stellar model is an unstable spherical configura spacetime lead to the trumpet solution or that from a stellar
tion widely used in the literatures.g.,[2€]. Adopting units ~ spacetime lead to a black-hole solution.
in whichc = G = Mg = 1, the configuration chosen has  Puncture spacetime.The evolution of the puncture space-
central rest-mass densify. = 7.993 x 10~3, gravitational  time is described in Ref[[[3, 11]. The initial Schwarzschild
(ADM) massM = 1.448 (M, = 1.535) and circumferential slice in isotropic coordinate evolves, driven by the puretu
radiusR = 5.838 (isotropic coordinate radiusy = 4.268).  gauges, to the stationary trumpet solution. Approximade st
The collapse is triggered imposing a negative velocity pertionarity is achieved within an evolution time of abdi\7,
turbation which is larger than the truncation erfor [28].r Fo depending on the details of the gauge choice. Asymptoti-

I, RESULTS
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cally, there is a coordinate singularity at the puncturenpoi Sect[TI[B, a suitable change in the value,gf for the shift
atr = 0, which corresponds to a sphere with Schwarzschildcondition can avoid this behavior.

radiusRy =~ 1.3M. The trumpet slice extends from, to As a side remark we note that in our 1D simulations we
spatial infinity,i®, while the wormhole slice of the initial data observe a better behavior of the Z4c formulation of the Ein-
reaches from the outef to an inner spatial infinity. Con- stein equation with respect to the BSSNOK one in terms of
ceptually it is important to distinguish between the ariedit  constraint violation and long-term stability. In partial at
solution and the numerical solution on a discrete grid, dsml a ¢t = 2500 M, the L2 norm of the Hamiltonian constraint is
between the wormhole slice of the analytical evolution ded t about4 orders of magnitude lower with Z4c. Furthermore, at
trumpet slice which is only reached asymptotically. The-evo ¢ = 2500 M, the irreducible mass of the final black hole in the
lution starts with a wormhole slice which, due to contingfy  Z4c evolutions is within the numerical error of the ADM mass
the analytical solution, remains a wormhole slice. It asymp of the initial data. In contrast, the BSSNOK simulations-dis
totes to a trumpet slice in the sense that the region inBide play a significant deviation in the irreducible mass of thechl
has a coordinate size that tends towards zero. Numericalljiole aftert = 300 M. In view of this, in what follows the 1D
this inner region is effectively excised once its coordirgire  results we will present refer exclusively to those obtaifud
drops below the grid spacing. Assuming that there is no gridhe Z4c formulation.

point at the puncture itself, after a short evolution time th
numerical grid only has grid points outsidg, that is only
the trumpet part of the initial wormhole is represented. An-
ticipating the discussion of matter, the key differencehistt
the initial data with matter lives neither on a wormhole nor a
trumpet slice, since the matter “covers” the inner regiothef
slice.

A. Agreement of theend-states

In this Section we investigate the asymptotic slice reached
at the end of the evolution by the collapsing star and com-
i , i , pare it with the corresponding trumpet one. This is shown in

Collapsing spacetime. The dynamics of a collapsing un-- giq 1 \which reports several metric fields at titne 300 M.
stable star in general relativity has been discussed ifdeea  This time is well after the apparent horizon is first found
tail in a number of papers and we refer the interested readeﬁr.e_,tAH ~ 50 M), and represents in both cases a time when
to Refs. IEBEBDQ] for some of the most recent work. Forhe sojution has become essentially stationary. From top to
the test-case considered herg (= 1), the introduction of  ,q10m the different panels refer respectively to: thedrat
the perturbation is sufficient to drive the star over theittab oy rinsic curvaturek), the conformal factory), the lapsed)
ity threshold and induce its gravitational collapse. As a re jnqthe shift 67). Itis quite apparent that at the selected time
sult, matter essentially freely falls towards the centading 6 1o spacetimes are extremely similar and it is difficolt t
to an exponential growth of the rest-mass density and a '&istinguish the solutions two by a visual inspection.

lated rapid variation of the metric functions. This is shown To obtain a more quantitative estimate of the differences

in the top panel of Figl]1, which exhibits the radial profile e have computed the behavior of the fields in the collapsing

‘ O w
?f. the re;t-mas_s_depsﬁy at some repr“esentzitwg times. T@%acetime near the origin and obtained the following fitting
§|pgular_|ty-av0|d|ng properties of the “1+log” slicingon- functions for the stationary solution for< 1:

dition drive the lapse function to very small values near the

origin. This is shown in the middle panel of Fid. 1, while the

T
bottom one refers to the evolution of the shift. Note that as KM ~ 0.30-0.37 (M) ’ ®)
the matter rushes towards the center, the shift still sutcie r\20
arresting the motion of the radial coordinates outside tae m x ~ 1.22 (M) ; (4)
ter distribution (ignoring the atmosphere), thereby préivey £ 1.09
slice stretching (in the sense of stretching of the spatiatc a ~ 0.54 (M) . (5)

dinates) as for the black hole evolutions. At abbut 50 M,

an apparent horizon forms indicating unambiguously the-pre The fits for [d) and{b) contain the exponentfs a fitting pa-

ence of a black hole. This time represents the time when gameter, but not fof{3). The result agrees well with theeorr

first comparison between the two spacetimes can in principlgponding expressions in |32]. In particular, the non-ietex-

be made. We also note that because the coordinate radius génent for the lapse ifif5) is very close to the analytic expre

the apparent horizoniis initiallya . < 2 M, partofthe matter  sjon for the trumpet solution in isotropic coordinates, ehi

is outside of it, but it is then rapidly accreted. has exponent.091 [32]. This is interesting since the numer-
As highlighted in|[15], the gauge conditions in Eq3. (I)—(2)ical coordinates are not isotropic, although one could @rgu

allow us to follow the subsequent evolution without havingthat close to the puncture the isotropy of the initial data is

to excise either the hydrodynamical or the gravitationatifie maintained during the evolution.

variable. The conservation of the rest-mass is very good up This result is confirmed when considered also in a

to the horizon formation:AMy(t)/My(0) < 0.05%. Af-  coordinate-independent manner. Following the presonpti

ter the formation of the apparent horizon, the matter insidesuggested ir_[3], we analyze the dependence of the lapse ver-

is observed to disappear from the numerical grid, so that bgus the extrinsic curvature and report in [Elg. 3 the diffeesn

t = 300 M the amount of matter on the slice is that in the at different times. More specifically, we show with soliddm

atmosphere),(300) ~ 1075 M, (0). As we will discuss in  the relative differencé\a/a = apunc/acon — 1, between the
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0 10 20 30 40 star,aco11, as a function of the trace of the extrinsic curvatuke,at
different coordinate times. For a fair comparison, datehatdame
K are found by interpolation. The dashed lines refer to thatikel
differences between the analytic result and the punctuo&igon.
By construction, for early times this difference is much Berahan
the difference between puncture and matter simulations.
[}
1 2 lution [11,32]
%0 40 K = Bd/(R)/2 (6)
0.5+ _ V2/R(a) + o — 1 (4R(a)a® — 4R(a) + 6)
2R(a) (R(a)a? —2R(a)a — R(a) +2)
whereR is the Schwarzschild radiug; is the derivative of
« with respect toR and we setM = 1. As expected, the
relative difference is in this case much smaller initialiyt it
becomes comparable with the one computed for the collapsing
! 2 . spacetime at later times.
20 30 40 It is possible to model the behavior of the data from the
M collapsing spacetime near the origin and at 300 M as
FIG. 2: Radial profiles of representative field variablesiaett = KM ~0.30=0.92q. (7)

300 M from the 1D simulations of the puncture and the collapsing

star. From top to bottom: trace of extrinsic curvatuké) (conformal . . .
factor (), lapse &) and shift @ = 7). Similarly, a Taylor expansion of E4.](6) around= 0 (i.e.,
' for the values of the lapse near the puncture) can be pertbrme

by using the implicit functior?(«) in [32], yielding

lapse of the puncture evolutiony,,,., and that of the col- K(a) = 0.300937 — 0.9309160c+ O (o*) ,  (8)

lapsing starpeon, either when the apparent horizon has just

formed ¢ ~ 50 M) or when the solutions have reached a sta-which closely agrees with EQ.](7).

tionary stage#(~ 300 M). Finally, we note that we did not find significant differences
Itis clear that the relative difference decreases in tintg an between the 1D and the 3D results for the collapsing space-

attimet = 300 M, it is below0.1%. By performing conver- time. This is summarized in Figl 4, where the top panel shows

gence tests we have also determined that the numericaserrar versusK for the 1D and the 3D data at tinte= 300 M:

are at the same level as thd % disagreement. Also reported they are visually indistinguishable. Similarly, the batto

in Fig.[3 with dashed lines is the relative difference betwee panel shows that the relative differences between the 1D and

the puncture data and the analytic solution for the trumpet s the 3D data are generically bel@%.
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FIG. 5: Evolution of total rest-mas3/,(¢), (red dashed lines) and of
the irreducible mass)/i..(¢), (blue solid lines) normalized respec-
tively to the initial value and to the ADM mass. The top parefers

to a simulation with gauge speed = 1, and the bottom panel to

/M

evolutions with gauge spegd = o?.

B. Wheredoesthe matter go onceinsidethe horizon?

5

ter the formation of the apparent horizon the normalizet res
mass drops smoothly to zero except for a small bump near
t = 65M generated by numerical errors inside the horizon.
Also shown is the irreducible mass of the black hole normal-
ized to the ADM mass (solid blue line), which is obviously
zero before the apparent horizon is found. This behavior may
appear puzzling since it is geometrically clear that the-mat
ter cannot leave the foliation (seeg.,Fig. 6.11 of [38]). In
addition, since we are using HRSC schemes, our numerical
methods should be sufficiently robust, for reasonable apati
resolutions, to handle extremely large gradients as théeemat
piles up in the collapse. Indeed, we have experimented with
various reconstruction algorithms and resolutions anaehdou
that both affect slightly the rate and the initial time of ttis-
appearance of the fluid. More specifically, more dissipative
schemes resultin an earlier disappearance of the mattiée, wh
higher resolutions can delay it. However, neither improve-
ment prevents the disappearance of the matter from the grid.

In order to establish whether this behavior is instead due
to an excessive stretching of the spatial coordinates géster
by the Gamma-driver shift condition, we have performed the
same simulations using either a shift gauge speed= o2,
or simply setting3’ = 0. We recall that this is possible since
the “1+log” lapse condition is a pure slicing condition, batt
the foliation is unaffected by a change of radial gauge (see f
example [[10, 34]).

The results of these tests are shown in the bottom panel
of Fig.[d, where we report with the evolution of the total
rest-mass (dashed red lines) and of the normalized irrbiuci
mass (solid blue lines) whems = o2. Clearly, while the
behavior of the irreducible mass is independent of the &oic
for uug, that of the rest-mass is not. When using the= o2
radial gauge, in fact, the matter remains on the numeriég) gr
so that the rest-mass is conserved well beyond the formation
of the apparent horizon. The cause of this difference must
therefore to be attributed to the large stretching of theiapa
coordinates withus = 1. Specifically, we identify two ef-
fects. Firstly matter falls inside the innermost grid paast
the inner boundary is effectively an outflow boundary for the
matter; M, starts to drop to the atmosphere value approxi-
mately10 M before the stellar surface passes through the in-
nermost gridpoint. At this time, the areal radius of the in-
nermost gridpoint grows rapidly to approximatély M (see
also Fig.[6 later). Secondly the effective resolution inaare
radius near the time of the stellar surface passing through t
innermost gridpoint is approximately an order of magnitude
lower than in the initial data. The stretching is thus soéarg
that the matter “percolates” through the grid as the numeri-
cal methods are not able to reproduce its steep gradients. As
a result, the spacetime “empties” itself and this explalres t
very good match with the trumpet solution reported in Elg. 3.

As discussed above, the numerical evidence obtained wheDonversely, whems = «?, the radial gauge does not distort

using the Gamma-driver shift condition witly = 1 is that

the grid significantly, allowing for an excellent conseigat

the matter inside the apparent horizon is progressively-“di of the rest-mass on the grid. Note that the latter is not the re
sipated” (see alsd [15] where this was first discussed). Thisult of the rather high spatial resolution, but it is simphet

behavior is clearly displayed in the upper panel of Elg. 5, inresult of the coordinate time “freezing” induced by the col-
which the total rest mass normalized to the initial value islapsed lapse function. Of course, because the spacetimeg is n

plotted in time (dashed red line). Note that at abtut/ af-

able to remove its matter content, the match with the trumpet



solution is in this case much worse atdv/a ~ 10~ for 100 T T T T T T T T TTTT1]]
KMz 021 | ool 15 [ RO [ [30] [ [/ [
Not surprisingly, much of what we discussed so far for C T
s = o applies also when consideritj = 0. However, 80 HIINEEEEENEREERENE
the same dynamics that leadga= 0 shift condition to fail HIIEENENENNRRRREEN
in a curved spacetime, is responsible for the late-timefail 70 | IINNEEENENENRENEE
of the simulations havings = o as gauge speed. As a re- ( ‘\ J{ f }f / /‘ /I / / / / / / / / / / /
sult, a Gamma-driver shift condition withis = 1 appears to GO(V\LZ I, /
be the most robust choice for all those situations in which a s { P/ 7L
compact fluid object may collapse to a black hole. s 50 \UI TN
Finally we show in FigsJ6 and 7 the spacetime diagrams 4oV T TN
as built from the numerical data. The axes in [Eg. 6 refer to llta LN
the time and spatial coordinates used respectively in the si 30 M\\H\ | \ 1] ‘J [T
ulations with ps = 1 (upper panel) andus = o? (bot- |
tom panel). The shaded green area corresponds to the region 20
of the spacetime covered by matter, vertical lines are line o 10
constant Schwarzschild radius while horizontal lines ares|
of constant coordinate time. The thick red line emerging af- 0 ‘ ‘ ‘ LT
tert ~ 50 M is the apparent horizon. Fif] 6 can be com- 0 1 2 3 4
pared with other numerically-generated diagrams of ceHlap M
ing spacetimes obtained either in other gauge's [35], or with 100y i
excision technique$ [29], or for puncture evolutions ofyn gollio Ajg 29 [/ Bld | ] 4o |]
black holes[[11]. The figure clearly shows how the matter is I
“squeezed” from the numerical grid whers = 1, while it 80 LT
remains on the grid wheps = o2. In both cases an appar- /;// // / // / ////// L
ent horizon is found. The comparison of the lines of constant 70 1/ / /
Schwarzschild radius in the two panels highlights the stret Y/
ing of the spatial coordinate discussed before. 60
Figure[T displays the causal spacetime diagram of the col- s solllll (/777540
lapse. Similarly to Fig.J6 the thick red line denotes the appa = WL 7/ N [[]]]
ent horizon, the thick green line the surface of the collagsi 40 \\\\\\\\\ H < {( / / / / / /7\’/\/ {/ / / / / J/ /f
star and the shaded area shows the region filled by the matter. I TN T
The coordinaté X, T') are constructed so that the light speeds 30 \ [ 1]
have magnitude one, with light cones openingtatdegree
in the diagram. The method employed for the construction 20
is discussed in AppendIx]A. Because easier to use, the data 10
employed to construct the diagram refers to a 1D simulation
with us = o2, but in principle we expect that a very similar 0 [l 1NREN| LT
diagram would be produced witls = 1. At early times the 0 1 Zr,M 3 4

causal spacetime diagram clearly shows the extremely high
speed of the stellar surface and the causal separationdxetwe., . Spacetime diagram of the collapsing star. Data aven fr

the points initially belonging to the exterior and thoset#@ 1 gimylations with gauge speeds — 1 (top panel) andus —
causally connected to the collapse (see the gauge-wave prop2 (nottom panel). The horizontal blue lines are lines of canist
agating at the speed of light). At late times it is evident tha coordinate time. The thick red line denotes the apparerizéror
the collapse of the lapse prevents the slices from evolang f  The vertical blue lines are lines of constant Schwarzsdhittius R
ward into the singularity; furthermore the inset demorea which values are on top of the lines. The shaded green aremibdu
that there is always some numerical data inside the horizon. by the thick green lines shows the region of the matter.

IV. CONCLUSION

within the precision of our calculations. (ii) The appatgnt
By comparing the numerical evolution of a single puncturebizarre agreement, which is not possible at the continuum
with that of a collapsing star when using the same puncturéevel, is caused primarily by the Gamma-driver shift condi-
gauges, we have shown numerically that the two spacetimé#®n, which stretches the numerical spatial grid. The nnatte
tend to the same trumpet solution at late times, a posgibilitis rapidly forced inside the innermost grid point, prevegti
already conjectured in[15]. Letus explicitly addressthest it from being resolved and effectively removing it from the
tions raised in the introduction: (i) In the domain covergd b spatial slice. Thus in the domain covered by the numerical
the numerical coordinates, at late times, the spacetimegag coordinates the spacetimes agree, solving the apparent con



901 are given by
80 cy =—f"+ e (A2)
v Vrr
70¢ Ingoing and outgoing null coordinatés, v) satisfy the equa-
tions of motion
60-
Oyu = —c4.0pu, O = —c_0v, (A3)
_ 50 I in coordinates(t,r, 6, ¢). Assuming that near the outer
406 54 I boundaryr, space is almost flat, we arrive at the boundary
I condition
52 -
30 = I v(t,re) = 2t — u. (A4)
50 -
20¢ - We introduce the scalar fields
8 | 1 1
10; 14 16 18 20 22 | X=gw-u), T=g(utv) (AS)
» L
% 10 20 30 40 50 60 70 8o 9o  Theysatisfythe equations of motion
X
. « ) «
X =06"0, X + —0, T, o071 =p"0.T+ orX.
FIG. 7: Causal spacetime diagram of the collapsing stara et Ve Trr
from 1D simulations with gauge speed: = o2. The coordinate (AB)

axes are constructed so that the light speeds have magrinele .
The horizontal blue lines are lines of constant coordinaet The ~ and are naturally adjusted to the causal structure of theespa

thick red line denotes the apparent horizon. The shadedgrem  time. In terms of(T', X, 0, ¢) the spherical line-element be-
bounded by the thick green lines shows the region of the matte comes

ds? = 4 (—dT2 + dX2) + pdQ2, (A7)

tradiction. (|||) Since the matter is lost inside the innesh Wher‘erl/}‘l is a conformal factor determined by
gridpoint, at late times, on the numerical grid the evolui®
simply that of the vacuum Schwarzschild solution. - Yrr . (A8)
We also note that if the matter in the slice is sufficiently (0,X)% — (0,T)?
compact and in the vacuum region and one has a Killing slic- ] ] ) ]
ing which is compatible with the “1+log” gauge, then in the To construct spacetime diagrams we simply evolve the fields
vacuum region the slice must agree with the original “1+log” (4, v). AS initial data we choose = —r andv = r. There

trumpet [36]. Our analysis also demonstrates that, whilst t are potential problems associated with the breakdown of the
puncture gauges withs = 1 results in robust numerical evo- coordinate chart, but we will not concern ourselves wittstho

lutions in a collapse scenario, by construction the resgilti 1SSues here. From our computations we observed however that
coordinates are not appropriate for a detailed study of yre d the method requires further developmenty,a treatment of

namics of the matter near the singularity. the fields at the horizon) to construct spacetime diagrams fo
every numerically generated spacetime (cf. Sec. lll [11

In particular we found the construction of causal spacetime

Appendix A: The construction of spacetime diagrams diagrams withus = 1 troublesome, perhaps because more

sophisticated boundary conditions are required.

In this appendix we describe our approach to the construc-
tion of spacetime diagrams in spherical symmetry. The ap-
proach is based on that of_[37]. The most general spherical

line element can be written as Acknowledgments
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