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Despite their diversity, many of the most prominent candidate theories of quantum gravity share
the property to be effectively lower-dimensional at small scales. In particular, dimension two plays a
fundamental role in the finiteness of these models of Nature. Thus motivated, we entertain the idea that
spacetime is a multifractal with integer dimension 4 at large scales, while it is two-dimensional in the
ultraviolet. Consequences for particle physics, gravity and cosmology are discussed.
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In 1884, Edwin A. Abbott published his satirical novella Flat-
land: A Romance of many dimensions, where a Square living in the
(2 + 1)-dimensional Flatland envisions different geometries. While
it is easy for it to imagine worlds of lower dimensions such as
Pointland and Lineland, it takes the intervention of a Sphere to
have the Square realize the possibility of Spaceland (our world)
and even more fantastic cosmos which even the Sphere cannot
fathom.

This book has been entertaining generations of teachers, math-
ematicians and physicists, keeping vivid in the public imagination
the possibility that the universe, after all, might be more than a
matter of spheres. In fact, the notion of higher dimensions has
been considered most seriously by the scientific community, from
Kaluza–Klein to brane-world scenarios. The latter can be motivated
by perturbative string theory, where the number of spacetime di-
mensions is higher than four. The brane-world has been a popular
playground where issues such as the hierarchy problem have found
fresh insight [1].

On the other side of the story, models in lower dimensions are
extremely helpful in addressing a number of physical and technical
problems which are harder to tackle in 4D . However, the dimen-
sionality of spacetime is a fixed ingredient, so while in the case
of brane and string scenarios the unobserved extra dimensions
are explained via compactification or other mechanisms, lower-
dimensional theories are typically regarded as toy, albeit very in-
teresting, models of reality.

Nevertheless, there is another meaning in which a model can
be “lower-dimensional”. Independent theories such as causal dy-
namical triangulations, asymptotically safe gravity, spin-foam mod-
els, and Hořava–Lifshitz gravity all exhibit a running of the spectral
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dimension dS of spacetime such that at short scales dS ∼ 2 [2].
This number is no chance and plays an important role in quantum
gravity, not only in reference to the richness of worldsheet string
theory, but also because gravity as a perturbative field theory is
renormalizable near two dimensions [3].

Is it possible to construct a field theory of matter and grav-
ity which is effectively two-dimensional at small spacetime scales
and four-dimensional in the infrared? Here we wish to argue for
a positive answer, whose details can be found in [4]. In homage
to Abbott’s novella, one would have liked to call the short-scale
world a Lineland, but this would have been misleading. Nowadays
we know that there exist geometric objects which are not curves
or sheets or solids even if they have integer dimension. Fractals
have required a revision and extension of the concept of “dimen-
sion”, the Hausdorff definition being just one example. In many
cases, often presented in rich pictorials, fractals have noninteger
dimensions, but there exist instances where a dust or a curve can
fill the ambient space enough to achieve integer dimensionality
[5]. Multifractals are objects with scale-dependent Hausdorff di-
mension.

The problem now is to encode in the structure of spacetime
the dimensional flow typical of multifractals. This can be done by
promoting the Lebesgue measure in the integral defining any field
theory action to a generic Lebesgue–Stieltjes measure:

dD x → d�(x), [�] = −Dα �= −D, (1)

where � is a (possibly very irregular) distribution, square brack-
ets denote the engineering dimension in momentum units, and
0 < α < 1 is a parameter which is related with the operational
definition of the Hausdorff dimension dH as follows. In fact, the
latter determines the scaling of an Euclidean volume (or mass dis-
tribution) of characteristic size R , V (R) ∼ RdH . Taking � ∼ d(rDα),
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V (R) ∼
∫

D-ball

d�Eucl(x) ∼
R∫

0

dr rDα−1 ∼ R Dα, (2)

thus showing that

α = dH

D
. (3)

Consider a Lorentz-covariant Lagrangian density L; this can be
the total Lagrangian of gravity and matter on a manifold M̃ en-
dowed with metric gμν , where μ = 0,1, . . . , D − 1 and D is the
topological (positive integer) dimension of M̃. To make the uni-
verse a multifractal M, we replace the standard measure in the
action with a nontrivial Stieltjes measure:

S =
∫

M

d�(x)
√−gL. (4)

We assume M has no boundary; the case with boundary should
share most of the same qualitative features. If � is absolutely con-
tinuous, it can be written as d�(x) = v(x)dD x, where v is a Lorentz
scalar. We can choose

v(X) = X D(α−1) + M D(1−α), (5)

where M is a constant mass and X = t or X = |x| depending on
whether we want to define a “timelike” or “spacelike” multifrac-
tal. The metric gμν and the scalar v are independent degrees of
freedom which constitute the composite geometric structure (met-
ric and fractal) of M. A fractal must shortly evolve to a smooth
configuration. We expect M to be about the Planck mass, although
the lower bound from particle physics actually seems to be much
lower, M > 300–400 GeV [6].

Eq. (5) is inspired by results in classical mechanics, according
to which integrals on fractals can be approximated by Weyl or
fractional integrals which, in turn, are particular Lebesgue–Stieltjes
integrals. The order of the fractional integral Dα has a natural
interpretation in terms of the Hausdorff dimension of M [7]. Frac-
tional integrals find applications in a range of disciplines, from
statistics to finance to engineering. In one dimension, different
values of α mediate between full-memory (α = 1) and Markov
processes (α = 0), where α corresponds to the fraction of states
preserved at a given time. Loosely speaking, in our case it is the
“fraction of spacetime dimensionality” felt by an observer living
in M, which is equally divided among the D directions for the
isotropic weight (5).

The Lorentz scalar v may contribute a kinetic term if inter-
preted as part of the field dynamics, otherwise it is excluded from
the calculus of variations. We must stress that Eq. (5) is a very spe-
cial case of Stieltjes measure and it is quite possible that realistic
models with fractal behavior do not admit an absolutely continu-
ous measure. In that case, it is not yet clear how to work out the
details of the theory.

Otherwise, properties of the class of models satisfying Eq. (5)
are well illustrated by a scalar field theory [4]. The engineering di-
mension of the scalar field is zero when α has the critical value
α = α∗ ≡ 2/D . The dimension of spacetime is well constrained to
be 4 from particle physics to cosmological scales and starting at
least from the last scattering era. Therefore, D = 4 for phenomeno-
logical reasons. The properties of the field causal propagator in
configuration space depend on the value of α. By making use of
momentum–space results, one can see that the superficial degree
of divergence of the Feynman-like diagrams of the theory is lower
than in 4D . This is promising but not sufficient to demonstrate
the effectiveness and viability of a renormalization group flow. At
any rate, at the classical level the system does flow from a lower-
dimensional configuration to a smooth D-dimensional one. This is
clear from the definition (5) of the measure weight and its scaling
properties when α < 1, as already discussed. Therefore, at least the
phenomenological valence of the model is guaranteed.

If M ∼ mPl, it is likely that UV effects be important only during
the very early universe. This is suggested also by a minisuperspace
analysis of the model [4], indicating that UV cosmological solu-
tions with zero intrinsic curvature do not exist unless one allows
for exotic matter fields (or condensates) violating the null energy
condition. On the other hand, at late times an imprint of the non-
trivial short-scale geometry might survive as a running cosmolog-
ical constant. The latter appears as a source term in the Noether
conservation law for the Hamiltonian H : in Minkowski, the energy
of the system is

E (t) = H(t) + Λ(t) = H(t) +
t∫

dt

∫
dx v̇ L. (6)

In general, the physical D-momentum dissipates, which might con-
stitute a unitarity problem at the quantum level. In nonrelativistic
fractal models this is a direct result of the nonautonomous charac-
ter of the action; translation invariance is broken explicitly. In our
relativistic scenario, v is a scalar with implicit coordinate depen-
dence, a geometric factor defined for a Dα-dimensional physical
world which enters the definition of Poisson brackets. This is a key
difference with respect to scalar-tensor theories and results in a
deformation of the Poincaré algebra. In this precise sense, also rela-
tivistic fractals break translation invariance.

However, the system also admits a conservative interpretation.
One can also regard v as an independent “dilaton-like” field rescal-
ing the total Lagrangian density in the D-dimensional ambient
spacetime. In that case, one can define the Poisson brackets as
usual (no Stieltjes measure within) and show that Poincaré in-
variance is preserved. Dissipation occurs relatively between parts
of a conservative system. Quantization would follow through, al-
though an UV observer would experience an effective probability
flow through his world-fractal.

We have just said that translation invariance is not broken ex-
plicitly in relativistic fractal field theory. For instance, the use of a
nontrivial measure weight might lead to the idea that translation
invariance be violated by the expression for the propagator. This is
not the case, as we show here in more detail than in [4]. Consider
a free scalar field with action

S0 = −1

2

∫
d�(x)φ(x) f (�)φ(x), (7)

where we keep the kinetic operator f (�) general. The free
Lorentzian partition function Z0 in the presence of a local source J
is

Z0[ J ] ≡
∫

[Dφ] ei[S0+∫
d�(x) J (x)φ(x)] ≡

∫
[Dφ] eiS J . (8)

Using the definition of the D-dimensional Dirac distribution with
nontrivial measure

δ�(k) = 1

(2π)D

∫
d�(x) e−ik·x (9)

and the Fourier–Stieltjes transform of the field φ(x) = (2π)−D ×∫
d�(k) φ̃(k)eik·x , we obtain

S J = 1

2

∫
d�(x)

∫
d�(k1)

(2π)D

∫
d�(k2)

(2π)D
ei(k1+k2)·x

× [−φ̃(k1) f
(−k2

2

)
φ̃(k2) + J̃ (k1)φ̃(k2) + J̃ (k2)φ̃(k1)

]
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= 1

2

∫
d�(−k)

(2π)D

[−φ̃(−k) f
(−k2)φ̃(k) + J̃ (−k)φ̃(k)

+ J̃ (k)φ̃(−k)
]

= 1

2

∫
d�(−k)

(2π)D

[
−ϕ̃(−k) f

(−k2)ϕ̃(k) + J̃ (−k) J̃ (k)

f (−k2)

]
, (10)

where

ϕ̃(k) ≡ φ̃(k) − J̃ (k)

f (−k2)
. (11)

Modulo the measure, we have followed exactly the same steps as
in ordinary quantum field theory. Eq. (8) becomes

Z0[ J ] =
{∫

[Dϕ]exp

[
− i

2

∫
d�(−k)

(2π)D
ϕ̃(−k) f

(−k2)ϕ̃(k)

]}

× exp

[
i

2

∫
d�(−k)

(2π)D

J̃ (−k) J̃ (k)

f (−k2)

]

= Z0[0]exp

[
i

2

∫
d�(−k)

(2π)D

J̃ (−k) J̃ (k)

f (−k2)

]
. (12)

The exponent can be written as
∫

d�(−k)

(2π)D

J̃ (−k) J̃ (k)

f (−k2)
=

∫
d�(−k)

(2π)D

∫
d�(x)

×
∫

d�(y) eik·(x−y) J (x) J(y)

f (−k2)
, (13)

so that, if �(−k) = �(k), the free partition function reads

Z0[ J ] = Z0[0]exp

[
i

2

∫
d�(x)

∫
d�(y) J(x)G(x − y) J (y)

]
, (14)

where
G(x − y) = 1

(2π)D

∫
d�(k)

eik·(x−y)

f (−k2)
. (15)

Therefore, we have recovered the usual definition of the propagator
as the solution of the Green equation

f (�)G(x − y) = δ�(x − y). (16)

Other details and other features of the scalar field on an ef-
fective (multi)fractal spacetime can be found in [4]. These proper-
ties are shared also by the gravitational sector when the latter is
switched on. There, one can see that the bare Newton’s constant
is dimensionless for α = α∗ , thus suggesting renormalizability [4].
Physical implications of the UV propagator, renormalization, and
the hierarchy problem will require further attention.
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