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We present results from a new code for binary black hole evolutions using the moving-puncture

approach, implementing finite differences in generalized coordinates, and allowing the spacetime to be

covered with multiple communicating nonsingular coordinate patches. Here we consider a regular

Cartesian near-zone, with adapted spherical grids covering the wave zone. The efficiencies resulting

from the use of adapted coordinates allow us to maintain sufficient grid resolution to an artificial outer

boundary location which is causally disconnected from the measurement. For the well-studied test case of

the inspiral of an equal-mass nonspinning binary (evolved for more than 8 orbits before merger), we

determine the phase and amplitude to numerical accuracies better than 0.010% and 0.090% during

inspiral, respectively, and 0.003% and 0.153% during merger. The waveforms, including the resolved

higher harmonics, are convergent and can be consistently extrapolated to r ! 1 throughout the

simulation, including the merger and ringdown. Ringdown frequencies for these modes (to ð‘;mÞ ¼
ð6; 6Þ) match perturbative calculations to within 0.01%, providing a strong confirmation that the remnant

settles to a Kerr black hole with irreducible mass Mirr ¼ 0:884355� 20� 10�6 and spin Sf=M
2
f ¼

0:686923� 10� 10�6.
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I. INTRODUCTION

The numerical solution of Einstein’s equations has made
great progress in recent years. Orbits and mergers of binary
systems of black holes and neutron stars are now routinely
published by a number of research groups, using indepen-
dent codes and methodologies [1–4]. A number of impor-
tant astrophysical phenomena associated with binary black
hole mergers have been studied in some detail. In particu-
lar, the recoil of the merger remnant has been studied for a
number of different initial data models [5–12], and its final
mass and spin has been mapped out for fairly generic
merger models involving spinning and unequal mass black
holes [13–18]. Since these quantities are determined by
the last few quasicircular orbits before merger, they can be
calculated to good approximation with fairly short evolu-
tions, and with minimal influence of an artificial outer
boundary.

Of particular topical relevance, however, is the construc-
tion of long waveforms which can be used for gravitational
wave analysis of the binary [19], and also to construct a
family of templates [20–23], to inform and improve gravi-
tational wave detection algorithms. Here the requirements
are particularly challenging for numerical simulations,
requiring waveforms which are accurate in phase and
amplitude over multiple cycles to allow for an unambig-
uous matching to post-Newtonian waveforms at large sepa-
ration. Some recent studies have shown very promising
results in this direction for particular binary black hole
models [24–32]. However, they have also highlighted the
problems associated with producing long waveforms of
sufficient accuracy.

First of all, for binaries with a larger separation, system-
atic errors associated with gravitational waveform extrac-
tion at a finite radius become more pronounced. Typically a
number of extraction radii are used, and the results ex-
trapolated to infinite radius (assuming such a consistent
extrapolation exists given potential issues of gauge). In
order to have some confidence in the results, the outermost
‘‘extraction sphere’’ needs to be at a large radius, say on the
order of 150–200M (where M is the mass of the system
and sets the fiducial length scale). Even at this radius, the
amplitude of the extrapolated waveform differs signifi-
cantly from the measured waveform. Unfortunately, ex-
tracting at larger radii comes at a computational expense.
One of the standard methods in use today is finite differ-
encing in conjunction with ‘‘mesh refinement’’, in which
the numerical resolution is chosen based on the length
scale of the problem. A minimum number of discrete
data points are required to resolve a feature of a given
size accurately, which sets a limit on the minimum reso-
lution which should be applied in a region. Thus, even with
mesh refinement there is a limit on the coarseness of the
grid which can be allowed in the wave zone. For a
Cartesian grid, the number of computational points scales
as r3, so that requiring a sufficient resolution to 200M
already comes at significant expense, and increasing this
distance further becomes impractical.
An additional difficulty arises from the requirement

that the outer boundary have minimal influence on the
interior evolution, since it is (in all current binary black
hole codes) an artificial boundary. This places an additional
requirement on the size of the computational grids, so that
even outside the wave zone region where the physics is
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accurately resolved, it is conventional to place several
even coarser grids. This is done with the knowledge that
the physical variables cannot be resolved in these regions,
but the grids are helpful as a numerical buffer between
the outer boundary and interior domain. Again, adding
these outer zones comes at a computational expense. The
boundaries with under-resolved regions also lead to un-
physical reflections which can contaminate the solution.
The problem of increasing the grid size can be significantly
reduced if, rather than a Cartesian coordinate system, one
uses a discretization which has a radial coordinate. Then,
for a fixed angular resolution, the number of points on the
discrete grid increases simply as a linear function of r,
rather than the r3 of the Cartesian case. This has two
advantages. The gravitational wave zone has spherical
topology and therefore, a numerical approximation would
be most efficiently represented by employing a spherical
grid. A further computational motivation comes from
the fact that nonsynchronous mesh refinement (such as
the Berger-Oliger algorithm) can greatly complicate the
parallelization of an evolution scheme, and thus having
many levels of refinement clearly has an impact on the
efficiency of large scale simulations. This will become
particularly relevant for the coming generations of petas-
cale machines which strongly emphasize parallel execu-
tion (possibly over several thousand cores) over single
processor performance.

The use of spherical-polar coordinates has largely been
avoided in 3-dimensional general relativity due to potential
problems associated with the coordinate singularity at
the poles. Additionally, even if regularization were simple,
the inhomogeneous areal distribution of latitude-longitude
grid points over the sphere make spherical-polar coordi-
nates suboptimal. A number of alternative coordinate sys-
tems have been proposed and implemented for studies of
black holes in 3D. The Pittsburgh null code avoids the
problem of regularizations at the poles by implementing a
2D stereographic patch system [33]. Cornell/Caltech have
developed a multipatch system which has been used for
long binary black hole evolutions [4,34].1 This code, using
spectral spatial differentiation, uses an intricate patch
layout in order to reduce the overall discretization error.
The boundary treatment between patches is based on the
transfer of characteristic variables. A similar approach was
implemented by the LSU group, for the case of finite
differences with penalty boundary conditions [38], and
used to successfully evolve single perturbed black holes
with a fixed background [39] and have recently been
attempted for binary black hole systems [40].

In this paper we describe a binary black hole evolution
code based on adapted radial coordinates in the wave
zone, for generic evolution systems. In particular, we

demonstrate stable and accurate binary black hole evolu-
tions using BSSNOK in conjunction with this coordinate
system. The grids in the wave zone follow a prescription
which was first used by Thornburg [41], in which six
regular patches cover the sphere, and data at the boundaries
of the patches are filled by interpolation. Such a patch
system has also been successfully applied to characteristic
evolutions [42,43]. In this work, the six patch wave zone is
coupled to an interior Cartesian code, which covers the
domain in which the bodies move, and optionally allows
for mesh refinement around each of the individual bodies.
The resulting code has the advantage of making use of
established techniques for moving-puncture evolutions on
Cartesian grids, while having excellent efficiency (and
consequently accuracy) in the wave zone due to the use
of adapted radially oriented grids.
In the following sections we detail the coordinate

structures which we use. We then describe our Einstein
evolution code, which is largely based on conventional
techniques common to Cartesian puncture evolutions.
Finally we perform evolutions of a binary black hole
system in order to validate the code against known results,
as well as demonstrate the ability to extract accurate
waves at a large radius with comparatively low computa-
tional cost.

II. SPACETIME DISCRETIZATION

This section describes the implementation of a generic
code infrastructure for evolving spacetimes which are
covered by multiple overlapping grid patches. A key fea-
ture of our approach is its flexibility. It is not restricted to
any particular formulation of the Einstein equations; the
mechanism for passing data between patches (interpola-
tion) is also formulation independent (though character-
istic [44] or penalty-patch boundaries [40,45,46] are also
an option); the size, placement and local coordinates of
individual patches are completely adaptable, provided that
there is sufficient overlap between neighbors to transfer
boundary data. Further, each patch is a locally Cartesian
grid with the ability to perform mesh refinement to better
resolve localized steep gradients, if necessary. The particu-
lar application demonstrated in this paper is to provide a
more efficient covering of the wave zone of an isolated
binary black hole inspiral.
At the same time, we would like to take advantage of the

fact that black hole evolutions via the ‘‘moving-puncture’’
approach are well established as a simple and effective
method for stably evolving black hole spacetimes [2,3]. By
this method, gauge conditions are applied to prevent the
spacetime from reaching the curvature singularity, so that
an artificial boundary is not required within the horizons
[47]. The usual approach is to discretize using Cartesian
grids which cover the black holes with an appropriate
resolution, without special treatment or boundary condi-
tions for the black hole interiors, relying rather on the

1Multidomain spectral methods have previously been applied
to the problem of generating initial data for binaries in [35–37].
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causal structure of the evolution system to prevent error
modes from emerging [48]. The Cartesian grids are ex-
tended to cover the wave zone (at reduced resolution for
the sake of efficiency), extending to a cubical grid outer
boundary where an artificial condition is applied.

A principal difficulty faced by this method is that the
discretization is not well suited to model radial waves at
large radii. In order to resolve the wave profile, a certain
minimum radial resolution is required and must be main-
tained as the wave propagates to large radii. The angular
resolution, however, can remain fixed—if a wave is re-
solved at a certain angular resolution as small radii, then
it is unlikely to develop significant angular features as it
propagates to large distances from the isolated source.
Cartesian grids with fixed spacing, however, resolve
spheres with an angular resolution which scales according
to r2. Thus, to maintain a given required radial resolution,
the angular directions become extremely over-resolved at
large radii, and this comes at a large computational cost.
Namely, for a Cartesian grid to extend in size or increase it
has resolution by a factor n, the cost in memory and
number of computations per time step increase by n3,
while for a radial grid with fixed angular resolution, the
increase is linear, n.2

For the near-zone, in the neighborhood of the orbits of
the individual bodies, the geometrical situation is not as
straightforward, since there is no clearly defined radial
propagation direction between the bodies. If the local
geometry is reasonably well known (for instance, the lo-
cation of horizon surfaces), adapted coordinates can also
be considered in this regime. The technical requirements of
such coordinate systems can, however, be high. Since the
bodies are moving, the grids must move with them, or
dynamical gauges chosen such that the bodies remain in
place relative to the numerical coordinates. Potential prob-
lems arise from the coordinate singularity if the grids are
extended to r ¼ 0, as is the case with the standard puncture
approach. Thus, in the near-zone, Cartesian coordinates
can provide significant simplification to the overall infra-
structure requirements, while the previously mentioned
drawbacks of Cartesian coordinates are less prevalent, as
it is useful to have homogeneous resolution in each direc-
tion in situations where there is no obvious symmetry.

The evolution code which we have constructed for the
purpose of modeling waveforms from an isolated system is
based on a hybrid approach, involving a Cartesian mesh-
refined region covering the near-zone in which the bodies
orbit, and a set of adapted radial grids which efficiently
cover the wave zone. The overall structure is illustrated in
Fig. 1 (top), which shows an equatorial slice of the nu-
merical grid. Computations on each local patch are carried

out in a globally Cartesian coordinate system. In the par-
ticular implementation considered here, the grids overlap
by some distance so that data at the boundaries between
each local coordinate patch can be communicated by in-
terpolation from neighboring patches. The resulting code
is both efficient, but also simple in structure and able to
take advantage of well established methods for evolving
moving-puncture black holes. If suitable interpolation
methods are used, then such a system can also be used
for solutions with discontinuities and shocks as are present
in hydrodynamics.
The code has been implemented within the CACTUS

framework [49,50] via extensions to the CARPET driver

FIG. 1 (color online). A schematic view of the z ¼ 0 slice of
the grid setup that is used. The upper plot shows the central
Cartesian grid surrounded by six ‘‘inflated-cube’’ patches (the
four equatorial patches are shown, shaded). The boundaries of
the nominal grids owned by each patch are indicated by thick
lines. The lower plot shows an r ¼ constant surface of the
exterior patches, indicating their local coordinate lines.

2Note that the Courant limit introduces an additional factor of
n in each case due to the requirement of a reduced time step with
increasing resolution.
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[51–53], which handles parallelization via domain decom-
position of grids over processors, as well as providing the
required interpolation operators for boundary communica-
tion and analysis tools.

A. Coordinate systems

The configuration displayed in Fig. 1 consists of seven
local coordinate patches: an interior Cartesian grid, and six
outer patches corresponding to the faces of the interior
cube. Each patch consists of a uniformly spaced (in local
coordinates) grid which can be refined (though in practice
we will only use this feature for the interior grid). The outer
patches have a local coordinate system ð�;�; RÞ corre-
sponding to the ‘‘inflated-cube’’ coordinates which have
previously been used in relativity for single black hole
evolutions [41], and are displayed in the lower plot of
Fig. 1. The local angular coordinates ð�;�Þ range over
ð��=4;þ�=4Þ � ð��=4;þ�=4Þ and can be related to
global angular coordinates ð�; �;�Þ which are given by

� � rotation angle about the x-axis ¼ arctanðy=zÞ; (1a)

� � rotation angle about the y-axis ¼ arctanðx=zÞ; (1b)

� � rotation angle about the z-axis ¼ arctanðy=xÞ: (1c)

For example, on the þz patch, the mapping between
the local ð�;�; RÞ and Cartesian ðx; y; zÞ coordinates is
given by

� � � ¼ arctanðx=zÞ; (2a)

� � � ¼ arctanðy=zÞ; (2b)

R ¼ fðrÞ; (2c)

with appropriate rotations for each of the other cube

faces, and where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

. As emphasized by
Thornburg [41], in addition to avoiding pathologies asso-
ciated with the axis of standard spherical-polar coordi-
nates, this choice of local coordinates has a number
of advantages. In particular, the angular coordinates on
neighboring patches align so that interpolation is only
1-dimensional, in a line parallel to the face of the patch.
This potentially improves the efficiency of the interpola-
tion operation as well as the accuracy. The coordinates also
cover the sphere more uniformly than, say, a stereographic
2-patch system.

The local radial coordinate, R, is determined as a func-
tion of the global coordinate radius, r. We can use this
degree of coordinate freedom to increase the physical
(global) extent of the wave zone grids, at the cost of
some spatial resolution. In practice, we use a function of
the form

fðrÞ ¼ Aðr� r0Þ þ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðr� r0Þ2=�
q

; (3a)

with

R ¼ fðrÞ � fð0Þ (3b)

in order to transition between two almost constant resolu-
tions (determined by the parameters A and B) over a region
whose width is determined by �, centered at r0.
The effect of the radial transformation is illustrated in

Fig. 2. The coordinate R is a nearly constant rescaling of r
at small and large radii. The change in the scale factor is
largely confined to a transition region. Note that since we
apply the same global derivative operators (described be-
low) to analyze tools that are used for the evolution, it is
possible to do analysis (e.g., measure waveforms, horizon
finding) within regions where the radial coordinate is non-
uniform. The regions of near-constant resolution are, how-
ever, useful in order to make comparisons of measurements
at different radii without the additional complication of
varying numerical error due to the underlying grid spacing.
Data on each patch are evaluated at grid points which are

placed at uniformly spaced points of a Cartesian grid.
Thus, local derivatives can be calculated via standard finite
difference techniques. These are then transformed to a
common underlying Cartesian coordinate system by apply-
ing an appropriate Jacobian which relates the local-to-
global coordinates. That is, the global (Cartesian) coordi-
nates, xi, are related to the local coordinates, ai, by

xi ¼ xiðajÞ; i; j ¼ 0; 1; 2; (4)

and derivatives, @=@ai, of fields are determined using finite
differences in the regularly spaced ai coordinates, which
are then transformed using

@

@xi
¼

�

@aj
@xj

�

@

@aj
; (5a)

@2

@xi@xj
¼

�

@2ak
@xi@xj

�

@2

@a2k
þ

�

@ak
@xi

@al
@xj

�

@2

@ak@al
(5b)

in order to determine their values in the global frame. We
store and evaluate tensor components and their evolution
equations in the common global frame, so that there is no
need to apply transformations when relating data across
patch boundaries. In addition to the obvious simplification
of the interpatch boundary treatment, this has a number of

FIG. 2 (color online). The local radial coordinate, R (solid
line), can be stretched as a function of the global coordinate,
r, in order to increase the effective size of the grid. The function
specified by Eqs. (3) transitions between two almost constant
radial resolutions over a distance � centered at r0.
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other advantages, particularly when it comes to analysis
tools (surface finding, gravitational wave measurements,
visualization) which may reference data on multiple
patches. Since the data is represented in the common
global basis, these tools do not need to know anything
about the local grid structures or coordinates.

B. Interpatch interpolation

Data is communicated between patches by interpolating
onto overlapping points. Each patch, p, is responsible for
determining the numerical solution for a region of the
spacetime. The boundaries of these patches can overlap
neighboring patches, q, (and in fact must do so for the case
of the interpolating boundaries considered here), creating
regions of the spacetime which are covered by multiple
patches. We define three sets of points on a patch. The
nominal regions, N p, contain the points where the nu-

merical solution is to be determined. The nominal regions
of the patches do not overlap,

T

p N p ¼ ;, so that if data

is required at any point in the spacetime, it can be obtained
without ambiguity by referencing the single patch in whose
nominal region it resides. A patch, p, is bounded by a layer
of ghost points, Gp, which overlap the nominal zones of

neighboring patches, q, Gp \S

q N q ¼ Gp, and are filled

by interpolation. (These points are conceptually similar to
the interprocessor ghost zones used by domain decompo-
sition parallelization algorithms in order to divide grids
over processors.) The size of these regions is determined
by the width of the finite difference stencil to be used in
finite differencing the evolution equations on the nominal
grid. Finally, an additional layer of overlap points, Oq,

is required: i) to ensure that the set of stencil points,
Sq � Oq [N q, used to interpolated to the ghost zone

does not itself originate from the ghost zone of the inter-
polating patch, Sq \ Gq ¼ ;, Oq \S

p N p ¼ Oq; and

ii) to compensate for any difference in the grid spacing
between the local coordinates on the two patches. An
illustration of the scheme in 1-dimension the scheme is
provided in Fig. 3.

Note that points in
S

q Oq �
S

p N p are not interpo-

lated, but rather are evolved in the same way as nominal
grid points within

S

p N p. That is, points in these regions

are evolved independently on each grid, and the data are in
principle multivalued. However, since the union set of
nominal points on each patch

S

p N p uniquely and un-

ambiguously covers the entire simulation domain, i.e.,
T

p N p ¼ ;, and since the overlap regions are a subset

of the nominal grid, if data is required at a point within
these overlap zones, there is exactly one patch owing
this point on its nominal grid, and it will be returned
uniquely from this patch. The differences between evolved
field values evaluated in these overlap points converge
away with the finite difference order of the evolution
scheme.
The use of additional overlap points makes this

interpatch interpolation algorithm somewhat simpler
than the one implemented by Thornburg in [41]. That
algorithm required interpatch boundary conditions to be
applied in a specific order to ensure that all interpolation
stencils are evaluated without using undefined grid
points, and requires off-centering interpolation stencils
under certain circumstances, which is not necessary when
overlap points are added. It also relies on the particular
property of the inflated-cube coordinates which ensured
that the ghost zones could be filled using 1-dimensional
interpolation in a direction orthogonal to the boundary.
This property would be nontrivial (and often impossible)
to generalize to match arbitrary patch boundaries, such
as that between the Cartesian and radially oriented grids
of Fig. 1.
Another significant difference between Thornburg’s ap-

proach and the approach presented here is that the former
stores tensor components in the patch-local frame, while
we store them in the global coordinate frame. Evaluating
components in the patch-local frame requires a basis trans-
formation while interpolating. This is further complicated

in the case of nontensorial quantities (such as the ~�i of the
BSSNOK formulation) which have quite complicated basis
transformation rules involving spatial derivatives. Instead,
we store tensor components in the global coordinate frame,
which requires no basis transformation during interpatch
interpolations.
The number of ghost points in Gp can be reduced using

finite difference stencils which become lopsided towards
the boundaries of the patch, and may provide an important
optimization since interpolation between grids can be
expensive, particularly if processor communication is in-
volved. However, this tends to be at the cost of increased
numerical error in the finite difference operations towards
the grid boundaries. We have generally found it preferable
to use centered stencils throughout the nominal, N p,

and overlap Op zones, and have applied certain optimiza-

tions to the interpolation operators as described below.
Another optimization can be achieved by using lower order

FIG. 3. Schematic of interpolating patch boundaries in
1-dimension, assuming 4-point finite difference and interpola-
tion stencils. Points in the nominal zones, N p;q, are indicated

by filled circles, points in ghost zones, Gp;q, by open squares,

and points in overlap zones,Op;q, by closed squares. The vertical

dotted line demarcates the boundary between nominal zones on
each patch. Ghost points on patch p are evaluated by centered
interpolation operations from points in Sq on the overlapping

patch (arrows) and vice versa.
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interpolation so that it is possible to reduce the number of
overlapping points in Op.

The interpolation scheme for evaluating data in ghost
zones is based on Lagrange polynomials using data from
the overlapping patch. In 1-dimension, the Lagrange inter-
polation polynomial can be written as

L x½��ðxÞ ¼ X

N

i

biðxÞ�i; (6a)

where the coefficients are

biðxÞ ¼
Y

k�i

ðx� xkÞ
ðxi � xkÞ : (6b)

In these expressions, x 2 Gp is the coordinate of the

interpolation point and �i 2 Sq � N q [Oq are the val-

ues at grid points in the interpolation molecule surrounding
x. The number of grid points in the interpolation molecule,
N, determines the interpolation order, and interpolation of
n-th order accuracy is given byN ¼ nþ 1 stencil points in
the molecule.

For interpolation in d dimensions, the interpolation
polynomial can be constructed as a tensor product of
1-dimensional Lagrange interpolation polynomials along
coordinate directions, x ¼ ðx1; . . . ; xdÞ:

L ½��ðxÞ ¼ Lx1½��ðx1Þ � . . . �Lxd½��ðxdÞ

¼
�

X

N

i

biðx1Þ�i;

�

� � �
�

X

N

j

cjðxdÞ�j

�

: (7)

Therefore, for d-dimensional interpolation of order n, one
has to determine Nd neighboring stencil points and asso-
ciated interpolation coefficients (Eq. (6b)) for each point
in the ghost zone of a given patch. Most generally,
full 3-dimensional interpolation is required, though, in
particular, case coordinates between two patches can be
constructed such that they align locally so that only
1-dimensional interpolation is needed. This is, for instance,
the case for the overlap region between the inflated-
cube spherical patches used here (see Fig. 1). We have
optimized the current code to automatically take advantage
of this.

In order to interpolate to a point for which the coordi-
nates api given in the basis of patch p are given, we need to
know the patch owning the nominal region containing this
point. For this we first convert api to the global coordinate
basis xi, then determine which q patch owns the corre-
sponding nominal region N q, and then convert xi to the

local coordinate bases with this patch, aqi . By construction,
patch q has sufficient overlap points to evaluate the inter-
polation stencil there:

xi :¼ local-to-globalpðapi Þ; (8a)

q :¼ owning-patchðxiÞ; (8b)

aqi :¼ global-to-localqðxiÞ: (8c)

The three operations ‘‘local-to-global’’, ‘‘owning-patch’’,
and ‘‘global-to-local’’ depend on the patch system and their
local coordinate systems.
We can then find the points of patch q that are closest

to the interpolation point aqi in the local coordinates this
patch. In order to find these points, we exploit the
uniformity of the grid in local coordinates. The grid
indices of the stencil points in a given direction are deter-
mined via

i 2
�

floorðjþ kÞ
�

�

�

�

�

�

�

�

j ¼ x� x0
�x

; k ¼ �n

2
; � � � ; n

2

�

; (9)

where x0 is the origin of the local grid, n is the interpolation
order, and ‘‘floor’’ denotes rounding downwards to the
nearest integer.
There remains to be determined the refinement level

which contains the region surrounding the interpolation
point, as well as the processor that owns this part of the
grid. For this purpose, an efficient tree-search algorithm
has been implemented. In this algorithm, the individual
patches and refinement levels are defined as ‘‘super-
regions’’, i.e., bounding boxes that delineate the global
grid extent before processor decomposition. Each of
these super-regions is recursively split into smaller regions.
The leaves of the resulting tree structure represent
the individual local components of the processor decom-
position. Locating a grid point in this tree structure requires
OðlognÞ operations on n processors, whereas a linear
search (that would be necessary without a tree structure)
would require OðnÞ operations.
While the corresponding tree structure is generic, the

actual algorithm used in CARPET splits the domain into a kd
tree of depth d in d ¼ 3 dimensions. That is, the domain is
first split into k subdomains in the x direction, each of these
subdomains is then independently split into several in the y
direction, and each of these is then split in the z direction.
This leads to cuboid subdomains for each processor, where
the subdomains do not overlap, and where each subdomain
can have a different shape. CARPET balances the load so
that each processor receives approximately the same num-
ber of grid points, while keeping the subdomains’ shapes as
close to a cube as possible.
Our implementation precalculates and stores most of the

above information when the grid structure is set up, saving
a significant amount of time during interpolation. In par-
ticular, the following are stored:
(i) For each ghost-point, the source patch (where the

interpolation is performed), and the local coordinates
on this patch;

(ii) For each ghost-point, the interpolation stencil coef-
ficients (6b);
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(iii) For each processor, the communication schedule
specifying which interpolation points need to be
sent to what other processor.

When the grid structure changes, for example, when a
mesh refinement grid is moved or resized, these quantities
have to be recalculated.

Altogether, the interpatch interpolation therefore con-
sists of applying processor-local interpolation stencils,
sending the results to other processors, receiving results
from other processors, and storing these results in the local
ghost points. These are all operations requiring no lookup
in complex data structures, and which consequently exe-
cute very efficiently on modern hardware.

C. Finite differencing

Spatial derivatives are computed using standard finite
difference stencils, which have currently been imple-
mented up to 8th-order [46]. The stencils are centered,
except for the terms corresponding to an advection by the
shift vector, of the form �i@iu (see Sec. III, below). These
derivatives are calculated using an ‘‘upwind’’ stencil which
is shifted by one point in the direction of the shift, and of
the same order. We find that these upwind stencils provide
a significant increase in the numerical accuracy of the
puncture motion at a given resolution (see Appendix A).
The particular stencils which we use can be generated via a
recursion algorithm, as outlined in [54].

On each patch we allow the local grids to be refined in
order to increase the accuracy of computations in localized
regions. For the application of the evolution of an isolated
binary considered here, we only refine the central Cartesian
grid in the neighborhood of bodies. This is done using
standard 2:1 Berger-Oliger mesh refinement techniques
via the CARPET infrastructure [51–53]. The time step for
the outer patches is taken to be the same as the coarse grid
step of the interior patch, so that no time interpolation is
required at interpatch boundaries.

Time integration is carried out using standard method-
of-lines integrators. We find that for the time resolution we
are using, a 4th-order Runge-Kutta (RK4) method provides
a good compromise between sufficient accuracy and a low
memory footprint. We set the time resolution of the outer
grids according to the time step of the coarsest Cartesian
grid, which is limited by the Courant condition at the
specified spatial resolution. By placing the Cartesian-
spherical boundary at a small radius (and thus extending
to finer Cartesian grids) we attain a high time resolution in
the wave zone, potentially important for determining
higher harmonics.

D. Surface integration and harmonic decomposition

A number of quantities of physical interest are measured
by projecting them onto closed surfaces surrounding the
source. In particular, gravitational wave measurements rely

on computations on constant coordinate spheres S2,
parameterized by local spherical-polar coordinates ð	;�Þ
with constant coordinate radius r. In principle, it would be
possible to construct coordinates on these 2-dimensional
spheres which correspond to the underlying grid coordi-
nates of the evolution, for instance as portrayed in the
lower figure of Fig. 1. In this case, data can be mapped
directly onto the spheres. More generally, however, inter-
polation can be used to obtain data at points on the mea-
surement spheres, according to the procedure outlined in
Sec. II B, above.
For the purpose of analysis, it is often convenient to

decompose the data on S2 in terms of (spin-weighted)
spherical harmonic modes,

A‘m ¼
Z

d�
ffiffiffiffiffiffiffi�g

p
Að�Þs �Y‘mð�Þ; (10)

where g is the determinant of the surface metric and �
angular coordinates. In standard spherical-polar coordi-
nates ð	;�Þ,

ffiffiffiffiffiffiffi�g
p ¼ sin2	: (11)

The integral, Eq. (10), is solved numerically as follows. In
the spherical-polar case, we can take advantage of a highly
accurate Gauss quadrature scheme which is exact for poly-
nomials of order up to N	=2� 1, where N	 is the number
of grid points along the 	-direction. On a staggered grid,
i.e., 	j ¼ ðjþ 1=2Þ�=N	; j ¼ 0; . . . ; N	 � 1, the scheme

can be written as

Z

d�fð�Þ ¼ X

N	

i

X

N�

j

fijwj þOðN	Þ; (12)

whereN	 andN� are the number of angular grid points and

wj are weight functions [55,56],

wj ¼ 2�

N�

4

N	

X

N	=2�1

l¼0

1

2lþ 1
sinð½2lþ 1�	jÞ; N	even:

(13)

In our implementation, the weight functions are precalcu-
lated for fast surface integration.

III. EVOLUTION SYSTEM

We evolve the spacetime using a variant of the
‘‘BSSNOK’’ evolution system [57–60] and a specific set
of gauges [61,62], which have been shown to be effective
at treating the coordinate singularities of Bowen-York
initial data. We examine the well-posedness and character-
istic propagation speeds of our system in [63,64], where we
prove (and also demonstrate numerically) that constraint
violations introduced by this singularity treatment cannot
escape the horizon.
The 4-geometry of a spacelike slice � (with timelike

normal, n
) is determined by its intrinsic 3-metric, �ab and
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extrinsic curvature, Kab, as well as a scalar lapse function,

, and shift vector, �a which determine the coordinate
propagation. The standard BSSNOK system defines modi-
fied variables by performing a conformal transformation
on the 3-metric,

� :¼ 1

12
lndet�ab; ~�ab :¼ e�4��ab; (14)

subject to the constraint

det~�ab ¼ 1; (15)

and by removing the trace of Kab,

K :¼ trKij ¼ gijKij; (16)

~A ij: ¼ e�4�

�

Kij � 1

3
�ijK

�

; (17)

with the constraint

~A :¼ ~�ij ~Aij ¼ 0: (18)

Additionally, three new variables are introduced, defined in
terms of the Christoffel symbols of ~�ab by

~� a :¼ ~�ij~�a
ij: (19)

In principle, the ~�a can be determined from the ~�ab on a
slice, however their introduction is key to establishing a
strongly hyperbolic (and thus stable) evolution system. In
practice, only the constraint Eq. (18) is enforced during
evolution [65], while Eqs. (15) and (19) are simply moni-
tored as indicators of numerical error. Thus, the traditional
BSSNOK prescription evolves the variables

�; ~�ab; K; ~Aab; ~�a; (20)

according to evolution equations which have been written
down a number of times (see [66,67] reviews).

In the context of puncture evolutions, it has been noted
that alternative scalings of the conformal factor may ex-
hibit better numerical behavior in the neighborhood of the
puncture as compared with �. In particular, a variable of
the form

�̂ � :¼ ðdet�abÞ�1=�; (21)

has been suggested [3,68]. In [3], it is noted that certain
singular terms in the evolution equations for Bowen-York

initial data can be corrected using 
 :¼ �̂3. Alternatively,

[68] notes that W :¼ �̂6 has the additional benefit of
ensuring � remains positive, a property which needs to
be explicitly enforced with 
.

In terms of �̂�, the BSSNOK evolution equations
become

@t�̂� ¼ 2

�
�̂�
Kþ�i@i�̂� � 2

�
�̂�@i�

i; (22a)

@t ~�ab ¼�2
 ~Aab þ�i@i ~�ab þ 2~�iða@bÞ�i � 2

3
~�ab@i�

i

(22b)

@tK ¼�DiD
i
þ
ðAijA

ij þ 1

3
K2Þ þ�i@iK; (22c)

@t ~Aab ¼ ð�̂�Þ�=3ð�DaDb
þ
RabÞTF þ�i@i ~Aab

þ 2 ~Aiða@bÞ�i � 2

3
Aab@i�

i; (22d)

@t~�
a ¼ ~�ij@i�j�

a þ 1

3
~�ai@i@j�

j � ~�i@i�
a þ 2

3
~�a@i�

i

� 2 ~Aai@i
þ 2
ð~�a
ij
~Aij � �

2
~Aai @i�̂�

�̂�

� 2

3
~�ai@iKÞ;

(22e)

where Da is the covariant derivative determined by ~�ab,
and ‘‘TF’’ indicates that the trace-free part of the bracketed
term is used.
We have implemented the traditional � form of the

BSSNOK evolution equations, as well as the 
 and W
variants implicit in the evolution system (Eqs. (22)). All
three evolution systems produce stable evolutions of binary
black holes, though the 
 variant requires some special
treatment if, due to numerical error particularly in the

neighborhood of the punctures, �̂3 	 0 [69]. Generally
we find that the advection of the puncture (and thus the
phase accuracy of the simulation) exhibits lower numerical
error when using the 
 and W variants (see Appendix C).
Convergence properties of physical variables (such as
measured gravitational waves, or constraints measured
outside of the horizons), however, are not affected by the
choice of conformal variable.
The Einstein equations are completed by a set of four

constraints which must be satisfied on each spacelike slice:

H � Rð3Þ þ K2 � KijK
ij ¼ 0; (23a)

Ma � DiðKai � �aiKÞ ¼ 0: (23b)

Again, we do not actively enforce these equations, but
rather monitor their magnitude in order to determine
whether our numerical solution is deviating from a solution
to the Einstein equations.
The gauge quantities, 
 and �a, are evolved using the

prescriptions that have been commonly applied to
BSSNOK black hole, and particularly puncture, evolu-
tions. For the lapse, we evolve according to the
‘‘1þ log’’ condition [70],

@t
� �i@i
 ¼ �2
K; (24)

while the shift is evolved using the hyperbolic ‘‘~�-driver’’
equation [61],
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@t�
a � �i@i�

a ¼ 3

4
Ba; (25a)

@tB
a � �j@jB

i ¼ @t~�
a � �i@i~�

a � �Ba; (25b)

where � is a parameter which acts as a (mass dependent)
damping coefficient, and is typically set to values on the
order of unity for the simulations carried out here.
The advective terms in these equations were not present
in the original definitions of [61], where comoving
coordinates were used, but have been added following
the experience of more recent studies using moving
punctures [2,62].

Wave extraction

The Newman-Penrose formalism [71] provides a conve-
nient representation for a number of radiation related
quantities as spin-weighted scalars. In particular, the cur-
vature component

c 4 � �C
���n

 �m�n� �m�; (26)

is defined as a particular component of the Weyl curvature,
C
���, projected onto a given null frame, fl;n;m; �mg.

The identification of the Weyl scalar c 4 with the gravi-
tational radiation content of the spacetime is a result of the
peeling theorem [71–73], which states that in an appropri-
ate frame and for sufficiently smooth and asymptotically
flat initial data near spatial infinity, the c 4 component of
the curvature has the slowest fall-off with radius, Oð1=rÞ.

The most straightforward way of evaluating c 4 in nu-
merical (Cauchy) simulations is to define an orthonormal

basis in the three space ðr̂; �̂; �̂Þ, centered on the Cartesian
grid center and oriented with poles along ẑ. The normal to
the slice defines a timelike vector t̂, from which we con-
struct the null frame

l ¼ 1
ffiffiffi

2
p ðt̂� r̂Þ; n¼ 1

ffiffiffi

2
p ðt̂þ r̂Þ; m¼ 1

ffiffiffi

2
p ð�̂� i�̂Þ:

(27)

Note that in order to make the vectors fl;n;m; �mg null,
ðr̂; �̂; �̂Þ have to be orthonormal relative to the spacetime
metric. In practice, we fix r̂ and then apply a Gram-

Schmidt orthonormalization procedure to determine �̂

and �̂.3 It is then possible to calculate c 4 via a reformu-
lation of (26) in terms of the geometrical variables on the
slice [75] via the electric and magnetic parts of the Weyl
tensor,

c 4 ¼ Cij �m
i �mj; (28)

where

Cij � Eij � iBij ¼ Rij � KKij þ Ki
kKkj � i�i

klrlKjk:

(29)

The remaining Weyl scalars can be similarly obtained
and read as

c 3 ¼ 1
ffiffiffi

2
p Cij �m

iejr; (30a)

c 2 ¼ 1

2
Cije

i
re

j
r; (30b)

c 1 ¼ � 1
ffiffiffi

2
p Cijm

iejr; (30c)

c 0 ¼ Cijm
imj; (30d)

where ðejrÞ � r̂ is the unit radial vector.
In relating c 4 to the gravitational radiation, one is

limited by the fact that the measurements have been taken
at a finite radius from the source. Local coordinate and
frame effects can complicate the interpretation of c 4.
These problems can largely be alleviated by taking
measurements at several radii and performing polynomial
extrapolations to r ! 1. Procedures for doing so have
been studied in [76,77]. In [77] we have shown that if a
sufficiently large outermost extrapolation radius is used,
the variation in this procedure is of the order �A ¼ 0:03%
and �� ¼ 0:003 rad in amplitude and phase, respectively,
and is consistent through the evolution, including inspiral,
merger and ringdown. The extrapolation error is larger than
the numerical error determined in Sec. IVC 2, below, even
if it is performed using data at r ¼ 1000M distant from the
source, highlighting the need for measurements at large
radii. For the ‘‘extrapolated’’ data plotted in this paper,
we have performed polynomial extrapolations as detailed
in [77], using the six outermost measurements at
r ¼ f280M; 300M; 400M; 500M; 600M; 1000Mg.
In a companion paper [78], we use the same data set to

calculate c 4 directly at Jþ using characteristic extraction
[79,80]. Here the traditional approach (which is gauge
dependent and has a finite-radius cutoff error) presented
here is replaced by a characteristic formulation of the
Einstein equations in order to determine the fields out to
future null infinity. In this paper, we restrict ourselves to a
discussion of the numerical error inherent in the evolution
procedure via the multipatch code, and will report in more
detail on systematic measurement errors due to finite-
radius effects and the characteristic extraction procedure
elsewhere [78,81].

IV. CODE VERIFICATION

A. Initial data

To demonstrate the efficacy of the infrastructure de-
scribed in the previous sections, we have carried out
an evolution of the by now well-studied case of the late-
inspiral and merger of a pair of nonspinning equal-mass

3Alternative frame constructions have also been used, such as
orthonormalizing relative to one of the angular basis vectors
[74], or omitting the orthonormalization altogether [4]. We have
generally found these modifications do not lead to significantly
different measurements.
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black holes (see, for example, [82] for an extensive dis-
cussion of numerical results involving this model). The
particular numerical evolution which we have carried out
starts from an initial separation d=M ¼ 11:0 and goes
through approximately 8 orbits (a physical time of around
1360M), merger and ringdown. The masses of the punctu-
res are set to m ¼ 0:4872 and are initial placed on
the x axis with momenta p ¼ ð�0:0903;
0:000728; 0Þ,
giving the initial slice an ADM mass MADM ¼
0:99051968� 2� 10�8. These initial data parameters
were determined using a post-Newtonian evolution from
large initial separation, following the procedure outlined
in [83], with the conservative part of the Hamiltonian
accurate to 3PN, and radiation-reaction to 3.5PN,
and determines orbits with a measured eccentricity of
e ¼ 0:004� 0:0005.

B. Grid setup

The binary black hole evolution was carried out on a
7-patch grid structure, as described in Sec. II, incorporating
a Cartesian mesh-refined region which covers the
near-zone, and six radially oriented patches covering the
wave zone.

The inner boundary of the radial grids was placed at
rt ¼ 35:2M relative to the center of the Cartesian grid. As a
general rule, this boundary should be made as small as
possible to improve efficiency in terms of memory usage.
However other factors may make it preferable to move it
further out. In particular, since we do not perform time
interpolation at grid boundaries, the time step dt of the
coarsest Cartesian grid determines the time step of the
radial grids, and thus the wave zone. Updates of the radial
grids tend to be expensive, as they are large, so that if dt is
too small, computation time may be spent over-resolving
(in time) the wave zone. Particularly if the principle inter-
est is in the lower order wave modes, it may be optimal to
add an additional Cartesian mesh refinement grid with a
coarser time step, and thus move rt outwards.

The outer boundary for the spherical grids was chosen
based on the expected time duration of the measurement
and radius of the furthest detector, in order to remove any
influence of the artificial outer boundary condition. In
particular, given that the evolution takes a time Tm for
the entire inspiral, merger and ringdown, and gravitational
wave measurements taken at a finite-radius rd, we would
like to ensure that a disturbance travelling at the speed of
light from the outer boundary does not reach the measure-
ment radius (see Fig. 4). For the BSSN evolution system,
the physical modes travel at the speed of light, c ¼ 1, in
normal coordinates [63,64], which are well-approximated
in the wave zone where 
 ’ 1 and �r ’ 0. The 1þ log

slicing condition, Eq. (24), propagates at a speed of
ffiffiffiffiffiffi

2

p

,
however this is a gauge mode and empirically we find it to
have a negligible effect on measurements. The speed of
propagation of numerical error from the boundary may

also be larger than that of the physical modes, but does
not affect the propagation of physically meaningful (i.e.
continuum) quantities if the numerical scheme is consistent
and convergent. Thus, taking note of the v ’ c ¼ 1 propa-
gation speed of physical error modes from the boundary,
we place the outer boundary at

rb > Tm þ 2rd: (31)

For the particular evolution considered here, Tm ’ 1350M,
and our outermost measurements are taken at rd ¼ 1000M.
We have placed the outer boundary of the evolution do-
main at rb ¼ 3600M.
The near-zone grids incorporate 5 levels of 2:1 mesh

refinement, covering regions centered around each of the
black holes. For the highest resolution we have considered
here, the finest grid (covering the black hole horizon) has a
grid spacing of dx ¼ 0:02M. The wave zone grids have
an inner radial resolution which is commensurate with the
coarse Cartesian grid resolution, dr ¼ 0:64M in this case.
This resolution is maintained essentially constant to the
outermost measurement radius (r ¼ 1000M), at which
point we apply a gradual decrease in resolution (as de-
scribed in Sec. II A) over a distance of r ¼ 500M. From
r ¼ 1500M to the outer boundary, we maintain a resolu-
tion of dx ¼ 2:56M, sufficient to resolve the inspiral
frequencies of the dominant ð‘;mÞ ¼ ð2; 2Þ mode of the
gravitational wave signal. The transition between the res-
olutions is performed over a distance of 500M between
r ¼ 1000M and r ¼ 1500M. The angular coordinates have
31 points (30 cells) in � and � on each of the 6 patches.
The time step of the wave zone grids is dt ¼ 0:144, and we
take wave measurements at each iteration.

FIG. 4 (color online). Schematic of the causal propagation of
information during the evolution. The gravitational wave source
is located in the vicinity of r ¼ 0, with waves propagating
outward at the speed of light c ¼ 1, and are measured at radius
rd for a time of interest which would include the inspiral, merger
and ringdown of a binary system. The unphysical outer boundary
of the grid is located at rb, which is chosen to be sufficiently far
removed so that the future Cauchy horizon of the domain of
dependence of the initial slice does not reach rb until the
measurement is complete.
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We have carried out evolutions at three resolutions in
order to estimate the convergence of our numerical meth-
ods. The grid described above is labeled h0:64. The lower
resolutions, labeled h0:80 and h0:96 have each of the speci-
fied grid spacings scaled by 0:80=0:64 and 0:96=0:64,
respectively.

C. Results

The binary black hole initial data described in Sec. IVA
evolves for about 8 orbits ( ’ 1350M) before merger.
Various ð‘;mÞ modes of c 4 are plotted in Fig. 5. We find
that for the grids we have used, the modes to ð‘;mÞ ¼ ð4; 4Þ
mode are quite well resolved throughout the evolution. The
(6, 6) mode is also measurable, and shows a clear signal,
particularly during ringdown. The (8, 8) mode is domi-
nated by noise for most of the inspiral, though during the
merger and ringdown phase, a clear signal is present
and the amplitude and frequency can be estimated. Tests
with an analytical solution confirm that the angular reso-
lutions which we have used are at best marginal for resolv-
ing this mode.

In the following sections, we report results regarding the
convergence and accuracy of these measurements, as well

as determine the parameters of the merger remnant. By
analyzing the ringdown behavior of the waves we con-
clude that the remnant is indeed a Kerr black hole (see
Sec. IVC4, below).

1. Numerical convergence

We can establish the consistency of our discretization by
showing that it does indeed converge to a unique solution
in the continuum limit. Ideally, an exact solution can be
used to test this. However, since there are no exact solu-
tions which adequately model the physical scenario which
we wish to consider (inspiralling black hole binaries), an
alternative is to evaluate numerical solutions at several
(at least three) different resolutions and establish that the
differences decrease as resolution is increased. For an
implementation in which all of the discrete operations
are carried out with the same order of accuracy, the con-
vergence test should yield a clear exponent corresponding
to that order.
The evolution code incorporates a number of discrete

operations, which for various practical reasons, are carried
out to different orders of accuracy. These are listed in
Table I. The primary operation which is carried out over

FIG. 5 (color online). The dominant spherical harmonic modes of c 4 for ‘ ¼ 2, 4, 6, 8, measured at r ¼ 200M from the coordinate
center. The plots on the right show amplitude and frequency evolution during the late-inspiral, merger and ringdown.
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the bulk of the grid is the computation of finite difference
derivative operations in order to evaluate the right-hand
side of the evolution Eqs. (22a)–(22e). For the tests carried
out in this paper, 8th-order stencils are used for this opera-
tion, including the upwinded advection terms. It is com-
mon to apply a small amount of artificial dissipation in
order to smooth high-frequency effects. This is done at one
higher order (9th) than the interior finite differencing, with
stencils constructed from 10th derivatives. This maintains
the correct continuum limit.4 Various boundary operations
(interpatch boundary communication, mesh refinement
boundaries) are carried out at lower order. This is done
largely for efficiency reasons, as the communication in-
volved in boundary interpolation can be time-consuming if
the stencil widths are large. Intuitively, the numerical error
associated with these operations may have reduced influ-
ence in any case, as they are applied only at 2D interfaces.
In practice this does seem to be the case, for instance, as
experiments with 4th and 5th order interpolation operators
between patches show similar accuracy in the final solu-
tion. Similarly, operations involving different time levels
are at lower order, again for efficiency reasons. The time
resolution of our evolutions tends to be high enough that
one might expect a small error coefficient of the RK4
integrator. The lowest order operation which we use is
the 2nd-order time interpolation at mesh refinement
boundaries. Applying higher order here would require
keeping more time levels in memory (currently we store
three). Our results are consistent with previous studies
using mesh refinement for black hole evolution which

suggest that the influence of the low order time interpola-
tion boundary conditions is negligible for the time resolu-
tions which we apply (see, for example, [69]).
For test cases involving a single nonspinning black hole,

in fact we find 8th-order convergence in the Hamiltonian
constraints. This is likely due to the relatively constant
values (except for some gauge evolution) maintained by
the evolution variables during the evolution, which mini-
mizes error due to time integration or propagation across
boundaries.
A more relevant situation is that of a binary black hole

inspiral, which we have tested using the parameters de-
scribed above in Sec. IVA. For this model, we have mea-
sured the gravitational waveform, c 4, integrated over
spheres at radii from r ¼ 100M to r ¼ 1000M, at the three
resolutions h0:96, h0:80 and h0:64. Results for the ð‘;mÞ ¼
ð2; 2Þ mode are shown in Fig. 6. The evolution lasts for
about 1350M before merger, and the plots encompass the
inspiral, merger (at t ¼ 0M on this time axis), and ring-
down. The figure plots the error in phase �� and relative
amplitude �A for the (2, 2) mode extracted at r ¼ 100M
and r ¼ 1000M, respectively, between medium h0:80 and
low h0:96 resolutions and high h0:64 and medium h0:80
resolutions in the wave zone. The latter error is scaled
such that the curves will overlap in the case of a 4th-order
convergent solution. At both radii, we find that during the
inspiral phase, the rescaled error of the higher resolutions
lies below that of the lower resolution, suggesting better
than 4th-order convergence (in fact, closer to 8th-order over
significant portions of the plot). At later times, around the
peak of the waveform, the curves are more closely aligned,
indicating 4th-order convergence. The plot suggests that
during the very dynamical late stages of the inspiral, the
lower order boundary conditions and/or the time integra-
tion, play a more important role relative to the early inspiral
phase of the evolution, where the convergence order is
closer to that of the interior finite differencing. The results
are, however, convergent over the entire evolution (includ-
ing merger and ringdown). As we will see in the next
section, the accuracy is excellent for these resolutions so
that the rate of convergence is not a particular issue.
We have verified convergence for a number of different

modes of the c 4 waveform at different radii. For instance,
Fig. 7 shows similar results for the ð‘;mÞ ¼ ð6; 6Þ mode,
which is some 2 orders of magnitude smaller in peak
amplitude than the ð‘;mÞ ¼ ð2; 2Þ mode (see Fig. 5).
During the early inspiral, it is difficult to evaluate a con-
vergence order due to high-frequency noise which is large
relative to the waveform amplitude. However, a measur-
able signal is clear in the last orbit, merger and ringdown
phase, and converges at a clear 3rd order.

2. Accuracy

We estimate the numerical phase and amplitude error by
means of a Richardson expansion at a given resolution �,

TABLE I. Table of convergence order of various numerical
aspects of the evolution code. Spatial restriction is carried out by
a direct copy. The surface integration is exact for polynomials up
to degree N	=2� 1, where N	 is the number of grid points along
the 	-direction on the sphere.

Numerical method Order

Grid interior finite differencing 8

Interpatch interpolation 5

Kreiss-Oliger dissipation 9

Time integration (RK4) 4

Mesh refinement:

Spatial prolongation 5

Spatial restriction n/a

Time interpolation 2

Analysis tools:

Interpolation 4

Finite differencing 8

Surface integration N	=2� 1

4In our experiments, we have noted that dissipation at this high
order has a negligible impact on the solution, and could effec-
tively be omitted. However, we continue to include it in the work
presented here.
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u�ðt; xÞ ¼ uðt; xÞ þ�e1ðt; xÞ þ�2e2ðt; xÞ þ � � �; (32)

where uðt; xÞ is the solution of the original differential
equation, and the eiðt; xÞ are error terms at different orders
in �. Assuming convergence at a fixed order, n, we can
expect some of these error functions to vanish. Using
solutions, u, obtained at two resolutions, �1 and �2, the
Richardson expansion implies

u�1
� u�2

¼ enð�n
1 ��n

2Þ þOð�nþ1Þ
¼ en�

n
2ðCn � 1Þ þOð�nþ1Þ � ��2

ðCn � 1Þ;
(33)

where ��2
is the estimated solution error on the higher

resolution grid, and where

Cn :¼
�

�1

�2

�

n
: (34)

We thus obtain an estimate for the solution error that is at
least accurate to order nþ 1,

��2
� 1

Cn � 1
ðu�1

� u�2
Þ; (35)

which we use as an estimate of the numerical error in our
solutions.
During the inspiral phase (which for this purpose we

regard as being the period t 	 �100M), we have found
roughly 8th-order convergence in the amplitude and phase,
as described above. The remaining relative error for the
ð‘;mÞ ¼ ð2; 2Þ mode can be estimated as

max
t2½�1350;�100�

errðAÞinspiral ¼ 0:090%; (36a)

max
t2½�1350;�100�

errð�Þinspiral ¼ 0:010%; (36b)

where errðAÞ :¼ �A=A and errð�Þ :¼ ��=�, i.e., the
rate of loss of phase with �. During merger and ringdown
(t >�100M), we observe 4th-order convergence in the
amplitude, while maintaining 8th-order convergence in
the phase. This results in the estimate

max
t2ð�100;150�

errðAÞmerger ¼ 0:153%; (37a)

max
t2ð�100;150�

errð�Þmerger ¼ 0:003%: (37b)

The time evolution of the numerical error in phase and
amplitude is shown in Fig. 8.
We note that these errors are of comparable order to the

errors inherent in the extrapolation [77]. Moreover, as is
pointed out in [78], the error between extrapolated wave-
forms and those determined at future null infinity, Jþ, by
characteristic extraction, is an order of magnitude larger
than the numerical error determined here. This highlights
the importance of reducing systematic errors inherent in
finite-radius measurements of c 4.

3. Properties of the merger remnant

The merger remnant can be measured with high accu-
racy, using either the isolated horizon formalism [84,85],

FIG. 6 (color online). Convergence in amplitude (top) and phase (bottom) of the ð‘;mÞ ¼ ð2; 2Þ mode of c 4 for detectors at r ¼
100M and r ¼ 1000M. The higher resolution difference, h0:80 � h0:64, is scaled for 4th-order convergence.

FIG. 7 (color online). Convergence in amplitude (top) and
phase (bottom) of the ð‘;mÞ ¼ ð6; 6Þ mode of c 4 for detector
at r ¼ 100M during the late through merger. The higher reso-
lution difference, h0:80 � h0:64, is scaled for 3rd-order conver-
gence.
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or geometrical measures of the apparent horizon [86,87].
Some results are reported in Table II, along with estimated
numerical errors. The results agree well with previous
high-accuracy measurements, such as those obtained by
spectral evolution [4,82], with the spin and irreducible
mass agreeing within three decimal and four decimal pla-
ces, respectively. While this is larger than the reported
errors, we note that we have evolved a different initial
data set than [4]. As reported in Sec. IVA our evolution
has somewhat more eccentricity, and the level of agree-
ment can be used to judge the influence of small amounts
of eccentricity on the result.

By comparing the properties of the merger remnant with
the integrated radiated energy, Erad, and angular momen-
tum, Jrad, determined from the gravitational waveforms,
we find the residuals

jMf þ Erad �MADMj ¼ 4:1� 10�5; (38a)

jSf þ Jrad � JADMj ¼ 1:0� 10�3: (38b)

Here we have used the extrapolations of the gravitational
waveforms to r ! 1 based on the 6 outermost measure-
ment radii. A more detailed discussion of this procedure is
given in [77]. The results can be further improved through
taking measurements at Jþ, as outlined in [78,81].

4. Quasinormal modes of the merger remnant

In Fig. 5, we have shown the late-time behavior of the
amplitude and frequency for the dominant spherical har-
monic modes of c 4, to ð‘;mÞ ¼ ð8; 8Þ. We note that during
ringdown, the frequencies settle to a constant value. If the
final black hole is a Kerr black hole, these frequencies are
given by the quasinormal modes of a Kerr black hole with
given spin a.
As reported in the previous section, our evolution leads

to a merger remnant with a ¼ 0:686923� 1� 10�5

(see Table II), as measured on the horizon. The real part
of the prograde quasinormal mode (QNM) frequencies for
modes up to ð‘;mÞ ¼ ð7; 7Þ, can be found tabulated in [88].
For example, M!22 ¼ 0:526891 for the ð‘;mÞ ¼ ð2; 2Þ
mode, given a final black hole of the measured mass Mf

and spin Sf.

At this point it is worth noting that the QNM determined
from perturbations of a Kerr black hole are most naturally
expressed in terms of a basis of spin-weighted spheroidal
harmonics. By contrast, our waveforms have been decom-
posed relative to a basis of spin-weighted spherical
harmonics, which are easily calculated via Legendre func-
tions. In order to make an appropriate comparison between
these modes with the perturbative results we need to apply
a transformation to the wave modes. We have

ĉ ‘0m0
4 ¼ X

‘;m

c ‘;m
4 h‘;mj‘0; m0i; (39)

where a dash denotes labeling of the spheroidal harmonic
modes, and h‘;mj‘0; m0i is the overlap defined by

h‘;mj‘0; m0i ¼
Z

�
d��2

�S‘0m0 ðc‘0m0 Þ�2Y‘m: (40)

The spheroidal harmonics parameter c‘0m0 ¼ a!‘0m0 de-
pends on the spin a of the black hole and the corresponding
prograde or retrograde QNM frequency !‘0m0 of the ð‘0m0Þ
spheroidal harmonic mode.5 If c ¼ 0 (as is the case for
nonspinning black holes), the spheroidal harmonics reduce
to the spherical harmonics. The spin-weighted spheroidal
harmonics used here have been implemented following
Leaver [89] and are reviewed in [90].
The frequencies measured during the ringdown are plot-

ted in Fig. 9 for the modes ð‘;mÞ ¼ ð2; 2Þ,(4, 4) and (6, 6).

FIG. 8 (color online). Absolute numerical error in the ampli-
tude (top) and phase (bottom) accumulated over the course of
the evolution for the highest resolution run, determined accord-
ing to Eq. (35) for the pointwise differences in amplitude
and phase between medium and high resolution runs. For the
phase we assume the measured 8th-order convergence over the
entire evolution, while for the amplitude we use 8th-order before
t 	 �100, and 4th-order thereafter (see text).

TABLE II. Properties of the merger remnant as measured on
the apparent horizon (Mirr, Sf=M

2
f) and from the gravitational

radiation (Erad, Jrad). Ranges indicate the estimated numerical
error. For the error in JADM, we have simply quoted machine
precision (it is an analytical expression of the input momenta on
the conformally flat initial slice).

Total ADM mass, MADM 0:99051968� 20� 10�9

Total ADM angular

momentum, JADM

0:99330000� 10� 10�17

Irreducible mass, Mirr 0:884355� 20� 10�6

Spin, Sf=M
2
f 0:686923� 10� 10�6

Christodoulou mass, Mf 0:951764� 20� 10�6

Angular momentum, Sf 0:622252� 10� 10�6

Radiated energy, Erad 0:038715� 2� 10�6

Radiated angular momentum, Jrad 0:370007� 68� 10�6
5We restrict attention to the N ¼ 0 harmonic only.
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We have plotted data for the r ¼ 1000M measurement,
as well as the value obtained by extrapolating the wave-
forms extracted at the outermost 6 measurement spheres to
r ! 1, and find that in fact the extrapolation has little
effect on the frequency of the lower order modes at these
distances from the source. We note that there is a modula-
tion of the ringdown frequency, particularly apparent in
the (2, 2) mode. This is a result of mode mixing, which
stems from the use of the spherical harmonic basis for
the c 4 measurements. By transforming the r ¼ 1000M
result to spheroidal harmonics, this modulation visible in
the t < 40M signal is largely removed (dashed line).

As the amplitude of the wave declines exponentially to
the level of numerical error, the frequencies become diffi-
cult to measure accurately. We estimate the ringdown
frequency for each mode by performing a least-squares

fit of a horizontal line through the measured spheroidal
harmonic frequency over the range t 2 ½40; 80�M (dotted
line) with the standard deviation of the fit as a gauge of
the error (grey region). These constant lines represent the
estimated frequency of the associated QNM modes, and
are tabulated as !NR in Table III. They agree to high
precision with the prograde QNM frequencies, !lit, deter-
mined Kerr black holes by perturbative methods [88]. We
conclude that the merger remnant is compatible with a Kerr
black hole within the given error estimates.

V. DISCUSSION

The results of this paper provide a demonstration of the
usefulness of adapted coordinates in numerical relativity
simulations. The precision of the calculations have allowed
us to obtain convergent modes to ‘ ¼ 6, through merger
and ringdown, with accurate predictions of the quasinor-
mal ringdown frequencies of the remnant.
Our implementation of nonsingular radially adapted

coordinates for the wave zone is based on the use of
multiple grid patches with interpolating boundaries,
coupled to a BSSNOK evolution code. Thornburg [41] first
demonstrated that such a setup could lead to stable evolu-
tions in the case of a spinning black hole in Kerr-Schild
coordinates. We have demonstrated that the approach is
also effective and robust for dynamical puncture evolu-
tions, and, in particular, the problem of binary black holes.
The implementation described here has a number of

advantages, principle among them being its flexibility.
While we have presented results for a particular grid
structure adapted to radially propagating waves, there are
no principle problems with restructuring the grids to cover
any required domain, for instance adapted to excision
boundaries or toroidal fields. Since data is stored in the
underlying Cartesian basis, and passed by interpolation
across boundaries, the coordinates used on each patch are
largely independent of the others, and there is no need for
numerical grid generating schemes. While we have used
the BSSNOK formalism to evolve the Einstein equations,
in principle any stable strongly hyperbolic system can be
substituted. The BSSNOK system has, however, proven
particularly useful for evolving black holes via the punc-
ture approach, which itself has proven to be a very flexible
methodology. We have demonstrated results for the most

FIG. 9 (color online). The ringdown frequencies for the domi-
nant c 4 modes to ‘ ¼ 6 of the merger remnant. From top to
bottom, the plots show the frequencies of the ð‘;mÞ ¼ ð2; 2Þ,
(4, 4) and (6, 6) modes, respectively, over a timescale from the
(2, 2) waveform peak to 100M later, at which point the wave-
form amplitude is too small to measure an accurate frequency.
The c 4 data measured at r ¼ 1000M is plotted, in addition to
the value extrapolated to r ! 1, and the transformation to
spheroidal harmonics. The expected quasinormal mode fre-
quency is plotted as a dotted line, as well as a fit to the spheroidal
harmonic data over the range t 2 ½40M; 80M�, with error-bars
determined by the standard deviation of the fit.

TABLE III. Prograde N ¼ 0 QNM frequencies for different
modes and spin a ¼ 0:6869 as determined by perturbative
methods [88], !lit, and as measured during ringdown in the
numerical relativity simulation, !NR.

ð‘;mÞ Mf!
lit Mf!

NR jMf!
NR �Mf!

litj
(2, 2) 0.526891 0:5267� 0:0011 1:9� 10�4

(4, 4) 1.131263 1:1312� 0:0028 6:3� 10�5

(6, 6) 1.707630 1:7074� 0:0662 2:3� 10�4
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well-studied test case, nonspinning equal-mass black
holes, and the same techniques can be applied to different
mass ratios and spinning black holes, simply by changing
the physical input parameters. (The Appendixes include
some examples of spinning black hole evolutions.)

Finally, we emphasize again the accuracies which can be
attained by this approach. Our finite different results show
numerical error estimates which are on par with those
achieved using spectral spatial discretization [4]. The
adapted radial coordinate allows us to take measurements
at radii much larger than have been used before, as well as
obtain accurate measurements of higher ‘ modes during
merger, which have an amplitude more than 2 orders of
magnitude smaller than the dominant ð‘;mÞ ¼ ð2; 2Þmode.
One of the aspects which makes this possible is the fact that
we are able to extend our grids to a distance such that the
measurements are included in the future domain of depen-
dence of the initial data (causally disconnected outer
boundaries), and the waves are reasonably well resolved
over this entire domain so that internal reflections are
minimized. Further, we note that our results are consistent
with other puncture-method calculations in that the results
are convergent and can be consistently extrapolated to
r ! 1 throughout the entire evolution, including late-
inspiral and ringdown [77], where other approaches have
had difficulties.

The absence of artificial boundaries, as well as dissipa-
tive regions in the wave zone, removes an important source
of potential error in solving the Einstein equations as an
initial-boundary value problem. The remaining errors can
be categorized in three forms. First, numerical error due to
the discretization. This can be reduced through the use of
higher order methods for the operations performed in
various parts of the code, and fortunately is also easy to
quantify by performing tests at multiple resolutions. We
note that for finite differences, the largest improvement in
accuracy occurs in going from 2nd to 4th-order for the
interior computations, and beyond that there are diminish-
ing returns [91]. While it does not yet seem to be a limiting
factor, except possibly during the merger, the RK4 time
stepping will at some level of resolution be a determining
factor in the accuracy regardless of the spatial order (and
this is also the case for current implementations of spectral
methods). The second source of error is a physical error,
inherent in the choice of initial data parameters for the
binary evolution. At the separations which are practical for
numerical relativity (say d < 20M), the physical model is
expected to have shed all of its eccentricity. We have used
post-Newtonian orbital parameters to attempt to place our
black holes in low eccentricity trajectories, and this is quite
effective. Alternative approaches, involving iteratively cor-
recting the initial data parameters until a tolerable eccen-
tricity has been reached, are able to reduce the eccentricity
still further [92]. This technique can in principle also be
adapted to the moving-puncture approach. The final source

of error arises in the measurement of c 4, which is done at a
finite radius, and then extrapolated to r ! 1 by some
procedure. We have attempted to minimize this error by
placing detectors at large radii, well into the region where
the perturbations are linear, and have shown that the ex-
trapolations are consistent with measurements at larger
radii, as well as with each other in the r ! 1 limit [77].
However, there remain ambiguities particularly in gauge-
dependent quantities such as the choice of surface on
which measurements are taken, and the definition of
time and radial distance to be used in the extrapolation.
In a companion paper [78], we have demonstrated that
these ambiguities can be removed entirely by the proce-
dure of characteristic extraction, whereby evolution data
on a world-tube is used as an inner boundary condition for
a fully relativistic characteristic evolution, extending to
null infinity, Jþ. The results suggest that systematic errors
inherent in finite-radius measurements of c 4 are more than
an order of magnitude larger than the numerical errors
reported here.
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APPENDIX A: THE INFLUENCE OF UPWINDED
ADVECTION STENCILS

It has long been recognized that for BSSNOK evolutions
employing a shift vector, �a, the overall accuracy can be
improved by ‘‘upwinding’’ the finite difference stencils for
advective terms of the form �i@iu [61]. The upwind de-
rivatives employ stencils which are off-centered by some
number of grid points in the direction of �a. The drawback
of the method is that in order to maintain the same order of
accuracy in the derivatives, the stencil must have the same
width as a centered stencil, but since it is offset in either
a positive or negative direction, it effectively requires an
additional number of points to be available to the derivative
operator equal to the size of the offset. For parallel codes
which physically decompose the grid over processors and
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communicate ghost zone boundaries, this means that a
larger number of points must be communicated and can
impact the overall efficiency. Further, a larger number of
points must be translated at interpatch and refinement level
boundaries.

The original observation that upwinding is helpful was
made with a code that used 2nd-order spatial finite differ-
ences. In that case, the centered stencils are small (three
points) and the upwind derivatives correspond to sideways
derivatives in the direction of the shift, i.e., no ‘‘down-
wind’’ information is used. For higher order schemes, the
importance of upwinding may be less significant, since the
stencils are large relative to the size of the shift vector. In
practice, some implementations have empirically deter-
mined that upwinding by 1 point at 6th-order is helpful
[83]. However, this is not done universally, particularly in
conjunction with 8th-order centered differencing [12,93].

We have found upwinding to be important in reducing
numerical error in the black hole motion for every order of
accuracy we have tried. The effect is demonstrated in
Fig. 10, which plots the motion of the black hole punctures
for a data set involving a pair of equal-mass binaries with
spins a1 ¼ �a2 ¼ 0:8 evolved at a relatively low resolu-
tion with 8th-order spatial finite differencing. The results
of two evolutions are plotted, one using fully centered
stencils, and the other upwinding the advection terms
with a one point offset. Whereas the latter evolution

displays the expected inspiral behavior, at this resolution
the binary evolved with centered advection actually flies
apart. The is purely a result of accumulated numerical
error, and at higher resolutions both tracks can be made
to inspiral and merge. Our observation, however, is that for
a given fixed resolution, the one point offset advection has
a significantly reduced numerical error in the phase as
compared to the fully centered derivatives.
Based on some limited experimentation with larger off-

sets, we have the general impression that the one point
offset provides the optimal accuracy for each of the finite
difference orders we have tried (4th, 6th, 8th). We do not
exclude the possibility that there may be situations in
which the fully centered stencils perform as well as up-
winded advection, however we have not come across a
situation where the latter method performs worse.
As an alternative, we have also tested lower order up-

winded derivatives as a potential scheme which would
allow us to maintain a smaller stencil width. We generally
find that the resultant numerical errors are of the same
magnitude or larger than if we had not done the upwind
at all.
We note parenthetically the fact that the off-centering is

most important in the immediate neighborhood of the
black holes, where the shift has a nontrivial amplitude.
It is possible that a scheme where the stencils are off-
centered only on grids where the shift is larger than some
threshold would also be effective, and not suffer the draw-
backs mentioned above over the bulk of the grid. We have
not experimented with such a scheme, however.

APPENDIX B: HIGH-ORDER
FINITE DIFFERENCING

A recent trend in the implementation of finite difference
codes for relativity has been the push towards higher order
spatial derivatives. It is now common to use 6th or 8th-
order stencils. The benefit of higher order stencils is that
the convergence rate can be dramatically increased, so that
a small increase in resolution leads to a large gain in
accuracy. And while not guaranteed, it is often the case
that for a given fixed resolution, a higher order derivative
will be more accurate, requiring fewer points to accurately
represent a wavelength [91].
In moving to high-order stencils, there is a trade-off

between the possible accuracy improvements, and the extra
computational cost. High-order stencils generally involve
two extra floating point operations per order. Since they
require a larger stencil width, they also incur a cost in
communication of larger ghost zones, as well as requiring
wider overlap zones at grid boundaries. In practice, we find
that higher order stencils can also have a more strict
Courant limit, requiring a smaller time step (and thus
more computation to reach a given physical time). While
it is possible to demonstrate a large gain in accuracy in
switching from 2nd to 4th-order operators, there are

upwind

no upwinding

FIG. 10 (color online). Trajectories of the two inspiralling
punctures for a spinning configuration a1 ¼ �a2 ¼ 0:8, with
upwinded advection terms (solid lines) and without (dashed
lines). In the case where no upwinding has been used, the black
holes do not inspiral, due to the accumulation of numerical error.
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diminishing returns in the transition to 6th and higher
order [91].

We have experimented with 4th, 6th and 8th-order finite
differencing for the evolution equations. Generally we find
that the 8th-order operators can indeed provide a notable
benefit, particularly in the phase accuracy, at low resolu-
tion. In Fig. 11, we plot the phase evolution for an equal-
mass model with spins a1 ¼ �a2 ¼ 0:8. The evolution
covers the last three orbits and ringdown. We find that
for this high-spin case, even over this short duration, a
significant dephasing takes place. Assuming 8th-order con-
vergence, the 6th-order evolution at the h0:64 resolution
would be comparable to the 8th-order at approximately
h0:77 resolution. We can get some idea of the relative
amount of work required for each calculation by noting
there would be N ¼ ð0:64=0:77Þ3 fewer grid points in the
h0:77 evolution, but the 8th-order derivatives require 9=7
times as many floating point computations for a derivative
in one coordinate direction, and requires a Courant factor
which is 0.9 times that of the 6th-order run. Taken together,
this suggests an 8th-order run at h0:77 would require a
factor 0.68 of the amount of work of the 6th-order case
to achieve comparable accuracy. Note that this computa-
tion does not take into account potential additional com-
munication overhead associated with the wider 8th-order
stencils. But assuming this is not dominant, the conclusion
seems to be that for this level of accuracy, the 6th-order
evolution is somewhat less efficient than the 8th-order
version would be.

For a given situation, it may be that these factors change
significantly. Implementation, and even hardware, details
can shift the balance of costs between various operations.
Further, the test case considered here involves a fairly high
spin. Lower spin models (such as that considered in the
main body of the paper), are accurate at modest resolu-
tions, and in such cases the 6th-order evolutions may in
fact prove to be relatively more efficient if the accuracy is
already sufficient for a given purpose. On the other hand, if

grid sizes and memory consumption are limiting factors,
the 8th-order operators do give a consistent accuracy
benefit for a fixed grid size. Our expectation, however, is
that implementing yet higher order stencils (for example,
10th-order) may not be justified on the basis of efficiency.
As a final point, we note that the required high-order

accuracy appears to be largely a consequence of the field
gradients in the near-zone, immediately surrounding the
black holes. An alternative scheme, then, could be to apply
high-order finite differencing in this region, while using a
lower order (and thus more efficient) scheme in the wave
zone. Results from such a test are displayed in Fig. 12,
where we have used 8th-order only on the finest refinement
level, i.e., the mesh surrounding the black holes, but 4th-
order on all coarser Cartesian and radial wave zone grids.
This, in turn, allows for a slightly less restrictive Courant
limit, so that it becomes possible to run with a slightly
larger time-stepping. The phase evolution of c 4 is almost
identical to that of the fully 8th-order case, but we found
that the speed of the run was increased by more than 25%
(similar to that of the full 6th-order evolution). Further
optimizations, such as decreasing ghost zone sizes of the
4th-order grids and consequently the communication over-
head, might improve this further. While the errors and
convergence order of this scheme have not been tested in
detail, we suggest it as a potentially quite effective scheme
for the impatient.

FIG. 11 (color online). Phase evolution of the ð‘;mÞ ¼ ð2; 2Þ
mode c 4 for the aligned-spin model with a1 ¼ �a2 ¼ 0:8
h ¼ 0:64M. The 6th-order case at h0:64 has a trajectory between
the low resolution (h0:80) and high resolution (h0:64) 8th-order
evolution.

FIG. 12 (color online). Amplitude and phase evolution of the
ð‘;mÞ ¼ ð2; 2Þ mode of c 4 for the equal-mass aligned-spin
model, comparing 8th-order spatial finite differencing with a
scheme in which 8th-order is used only on the fine meshes
surrounding the bodies, and 4th-order on the wave zone grids.
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APPENDIX C: CHOICE
OF CONFORMALVARIABLE

In Sec. III, we have described our implementation of the
BSSNOK evolution system, and note that currently three
variations are in use, based on the use of different variables
to represent the conformal scalar. The original formulation
is based on the use of � :¼ log�=12. An issue with this
variable in the context of puncture evolutions is that it has
an OðlnrÞ singularity which can lead to large numerical
error in finite differences calculated in the neighborhood of
the puncture. More recently, the use of alternative variables


 ¼ ��1=3 [3] andW ¼ ��1=6 [68] have been proposed as
a means of improving this situation by replacing � with
variables that are regular everywhere on the initial
data slice. In terms of the evolution system outlined in
Eqs. (22), the 
 and W options correspond to the choices
� ¼ 3 and � ¼ 6, respectively.

The influence of this change of variable can be seen in
improved phase accuracy of binary evolutions carried out
with either 
 or W. In Fig. 13, we show results from
an evolution of the equal-mass aligned-spin (a1 ¼
�a2 ¼ 0:8) test case presented in the previous
Appendixes, using � and W as evolution variables.
Plotted are the phase errors, ��, between runs at low
resolution, h0:80, using both � and W with a higher reso-
lution, h0:64, evolution using W. The numerical error asso-
ciated with the low resolution � evolution is significantly
larger than that of the corresponding W evolution.

The reason for this may be related to that of the benefit
seen from upwind advective differences in Appendix A.

The phase accuracy of the waveforms is crucially depen-
dent on correctly modeling the motion of the bodies,
and this requires accurate advective derivatives in the
neighborhood of the punctures. The reduced numerical
error associated with the regular 
 and W variables is
important.
Note that even in the� case, a numerical error generated

at the puncture seems to be confined to within the horizon.
Quantities such as constraints measured outside the hori-
zon, or the horizon properties itself, are not significantly
affected. However, it seems that a clear reduction in phase
error can be attained through the use of either the 
 or W
variants of BSSNOK, and we have used the latter for the
tests carried out in this paper.
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