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We present two methods for integrating forced geodesic equations in the Kerr spacetime. The
methods can accommodate arbitrary forces. As a test case, we compute inspirals caused by a simple
drag force, mimicking motion in the presence of gas. We verify that both methods give the same
results for this simple force. We find that drag generally causes eccentricity to increase throughout
the inspiral. This is a relativistic effect qualitatively opposite to what is seen in gravitational-
radiation-driven inspirals, and similar to what others have observed in hydrodynamic simulations
of gaseous binaries. We provide an analytic explanation by deriving the leading order relativistic
correction to the Newtonian dynamics. If observed, an increasing eccentricity would thus provide
clear evidence that the inspiral was occurring in a nonvacuum environment.

Our two methods are especially useful for evolving orbits in the adiabatic regime. Both use the
method of osculating orbits, in which each point on the orbit is characterized by the parameters of
the geodesic with the same instantaneous position and velocity. Both methods describe the orbit in
terms of the geodesic energy, axial angular momentum, Carter constant, azimuthal phase, and two
angular variables that increase monotonically and are relativistic generalizations of the eccentric
anomaly. The two methods differ in their treatment of the orbital phases and the representation
of the force. In the first method, the geodesic phase and phase constant are evolved together as
a single orbital phase parameter, and the force is expressed in terms of its components on the
Kinnersley orthonormal tetrad. In the second method, the phase constants of the geodesic motion
are evolved separately and the force is expressed in terms of its Boyer-Lindquist components. This
second approach is a direct generalization of earlier work by Pound and Poisson [1] for planar forces
in a Schwarzschild background.

I. INTRODUCTION

The two-body problem in relativity when one of the
bodies is much more massive than the other is of great
interest both theoretically and astrophysically. In this
limit, the orbit of the smaller body is approximately
geodesic on short time scales. Deviations from the
geodesic trajectory arise from the back-reaction on the
orbit of the spacetime perturbation created by the object,
but can also arise from external factors such as gravita-
tional interactions with other bodies, gaseous material in
the spacetime and so forth. In all these situations, the
orbit can be described as a geodesic acted on by a per-
turbing force, which is in general small. In this article,
we describe techniques for integrating the Kerr geodesic
equations in the presence of an arbitrary forcing term,
which can be applied to any of these problems.
For the back-reaction on the orbit, the perturbing

force, called the self-force, is of the order of the mass
ratio µ/M and it can be computed by a perturbation
expansion in this small parameter. Computing the lin-
earized metric perturbation sourced by the compact ob-
ject and hence the self-force is not an easy task and it
has taken more than a decade to solve this problem for a
nonspinning compact object moving in a Schwarzschild
background [2–5]. The conventional approach treats the
compact object as a test mass which leads to a diver-
gence of the field at the position of the particle and this

must be dealt with using a regularization procedure. The
extension to Kerr orbits is underway. The techniques de-
scribed in this paper will be a useful tool in the future
for constructing trajectories evolving under gravitational
radiation-reaction.

The problem of the motion of two bodies with very dif-
ferent masses is relevant for present and future gravita-
tional wave detectors. Systems with mass ratios of 1:100
(intermediate-mass-ratio inspirals) could be detected by
the advanced generation of ground-based detectors that
are currently under construction [6]. The proposed space-
based detector LISA [7] is expected to detect ∼ 10− 100
extreme-mass-ratio inspiral (EMRI) events per year [8].
These result from the capture of a compact stellar-mass
object (a white dwarf, neutron star or black hole) by a
massive black hole (MBH) from a surrounding cusp of
stars in a galactic nucleus. The captured object gener-
ates a large number of gravitational wave cycles while it
is orbiting in the strong field of the MBH, which makes
these very good sources to use as probes of strong-field
gravity [9]. For both of these classes of source, techniques
for evolving the orbit under the influence of both grav-
itational back-reaction and other perturbing forces are
essential for constructing accurate waveform templates
and for understanding how external perturbations can
leave an imprint on the inspiral trajectory

We present two implementations that can be used to
integrate geodesic motion in a Kerr background with an
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external force. We use the method of osculating elements
extending previous work [1] for Schwarzschild orbits to
the Kerr background. The problem of motion under a
small perturbation is well studied in celestial mechanics
and is regularly applied to model the motion of satellites
and small planets. A geodesic in Newtonian mechanics,
or relativity, is uniquely characterized either by the three
components of the particle position vector, r, and the
three components of the particle velocity, ṙ, at any time
or by six orbital constants (three orbital constants of the
motion and three initial phases). There is a one-to-one
correspondence between the two characterizations. This
means that any trajectory can be instantaneously identi-
fied with a geodesic that has the same values of r and ṙ.
Of course, at two different instances of time, the geodesics
will differ, but one can smoothly evolve the geodesic pa-
rameters to reproduce any nongeodesic trajectory. There
are several approaches to do so and we describe these in
the next subsection.

A. Osculating Elements or variation of constants

As mentioned above we can describe a bound sta-
ble geodesic by six parameters, which we denote by I.
In the nonrelativistic case these parameters are simply
I = (r, ṙ), while for geodesic motion in Kerr we can take
I = {E,Lz, Q, ψ0, φ0, χ0}. Here E is the energy, Lz the
azimuthal angular momentum, Q is the Carter constant,
and the remaining phases are defined in Sec. III below.
At each instant we can therefore identify the true tra-

jectory with a corresponding geodesic such that r and ṙ

are the same. This imposes a particular choice of param-
eters, I, at each instance of time, and the whole trajec-
tory is thus described by a sequence in the geodesic phase
space, e.g., I(t) = {E(t), Lz(t), ι(t), ψ0(t), φ0(t), χ0(t)}.
These are referred to as the osculating orbital elements

at the osculation epoch t [10]. Another name for this ap-
proach used in the Hamiltonian description is a variation

of constants. We preserve the form of the equations of
motion for a geodesic but slowly vary what used to be
constants of motion in the unperturbed case. There are
well known techniques for tackling such problems which
are widely used in Newtonian celestial mechanics and can
be extended to the relativistic regime. This was demon-
strated by Pound and Poisson [1] for the trajectory of a
particle in a Schwarzschild background under the action
of (post-Newtonian) radiation reaction.
When we have a perturbed system of the form

r̈ = fgeo + δf , (1.1)

we can describe the perturbed trajectory using the os-
culating elements referred to the orbits of the geodesic
system r̈ = fgeo. From the chain rule, any one of the
osculating elements evolves as

İ = ∇rI · ṙ+∇vI · r̈ , (1.2)

in which the subscripts r and v denote derivatives with
respect to the orbital position and velocity respectively.
In the absence of the perturbing force, each osculating
element is constant, so İ = ∇rI · ṙ+∇vI · fgeo ≡ 0. The
perturbation equations thus take the rather simple form

İ = ∇vI · δf . (1.3)

Given an explicit expression for the perturbing force we
can integrate these equations.
The osculating element method can be formulated in

several different ways. There is freedom in the parame-
terization of the geodesic solution that is used as a basis
for deriving the osculating element equations, and in the
basis used to prescribe the force. It is also possible to
treat the orbital phase constants either as constants of
the motion that are evolved explicitly or as part of a total
phase variable which satisfies new equations that depend
on the perturbation. We will describe two methods for
treating the Kerr problem: (i) evolution of E,Lz, Q and
the full orbital phases with the force prescribed with re-
spect to the Kinnersley orthonormal tetrad; (ii) evolution
of the orbital constants of motion E,Lz, Q and the initial
phases, with the force prescribed by its Boyer-Lindquist
components.
In the Hamiltonian approach we start with an unper-

turbed Hamiltonian, H0 and write the equations of mo-
tion in terms of the constant canonical coordinates and
momenta, Xα, Pα (Hamilton-Jacobi approach), which
are closely related, if not exactly the same, as the six
constants of motion introduced above, I [11]. If we can
describe the perturbation as a small addition δH to the
unperturbed Hamiltonian, then we can describe the equa-
tions of motion in the same generalized coordinates and
momenta, which are no longer constants. The derivatives
of the perturbation δH give the equations for the evolu-
tion of Xα, Pα. Quite often those equations are solved
iteratively starting with an assumption that the orbit is
unperturbed in the right-hand side (in the δH). This is
similar to the adiabatic solution to the osculating element
equations which we will describe below. The Hamiltonian
approach (if it can be formulated) would give equations
equivalent to approach (ii) mentioned above.
We note that an obvious method of computing inspi-

rals is to numerically integrate the second-order forced
geodesic equations directly, taking the fundamental vari-
ables to be the Boyer-Lindquist coordinates and their
derivatives with respect to proper time. The key advan-
tage of the methods discussed in this paper over second-
order integrations is that they mesh much more natu-
rally with the adiabatic approximation and more gener-
ally with two-time-scale approximation techniques [12].
For extreme-mass-ratio inspirals driven by radiation re-
action, the orbital evolution time scale is much longer
than the orbital time scale for most of the inspiral, un-
til the orbit becomes close to the innermost stable orbit.
The adiabatic approximation to the motion gives the mo-
tion as an expansion in the ratio of the time scales, and
then there are various postadiabatic corrections to this.
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Although it is not possible yet to compute numerically
the full first-order self-force for generic orbits in Kerr, it
is possible to compute the averaged, dissipative piece of
this force, which is sufficient to compute leading-order
adiabatic inspirals [12]. The two-time-scale expansion
also allows one to go beyond the adiabatic evolution and
compute the small, rapidly oscillating perturbations to
the evolution of the orbital variables, as well as the slow
secular changes to higher order.

The two-time-scale method cannot be easily applied to
the second-order, forced geodesic equations, but it can
be applied to the equations derived in this paper, as we
discuss in Secs. II and III below. In particular, the oscu-
lating elements method allows us to explicitly estimate
the orbital average rate of change of the orbital elements.
This gives us a physical insight into the effect of a per-
turbing force on the orbit which is otherwise obscured in
the integration of the second-order equations of motion.
Estimation of these secular changes also allows us to con-
struct the adiabatic evolution of the orbit in the regime
where it is applicable.

B. Numerical “kludge” waveform

Another application for the results described in this
paper is for the construction of numerical kludge wave-
forms. The numerical kludge waveform for EMRIs is a
fast and accurate way to compute the long waveforms
[13] that will be needed for EMRI data analysis. These
are built in a not entirely consistent way, but the ba-
sic philosophy is to model the underlying trajectory of
the inspiralling object as accurately as possible in order
to obtain the best possible phase match between the true
and approximate waveforms. The approximation is based
on geodesic motion in the MBH’s spacetime, combined
with a flat spacetime waveform generation expression.
In the most recent version of the numerical kludge [14],
the instantaneous geodesic orbit was updated by evolving
the three constants of the motion E,Lz, Q [15] only. The
evolution of the constants was obtained by combining
post-Newtonian results with fits to numerical fluxes ob-
tained by solving the Teukolsky equation [14]. However
this method of evolving the geodesics is not complete,
as we described above, since we need to evolve the (ini-
tial) orbital phases together with the orbital constants
E,Lz, Q. In particular, the natural (and incorrect) way
to evolve the phase constants, which is to fix them at
some initial point, leads to significantly different evolu-
tions in a time or frequency domain implementation of
the kludge. The desire to resolve this apparent discrep-
ancy between the two implementations was one of the
initial motivations for the work described here. This ar-
ticle outlines the correct way to evolve geodesics under
the self-force which could be used to further improve the
numerical kludge waveforms in both time and frequency
domain descriptions of them.

C. Main results and the structure of the paper

In this paper we will give a detailed description of the
osculating elements approach applied to an arbitrary per-
turbing force acting on an object undergoing geodesic
motion in the Kerr spacetime. As an introduction to
the three dimensional relativistic problem of perturbed
geodesic motion we will first consider a toy problem in
Sec. II. We look at the one-dimensional nonlinear oscil-
lator acted on by an external force. The external force is
chosen to have two components: a dissipative part and a
conservative part (which just redefines the energy of the
system). As we will see later this problem is a very good
model for the main problem of perturbed motion in the
Kerr spacetime. We show how two implementations of
the osculating elements approach work in this simplified
model and compare the exact evolution with the adia-
batic approximation. The second of these two implemen-
tations [in which we evolve the energy and the initial time
defined as x(t0) = 0] allows us to treat the problem an-
alytically in terms of Jacobi elliptic functions. This one-
dimensional example allows the reader to understand the
main approach which we then extend to the problem of
forced geodesic motion in the Kerr spacetime in Sec. III.
We start that section with an introduction to our nota-
tion, before describing the osculating elements approach
using the Kinnersley tetrad and “Hughes” variables (in
terms of the orbital constants and the total phase vari-
ables).We then describe the forced geodesic equations in
Boyer-Lindquist coordinates, evolving the orbital con-
stants and the initial conditions, which is a direct exten-
sion to Kerr of the Schwarzschild results described in [1].
In both cases, we show how we can explicitly avoid the
appearance of an apparent divergence in the osculating
equations of motion at turning points.

In Sec. IV, we illustrate our techniques with a prob-
lem in which the perturbing force is a “gas-drag” force
proportional to the velocity of the inspiralling compact
object. This is a toy model for an object inspiralling
in a gaseous environment around a MBH. We show that
the different approaches give identical results, and once
again compare the exact and adiabatic solutions to the
problem. The influence of the drag force is to drive the
inspiral of the object, but it also tends to increase the
eccentricity of the orbit and decrease the orbital inclina-
tion. Although we primarily use this problem for illustra-
tive purposes, the increase in eccentricity is an interesting
result that could have observational consequences. The
increase in eccentricity is a purely relativistic effect, and
is to be expected generically, as we discuss in more detail
in Appendix D, in the context of a drag force acting on
an object in a Schwarzschild background.

We summarize and discuss our findings in the conclud-
ing section V. Some detailed mathematical calculations
are included in additional appendixes.
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II. A SIMPLE MODEL TO ILLUSTRATE

METHODS USED: THE PERTURBED

NONLINEAR OSCILLATOR

In this section we will study in detail the simple model
of an anharmonic oscillator subject to an external per-
turbing force, in order to illustrate and explain in a sim-
ple context the methods that we use for Kerr inspirals in
subsequent sections of the paper.
We take the equation of motion for the position x(t)

of the oscillator to be

ẍ+ x+ βx3 = ǫaext(x, ẋ) . (2.1)

Here the frequency of the oscillator is chosen to be unity
for simplicity, β > 0 is a parameter governing the size
of the nonlinear term, aext is an externally applied per-
turbing acceleration, which could be a function of both
the position and the velocity, and ǫ is a small parameter.
This simple system is similar in some respects to the sys-
tem of a point particle in orbit about a Kerr black hole
and subject to the gravitational self-force. The dimen-
sionless small parameter ǫ in the system (2.1) plays the
role of the mass ratio in the Kerr case, and the external
acceleration aext is analogous to the self-force.

A. Analysis using simple phase and energy

coordinates on phase space

Consider initially the situation where the is no external
acceleration. It is useful for some purposes to use a set of
phase space coordinates for the nonlinear oscillator which
eliminate the turning points. We define coordinates a and
ψ, functions of x and v ≡ ẋ, by the equations

1

2
a2 +

1

4
βa4 =

1

2
ẋ2 +

1

2
x2 +

1

4
βx4 , (2.2a)

x = a cosψ , (2.2b)

sgn(ẋ) = −sgn(sinψ) . (2.2c)

The expression on the right-hand side of Eq. (2.2a) is
just the conserved energy of the system, and a is the
conserved amplitude of the oscillation. The variable ψ
increases monotonically (but not linearly) with time. The
equations of motion in these variables are

ȧ = 0 , (2.3a)

ψ̇ =
√

1 + βa2(1 + cos2 ψ)/2 . (2.3b)

Now consider turning on the external force. Then the
right-hand sides of the equations of motion (2.3) will ac-
quire terms proportional to ǫ. If we differentiate the def-
inition (2.2b) of ψ with respect to t, insert the result into

the definition (2.2a) of a, and solve for ψ̇ using also Eq.
(2.2c) we obtain

ψ̇ =
ȧ

a
cotψ +

√

1 + βa2(1 + cos2 ψ)/2 , (2.4)

which explicitly shows the extra forcing term. However
this term contains an apparent divergence at ψ = 0. The
divergence is only apparent, since ȧ will be constrained
to vanish when ψ = 0, because the rate at which the force
does work will vanish when the velocity of the particle is
zero.
To see this explicitly, we substitute the definition

(2.2b) of ψ into the definition (2.2a) of a, and solve for ẋ
to get

ẋ = −a sinψ
√

1 + βa2(1 + cos2 ψ)/2 . (2.5)

Next, we differentiate both sides of Eq. (2.2a) with re-
spect to t, and simplify the right-hand side using the
equation of motion (2.1). This gives

(a+ βa3)ȧ = ǫẋaext . (2.6)

Now using the result (2.5) for ẋ and substituting into Eq.
(2.4) gives the final results

ψ̇ =
√

1 + βa2(1 + cos2 ψ)/2

[

1− ǫ
cosψaext
a(1 + βa2)

]

,

(2.7a)

ȧ = −ǫ
√

1 + βa2(1 + cos2 ψ)/2
sinψ aext
1 + βa2

, (2.7b)

where aext(x, v) is evaluated at x = a cosψ, and v =
v(a, ψ) given by the expression (2.5).
The final result (2.7) now casts the system of differen-

tial equations entirely in terms of the variables a and ψ,
and as expected there are no divergences. Note however
that Eq. (2.4) would show a divergence if one used an
approximate, orbit-averaged version of ȧ instead of the
exact expression for ȧ.
In the analogous problem in Kerr, it is very straight-

forward to compute the analog of the equation of motion
(2.4) which contains the apparent divergence. For numer-
ical work, this form of the equation would be problem-
atic, since the right-hand side evaluates to 0/0 at turning
points. Our goal was to attempt to reformulate the equa-
tions in Kerr analytically, to achieve a form analogous to
Eq. (2.7), where all the divergences have been removed.
Although it was not clear a priori that this would be
possible (because of the complexity of the Kerr-orbit dy-
namical system), we were successful in finding an explic-
itly finite form of the equations of motion in both sets of
variables.
For the problem that we are really interested in, per-

turbed geodesics in the Kerr spacetime, it will be espe-
cially useful to consider the adiabatic limit ǫ→ 0 of small
external perturbations. So we consider adiabatic per-
turbations in the context of our example problem. The
equations of motion (2.7) for ψ and a can be written in
the general form

ψ̇ = ω(ψ, a) + ǫg(1)(ψ, a) +O(ǫ2) , (2.8a)

ȧ = ǫG(1)(ψ, a) +O(ǫ2) . (2.8b)
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Here on the right-hand side, all the functions are periodic
functions of ψ with period 2π. In Appendix B we derive
the limiting form of the solutions in the limit ǫ → 0; see
also Ref. [12]. The leading order or adiabatic solutions
are given by the following set of steps:

1. We define the averaging operation, for any function
f(ψ) of ψ, by

〈f〉a ≡
∫ 2π

0
dψ f(ψ)

ω(ψ,a)
∫ 2π

0
dψ 1

ω(ψ,a)

. (2.9)

The subscript a on the left hand side is a reminder
that the averaging operation depends on the value
of a.

2. We define the averaged functions

ω̄(a) ≡ 〈ω(ψ, a)〉a , (2.10)

and

Ḡ(1)(a) ≡ 〈G(1)(ψ, a)〉a . (2.11)

3. We solve a pair of ordinary differential equations in
the slow time parameter

t̃ = ǫt , (2.12)

for two auxiliary functions χ(0)(t̃) and a(0)(t̃). This
pair of ordinary differential equations is

dχ(0)

dt̃
= ω̄(a(0)(t̃)) , (2.13a)

da(0)

dt̃
= Ḡ(1)(a(0)(t̃)) . (2.13b)

Note that for this step, one does not need to specify
a value of ǫ.

4. We can then write down the adiabatic solutions:

a(t, ǫ) = a(0)(ǫt) , (2.14a)

ψ(t, ǫ) = Ξ

[

1

ǫ
χ(0)(ǫt) , a(0)(ǫt)

]

, (2.14b)

where the function Ξ(χ, a) is defined implicitly by
the equation

χ

2π
=

∫ Ξ(χ,a)

0
dψ

ω(ψ,a)
∫ 2π

0
dψ

ω(ψ,a)

. (2.15)

and satisfies Ξ(χ+ 2π, a) = Ξ(χ, a) + 2π. (The in-
verse of the mapping Ξ essentially maps the given
phase space coordinates onto action-angle vari-
ables.)

Note that there is an asymmetry in how the forcing
terms g(1) and G(1) in Eq. (2.8) enter into the adiabatic
solution (2.14). The function G(1), which drives the en-
ergy evolution, does enter, but the function g(1), which
drives the phase evolution, does not enter at all. It influ-
ences only the post-1-adiabatic solutions.
Note also that one cannot obtain the adiabatic solu-

tions by any simple modification of the original differen-
tial equations.

B. Analysis exploiting analytic solution to

un-forced motion

It is also possible to find an analytic solution to the un-
perturbed anharmonic oscillator in terms of elliptic func-
tions. Equation (2.2a) can be rearranged to give

ẋ2 =
β

2

(

x2+ − x2
) (

x2 − x2−
)

, (2.16)

where we have defined the turning points

x2± =
1

β

(

−1±
√

1 + 2Eβ
)

. (2.17)

in terms of the energy E, which is set to be twice the
conserved quantity on the right-hand side of Eq. (2.2a),
and is related to the amplitude of motion a and the non-
linearity parameter β by

E = a2 +
1

2
βa4 . (2.18)

For β > 0, all of the solutions are bound and oscillate
periodically in the interval −x2+ ≤ x ≤ x2+. Without
loss of generality we can set x(t0) = 0, in which case
Eq. (2.16) can be rearranged and integrated to give

∫ x

0

dy
√

(y2 − x2−)(x
2
+ − y2)

=
1

√

x2+ − x2−

× F



sin−1

(

x

x+

√

x2+ − x2−
x2 − x2−

)

;
x+

√

x2+ − x2−





= ±
√

β

2
(t− t0) , (2.19)

Here F(φ; k) denotes the Jacobi elliptic integral of the
first kind [16]

F(φ; k) =

∫ sinφ

0

dx
√

(1− x2)(1 − k2x2)

=

∫ φ

0

dα
√

1− k2 sin2 α
. (2.20)

In the following, we will denote all elliptic integrals by
bold capital letters. The inverse of this elliptic integral
is given by the elliptic function sn(u; k) such that

F(φ; k) = u ⇔ φ(u; k) = sin−1 [sn(u; k)] ,
(2.21)
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For the solutions (2.19), the parameter k and argument
u are given by

k2 =
x2+

x2+ − x2−
=

√
1 + 2Eβ − 1

2
√
1 + 2Eβ

, (2.22)

u = (1 + 2Eβ)
1/4

(t− t0) , (2.23)

The relation between x(t) and the elliptic function is then

x
√

x2 − x2−

= ksn(u; k) . (2.24)

Solving this gives an expression for x2 that is somewhat
unsatisfying since using it requires manually flipping the
sign of x. We can instead get a simpler expression if we
introduce the additional elliptic function

dn(u; k) =
√

1− k2sn2(u; k) . (2.25)

The result is

x = k

√

2(1− k2)

β(1− 2k2)
sd(u; k) , (2.26)

where sd(u; k) = sn(u; k)/dn(u; k).
We will now derive the osculating element equations

for the variables u and k. The physical variables E and
t0 can be obtained from these simply via

E =
2k2(1− k2)

β(1− 2k2)2
, (2.27)

dE

dt
=

4k

β(1− 2k2)3
dk

dt
, (2.28)

t0 = t−
√

1− 2k2u , (2.29)

dt0
dt

= 1−
√

1− 2k2
du

dt
+

2ku√
1− 2k2

dk

dt
. (2.30)

To derive the equations of motion in the osculating ele-
ment form we need to differentiate sd(u; k) with respect
to u and k. This gives

∂sd

∂u
(u; k) =

cn(u; k)

dn2(u; k)
, (2.31)

∂sd

∂k
(u; k) =

u cn(u; k)

k dn(u; k)
− E[φ(u; k); k]cn(u; k)

k(1− k2)dn2(u; k)

+
k sn(u; k)

(1− k2)dn(u; k)
, (2.32)

where we have introduced the elliptic function cn(u; k),
which is defined by the analogue of Eq. (2.21) but with
sin−1 replaced by cos−1, and where E(φ; k) is the elliptic
integral of the second kind [16]:

E(φ; k) =

∫ sinφ

0

dx

√

1− k2x2

1− x2

=

∫ φ

0

dα
√

1− k2 sin2 α . (2.33)

Since the parameter k depends only on the energy, the
evolution equation can be derived directly from the equa-
tion for the energy evolution, which follows by differen-
tiation of Eq. (2.2a) and use of Eq. (2.1):

dE

dt
= 2ẋǫaext . (2.34)

The evolution equation for u follows from differentiating
the orbit equation with respect to time and setting this
equal to the velocity of the unperturbed orbit, which is
given by Eq. (2.26):

dx

dt geo
=

√

2(1− k2)k2

β(1 − 2k2)2
∂sd

∂u
. (2.35)

Putting these elements together we find the equations for
the osculating evolution of the orbit

dk

dt
= ǫaext(x, ẋ)(1 − 2k2)2

√

β

2
(1− k2)

∂sd

∂u
, (2.36)

du

dt
=

1√
1− 2k2

− ǫaext(x, ẋ)(1 − 2k2)

√

β

2
(1− k2)

×
[

1− 2k2 + 2k4

k(1− k2)(1− 2k2)
sd(u; k) +

∂sd

∂k

]

, (2.37)

where the perturbing force is to be evaluated for the
geodesic position and velocity,

x =

√

2k2(1− k2)

β(1 − 2k2)
sd(u; k) , (2.38)

ẋ =

√

2k2(1− k2)

β(1− 2k2)2
∂sd

∂u
. (2.39)

We can now derive the adiabatic approximation to the
solution of Eqs. (2.36) and (2.37) following the steps
described at the end of Sec. II A. Eqs. (2.36) and
(2.37) have the same general form as dψ/dt and da/dt
in Sec. II A. That is, we can write them as

u̇ = ω(u, k) + ǫg(1)(u, k) +O(ǫ2) (2.40a)

k̇ = ǫG(1)(u, k) +O(ǫ2) , (2.40b)

where we have now redefined the functions ω, g(1), and
G(1). By comparing against the formula for u̇, we find

ω(u, k) = ω(k) = (1 − 2k2)−1/2 . (2.41)

As a result, the averaging operation is greatly simplified:

〈f(u, k)〉k =
1

U(k)

∫ U(k)

0

du f(u, k) , (2.42)

where U(k) is the period in u for the general solution
(2.38)

U(k) = 4F(π/2, k) = 4K(k) . (2.43)
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Here K(k) is the complete elliptic integral of the first
kind. Note however that this period depends on k,
whereas, in the previous parametrization, the period in
ψ was simply 2π.

As before, the two functions we wish to average are ω
and G(1). Since ω is independent of u,

ω̄ = 〈ω〉k = ω . (2.44)

To make further progress we must specify the perturbing
force. We take this to be

aext = −γẋ+ δx2 . (2.45)

By substituting the Eqs. (2.38) and (2.39) for x(u, k) and
ẋ(u, k) into this expression, we find, omitting the argu-
ments for the elliptic functions, all of which depend on
both u and k,

G(1)(u, k) = −γk(1− k2)(1 − 2k2)

(

∂sd

∂u

)2

+δk2(1 − k2)3/2(1 − 2k2)

√

2

β
sd2

∂sd

∂u
. (2.46)

The second term in this expression is symmetric about
zero, and has period U , so it vanishes under the averag-
ing operation. The first term is also periodic, but it does
not vanish under averaging since it is always positive. Re-
calling the relation between ∂sd/∂u and the other elliptic
functions (2.31),

Ḡ(1) =
〈

G(1)
〉

k
= −γk(1− k2)(1− 2k2)

〈

cn2

dn4

〉

k

,

(2.47)
and exploiting the following identities,

sn2 + cn2 = 1 , (2.48)

dn2 + k2sn2 = 1 , (2.49)

we can rewrite Ḡ(1) as

Ḡ(1) = γ(1−2k2)

[

1− k2

k

[

(1− k2)
〈

dn−4
〉

k
−
〈

dn−2
〉

k

]

]

.

(2.50)
The averaging operations can be reduced to just one in-
tegral by using the identity [16]

∫

du dnm =
1

(m+ 1)(1− k2)

[

k2dnm+1 sn cn

+ (m+ 2)(2− k2)

∫

du dnm+2

− (m+ 3)

∫

du dnm+4

]

. (2.51)

The first term in square brackets vanishes on the ends of

the interval {0,U}, so
∫ U

0

du dnm =
1

(m+ 1)(1− k2)

×
[

(m+ 2)(2− k2)

∫ U

0

du dnm+2

− (m+ 3)

∫ U

0

du dnm+4

]

. (2.52)

which after using Eq. (2.51) gives

Ḡ(1) = γ(1− 2k2)

[(

2

3

2− k2

k
− 1

k

)

〈

dn2
〉

k
− 1− k2

3k

]

.

(2.53)
The average can be written as an elliptic integral using
[16]

∫

du dn2 = E[φ(u; k); k] , (2.54)

where E(u; k) is the elliptic integral of the second kind
given in Eq. (2.33), and the amplitude function φ(u; k) is
given by Eq. (2.21). This leaves us with the final result

Ḡ(1) = γ(1− 2k2)

[(

2

3

2− k2

k
− 1

k

)

E(k)

K(k)
− 1− k2

3k

]

,

(2.55)
where we have used U = 4K(k), and we use E(k) =
E(π/2, k) to denote the complete elliptic integral of the
second kind.

C. Example force

We will illustrate the techniques described above for an
oscillator subject to the forcing term given in Eq. (2.45),
i.e.,

aext = −γẋ+ δx2 (2.56)

with ǫ = 10−3, β = 0.1, γ = 0.15, δ = 0.2 and initial con-
ditions x(0) = 1.0, ẋ(0) = 0. The analytic solutions to
the un-forced motion, as described in Secs. II B and IIA,
were found to be essentially identical over the full integra-
tion time (as we would expect since these are both exact
solutions to the forced motion). In Fig. 1, we show the
significant disagreements between (i) using the analytic
solution to the un-forced motion as described in Sec. II B
(labeled “exact”); and (ii) using the adiabatic approx-
imation to the evolution, given by Eqs. (2.40), (2.44)
and (2.55) (labeled “adiabatic”).
There was no significant disagreement when it came to

predicting the scale parameter k2, but there was signifi-
cant disagreement in what those formalisms predicted for
the position x(t), the phase u, and the time-offset t0. The
top panel in Fig. 1 shows that the adiabatic and exact
positions go completely out of phase around t = 2000, af-
ter which they then continue to pass in and out of phase
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FIG. 1: Comparison between the exact and adiabatic ap-
proaches to evolving the orbit, both from Sec. II B. The top
panel shows the exact solution x(t) (solid lines), as well as
the difference between the exact and adiabatic x(t) (dashed
lines). The insets show close-up views of the first/last 100s of
the same curves. The bottom panel shows the disagreement
between the exact and adiabatic predictions for the phase u

(solid line) and time-offset t0 (dashed line).

with each other. This is to be expected, since the adi-
abatic solution is only an approximation. The bottom
panel shows disagreements in both the phase u and the
time-offset t0. These grow to several cycles by the end of
the integration, while the error in k2 (not shown) remains
small throughout the integration. This is also to be ex-
pected. Because of the terms we omit, we would expect
the error in k2 to scale like ǫ2, while the error in phase u,
and correspondingly the error in t0 from Eq. (2.29), will
scale like ǫ.

Given that the exact solutions obtained via the an-
alytic and phase solutions are the same, the choice of
which parametrization to use must be made on the ba-
sis of practicality. The integration of the analytic form
of the equations is more computationally expensive, as

the elliptic functions must be evaluated at each integra-
tion step, so the phase form of the equations is probably
preferable if we are interested only in the exact solution
to x(t). However, the averaged functions required for the
adiabatic approximation to the solution are most easily
derived from the analytic form of the equations, so this
approach is better when we are interested in deriving an
approximate solution to the equations.

III. OSCULATING ELEMENTS FOR ORBITS IN

THE KERR METRIC

A. Summary of Notation

In Boyer-Lindquist coordinates (t, r, θ, φ), the Kerr
metric is

ds2 = −
(

1− 2Mr

Σ

)

dt2 − 4a sin2 θMr

Σ
dtdφ

+ (̟4 −∆a2 sin2 θ)
sin2 θ

Σ
dφ2 +Σdθ2

+
Σ

∆
dr2 . (3.1)

Here

Σ ≡ r2 + a2 cos2 θ , (3.2a)

∆ ≡ r2 + a2 − 2Mr , (3.2b)

̟ ≡
√

r2 + a2 , (3.2c)

and M , a are the black hole mass and spin parameter.
Throughout the rest of this paper we use units in which
M = 1, for simplicity.

We will make use of the Kinnersley null tetrad ~l, ~n, ~m,
~m∗, which is given by

~l =
̟2

∆
∂t + ∂r +

a

∆
∂φ , (3.3)

~n =
̟2

2Σ
∂t −

∆

2Σ
∂r +

a

2Σ
∂φ , (3.4)

and

~m =
1√

2(r + ia cos θ)

(

ia sin θ∂t + ∂θ +
i

sin θ
∂φ

)

.

(3.5)
The corresponding one-forms are

l = −dt+ a sin2 θdφ+
Σ

∆
dr, (3.6)

n = − ∆

2Σ
dt+

a∆sin2 θ

2Σ
dφ− 1

2
dr , (3.7)

and

m =
1√

2(r + ia cos θ)

(

−ia sin θdt+Σdθ + i̟2 sin θdφ
)

.

(3.8)
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The basis vectors obey the orthonormality relations ~l·~n =
−1 and ~m · ~m∗ = 1, while all other inner products vanish.
The metric can be written in terms of the basis one-forms
as

gαβ = −2l(αnβ) + 2m(αm
∗

β) . (3.9)

We define the conserved energy per unit rest mass µ:

E = −~u · ∂
∂t

, (3.10)

the conserved z-component of angular momentum di-
vided by µM :

Lz = ~u · ∂
∂φ

, (3.11)

and Carter constant divided by µ2M2:

Q = u2θ − a2 cos2 θE2 + cot2 θL2
z + a2 cos2 θ . (3.12)

(From now on we will for simplicity call these dimen-
sionless quantities “energy,” “angular momentum,” and
“Carter constant.”) The geodesic equations can then be
written in the form [17]

(

dr

dλ

)2

=
[

E(r2 + a2)− aLz
]2 −∆

[

r2 + (Lz − aE)2 +Q
]

≡ Vr(r) , (3.13)
(

dθ

dλ

)2

= Q− cot2 θL2
z − a2 cos2 θ(1 − E2)

≡ Vθ(θ) , (3.14)

dφ

dλ
= csc2 θLz + aE

(

r2 + a2

∆
− 1

)

− a2Lz
∆

≡ Vφ(r, θ) , (3.15)

dt

dλ
= E

[

(r2 + a2)2

∆
− a2 sin2 θ

]

+ aLz

(

1− r2 + a2

∆

)

≡ Vt(r, θ) . (3.16)

Here λ is the Mino time parameter [18], related to proper
time τ by

dλ =
1

Σ
dτ . (3.17)

and we use these equations to define the potentials Vr(r),
Vθ(θ), Vφ(r, θ) and Vt(r, θ). Sometimes it will be conve-
nient to use, instead of the Carter constant Q, the quan-
tity

K = Q+ (Lz − aE)2 . (3.18)

For the rest of this section we specialize to bound
geodesics, which are periodic in r and θ.

B. Change of Variables

Eqs. (3.13) – (3.16) form a complete set of equations
that can be solved to obtain the geodesic motion. How-
ever, it is difficult in practice to use the variables r and
θ due to sign flips that occur in, for example,

dr

dλ
= ±

√

Vr(r) ,

at turning points. Therefore we follow Drasco and
Hughes in switching to an alternative set of variables
[13, 17].

1. Angular motion

We introduce the notation z = cos2 θ, and note that
the effective potential can be written as

Vθ(z) =
1

1− z

[

Q(1− z)− zL2
z − βz(1− z)

]

, (3.19)

where β = a2(1 − E2). We note that this β is different
from the variable appearing in the forced oscillator in
Sec. II. All subsequent references to β will assume this
new definition. We define z− and z+ with z− < z+ to be
the two roots, so that

Vθ(z) =
1

1− z
β(z− − z)(z+ − z) , (3.20)

These roots z− and z+ are functions of E, Lz and Q, and
are positive with 0 < z− < 1 and z+ > 1. The motion
takes place in the region 0 ≤ z ≤ z−.
We replace the angular variable θ, which oscillates,

with another angular variable ψθ, which increases mono-
tonically with time. The definition is given by

cos θ =
√
z− cosψθ . (3.21)

Note that, for general forced motion z−, will change with
time, along with θ and ψθ.

2. Radial motion

We define r1, r2, r3 and r4 to be the roots of the radial
potential Vr(r):

Vr(r) = (1−E2)(r1 − r)(r− r2)(r− r3)(r− r4) . (3.22)

Here the roots are ordered as 0 < r4 < r3 < r2 < r1, and
the motion takes place in the region r2 < r < r1. The
roots are functions of E, Lz and Q.
We replace the radial variable r, which oscillates, with

an angular variable ψr, which increases monotonically
with time. The definition is given by

r =
p

1 + e cosψr
, (3.23)
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where the semilatus rectum p and eccentricity e are de-
fined by

r1 =
p

1− e
, r2 =

p

1 + e
. (3.24)

C. Forced motion using tetrad components of

acceleration and using convenient phase and energy

coordinates on phase space

We now turn to the forced geodesic equation

d2xα

dτ2
+ Γαβγ

dxβ

dτ

dxγ

dτ
= aα , (3.25)

where aα is the external four acceleration. In this subsec-
tion we derive our first formulation for integrating this
equation, which parametrizes the acceleration in terms of
its components on the Kinnersley null tetrad, and which
parametrizes the motion in terms of a convenient set of
coordinates on phase space that includes E, Lz and Q.
The formulation is analogous to that presented in Sec.
II A for the nonlinear oscillator model. In particular, the
phase variables used here are not conserved for geodesic
motion. Our second formulation will be derived in the
next subsection.
Eqs. (3.13) – (3.16) are still valid for the forced geodesic

equation. However, they must now be supplemented with
evolution equations for E, Lz and Q (or K). We decom-
pose the four acceleration on the Kinnersley tetrad as

~a = −an~l − al~n+ a∗m ~m+ am ~m
∗ . (3.26)

These four components are not all independent, since the
acceleration must be orthogonal to the four velocity. We
define

Ra =
1√
2
(am + a∗m) , Ia =

i√
2
(am − a∗m) , (3.27)

and we take the three independent components to be an,
Ra and Ia. In Sec. III E we will show how the tetrad com-
ponents of the acceleration, (an, al, a

∗
m, am), relate to the

acceleration components in Boyer-Lindquist coordinates,
(at, ar, aθ, aφ).
We similarly decompose the four velocity in terms of

the Kinnersley tetrad as

~u = −un~l − ul~n+ u∗m ~m+ um ~m
∗ , (3.28)

and we define

Ru =
1√
2
(um + u∗m) , Iu =

i√
2
(um − u∗m) , (3.29)

The components are given by the expressions

ul = ur −
F

∆
, (3.30a)

un = − F

2Σ
− ∆

2Σ
ur , (3.30b)

Ru =
r

Σ
uθ +

aH cos θ

Σ sin θ
, (3.30c)

Iu =
a cos θ

Σ
uθ −

rH
Σ sin θ

. (3.30d)

where

H = Lz − aE sin2 θ , (3.31)

and

F = ̟2E − aLz . (3.32)

The orthonormality condition ~u ·~a = 0 allows us to solve
for al:

al = − ul
un
an +

1

un
(RaRu + IaIu) . (3.33)

We also define the following three combinations of accel-
eration components:

AI = rRa + aIa cos θ , (3.34a)

AII = rIa − aRa cos θ , (3.34b)

AIII = RuRa + IuIa . (3.34c)

We can now write down the evolution equations for the
energy, angular momentum and Carter constant. These
are (see Appendix A)

dE

dλ
=
uran∆

un
− ∆AIII

2un
− a sin θAII , (3.35)

dLz
dλ

=
a sin2 θuran∆

un
− a sin2 θ∆AIII

2un
−̟2 sin θAII ,

(3.36)
and

dK

dλ
= 2Σ2AIII . (3.37)

1. Equations of motion in terms of phase variables

We next replace the equations of motion (3.13) and
(3.14) for r and θ with new equations of motion for ψθ and
ψr, which are derived in Appendix A. The new equation
for ψθ is

dψθ
dλ

=
√

β(z+ − z)

[

1 +
(1− z−)ΣAI cosψθ
β
√
z−(z+ − z−) sin θ

]

+
cosψθ sinψθHa∆(AIII − 2uran)

2(z+ − z−)βun

+
cosψθ sinψθGAII

β(z+ − z−)
, (3.38)

where z = z− cos2 ψθ and

G =
̟2Lz
sin θ

− a3(1 − z−) sin θE . (3.39)
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The new equation for ψr is

dψr
dλ

= P +
CAIII sinψr

2(1 + e cosψr)un
+

DΣAIIIP
2(1 + e cosψr)2un

− aE sin θ sinψrAII

1 + e cosψr
+

Pan
un(1 + e cosψr)2

×
[

(1− e)2(1− cosψr)
Σ1F1

κ1

+ (1 + e)2(1 + cosψr)
Σ2F2

κ2

]

, (3.40)

where

P = p
√
J /(1− e2) , (3.41)

J = (1 − E2)(1− e2) + 2

(

1− E2 − 1− e2

p

)

(1 + e cosψr)

+

{

(1 − E2)
3 + e2

1− e2
− 4

p
+
[

a2(1 − E2) + L2
z +Q

] 1− e2

p2

}

(1 + e cosψr)
2 , (3.42)

C =
Q1(1 − e)

κ1
− Q2(1 + e)

κ2
, (3.43)

D = (1 − e)2(1− cosψr)
∆1

κ1
+ (1 + e)2(1 + cosψr)

∆2

κ2
, (3.44)

Q1 = −2aLzrr1 − a4E(r + r1) + a3Lz(r + r1)− a2E
(

r3 + r2r1 + r31 + rr1(−2 + r1)
)

− Err1
(

rr1(r + r1)− 2
(

r2 + rr1 + r21
))

− a2
(

2a2E − 2Err1 + aLz(−2 + r + r1)
)

cos2 θ , (3.45)

Q2 = −2aLzrr2 − a4E(r + r2) + a3Lz(r + r2)− a2E
(

r3 + r2r2 + r32 + rr2(−2 + r2)
)

− Err2
(

rr2(r + r2)− 2
(

r2 + rr2 + r22
))

− a2
(

2a2E − 2Err2 + aLz(−2 + r + r2)
)

cos2 θ , (3.46)

E =
F1(1− e)(r + r1)

κ1
− F2(1 + e)(r + r2)

κ2
. (3.47)

Here κ = V ′
r (r), and subscripts 1 or 2 mean that a quan-

tity is evaluated at r = r1 or r = r2 (except for Q1 and
Q2).

D. Forced motion using Boyer-Lindquist

coordinate components of acceleration and phase

variables that are conserved for geodesic motion

In this subsection we derive our second formulation for
integrating the forced geodesic equation, which is analo-
gous to that presented in Sec. II B above for the nonlin-
ear oscillator model. This formulation parametrizes the
acceleration in terms of its Boyer-Lindquist coordinate
components. It parametrizes the motion in terms of two
phases ψ0 and χ0 defined below, which are conserved for
geodesic motion, and three other parameters equivalent
to E, Lz and Q, namely, the orbital eccentricity e, semi-
latus rectum p and angle of inclination ι (defined in Ref.
[14]). This formulation is a generalization of the treat-
ment of the Schwarzschild problem described by Pound
and Poisson in [1].

In principle, we must evolve eight parameters, which
are the four constants of motion and the four initial phase
angles. However, one of these equations is eliminated by
using the orthogonality condition ẋαaα = 0, where a dot
denotes differentiation with respect to proper time, τ ,
and aα is the acceleration. This condition is discussed
in [1] and comes from the definition of proper time.

In this section we will write the phase angles in the
form ψr = ψ−ψ0, ψθ = χ−χ0 and derive explicit equa-
tions for the time evolution of the initial-phase constants
ψ0 and χ0. The other parts of the phases, ψ and χ, are
evolved using the standard geodesic expressions. While
in practice we will need ψr and ψθ to evolve the orbit,
we decompose the equations this way to facilitate com-
parison to [1] and to make it easier to identify the con-
servative contributions from the perturbing force, which
are essentially 〈ψ̇0〉, 〈χ̇0〉.
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1. Contravariant formulation

The Gaussian perturbation equations (1.3) carry over
to the relativistic case and gives Eqs. (27)-(32) in [1]. In
the Kerr case, we have two additional equations as the
θ motion is no longer trivial. In [1], the equations were
integrated with respect to the anomaly. In the Kerr case,
as we have two anomalies, it will be more convenient to
integrate the equations with respect to the coordinate
time, t. The equations of motion that are independent
of the force terms are

∂r

∂p
p′ +

∂r

∂e
e′ +

∂r

∂ι
ι′ +

∂r

∂ψ0
ψ′

0 +
∂r

∂χ0
χ′

0 = 0 ,

(3.48)

∂θ

∂p
p′ +

∂θ

∂e
e′ +

∂θ

∂ι
ι′ +

∂θ

∂ψ0
ψ′

0 +
∂θ

∂χ0
χ′

0 = 0 ,

(3.49)

∂φ

∂p
p′ +

∂φ

∂e
e′ +

∂φ

∂ι
ι′ +

∂φ

∂ψ0
ψ′

0 +
∂φ

∂χ0
χ′

0 +Φ′ = 0 ,

(3.50)

∂t

∂p
p′ +

∂t

∂e
e′ +

∂t

∂ι
ι′ +

∂t

∂ψ0
ψ′

0 +
∂t

∂χ0
χ′

0 + T ′ = 0 .

(3.51)

Here Φ and T denote the phase offsets for the evolution
of φ and t. We can ignore these equations if we evolve t
and φ explicitly using the geodesic expressions evaluated
along the instantaneous orbit, which amounts to evolving
t−T and φ−Φ directly, as in the tetrad formulation. In
the above, we use a dash to denote differentiation with
respect to the parameter we use to define our orbit, which
we take to be t. We will use a dot to denote differentiation
with respect to the proper time τ . The remaining four
equations of motion are

∂ṫ

∂p
p′ +

∂ṫ

∂e
e′ +

∂ṫ

∂ι
ι′ +

∂ṫ

∂ψ0
ψ′

0 +
∂ṫ

∂χ0
χ′

0 = atτ ′ ,

(3.52)

∂ṙ

∂p
p′ +

∂ṙ

∂e
e′ +

∂ṙ

∂ι
ι′ +

∂ṙ

∂ψ0
ψ′

0 +
∂ṙ

∂χ0
χ′

0 = arτ ′ ,

(3.53)

∂θ̇

∂p
p′ +

∂θ̇

∂e
e′ +

∂θ̇

∂ι
ι′ +

∂θ̇

∂ψ0
ψ′

0 +
∂θ̇

∂χ0
χ′

0 = aθτ ′ ,

(3.54)

∂φ̇

∂p
p′ +

∂φ̇

∂e
e′ +

∂φ̇

∂ι
ι′ +

∂φ̇

∂ψ0
ψ′

0 +
∂φ̇

∂χ0
χ′

0 = aφτ ′ .

(3.55)

The terms ∂ṙ/∂p etc. denote differentiation of the
geodesic equations given earlier with respect to the var-
ious orbital parameters. Following [1], we can use the
orthogonality condition to get rid of one of these equa-
tions, specifically Eq. (3.52), and we will directly inte-
grate φ and t which means we do not need to consider
Eqs. (3.50)–(3.51).
We can rearrange Eqs. (3.48)–(3.49) to give

ψ′

0 = − 1

∂r/∂ψ0

(

∂r

∂p
p′ +

∂r

∂e
e′ +

∂r

∂ι
ι′
)

, (3.56)

χ′

0 = − 1

∂θ/∂χ0

(

∂θ

∂p
p′ +

∂θ

∂e
e′ +

∂θ

∂ι
ι′
)

, (3.57)

where we have made use of the fact that the equation
for r, (3.24), is independent of χ0 and the equation for θ,
(3.21), is independent of ψ0. The partial derivative ∂r/∂ι
also vanishes, but we include this term explicitly for sim-
plicity of notation in the following. We generalize [1] by
writing

La(x) =
∂ẋ

∂a
− ∂r/∂a

∂r/∂ψ0

∂ẋ

∂ψ0
− ∂θ/∂a

∂θ/∂χ0

∂ẋ

∂χ0
. (3.58)

Substitution into Eqs. (3.53)–(3.55) then gives
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p′ =
τ ′

D

(

(Le(θ)Lι(φ) − Le(φ)Lι(θ))ar + (Lι(r)Le(φ) − Lι(φ)Le(r))aθ + (Le(r)Lι(θ)− Le(θ)Lι(r))aφ
)

, (3.59)

e′ =
τ ′

D

(

(Lι(θ)Lp(φ)− Lι(φ)Lp(θ))ar + (Lp(r)Lι(φ)− Lp(φ)Lι(r))aθ + (Lι(r)Lp(θ)− Lι(θ)Lp(r))aφ
)

, (3.60)

ι′ =
τ ′

D

(

(Lp(θ)Le(φ)− Lp(φ)Le(θ))ar + (Le(r)Lp(φ) − Le(φ)Lp(r))aθ + (Lp(r)Le(θ)− Lp(θ)Le(r))aφ
)

, (3.61)

D = Lp(r)(Le(θ)Lι(φ) − Lι(θ)Le(φ))− Le(r)(Lp(θ)Lι(φ) − Lι(θ)Lp(φ)) + Lι(r)(Lp(θ)Le(φ) − Lp(φ)Le(θ)) .
(3.62)

The correct evolution equations for the phase constants
ψ0 and χ0 may be found by substituting the preceding
equations into (3.56)–(3.57). In the next section we will
describe an alternative form of these equations which
greatly simplifies the evolution of the constants of the
motion. We include the above equations for completeness
and to allow a direct comparison to the Schwarzschild re-
sults described in [1].

2. Covariant formulation

The preceding section presented the equations in a con-
travariant formulation. We note that the equations for
the evolution of the phase constants, (3.56)–(3.57), ap-
pear to be singular at turning points where ∂r/∂ψ0 = 0
or ∂θ/∂χ0 = 0. These are not real singularities, as the
numerator also vanishes at the turning points, but it re-
quires significant simplification to make this explicit. It
is also possible to derive an alternative set of equations to
(3.52)–(3.55) from a covariant formulation of the equa-
tions. Pound and Poisson [1] chose the contravariant for-
mulation in the Schwarzschild case, since they found it
easier to eliminate the singularities at turning points in
that formulation. However, there are advantages to using
the covariant formulation, since two of the covariant ve-
locity components are then equal to conserved quantities,
ut = E, uφ = Lz. The osculation conditions become

∂xαG
∂IA

İA = 0 ,
∂vGα
∂IA

İA = fα , (3.63)

where

vGα = gαβ
dzαG
dλ

, (3.64)

in which IA denotes the orbital elements, including the
phase constants. The first equation is the same as
Eqs. (3.48)–(3.51) which reduce to (3.56) and (3.57). The
second equation is the equivalent of Eqs. (3.52)–(3.55),
but in this case two of the equations simplify significantly,
namely,

Ė = ft , L̇z = fφ . (3.65)

In the Schwarzschild case, there is no equation for the
θ motion and the radial equation follows from (3.65)

through the constraint żαfα = 0. In the Kerr case, we
do need to solve one of the radial or θ equations, or some
combination of them. Alternatively, using the definition
of the Carter constant in terms of the Killing tensor,
we can derive the evolution equation for Q straightfor-
wardly. The time evolution of the related constant K
defined in Eq. (3.18), can be found from equation (A9)

in appendix A as K̇ = Kαβuαaβ . The Killing tensor
Kαβ can be written in terms of lα and nα as

Kαβ = 2Σl(αnβ) + r2gαβ , (3.66)

from which we obtain

K̇ = Ė
2

∆
(̟4E−a̟2Lz)+L̇z

2

∆
(a2Lz−a̟2E)−2∆urar ,

(3.67)

where we have used Ė = −at, and L̇z = aφ. An alterna-
tive expression for Kαβ in terms of mα and m∗α exists
and is given in Appendix A as Eq. (A3). If we had used
this definition we would have found an equivalent expres-
sion for K̇ that was a linear combination of Ė, L̇z and
aθ. The two expressions are equivalent, since the orthog-
onality relation between the perturbation force and four
velocity always allows the elimination of one component
of the force.

These three equations provide an alternative way to
evolve the constants of the motion, E, Lz and Q, but
we must still evolve ψ0 and χ0 using (3.56)–(3.57) and
therefore we still need to deal with the turning points.

It is possible to derive an alternative form of these
expressions that is manifestly finite at turning points by
starting with the radial geodesic equation in the form

Σ2ṙ2 = Vr(r, Lz, E,Q) . (3.68)

We need to show that the term

∂r

∂E
Ė +

∂r

∂Lz
L̇z +

∂r

∂Q
Q̇ , (3.69)

that appears in an alternative version of Eq. (3.56), is
proportional to r′. Differentiation of Eq. (3.68) with re-
spect to E yields
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2Σ2ṙ
∂ṙ

∂E
+ 2Σ

(

2r
∂r

∂E
− 2a2 cos θ sin θ

∂θ

∂E

)

ṙ2 =
∂Vr
∂E

+
∂Vr
∂r

∂r

∂E
. (3.70)

Similar equations may be obtained by differentiating with respect to Lz and Q. Multiplying the E equation by Ė etc.
and adding the equations together, all terms on the left-hand side are proportional to ṙ, while on the right-hand side
we get the expression (3.69) multiplied by ∂Vr/∂r plus the term

∂Vr
∂E

Ė +
∂Vr
∂Lz

L̇z +
∂Vr
∂Q

Q̇ = 2ṙΣ2

(

r̈ − 1

2Σ2

∂Vr
∂r

+
Σ̇

Σ
ṙ

)

, (3.71)

where the second equality follows from differentiation of Eq. (3.68) with respect to time. The term in parentheses on
the right-hand side is what we would obtain if we were on a geodesic, and therefore it necessarily equals ar in the
evolving case. The final expression is

ψ̇0 = 2
ψ̇geo

∂Vr/∂r

[

Σ2

(

Ė
∂ṙ

∂E
+ L̇z

∂ṙ

∂Lz
+ Q̇

∂ṙ

∂Q

)

+ 2Σrṙ

(

Ė
∂r

∂E
+ L̇z

∂r

∂Lz
+ Q̇

∂r

∂Q

)

−2Σa2 cos θ sin θṙ

(

Ė
∂θ

∂E
+ L̇z

∂θ

∂Lz
+ Q̇

∂θ

∂Q

)

− Σ2ar
]

, (3.72)

in which ψ̇geo denotes the geodesic expression for dψ/dτ
which we use to evolve ψ. It is clear that this expres-
sion is indeed finite at radial turning points, provided
that the radial self-force is finite. In the Schwarzschild
case, it may be easily verified that Eq. (3.72) gives the
same expression as Eq. (3.56) when they are explicitly
simplified.
One important caveat is that although expres-

sion (3.72) is finite at radial turning points, it appears
to diverge where ∂Vr/∂r = 0, and this condition will be
satisfied once between each consecutive turning point.
This is not a real divergence either, which is clear from
the fact that the original form of the equations did not
show such a divergence. Therefore, if we were to sub-
stitute the various terms into the above expression we
would find that the necessary cancellations would occur
to eliminate these divergences. This simplification is a
nontrivial calculation. However, an alternative approach
that is easier to implement numerically is to use both
Eqs. (3.56) and (3.72) without any attempt to simplify
the expressions. By switching from one expression to the
other near turning points we can avoid numerical round-
off problems. This is the implementation that we use in
practice and from which the results presented in Sec. IV
were derived. We have verified in practice that both ex-
pressions do yield the same results at points where nei-
ther Vr nor ∂Vr/∂r vanish.

3. Action-angle formulation

The method described above for evolving the equa-
tions of motion in the covariant formulation can be read-
ily adapted to other problems and to other formula-
tions of the Kerr geodesic solutions. In particular, an

action-angle formulation of the Kerr solution exists [19],
in which the equations take the form

X = AX(E,Lz, Q)FX(ψX − ψX0;E,Lz, Q) ,

(3.73)

dψX
dλ

= ΩX(E,Lz, Q) , (3.74)

where X denotes (t, r, θ, φ) and λ is “Mino time.” The
function FX is periodic for r and θ, with a period of 2π1,
and for t and φ it is the sum of a secular piece and an
oscillatory term. The osculating element conditions give

(

FX
∂AX
∂E

+AX
∂FX
∂E

)

dE

dλ

+

(

FX
∂AX
∂Lz

+AX
∂FX
∂Lz

)

dLz
dλ

+

(

FX
∂AX
∂Q

+AX
∂FX
∂Q

)

dQ

dλ
= AXF

′

X

dψX0

dλ
,

(3.75)

where the dash denotes differentiation of FX with respect
to the phase argument ψX − ψX0. As before, this ex-
pression appears to be singular at turning points, where
F ′
X = 0. However, we can obtain an alternative expres-

sion by considering the potential

(

dX

dλ

)2

= VX(X ;E,Lz, Q) . (3.76)

Adding the derivative of this expression with respect to
E multiplied by dE/dλ to the derivative with respect to
Lz multiplied by dLz/dλ and the derivative with respect
to Q multiplied by dQ/dλ gives
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∂VX
∂X

((

FX
∂AX
∂E

+AX
∂FX
∂E

)

dE

dλ
+

(

FX
∂AX
∂Lz

+AX
∂FX
∂Lz

)

dLz
dλ

+

(

FX
∂AX
∂Q

+AX
∂FX
∂Q

)

dQ

dλ

)

+
∂VX
∂E

dE

dλ
+
∂VX
∂Lz

dLz
dλ

+
∂VX
∂Q

dQ

dλ

= 2
dX

dλ

(

∂

∂E

(

dX

dλ

)

dE

dλ
+

∂

∂Lz

(

dX

dλ

)

dLz
dλ

+
∂

∂Q

(

dX

dλ

)

dQ

dλ

)

. (3.77)

The derivative of Eq. (3.76) with respect to Mino time is

2
dX

dλ

d2X

dλ2
=
∂VX
∂X

dX

dλ
+
∂VX
∂E

dE

dλ
+
∂VX
∂Lz

dLz
dλ

+
∂VX
∂Q

dQ

dλ
, (3.78)

which thus allows us to replace Eq. (3.75) with

∂VX
∂X

AXF
′

X

dψX0

dλ
=

dX

dλ

([

∂VX
∂X

− 2
d2X

dλ2

]

+ 2

(

∂

∂E

(

dX

dλ

)

dE

dλ
+

∂

∂Lz

(

dX

dλ

)

dLz
dλ

+
∂

∂Q

(

dX

dλ

)

dQ

dλ

))

. (3.79)

The term in square brackets vanishes for geodesics and is
therefore proportional to the X component of the force
when the orbit is perturbed. At turning points F ′

X and
dX/dλ are both zero and cancel, so we obtain a new
form of the equation that is manifestly finite at turning
points, albeit singular where ∂VX/∂X = 0. As in the
Boyer-Lindquist case, these two alternative formulations
for the equations allow us to evolve the osculating ele-
ment equations directly without worrying about singular
behavior, just by switching between the two equivalent
expressions in the vicinity of the turning points.

E. Connection between Boyer-Lindquist and tetrad

formulations

The tetrad formulation of the osculation equations, de-
scribed in Sec. III C, is written in terms of acceleration
components, AI etc., that are adapted to the Kinner-
sley tetrad, while the Boyer-Lindquist coordinate for-
mulation, described in Sec. III D, is written in terms of
the Boyer-Lindquist components of the acceleration. To
identify the accelerations between the two approaches,
we first write down the tetrad components of the accel-

1 The choice of periodicity is in a sense arbitrary, and different
periodicities could be obtained by rescaling the angular variable
ψ. We specify a period of 2π for convenience.

eration in terms of the Boyer-Lindquist components:

an =
̟2

2Σ
at −

∆

2Σ
ar +

a

2Σ
aφ , (3.80)

al =
̟2

∆
at + ar +

a

∆
aφ , (3.81)

am =
1√

2(r + ia cos θ)

(

ia sin θat + aθ +
i

sin θ
aφ

)

,

(3.82)

a∗m =
1√

2(r − ia cos θ)

(

−ia sin θat + aθ −
i

sin θ
aφ

)

.

(3.83)

The acceleration functions Ra = (am+a∗m)/
√
2 and Ia =

i(am−a∗m)/
√
2 introduced in Sec. III C have components

Ra =
a2 sin θ cos θ

Σ
at +

r

Σ
aθ +

a cot θ

Σ
aφ , (3.84)

Ia = −ar sin θ
Σ

at −
a cos θ

Σ
aθ −

r

sin θΣ
aφ , (3.85)

from which we obtain the tetrad acceleration components
in terms of the Boyer-Lindquist components of the accel-
eration

AI =
r2 − a2 cos2 θ

Σ
aθ , (3.86)

AII = −a sin θat −
2ra cos θ

Σ
aθ −

1

sin θ
aφ , (3.87)

AIII = −αa sin θat

+
uθ(r

2 − a2 cos2 θ)/Σ− 2αr cos θ

Σ
aθ −

α

sin θ
aφ ,

(3.88)

in which

α =
aE sin2 θ − Lz

Σ sin θ
. (3.89)
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In Sec. IV below we will consider a toy problem as an il-
lustration of the two methods. The force will be specified
in Boyer-Lindquist coordinates, and the preceding ex-
pressions can be used to obtain the corresponding tetrad
components.

F. Features and drawbacks of the two formulations

In this final subsection we discuss some of the advan-
tages and disadvantages of our two formulations.
First, as discussed in the Introduction, earlier work on

methods of computing radiation reaction driven inspi-
rals focused on the adiabatic limit [13–15, 20, 21]. In
this limit, it is sufficient to use orbit-averaged forces,
or, equivalently, orbit-averaged proper time derivatives
of the first integrals, Ė, L̇z and Q̇. These quantities can
be computed as functions of E, Lz and Q, both in post-
Newtonian expansions and exactly using numerical black
hole perturbation theory. In this paper our focus is on de-
veloping methods that allow going beyond the adiabatic
limit. For this purpose, orbit-averaged quantities are in-
sufficient; one must use a prescription for the perturbing
force that depends on the two nontrivial orbital phases.
One could, in principle, continue to use the quantities Ė,
L̇z and Q̇ to parametrize the force, if these quantities are
taken to be functions of E, Lz and Q and of two addi-
tional phases. This would be the most natural way to
generalize the analyses of Refs. [13–15, 20, 21].
However, such a parametrization turns out to have a

significant disadvantage compared to the parametriza-
tions used in this paper, when one is attempting to com-
pute approximate inspirals. Specifically, there are con-
straints that the fluxes must satisfy at radial and polar
turning points, in order to ensure that the four acceler-
ation be finite. Approximate versions of the fluxes may
violate the constraints and lead to cusps in the motion at
the turning points. (This will be true, in particular, for
orbit-averaged fluxes.) The existence of these constraints
can be seen from the expression for the square of the four
acceleration in terms of Ė, L̇z and K̇, which is

~a2 =
1

Σ∆u2r

(

1

2
K̇ − FF̄

∆

)2

+
1

Σu2θ

(

1

2
K̇ − GḠ

)2

− F̄ 2

Σ∆
+

Ḡ2

Σ
. (3.90)

Here F = ̟2E − aLz, F̄ = ̟2Ė − aL̇z, G = a sin θE −
csc θLz, and Ḡ = a sin θĖ−csc θL̇z. It can be seen that at
radial turning points where ur = 0, the fluxes must sat-
isfy the constraint K̇ = 2FF̄/∆, while at polar turning

points the constraint is K̇ = 2GḠ. 2

2 A similar phenomenon occurred in the nonlinear oscillator model
of Sec. II, where the time derivative of the energy was constrained
to vanish at turning points.

By contrast, in the tetrad formulation used here, the
magnitude of the acceleration is automatically finite.
The independent components of the four acceleration are
taken to be three of the four components on the Kinner-
sley null tetrad, namely an, am and a∗m, with the fourth
component being determined by the orthogonality of the
four acceleration and the four velocity. In terms of these
three components, the square of the four acceleration is

~a2 =
4ulan

1 + 2|um|2 [ulan − u∗mam − uma
∗

m] + 2|am|2,
(3.91)

which is clearly always finite.3

Similarly, in our Boyer-Lindquist formulation, the ac-
celeration is again always finite, except in some special
cases in the ergosphere. The independent components of
the acceleration are taken to be the spatial, contravariant
components ai = (ar, aθ, aφ), with at being determined
by orthonormality. The square of the four acceleration is
then

~a2 =

(

gij − 2
gtiuj
ut

+ gtt
uiuj
u2t

)

aiaj , (3.92)

which is always finite except in the ergosphere where it
is possible for ut to vanish.
We now turn to a discussion of a second issue, which

is a significant advantage of the Boyer-Lindquist formu-
lation over the tetrad formulation. This advantage is
its simple behavior under the discrete symmetries of the
Kerr spacetime. Specifically, note that any four acceler-
ation ~a = ~a(xα, uβ) can be uniquely decomposed as the
sum of a dissipative piece and a conservative piece. For
the dissipative piece, the components ar and aθ are odd
under ur → −ur, uθ → −uθ, while the components at

and aφ are even. For the conservative piece, the compo-
nents ar and aθ are even, while the components at and
aφ are odd [12]. It follows that, in the Boyer-Lindquist
formulation, wherein one specifies the components ar,
aθ and aφ of the four acceleration, it is straightforward
to independently specify the dissipative and conservative
pieces.
By contrast, in the tetrad formulation presented here,

the independent variables are taken to be an, am and a∗m,
and the decomposition into conservative and dissipative
pieces in terms of these variables is somewhat involved.
In particular, if one is attempting to find useful approx-
imations to the conservative self-force, for example, by

3 A related issue is that the time derivative of the orbital eccen-
tricity e can diverge ∝ 1/e as e→ 0, for forces parameterized in
terms of Ė, L̇z and Q̇, unless the fluxes obey certain constraints
at e = 0. This issue is discussed in detail in Ref. [14]. Again,
this divergence is automatically excluded if one parameterizes the
force in terms of its tetrad components: The eccentricity can be
written as a smooth function e = e(xα, pβ) on phase space. Tak-
ing a proper time derivative gives de/dτ = maα∂e/∂pα, which
is finite for finite accelerations.
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naively using conservative post-Newtonian approxima-
tions to the quantities an, am and a∗m, the errors in the
approximation will generically lead to a self-force with
both conservative and dissipative pieces. This can be a
problem since in the adiabatic limit the effect of the dis-
sipative self-force on the motion is boosted relative to the
conservative self-force.
There are alternative parametrizations of the self-force

that combine the advantages of our two formulations, for
example,

aα = ar̂eαr̂ + aθ̂eα
θ̂
+ a⊥ǫ

α
βγδu

βeγr̂e
δ
θ̂
+ (ar̂ur̂ + aθ̂uθ̂)u

α,

(3.93)
where ~er̂ and ~eθ̂ are unit vectors in the directions of ∂r
and ∂θ. Here the dissipative and conservative pieces of

the quantities ar̂, âθ̂ and a⊥ have simple transformation
properties under discrete symmetries, and moreover the
magnitude of the four acceleration is

~a2 = (ar̂)2
[

1 + u2r̂
]

+ (aθ̂)2
[

1 + u2
θ̂

]

+ a2⊥

[

1 + u2r̂ + u2
θ̂

]

,

(3.94)
which is always finite. Useful approximation schemes can
be obtained by (i) formulating approximations in terms

of the three variables ar̂, aθ̂ and a⊥; (ii) using the exact,
Kerr relations to compute an, am and a∗m in terms of

ar̂, aθ̂ and a⊥; and (iii) using the resulting expressions in
the tetrad formulation equations of motion (3.15), (3.16),
(3.35) – (3.37), (3.38) and (3.40). See Ref. [22] for an
application of this approach.

IV. EXAMPLE OF PERTURBED KERR

GEODESICS: “GAS-DRAG”

As an example problem, we will suppose that the small
mass experiences a drag force proportional to velocity,
which could represent the behavior of an EMRI occur-
ring in the presence of gas. Here we derive the four ac-
celeration for such a force.
In a given frame of reference, the relativistic analog of

this simple drag force will have a term proportional to the
spatial part of the velocity, plus a term proportional to
the frame velocity constructed so that the force remains
orthogonal to the total velocity. Let ~uZAMO be the veloc-
ity of zero-angular-momentum observers (ZAMOs), and
let ~u be the velocity of the small mass. In the frame of a
ZAMO, the spatial part of the velocity of the small mass
is

~u⊥ = ~u+ Γ~uZAMO , (4.1)

where Γ = ~u · ~uZAMO. The drag force then has the form

~a = −γ~u⊥ + κ~uZAMO − γ~u+ (κ− γΓ)~uZAMO , (4.2)

where γ is the linear drag coefficient. Enforcing the con-
dition ~a · ~u = 0 then determines the value of κ

κ =
γ(Γ2 − 1)

Γ
. (4.3)

Inserting this into the formula for the acceleration due to
drag (4.2) gives

~a = −γ
(

~u+
~uZAMO

~u · ~uZAMO

)

. (4.4)

Writing this explicitly in terms of Boyer-Lindquist coor-
dinates, we have

aα = −γ
(

uα +
uαZ
uZtut

)

, (4.5)

where uα denotes the four velocity of the inspiraling ob-
ject and

utZ =

√

(r2 + a2)2 −∆a2 sin2 θ

Σ∆
, (4.6)

uφZ =
2ar

√

Σ∆((r2 + a2)2 −∆a2 sin2 θ)
, (4.7)

urZ = uθZ = 0 , (4.8)

uZt = −
(

1− 2r

Σ

)

utZ − 2a sin2 θr

Σ
uφZ , (4.9)

in which ∆ = r2−2Mr+a2, Σ = r2+a2 cos2 θ as before.
As a test case, we constructed an inspiral into a central

black hole with spin a = 0.9 under the influence of this
gas-drag force with γ = 10−5. We took the initial orbital
parameters to be p/M = 7, e = 0.5, ι = π/6, φ = t = 0,
ψr = 1 and ψθ = 2. The inspiral trajectory was con-
structed using both the Boyer-Lindquist and the tetrad
formulations. The evolutions were found to be identical,
as we would hope, and this gives us confidence that our
results are correct. In the following discussion, we will
not distinguish between the results obtained using the
different formulations as they differed only at the level of
numerical noise.
In Fig. 2 we show the evolution of the orbit under

the influence of the gas-drag force and initial condi-
tions given above. The six panels show the three Boyer-
Lindquist coordinates, (r, θ, φ), and the three constants
that describe the orbital shape, (p, e, ι), as functions of
the Boyer-Lindquist time t. We see that the influence of
the drag force is to drive the inspiral of the object, but
also to increase the eccentricity of the orbit and decrease
the orbital inclination, i.e., to make the orbit more pro-
grade. The trajectories of the geodesic constants of mo-
tion, (p, e, ι), show oscillations on the orbital time scale,
superimposed on a monotonic secular evolution on the
radiation reaction time scale. The secular part is the
analog of the averaged evolution, Ḡ(1), described for the
perturbed nonlinear oscillator in Sec. II. The panels in
Fig. 2 also show the solution to the adiabatic equations
of motion for this problem computed using Eqs. (2.8)–
(2.15). We see that the adiabatic solution is a good ap-
proximation to the average evolution along the inspiral,
as expected, and, as we saw for the toy problem in Sec. II,
it provides a closer fit to the change in the constants of
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the motion, in this case p, e and ι, than for the phase.
In this case, although the adiabatic solution remains in
phase on average over the whole of the evolution seen
in Fig. 2, within each cycle the adiabatic solution goes
in and out of phase with the true evolution. This arises
because the forcing term in this case is relatively large,
and so the orbit changes significantly between periapse
and apoapse as a result of the forcing term. The or-
bit evolved using the instantaneous force therefore looks
quite different from the orbit evolved continuously by the
orbital-averaged force. Note that the orbits do come back
into phase after each complete cycle, as expected.
This example illustrates the application of the oscu-

lating elements formalism to the computation of inspi-
ral evolutions in the Kerr spacetime, and it serves to
demonstrate that the two alternative formulations do in-
deed yield the same results. However, even though the
prescription for the drag force was rather simple, Fig. 2
also illustrates some qualitative effects of the drag force
that could be used to infer the presence of such a drag
from observations. For an orbit evolving under the in-
fluence of gravitational radiation reaction only, the ec-
centricity tends to decrease, except toward the end of
the inspiral just prior to plunge [23, 24], while the in-
clination tends to increase, i.e., the orbit becomes more
retrograde [20, 21, 24]. We see here that the effect of the
drag force is qualitatively different, as it drives increas-
ing eccentricity and decreasing inclination. If observed,
this would provide a robust observational signature for
an orbit that was evolving under the influence of drag.
A decrease in orbital inclination due to hydrodynamic
drag was also seen in [25], in which a more sophisticated
model for the drag force was employed. It is gratifying
that this simple model produces this expected feature
qualitatively. The same paper [25] found that the eccen-
tricity would increase in parts of the parameter space and
decrease in other parts. For Newtonian orbits, the oscu-
lating element equations predict that the eccentricity will
remain constant under the action of a simple drag force of
this type (see Appendix C). Increasing eccentricity has,
however, been seen in Newtonian simulations of binaries
embedded in a realistic disc [26–28]. In Appendix D we
show that the increase in eccentricity is an expected post-
Newtonian effect and give an explanation in the context
of a Schwarzschild black hole. It is clear from that discus-
sion that this increase in eccentricity is a generic feature
of relativistic drag, and so this is an observational predic-
tion. If observed, an increasing eccentricity or decreasing
inclination would be a clear signature that the observed
inspiral was not occurring in a vacuum Kerr background.

V. DISCUSSION

We have described two methods for integrating the
equations of motion for bound, accelerated orbits in the
Kerr spacetime, which are based on identifying the or-
bit with a geodesic at each point. The first method

parametrizes the position and velocity of the orbit in
terms of the conserved quantities (energy, axial angu-
lar momentum and Carter constant) in addition to three
angular variables which increase monotonically and cor-
respond to relativistic generalizations of the anomalies of
Keplerian motion. The second method is the traditional
“osculating element” technique which parametrizes the
position and velocity of the orbit in terms of the geodesic
with the same position and velocity. Practically, the sec-
ond method differs from the first only in the treatment
of the three phase variables, which are split up into a
geodesic piece and a “phase offset” piece that is constant
for geodesics.

To illustrate the methods, we first analyzed, as a sim-
pler model, a forced anharmonic oscillator. This was
written in terms of a set of phase space coordinates. The
forced equations of motion contained an apparent diver-
gence at the turning points, but it was possible to refor-
mulate the equations to eliminate the problematic terms
and thus obtain equations of motion in a form without
divergences. We discussed the adiabatic prescription for
computing the leading order motion, which corresponds
to a gradual evolution of the oscillator’s amplitude and
fundamental frequency driven by the phase space aver-
aged forcing function for the amplitude. We presented
an alternative analysis of this toy problem analogous to
the osculating orbit method in terms of the analytic solu-
tion to the un-forced motion. By numerically integrating
the equations we verified that both parametrizations gave
the same results and compared these to the adiabatic ap-
proximation to the solution.

Next, we showed that the equation of forced motion
in the Kerr spacetime could be reformulated in a simi-
lar fashion. For the first method, it was advantageous
to parametrize the force in terms of its components on
the Kinnersley tetrad instead of using the instantaneous
time derivatives of the conserved quantities. We derived
a formulation of the equations of motion in terms of phase
variables that was manifestly divergence-free at the turn-
ing points. We then generalized the second method, of
osculating orbits, to generic orbits in the Kerr spacetime
and showed how we could write down a divergent-free
form of equations of this type without explicit simplifi-
cation.

As an application of our results, we considered the case
of a simple force that could represent a gas drag. Numer-
ical integrations of the equations of motion for a choice of
parameters verified that the two methods of parametriz-
ing the motion gave the same results. We identified a key
observational signature of the presence of a drag force,
namely, a decrease in the orbital inclination and an in-
crease in eccentricity, which is opposite to the increase
in inclination and decrease in eccentricity characteristic
of the gravitational radiation reaction forces during the
early stage of an inspiral.

The first of our two methods has been applied to the
study of transient resonances that occur in the radiation-
reaction-driven inspirals of point particles into spinning
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black holes, using approximate post-Newtonian expres-
sions for the self-force [22]. Other applications of this
work will include the construction of accurate trajecto-
ries for orbits evolving under the action of the self-force,
once self-force data for generic orbits are available. This
will be essential for the construction of accurate gravi-
tational waveforms for EMRIs, which will be needed for
LISA data analysis. The formalism can also be used to
estimate the magnitude of any secular changes in the or-
bital parameters that arise from the action of external
perturbing forces. These could arise from gravitational
perturbations from distant objects, such as stars or a
second massive black hole, or from the presence of other
material in the spacetime, such as the gas-drag which we
considered in a simple way here. It will be very important
to have a quantitative understanding of the importance
of all these effects if intermediate-mass-ratio inspirals or
EMRIs are to be used to carry out high-precision map-
ping of the spacetime around Kerr black holes and for
tests of general relativity. Finally, the results described
here will be useful to augment existing kludge models
for inspiral waveforms. In particular, these methods will
allow us to extract the secular part of the evolution of
both the orbital constants of the motion and the phase
constants, from self-force calculations. It is straightfor-
ward to include secular changes to the orbital parame-
ters in the kludge framework [13], and by doing this it
should be possible to ensure that the kludge waveform
stays in phase with the true waveform for long stretches
of the inspiral. It will be important to have accurate but
cheap-to-calculate waveform models available when the
data from gravitational wave detectors are analyzed, as
this data analysis will rely heavily on matched filtering
using template waveforms.
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Appendix A: Derivation of tetrad equations of

motion in terms of radial and polar angular variables

In this appendix we derive the forms Eqs. (3.35) –
(3.37), (3.38) and (3.40) of the equations of motion for
forced motion in Kerr, in the tetrad formulation, and
using the angular variables ψr and ψθ instead of r and θ.

1. Evolution equations for first integrals E, Lz, K

The evolution equations (3.35) – (3.37) for the con-
served quantities E, Lz and K are obtained as follows.
We start from the standard expressions for the first inte-
grals in terms of the Killing vectors and Killing tensors

ξα = −δαt , (A1)

ηα = δαφ , (A2)

Kαβ = 2Σm(αm⋆β) − a2 cos2 θgαβ , (A3)

and take proper time derivatives. Using the tetrad de-
composition (3.26) of the acceleration together with the
expressions (3.6) – (3.8) for the basis covectors gives

dE

dτ
= −~a · ∂

∂t

= −
(

an +
∆

2Σ
al

)

− iar sin θ√
2Σ

(am − a⋆m)

+
a2 sin θ cos θ√

2Σ
(am + a⋆m) . (A4)

Here, we have used the fact that m given in Eq. (3.8) can
be written as

m =
1√
2Σ

[−(ir + a cos θ) sin θdt+ (r − ia cos θ)Σdθ

+ (ir + a cos θ)dφ] . (A5)

Noting that am = (Ra−iIa)/
√
2, and eliminating al with

the aid of Eq. (3.33) transforms Eq. (A4) to the form

dE

dτ
= −an

un

(

un − ∆

2Σ
ul

)

− ∆

2Σun
(RaRu + IaIu)

− a sin θ

Σ
(rIa − a cos θRa) . (A6)

Using the expressions (3.30) for the tetrad components
un and ul of the four velocity and converting from τ
derivatives to λ derivatives using Eq. (3.17) then leads to
the final form given in Eq. (3.35).
Similarly, we obtain Eq. (3.36) by starting from

dLz
dτ

= ~a · ∂
∂φ

= −a sin2 θ
(

an +
∆

2Σ
al

)

− ̟2r sin θ

Σ
Ia

+
a̟2 sin θ cos θ

Σ
Ra , (A7)
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and eliminating al using Eq. (3.33) to obtain

dLz
dτ

= −a sin2 θ an
un

(

un +
∆

2Σ
ul

)

− a sin2 θ

2Σun
(RaRu + IaIu)

− ̟2r sin θ

Σ
Ia +

a̟2 sin θ cos θ

Σ
Ra . (A8)

The form quoted in Eq. (3.36) is then obtained from this
using Eqs. (3.30) as before.
The evolution of the Carter constant is obtained very

simply from the expression for the Killing tensor to be

dK

dτ
= 2Kαβuαaβ = 2Σ (RuRa + IuIa) , (A9)

where we have used the orthogonality relation gαβuαaβ =
0 and written the combination (u⋆mam+ uma

⋆
m) in terms

of Ru and Ra. Combining this with the definition (3.34c)
of AIII yields Eq. (3.37).

2. Polar motion

To obtain the equation of motion (3.38) for ψθ, we start
by differentiating its definition (3.21) with respect to λ:

sin θ cos θ

(

dθ

dλ

)

= z− sinψθ cosψθ

×
[(

dψθ
dλ

)

− 1

2z−
cotψθ

(

dz−
dλ

)]

.

(A10)

The equation of motion (3.14) for θ can be rewritten in
the form

(

dθ

dλ

)2

= βz− sin2 ψθ

(

z+ − z− cos2 ψθ
)

(1− z− cos2 ψθ)
. (A11)

We now take the square root of this equation. From the
definition (3.21) of ψθ and noting that ψθ monotonically
increases, we see that (dθ/dλ) > 0 for 0 < ψθ < π and
(dθ/dλ) < 0 for π < ψθ < 2π, so we must choose the
positive square root on the right-hand side. Combining
Eq. (A10) and the square root of Eq. (A11) now leads to
an equation of motion for ψθ in the form

dψθ
dλ

=
√

β(z+ − z− cos2 ψθ) +
cotψθ
2z−

dz−
dλ

. (A12)

Next, we can obtain an expression for dz−/dλ in terms
of dPi/dτ , where Pi = (E,Lz,K) are the constants of
motion, as follows. Using the chain rule gives dz−/dλ =
(∂z−/∂Pi)(dPi/dλ). Differentiating Vθ in the form given
in Eq. (3.20) with respect to Pi at fixed z and evaluating
the result at z− relates dz−/dPi to (∂Vθ/∂Pi)z

−

, which
can be computed from Eq. (3.19). This yields

β(z+ − z−)

(1− z−)

dz−
dλ

=
dQ

dλ
− 2Lz

(

z−
1− z−

)

dLz
dλ

+ 2a2Ez−
dE

dλ
. (A13)

Now switching from the Carter constant Q to K = Q +
(Lz − aE)2 and using that dλ = dτ/Σ we obtain

β(z+ − z−)

Σ

dz−
dλ

= (1− z−)
dK

dτ
− 2 (Lz − a(1− z−)E)

×
[

dLz
dτ

− a(1− z−)
dE

dτ

]

. (A14)

The expressions for the evolution of Pi in Eqs. (3.35) –
(3.37) can now be used to obtain the explicit dependence
on ψθ of dz−/dλ given by Eq. (A14) by direct substitu-
tion. This gives

β(z+ − z−)
dz−
dλ

=
2∆H−uran

un
az− sin2 ψθ +

[

2(1− z−)(r
2 + a2z− cos2 ψθ)

2 − az−H−

∆sin2 ψθ
un

]

(RuRa + IuIa)

+2H−

√

1− z− cos2 ψθ(r
2 + a2z−) (rIa − a cos θRa) , (A15)

where H− = H(z−) = Lz − a(1− z−)E. This can be written as

β(z+ − z−)
dz−
dλ

=
∆H−

un
az− sin2 ψθ [(RuRa + IuIa)− 2uran]

+ 2

[

(1− z−)(r
2 + a2z− cos2 ψθ)

2Ru −H−a
√
z−(r

2 + a2z−)
√

1− z2− cos2 ψθ cosψθ

]

Ra

+ 2

[

(1− z−)(r
2 + a2z− cos2 ψθ)

2Iu +H−r(r
2 + a2z−)

√

1− z2− cos2 ψθ

]

Ia . (A16)

Substituting the expressions for the four velocity components Eqs. (3.30) and the definition (3.31) of H into the
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coefficients of Ra and Ia inside the square brackets and expanding them out gives

β(z+ − z−)
dz−
dλ

=
∆H−

un
az− sin2 ψθ [AIII − 2uran] + 2(1− z−)Σuθ(a cos θIa + rRa)

+
2rz− sin2 ψθ

√

1− z− cos2 ψθ

[

̟3Lz − a3E(1− z−)(1− z− cos2 ψθ)
]

(rIa − a cos θRa) . (A17)

Using that uθ = (dθ/dλ), with (dθ/dλ) given by the positive square root of Eq. (A11) and inserting Eq. (A17) into
the equation of motion for ψθ of Eq. (A12) leads to the final result quoted in Eq. (3.38).

3. Radial motion

We now give a derivation of the radial equation of mo-
tion (3.40) which is similar to the above derivation of the
equation (3.38) of polar motion. From the definitions
(3.13) and (3.22) of the radial potential we have

(

dr

dλ

)2

= F 2 −∆(r2 +K)

= (1− E2)(r1 − r)(r − r2)(r − r3)(r − r4) ,

(A18)

where F was defined in Eq. (3.32). We parametrize the
roots of the right-hand side by Eq. (3.24) for the turning
points r1 and r2 of the bound motion, and by

r3 =
p3

1− e
, r4 =

p4
1 + e

(A19)

for the other two roots. Substituting the definition (3.23)
of ψr into Eq. (A18) and using Eqs. (3.24) and (A19)
gives, after some algebra,

(

dr

dλ

)2

=
(1 − E2)p2e2 sin2 ψr

(1− e2)2(1 + e cosψr)4

× [p(1− e)− p3(1 + e cosψr)]

× [p(1 + e)− p4(1 + e cosψr)] . (A20)

By differentiating the definition (3.23) of ψr we obtain

dψr
dλ

=
(1 + e cosψr)

2

ep sinψr

(

dr

dλ

)

+
cotψr
e

(

de

dλ

)

− 1 + e cosψr
ep sinψr

(

dp

dλ

)

. (A21)

We note that ψr is chosen to monotonically increase,
which means dψr/dλ > 0. We specialize to the con-
vention that ψr = 0 at r = r2 and ψr = π at r = r1,
so that r increases for 0 < ψr < π and decreases for
π < ψr < 2π and we choose the positive square root
in Eq. (A20). Substituting Eq. (A20) for dr/dλ in Eq.
(A21) shows that the geodesic term becomes

dψr
dλ

∣

∣

∣

∣

geodesic

=

√
1− E2

(1− e2)
[p(1− e)− p3(1 + e cosψr)]

1/2

× [p(1 + e)− p4(1 + e cosψr)]
1/2

= P . (A22)

Here one can check that Eq. (A22) is just a
reparametrization of Eq. (3.42) by substituting the ra-
dial potential in the form given in Eq. (3.13) in terms of
Pi into Eq. (A21), since P = (dr/dψr)

−1
√
Vr, expressed

in terms of ψr.
The nongeodesic terms in Eq. (A21) are obtained as

follows. From Eq. (3.24) for r1 and r2 it follows that
2p−1 = r−1

1 + r−1
2 and 2(1− e)−1 = r1/r2 + 1, and thus

2
dp

dλ
= p2

(

dr1/dλ

r21
+
dr2/dλ

r22

)

= (1− e)2
dr1
dλ

+ (1 + e)2
dr2
dλ

, (A23a)

2
de

dλ
= p2

(

dr1/dλ

r21r2
− dr2/dλ

r22r1

)

=
(1− e2)

p

[

(1− e)
dr1
dλ

− (1 + e)
dr2
dλ

]

.

(A23b)

Substituting Eqs. (A23) into Eq. (A21) gives

dψr
dλ

= P +
1

2ep sinψr

×
[

(1− e)2(cosψr − 1)
dr1
dλ

− (1 + e)2(1 + cosψr)
dr2
dλ

]

. (A24)

Next, expressions for the derivatives of the turning
points r1 and r2 can be computed in terms of dPi/dλ
by using that (dr1,2/dλ) = (∂r1,2/∂Pi)dPi/dλ. Differen-
tiating the radial potential with respect to Pi at fixed r
and evaluating the result at r1 and r2 gives

∂Vr
∂Pi

∣

∣

∣

∣

r1

= (1 − E2)(r1 − r2)(r1 − r3)(r1 − r4)
∂r1
∂Pi

,

(A25)

∂Vr
∂Pi

∣

∣

∣

∣

r2

= −(1− E2)(r1 − r2)(r2 − r3)(r2 − r4)
∂r2
∂Pi

.

(A26)

We note that one can see from Eqs. (3.22), (A18) and
(A25)–(A26) that the coefficients of ∂r1,2/∂Pi can be ex-
pressed in terms of the r-derivative of Vr at fixed Pi eval-
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uated at the turning points as

∂Vr
∂Pi

∣

∣

∣

∣

r1,2

= − ∂Vr
∂r

∣

∣

∣

∣

r1,2

∂r1,2
∂Pi

, (A27)

= −κ(r1,2)
∂r1,2
∂Pi

. (A28)

Here κ(r) ≡ V ′
r (r), which can be computed from Eq.

(A18) to be

κ(r) = 4EFr − 2r∆− 2(r −M)(r2 +K) , (A29)

where the definition (3.32) of F has been used. Using the
derivatives of Eq. (A18) with respect to Pi then results
in the following expressions for dr1,2/dλ:

dr1,2
dλ

= −2F1,2

κ1,2

(

̟2
1,2

dE

dλ
− a

dLz
dλ

)

+
∆1,2

κ1,2

dK

dλ
. (A30)

With this, Eq. (A21) becomes

dψr
dλ

= P +
1

2ep sinψr

{

(1 − e)2(cosψr − 1)

[

−2F1

κ1

(

̟2
1

dE

dλ
− a

dLz
dλ

)

+
∆1

κ1

dK

dλ

]

−(1 + e)2(cosψr + 1)

[

−2F2

κ2

(

̟2
2

dE

dλ
− a

dLz
dλ

)

+
∆2

κ2

dK

dλ

]}

. (A31)

The next step is to substitute the expressions (3.35) – (3.37) for the derivatives of the first integrals into Eq. (A31).
After some algebra we obtain

2ep sinψr

(

dψr
dλ

− P
)

= 2∆
ur
un
an

[

(1− e)2(1− cosψr)
Σ1F1

κ1
+ (1 + e)2(1 + cosψr)

Σ2F2

κ2

]

+ Ra(1− e)2(1− cosψr)

[

Ru

(

Σ1F1∆

Σκ1un
+

2Σ∆1

κ1

)

+
2F1a

2 sin θ cos θ(r2 − r21)

κ1Σ

]

+ Ia(1− e)2(1− cosψr)

[

Iu

(

Σ1F1∆

Σκ1un
+

2Σ∆1

κ1

)

− 2F1ar sin θ(r
2 − r21)

κ1Σ

]

+ Ra(1 + e)2(1 + cosψr) [(1 ↔ 2)] + Ia(1 + e)2(1 + cosψr) [(1 ↔ 2)] , (A32)

where Σ1 = ̟2
1−a2 sin2 θ. Noting that ur = ∆−1(dr/dλ)

and using the definition (A22) of P gives an explicit ex-
pression for ur:

ur =
pe sinψrP

∆(1 + e cosψr)2
. (A33)

Also, from the definitions (3.23) and (3.24), we have that

(r − r1) = − pe(1 + cosψr)

(1− e)(1 + e cosψr)
, (A34)

(r − r2) =
pe(1− cosψr)

(1 + e)(1 + e cosψr)
. (A35)

Substitution of Eq. (A33) and Eq. (3.30) together with
further algebraic manipulations on Eq. (A32) lead to
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dψr
dλ

= P
{

1 +
an

un(1 + e cosψr)2

[

(1 − e)2(1− cosψr)
Σ1F1

κ1
+ (1 + e)2(1 + cosψr)

Σ2F2

κ2

]}

+
(1− e)2(cosψr − 1)

2ep sinψr

[

1

κ1un
(Σ1F1∆− Σ∆1F )−

∆Σ∆1ur
κ1un

]

(RuRa + IuIa)

+
(1− e)2(cosψr − 1)F1a sin θ

κ1ep sinψr
(r + r1)(r − r1)(a cos θRa − rIa)

+
(1 + e)2(1 + cosψr)

2ep sinψr

[

1

κ2un
(Σ2F2∆− Σ∆2F )−

∆Σ∆2ur
κ2un

]

(RuRa + IuIa)

+
F2a sin θ(1 + e)2(1 + cosψr)

κ2ep sinψr
(r + r2)(r − r2)(a cos θRa − rIa) . (A36)

We can simplify the coefficients of Ra and Ia by expanding the term (Σ1F1∆−Σ∆1F ) using the explicit expressions
in Eq. (3.2) to obtain an explicit factor of (r − r1):

(Σ1F1∆− Σ∆1F )

(r − r1)
= −(r + r1)

[

a3(aE + zLz) + E
(

r2 + r21
) (

a2 − 2Mr
)

− 2a2EMrz − 4a2EMr + 2aLzMr + Er2r21
]

≡ Q1 , (A37)

where z = cos2 θ, as before. We similarly define Q2 by replacing 1 → 2 in Eq. (A37). Substituting Eqs. (A37) as well
as Eqs. (A33) and (A35) into Eq. (A36) and using the definitions (3.34) yields after simplifications

dψr
dλ

= P
{

1 +
an

un(1 + e cosψr)2

[

(1− e)2(1− cosψr)
Σ1F1

κ1
+ (1 + e)2(1 + cosψr)

Σ2F2

κ2

]}

+
(1− e)2(1− cosψr)

2 sinψr

{

Σ∆1PAIII sinψr
κ1un(1 + e cosψr)2

+
Q1AIII(1 + cosψr)

(1 + e cosψr)(1− e)
− 2F1a sin θ(r + r1)AII(1 + cosψr)

κ1(1− e)(1 + e cosψr)

}

+
(1 + e)2(1 + cosψr)

2 sinψr

{

Σ∆2PAIII sinψr
κ2un(1 + e cosψr)2

− Q2AIII(1− cosψr)

(1 + e cosψr)(1 + e)
+

2F2a sin θ(r + r2)AII(1− cosψr)

κ2(1 + e)(1 + e cosψr)

}

.

This can be further simplified to be

dψr
dλ

= P
{

1 +
an

un(1 + e cosψr)2

[

(1 − e)2(1− cosψr)
Σ1F1

κ1
+ (1 + e)2(1 + cosψr)

Σ2F2

κ2

]}

+
AIII sinψr

2(1 + e cosψr)un

[

Q1(1 − e)

κ1
− Q2(1 + e)

κ2

]

+
ΣAIIIP

2(1 + e cosψr)2un

[

(1− e2)(1 − cosψr)
∆1

κ1
+ (1 + e)2(1 + cosψr)

∆2

κ2

]

−a sin θ sinψrAII

1 + e cosψr

[

F1(1− e)(r + r1)

κ1
− F2(1 + e)(r + r2)

κ2

]

. (A38)

Appendix B: Adiabatic Limit

In this appendix, we derive our method of obtain-
ing the leading order, adiabatic solutions to the forced
geodesic equations in Kerr. This method was used to
obtain the numerical adiabatic solutions that are plotted
and discussed in Sec. IV above. The starting point is the
specific form (3.35) – (3.40) of the forced geodesic equa-
tions derived in Sec. III C above, which have the general

form

ψ̇α = ωα(ψα,J) + ǫg(1)α (ψ,J) +O(ǫ2),

1 ≤ α ≤ N, (B1a)

J̇λ = ǫG
(1)
λ (ψ,J) + ǫ2G

(2)
λ (ψ,J) +O(ǫ3),

1 ≤ λ ≤M. (B1b)

Here ψ = (ψ1, . . . , ψN ) are a set of angular variables,
and J = (J1, . . . , JM ) are a set of quantities that are con-
served for the unperturbed system. Dots denote deriva-
tives with respect to λ. The functions ωα determine the
frequencies of the unperturbed motion (geodesic motion
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for the Kerr application), and the functions g
(1)
α , G

(1)
λ and

G
(2)
λ represent the external perturbations on the system4.

These functions are all periodic in each phase variable
with period 2π. In the special case when the frequen-
cies ωα are independent of the phase variables ψ, the
variables ψα and Jλ are (generalized versions of) action-
angle variables. This special case is actually fully general;
one can always perform a redefinition of the phase vari-
ables to achieve this. This case of action-angle variables
was studied in detail in Ref. [12], where the form of the
adiabatic and post-adiabatic solutions were derived.
Here we will generalize the analysis of Ref. [12] to the

more general system of Eqs. (B1), since our system of
Eqs. (3.35)–(3.40) in Kerr is of this form. We start by
describing the result for the adiabatic limit, and then we
outline its derivation. The adiabatic solutions are given
by the following set of steps:

1. We define the averaging operation, for any function
f(ψ) of ψ, by

〈f〉
J
≡
∫ 2π

0
dψ1

ω1(ψ1,J)
. . .
∫ 2π

0
dψN

ωN (ψN ,J)
f(ψ1, . . . , ψN )

∫ 2π

0
dψ1

ω1(ψ1,J)
. . .
∫ 2π

0
dψN

ωN (ψN ,J)

.

(B2)
The subscript J on the left-hand side is a reminder
that the averaging operation depends on the value
of J.

2. We define the averaged frequencies and forcing
functions

ω̄α(J) ≡ 〈ωα(ψα,J)〉J , (B3)

and

Ḡ
(1)
λ (J) ≡ 〈G(1)

λ (ψ,J)〉J . (B4)

3. We solve a set of ordinary differential equations in
the slow time parameter

λ̃ = ǫλ , (B5)

for two sets of auxiliary functions χ̄α(λ̃) and Jλ(λ̃).
This set of ordinary differential equations is

dχ̄α

dλ̃
= ω̄α(J (λ̃)) , (B6a)

dJλ
dλ̃

= Ḡ
(1)
λ (J (λ̃)) . (B6b)

Note that for this step, one does not need to specify
a value of ǫ.

4 Note that the notation ωα(ψα,J) means that each ωα depends
only on a single phase variable ψα, and does not depend on
the phase variables ψβ with β 6= α. The adiabatic limit of the
more general system of equations with ωα = ωα(ψ,J) would be
considerably more complicated.

4. We can then write down the adiabatic solutions:

Jλ(λ, ǫ) = Jλ(ǫλ), (B7a)

ψα(λ, ǫ) = Ξα

[

1

ǫ
χ̄α(ǫλ) ,J (ǫλ)

]

, (B7b)

where the function Ξα(χ,J) is defined implicitly by
the equation

χ

2π
=

∫ Ξα(χ,J)

0
dψ

ωα(ψ,J)
∫ 2π

0
dψ

ωα(ψ,J)

. (B8)

and satisfies

Ξα(χ+ 2π,J) = Ξα(χ,J) + 2π . (B9)

We now turn to the derivation of this result. We start
by rewriting the differential Eqs. (B1) in terms of the new
variables (χα, Jλ), defined implicitly by the relation

ψα(χα,J) ≡ Ξα(χα,J) . (B10)

All of the functions appearing in the differential equa-
tions are expressed as functions of the new phases χα;
they must be periodic functions of each χα by virtue of
the property (B9). Using the definitions (B8), (B2) and
(B3) the result can be written in the form

χ̇α = ω̄α(J) + ǫ
ω̄α(J)

ωα(χα,J)
g(1)α (χ,J) +O(ǫ2) ,

1 ≤ α ≤ N , (B11a)

J̇λ = ǫG
(1)
λ (χ,J) + ǫ2G

(2)
λ (χ,J) +O(ǫ3), 1 ≤ λ ≤M .

(B11b)

This system of equations is now in a form to which the
results of Ref. [12] can be applied; the variables (χα, Jλ)
are generalized action-angle variables. The averaging op-
eration defined in [12], a straightforward averaging with
respect to the phases χα, coincides with the definition
(B2) used here, because of the definition (B10). The re-
sults of Ref. [12] now imply that the leading order solu-
tion for Jλ is of the form given by Eqs. (B7a) and (B6b).
They also imply that the leading order solution for χα
is of the form χα(λ, ǫ) = χ̄α(ǫλ)/ǫ, where χ̄α satisfies
the differential equation (B6a). Combining this with the
definition (B10) now yields the result (B7b).

Appendix C: Perturbation of Keplerian Orbits

Here we derive the osculating element equations for a
Keplerian orbit experiencing a force in the plane of the
orbit, f = −µr/r3. In this case, we can take the orbital
plane to be the x-y plane. The orbit is described by four
parameters — the semimajor axis, a, the eccentricity, e,
the argument of perihelion, ω, and the time of pericenter
passage, T0. (The restriction to a plane gets rid of the
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other two orbital constants.) The orbit is elliptical and
described by

r =
a(1 − e2)

1 + e cos(u − ω)
= a (1− e cosE) , (C1)

u̇ =

√

µ

a3(1− e2)3
(1 + e cos(u− ω))2 , (C2)

in which u is the argument. It is usual to call v = u− ω
the true anomaly and E defined by the first equation
above is the eccentric anomaly. The time of pericenter
passage is given implicitly by

∫ v0

0

dv′

(1 + e cos v′)2
=

√

µ

a3(1− e2)3
(t0 − T0) , (C3)

where v0 = v(t0).
Under the action of a force in the orbital plane with

radial component R′ and tangential component S′, the
Gaussian perturbation equations predict the following
evolution equations for the four orbital elements [10]:

ȧ =

√

a(1 − e2)

µ

2a

1− e2

(

e sin vR′ +
p

r
S′

)

, (C4)

ė =

√

a(1 − e2)

µ
[sin vR′ + (cos v + cosE)S′] , (C5)

ω̇ =
1

e

√

a(1− e2)

µ

[

− cos vR′ +

(

1 +
r

p

)

sin vS′

]

,

(C6)

Ṫ0 = −a
2(1− e2)

µe

[(

cos v − 2e
r

p

)

R′

−
(

1 +
r

p

)

sin vS′

]

− 3

2

ȧ

a
(t− T0) . (C7)

If we consider the true anomaly, v, then since v = u−ω,
v̇ = u̇ − ω̇. By the definition of the osculating elements,
the value of u̇ is always given by the geodesic value,
and so we see that the evolution of the true anomaly
differs from integrating the instantaneous time-evolving
geodesic equation by the ω̇ term. This can also be seen
by differentiating the orbit equation and using that both
r and ṙ are consistent with the instantaneous geodesic to
obtain

v̇ =

√

µa(1− e2)

r2
+
ė

e

cos v

sin v

−
(

ȧ

a
− 2ėe

1− e2

)(

1 + e cos v

e sin v

)

. (C8)

The first term is the geodesic v̇, while the other terms
arise as a result of the perturbation. Although this equa-

tion looks singular at turning points, sin v = 0, substi-
tution of the expressions for ȧ, ė and the geodesic equa-
tions gives the necessary calculations and the expression
reduces to −ω̇, as it should.
Appendix D: Drag force in Schwarzschild geometry

In order to understand the effect that leads to an in-
crease of eccentricity we can consider a Schwarzschild BH
system, in which the same effect is seen, but which is eas-
ier to analyze and to understand. The osculating element
equation for the evolution of the eccentricity, Eq. (3.60),
in the case of a nonrotating BH reduces to Eq. (37) in [1]
and has the form

de

dv
= R(p, e, v)ar + T (p, e, v)aφ . (D1)

We use a drag force to perturb the orbit which takes a
very simple form ar = −γur, aφ = −γuφ. The velocities,
in Schwarzschild coordinates, are

ur = e sin v

√

p− 6− 2e cos v

p(p− 3− e2)
, (D2)

uφ =
(1 + e cos v)2

pM
√

p− 3− e2
. (D3)

The equation for de/dv is integrable for this perturb-
ing force if changes to e and p are ignored over the orbit
and the result can expressed in terms of elliptic integrals.
However, this is quite messy and we are primarily inter-
ested in the leading order correction to the orbit. We
make a weak field expansion (M/p << 1) of the terms
entering this equation:

R ≈ p2

M

(

R0(e, v) +
M

p
R1(e, v) +O(M2/p2)

)

, (D4)

T ≈ p3M

(

T0(e, v) +
M

p
T1(e, v) +O(M2/p2)

)

, (D5)

here we do not go beyond the first correction to the Ke-
plerian term. Similarly, we find for the velocities

ur =

√

M

p
ur0(e, v)

(

1 +
M

p
ur1(e, v) +O(M2/p2)

)

,

(D6)

uφ =

√

M3

p3
uφ0 (e, v)

(

1 +
M

p
uφ1 (e, v) +O(M2/p2)

)

.

(D7)

The explicit form of the terms in these expansions is
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ur0 = e sin v , ur1 =

(

−3

2
− e cos v +

1

2
e2
)

, (D8)

uφ0 = (1 + e cos v)2, uφ1 =

(

3

2
+

1

2
e2
)

, (D9)

R0 =
sin v

(1 + e cos v)2
, R1 = 3R0(1− e2) , (D10)

T0 =
(e cos v + 2) cos v + e

(1 + e cos v)4
, (D11)

T1 =
2e+ 6 cos v + 2e cos2 v − e2 cos3 v − 5e2 cos v − 3e3 cos2 v − e3

(1 + e cos v)4
. (D12)

The leading order terms give us the Newtonian perturba-
tion of the eccentricity (C5) with perturbing force com-

ponents R′ = −γṙ, S′ = −γrφ̇. Overall, the Newtonian
term is

(

de

dv

)

00

= −2γp3/2
e + cos v

(1 + e cos v)2
. (D13)

This equation can be integrated over an orbit, keeping
e, p on the right-hand side constant, to give

δe(v) = −2γp3/2
sin v

1 + e cos v
. (D14)

It is clear that in the Newtonian case there is no secular
change in the eccentricity. Note also that the individual
components (radial and azimuthal) of the perturbation
are not zero after integration over one orbit, but they
are exactly equal and opposite in sign. We now consider
the first relativistic corrections. First, we note that the

perturbations R1 and uφ1 are independent of v, and so we
can reabsorb these into a redefinition of γ → γ′ where

γ′ =

[

1 +
1

2p
(3 + e2)

] [

1 +
3

p
(1− e2)

]

γ ,

and so the rescaled leading order term still averages to
zero, as it is proportional to the Newtonian expression.
There remain two perturbations, one that comes from the
radial velocity perturbation, R0u

r
1, and one that comes

from the relativistic correction to the orbit’s response to

the azimuthal perturbation, uφ0T1. The velocity pertur-
bation contributes

(

de

dv

)

01

= −γ′ p
1/2e sin2 v

(1 + e cos v)2

×
[

1

2
(−3− 2e cos v + e2)− 1

2
(3 + e2)

]

= γ′p1/2
e sin2 v(3 + e cos v)

(1 + e cos v)2
. (D15)

Note that this term is always positive and so it will lead
to an increase in the eccentricity. This can be interpreted

as an additional radial force which acts at each point of
the orbit in the direction of motion slowing down the
effective radial velocity in the force, which leads to the
increase of eccentricity.

The second part of the perturbation, uφ0T1, contributes
(

de

dv

)

10

= γ′ep1/2

×
[

1− e2 + cos2 v(1 + e cos v)− e(cos v + e)
]

× (1 + e cos v)−2 . (D16)

Note that the last term is proportional to the Newtonian
term and therefore averages to zero so we can ignore this
term. The remaining part is always positive and also
drives an increase in eccentricity. This time the extra
term can be interpreted as an additional azimuthal force
which further boosts the effective azimuthal velocity in
the force and once again leads to the increase in the ec-
centricity.
We note that both of these perturbations, and also

the Keplerian term, are proportional to eccentricity, and
they will not drive a circular orbit to become eccentric.
In fact, the contribution from the relativistic correction
to the velocity is equal to that coming from the correction
to the orbital response. Taking the difference,

(

de

dv

)

01

−
(

de

dv

)

10

= γ′
ep1/2

(1 + e cos v)2

×
[

e(cos v + e) + 2 sin2 v

−2 cos2 v(1 + e cos v)
]

.

(D17)

The first term in the square bracket is proportional to the
Newtonian term and therefore vanishes after averaging.
The remaining term can be integrated analytically,

∫ v

0

dv′
sin2 v′ − cos2 v′(1 + e cos v′)

(1 + e cos v′)2
= − sin v cos v

1 + e cos v
.

(D18)
which is also zero after integration over one orbit. We
conclude that the leading order relativistic correction in
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the perturbation equation predicts the increase in eccen-
tricity that we observe numerically. This secular change
comes equally from the first order correction to the ra-
dial velocity and the first order correction to the orbital
response to an azimuthal perturbation. The relativistic
corrections can be thought of as an extra force which
slows down the effective radial motion and accelerates
the effective azimuthal motion that enter the drag force.
The radial drag force is correspondingly reduced, while
the azimuthal drag force is increased and both drive a

secular increase in eccentricity. The equality of the two
parts of the force may reflect some hidden symmetry in
the equations. The response of the orbit to a pertur-
bation depends on the velocity at each point along the
orbit, and we are using that same velocity to prescribe
the perturbation in this case, which might explain why
the net contribution from the two terms is equal. How-
ever, the osculating element equations are not explicit in
how they depend on the instantaneous velocity, so this is
only a speculation.
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