
Reconstructing the massive black hole cosmic history through gravitational waves

Alberto Sesana,1,* Jonathan Gair,2,† Emanuele Berti,3,4,‡ and Marta Volonteri5,x
1Albert Einstein Institute, Am Muhlenberg 1 D-14476 Golm, Germany

2Institute of Astronomy, University of Cambridge, Cambridge, CB3 0HA, UK
3Department of Physics and Astronomy, The University of Mississippi, University, Mississippi 38677-1848, USA

4California Institute of Technology, Pasadena, California 91109, USA
5Department of Astronomy, University of Michigan, Ann Arbor, Michigan, USA

(Received 17 November 2010; published 22 February 2011)

The massive black holes we observe in galaxies today are the natural end-product of a complex

evolutionary path, in which black holes seeded in proto-galaxies at high redshift grow through cosmic

history via a sequence of mergers and accretion episodes. Electromagnetic observations probe a small

subset of the population of massive black holes (namely, those that are active or those that are very close to

us), but planned space-based gravitational wave observatories such as the Laser Interferometer Space

Antenna (LISA) can measure the parameters of ‘‘electromagnetically invisible’’ massive black holes out

to high redshift. In this paper we introduce a Bayesian framework to analyze the information that can be

gathered from a set of such measurements. Our goal is to connect a set of massive black hole binary

merger observations to the underlying model of massive black hole formation. In other words, given a set

of observed massive black hole coalescences, we assess what information can be extracted about the

underlying massive black hole population model. For concreteness we consider ten specific models of

massive black hole formation, chosen to probe four important (and largely unconstrained) aspects of the

input physics used in structure formation simulations: seed formation, metallicity ‘‘feedback’’, accretion

efficiency and accretion geometry. For the first time we allow for the possibility of ‘‘model mixing’’, by

drawing the observed population from some combination of the ‘‘pure’’ models that have been simulated.

A Bayesian analysis allows us to recover a posterior probability distribution for the ‘‘mixing parameters’’

that characterize the fractions of each model represented in the observed distribution. Our work shows that

LISA has enormous potential to probe the underlying physics of structure formation.
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I. INTRODUCTION

In �CDM cosmologies, structure formation proceeds in
a hierarchical fashion [1], in which massive galaxies are
the result of several merging events involving smaller
building blocks. In this framework, the massive black holes
(MBHs) we see in today’s galaxies are expected to be the
natural end-product of a complex evolutionary path, in
which black holes seeded in proto-galaxies at high redshift
grow through cosmic history via a sequence of MBH-MBH
mergers and accretion episodes [2,3]. Hierarchical models
for MBH evolution, associating quasar activity to gas-
fueled accretion following galaxy mergers, have been suc-
cessful in reproducing several properties of the observed
Universe, such as the present-day mass density of nuclear
MBHs and the optical and X-ray luminosity functions of
quasars [3–9].

However, only a few percent of galaxies host a quasar
or an active galactic nucleus (AGN), while most galaxies
harbor MBHs in their centers, as exemplified by

stellar- and gas-dynamical measurements that led to the
discovery of quiescent MBHs in almost all bright nearby
galaxies [10], including the Milky Way [11]. Our current
knowledge of the MBH population is therefore limited
to a small fraction of MBHs: either those that are active,
or those in our neighborhood, where stellar- and gas-
dynamical measurements are possible. Gravitational
wave (GW) observatories can reveal the population of
electromagnetically ‘‘black’’ MBHs.
LISA will be capable of accurately measuring the pa-

rameters of individual massive black hole binaries
(MBHBs), such as their masses and luminosity distance,
allowing us to track the merger history of the MBH popu-
lation out to large redshifts. MBHB mergers have been one
of the main targets of the LISA mission since its concep-
tion (see e.g. [12]). Several authors have explored how
spins, higher harmonics in the GW signal and eccentricity
affect parameter estimation and, in particular, source lo-
calization, which is fundamental to search for electro-
magnetic counterparts (see, for example, the work by the
LISA parameter estimation task force [13] and references
therein). Most work on parameter estimation has focused
on inspiral waveforms, but ringdown observations can also
provide precise measurements of the parameters of rem-
nant MBHs resulting from a merger, and even test the Kerr
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nature of astrophysical MBHs [14]. Initial studies using
numerical relativity waveforms suggest that mergers will
improve the signal-to-noise ratio of individual events and
the localization accuracy of LISA [15].

While highly precise measurements for individual sys-
tems are interesting and potentially very useful for making
strong-field tests of general relativity, it is the properties of
the set of MBHB mergers that are observed which will
carry the most information for astrophysics. To date, most
of the body of work considering observations of more than
one MBHB system has focused on the use of MBHBs as
‘‘standard sirens’’ [16] to probe the expansion history of
the Universe. For a subset of the observed binaries, LISA
may have sufficient angular resolution to make follow-up
electromagnetic observations feasible. If the host galaxy or
galaxy cluster can be identified, this will allow LISA to
measure the dark energy equation of state to levels com-
parable to those expected from other dark energy missions
[17]. The effectiveness of LISA as a dark energy probe is
limited by weak-lensing [18], but this can be mitigated to
some extent [19], and a combination of several GW detec-
tions may still provide useful constraints on the dark
energy equation of state [20].

GWobservations of multiple MBHB mergers could also
be combined to extract useful astrophysical information
about their formation and evolution through cosmic his-
tory. As already mentioned, our access to the MBH popu-
lation in the Universe is limited to AGNs or to quiescent
MBHs in nearby galaxies. In this sense we are probing only
the tip of the iceberg. Theoretical astrophysicists have
developed a large variety of MBH formation models
[3,21–24] that are compatible with observational con-
straints. However, the natural lack of observations of faint
objects at high redshifts and the difficulties in measuring
MBH spins leave a lot of freedom in modeling MBH seed
formation and mass accretion. In the last decade, several
authors have employed different MBH formation and evo-
lution models to make predictions for future GW observa-
tions, focusing, in particular, on LISA [25–30]. This effort
has been very valuable, and established the detection of a
large population of MBH binaries as one of the corner-
stones of the LISA mission.

In this paper we tackle the inverse problem: we do not
ask what astrophysics can do for LISA, but what LISA can
do for astrophysics. In particular, we ask the following
question: can we discriminate among different MBH for-
mation and evolution scenarios on the basis of GW obser-
vations only? More ambitiously, given a set of observed
MBHB coalescences, what information can be extracted
about the underlying MBH population model? For ex-
ample, will GW observations tell us something about the
mass spectrum of the seed black holes at high redshift that
are inaccessible to conventional electromagnetic observa-
tions, or about the poorly understood physics of accretion?
Such information cannot be gleaned from a single GW

observation, but it is encoded in the collective properties of
the whole detected sample of coalescing binaries. In this
paper we describe a method to extract this information in
order to make meaningful astrophysical statements. The
method is based on a Bayesian framework, using a para-
metric model for the probability distribution of observed
events.
The paper is organized as follows. Section II presents the

general framework of our analysis. There we review the
MBH formation models considered in this paper and
explain how these models translate into a theoretically
observable distribution via a ‘‘transfer function’’ that de-
pends (for a given source) on the detector characteristics
and on the assumed model for the gravitational wave-
form. We describe how to sample MBH distributions via
Monte Carlo methods, and how to interpret the observa-
tions in a Bayesian framework. In Sec. III we apply these
statistical methods to the problem of deciding, given a set
of LISA observations, whether we can correctly tell the
true model from an alternative, for each pair in our family
of MBH formation models. We focus, in particular, on
specific comparisons that would allow us to set constraints
on the main uncertainties in the input physics; namely, the
seed formation mechanism, the redshift distribution of the
first seeds, the efficiency of accretion during each merger
and the geometry of accretion. In Sec. IV we describe how
to go beyond a simple catalog of pure models, either by
introducing phenomenological mixing parameters (de-
signed to gauge the relative importance of different physi-
cal mechanisms in the birth and growth of MBHs) between
the pure models, or by consistently implementing a mix-
ture of different physical assumptions in a merger tree
simulation. In Sec. V we explore how well a ‘‘consistently
mixed’’ model can be recovered as a superposition of
pure models with the phenomenological mixing parame-
ters. In the conclusions we point out possible extensions of
our work. Appendix A provides details of our treatment of
errors (due to instrumental noise, uncertainties in cosmo-
logical parameters and weak-lensing) in the MBHB obser-
vations. Appendix B compares parameter estimation
calculations that do, or do not, take into account the orbital
motion of LISA. The results suggest that angle-averaged
codes that do not take into account the orbital motion may
reduce computational requirements in Monte Carlo simu-
lations, while still providing reasonable estimates of at
least some binary parameters. Finally, Appendix C gives
details on the assumptions underlying the black hole for-
mation models used in this paper, and, in particular, on
metallicity evolution, seeding and accretion.

II. MASSIVE BLACK HOLES: FORMATION
MODELS, GRAVITATIONALWAVE

OBSERVATIONS AND THEIR INTERPRETATION

Our goal is to assess the effectiveness of GW observa-
tions in extracting useful information about the evolution
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of the MBH population in the Universe. Recent work by
Plowman et al. [31,32] attempted to address the same
question. Here we use different techniques, which improve
on their analysis in several ways. Plowman et al. used the
nonparametric Kolmogorov-Smirnov (KS) test to compare
distributions of model parameters between models. This
limited their comparisons to two parameters at a time, as
higher-dimensional KS tests are not known. We instead use
a parametric model by considering the number of events in
any given part of parameter space to be drawn from a
Poisson probability distribution. This allows us to use a
Bayesian framework for the analysis. Such a framework
will be important for the analysis of the actual LISA
observations once these have been made, and it can be
applied to a parameter space of any dimension.

In Ref. [33] we used similar techniques to compare the
same four models that were considered by Plowman et al.,
which were the models used for LISA parameter estima-
tion accuracy studies in Ref. [13]. In this paper we go
considerably further by considering six additional models,
chosen to probe four key aspects of the input physics used
in structure formation simulations: seed formation, metal-
licity ‘‘feedback’’, accretion efficiency and accretion
geometry. In addition, we consider for the first time
‘‘model mixing’’. The idea is to assume that the observed
population is drawn from some combination of the ‘‘pure’’
models that have been simulated. The Bayesian framework
allows us to recover a posterior probability distribution for
the ‘‘mixing parameters’’ that characterize the fraction of
each model represented in the observed distribution. Such
an analysis is not possible in the KS framework. The model
mixing analysis is very important, as the real Universe is
most certainly not drawn from any of the idealized models
that currently exist. The mixing parameters will reflect the
relative contributions in the true Universe of the different
input physics in the pure models.

For our analysis, we adopt the following strategy:
(i) We consider a set of MBH formation and evolution

models predicting different coalescing MBHB theo-
retical distributions (Sec. II A);

(ii) To account for detection incompleteness, we filter
the distribution predicted by each model using a
detector ‘‘transfer function’’ that produces the ob-
served theoretical distributions under some specific
assumptions about the GW detector (Sec. II B). This
is basically the distribution one would observe as-
suming an infinite number of detections;

(iii) We generate Monte Carlo realizations of the co-
alescing MBHB population from one of the models
(Sec. II C) or from a mixture of models (Sec. IV),
and simulate GW observations of the inspiraling
binaries, including errors in the source parameter
estimation;

(iv) We then compare (in a statistical sense) the catalog
of observed events—including measurement

errors—with the observed theoretical distributions,
to assess at what level of confidence we can recover
the parent model. The statistical methods we use
are detailed in Sec. II D.

In this paper we will consider the Laser Interferometer
Space Antenna (LISA) as an illustrative case, but the
strategy outlined above can easily be generalized to other
proposed space-borne GW observatories, such as ALIA,
DECIGO or BBO [34–36].
An important caveat is that, for a source at redshift z,

GW observations do not measure the binary parameters in
the source frame, but rather the corresponding redshifted
quantities in the detector frame. For this reason, throughout
the paper we shall characterize MBHBs via their redshifted
parameters. Given a MBHB with rest-frame masses
M1;r > M2;r, the masses in the detector frame are given

byM1 ¼ ð1þ zÞM1;r,M2 ¼ ð1þ zÞM2;r. In terms of these

masses we can also define (as is the custom in GW physics)
the total massM ¼ M1 þM2, the mass ratio q ¼ M2=M1,
the symmetric mass ratio � ¼ M1M2=M

2 and the chirp

mass M ¼ �3=5M. In our calculations we assume a
concordance �CDM cosmology characterized by H0 ¼
70 km s�1 Mpc�1, �M ¼ 0:27 and �� ¼ 0:73.
For simplicity we will focus on the inspiral of circular,

nonspinning binaries; therefore, each coalescing MBHB in
our populations will be characterized by only three intrin-
sic parameters (z, M and q). In terms of gravitational
waveform modelling, the results presented here can be
considered conservative. Different accretion models may
result in different MBH spin distributions. Including spin
in the analysis will provide additional information that will
help to further constrain the physical mechanisms at work
in shaping the MBH population model [32,37]. The inclu-
sion of the merger/ringdown portion of the signal will
increase the signal-to-noise ratio (SNR) of observed bi-
naries and allow measurements of the parameters of the
merger remnants, providing additional information on the
mechanisms responsible for MBH growth.
In the following subsections we will introduce all the

elements and methodologies relevant to our analysis.

A. Cosmological massive black hole populations

The assembly of MBHs is reconstructed through dedi-
cated Monte Carlo merger tree simulations [3] which are
framed in the hierarchical structure formation paradigm.
Each model is constructed by tracing the merger hierarchy
of�200 dark matter halos in the mass range 1011–1015M�
backwards to z ¼ 20, using an extended Press & Schechter
(EPS) algorithm (see [3] for details). The halos are then
seeded with black holes and their evolution is tracked
forward to the present time. Following a major merger
(defined as a merger between two halos with mass ratio
Mh2=Mh1 > 0:1, whereMh2 is the mass of the lighter halo),

MBHs accrete efficiently an amount of mass that scales
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with the fifth power of the host halo circular velocity and

that is normalized to reproduce the observed local corre-

lation between MBH mass and the bulge stellar velocity

dispersion (the M� � relation, see [38] and references

therein). For each of the simulated halos, all of the binary

coalescences that occur are stored in a catalog. The results

for each halo are then weighted using the EPS halo mass

function and are numerically integrated over the observ-

able volume shell at every redshift to obtain the coales-

cence rate of MBHBs as a function of black hole masses

and redshift (see, e.g., Fig. 1 in [28]). We then find the

theoretical distribution of (potentially) observable coales-

cing binaries by multiplying the rate by the LISA mission

lifetime (here assumed to be three years) to obtain the

distribution N i � d3Ni=dzdMdq, where the index i
labels the MBH formation model.

In the general picture of MBH cosmic evolution, the

MBH population is shaped by the details of the seeding

process and the accretion history. Both issues are poorly

understood, and largely unconstrained by present observa-

tions. We identify four key factors that have a direct impact

on specific observable properties of the merging MBHB

population:
(1) the seed formation mechanism shapes the initial

seed mass function;
(2) the impact of metallicity on MBH formation deter-

mines the redshift distribution of the seeds;
(3) the accretion efficiency determines the growth rate

of MBHs over cosmic history;
(4) the accretion geometry is crucial in the evolution of

the MBH spins.

We explore different formation scenarios by considering

two different prescriptions for each of the elements in

the above list. Details of the implementation are described

in Appendix C, here we summarize the most impor-

tant assumptions, and differences between models, as fol-

lows:
(1) The seed formation mechanism. Two distinct fami-

lies of models have become popular in the last
decade, usually referred to as ‘‘light’’ and ‘‘heavy’’
seed models. Here we consider two different scenar-
ios representative of the two possibilities. (i) The
‘‘VHM’’ model; developed by Volonteri, Haardt &
Madau [3], this model is characterized by light seeds
(M� 100M�), which are thought to be the remnants
of Population III (POPIII) stars, the first generation
of stars in the Universe [39]. (ii) The ‘‘BVR’’model;
proposed by Begelman, Volonteri & Rees [23], this
model belongs to the family of ‘‘heavy seed’’ mod-
els. Bar within bar instabilities [40] occurring in
massive protogalactic disks trigger gas inflow to-
ward the center, where a ‘‘quasistar’’ forms. The
core of the quasistar collapses into a seed black hole
that efficiently accretes from the quasistar envelope,

resulting in a final seed black hole with mass
M� few� 104M�.

(2) Metallicity ‘‘feedback’’. Both of the black hole for-
mation models described above require that a large
amount of gas is efficiently transported to the halo
center. The gas inflow has to occur on a time scale
that is shorter than that of star formation, to avoid
competition in gas consumption and disruption of
the inflow process by supernovae explosions. It has
been suggested that metal-free conditions are con-
ducive to efficient gas inflow, as fragmentation is
inhibited [41]. If fragmentation is suppressed, and
cooling proceeds gradually, the gaseous component
can cool and contract before many stars form. The
gas metallicity Z is therefore an important environ-
mental factor to take into account, and we consider
two cases. (i) ‘‘noZ’’ models; black hole seeding is
assumed to be efficient at zero-metallicity only, with
a sharp threshold in cosmic time. In these models,
seeds form at very high redshift (20> z > 15).
(ii) ‘‘Z’’ models; efficient seed formation occurs
also at later times. Here we treat POPIII star and
quasistar black hole formation differently. We still
assume that POPIII stars can form only out of metal-
free gas, but we track the probability that a halo at
late times is still metal-free by adopting the metal
enrichment models developed in [42]. For the case
of quasistars, instead, we drop the assumption of
zero-metallicity. This choice is motivated by recent
high-resolution numerical simulations of gas-rich
galaxies at solar metallicities (e.g. [43]), which
show that bar within bar instabilities can drive a
significant amount of gas to the central nucleus
before star formation quenches the inflow. These
models are characterized by seed formation also at
later times, in metal enriched halos. See [24] for full
details on the model and its implementation.

(3) The accretion efficiency. MBHs powering AGNs
exhibit a broad phenomenology; they accrete at
different rates, with different efficiencies and lumi-
nosities (see [44] and references therein). In the
absence of a solid coherent theory for describing
the accretion process, several toy models are viable,
and we consider two of these models. (i) ‘‘Edd’’
accretion model; the easiest possible recipe is to
assume that accretion occurs at the Eddington rate,
parametrized through the Eddington ratio fe (we
take fe ¼ 0:3 in our models). (ii) ‘‘MH’’ accretion
model; we also use a more sophisticated scheme
combining low and high accretion rates, as de-
scribed by Merloni & Heinz [44].

(4) The geometry of accretion. Standard accretion disks
are unstable to self-gravity beyond a few thousands
of Schwarzschild radii [45]. It is therefore not guar-
anteed that the supply of gas to the central black
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hole will be continuous, smooth and planar. We
consider two different scenarios. (i) Coherent accre-
tion (‘‘co’’ models); the flow of material that feeds
the black hole is assumed to be continuous, smooth
and planar. Accretion is a single steady episode
lasting about a Salpeter time. (ii) Chaotic accretion
(‘‘ch’’models); in this scenario, proposed by King &
Pringle [46], a single accretion event is made of a
collection of short-lived accretion episodes, and the
angular momentum of each accreted matter clump is
randomly oriented. These accretion models primar-
ily lead to different expectations for the black hole
spins: intermediate-high, a� 0:6–0:9, in the coher-
ent case; low, a < 0:2, in the chaotic case [37]. In
this work we ignore black hole spin in the modeling
of gravitational waveforms, and therefore we do not
assess the impact of spin measurements in resolving
different MBH formation scenarios. However, the
accretion prescription also leaves an imprint on
the component masses. The models assume that
the mass-to-energy conversion efficiency, �, de-
pends on black hole spin only, so the two models
predict different average efficiencies of �20% and
�10%, respectively. The mass-to-energy conver-
sion directly affects mass growth, with high effi-
ciency implying slow growth, since for a black hole
accreting at the Eddington rate the black hole mass
increases with time as

MðtÞ ¼ Mð0Þ exp
�
1� �

�

t

tEdd

�
; (1)

where tEdd ¼ 0:45 Gyr. The ‘‘coherent’’ versus
‘‘chaotic’’ models thus allow us to study how differ-
ent growth rates affect LISA observations.

By choosing two different prescriptions for each of the
four pieces of input physics listed above we built ten
different MBH population models, which are summarized
in Table I. We shall refer to these models as ‘‘pure’’, in the
sense that we do not mix different recipes for seed

formation and accretion history (e.g., accretion is either
coherent or chaotic, etc.). We will consider ‘‘mixed’’ mod-
els in Sec. IV. It is worth emphasizing that all of these
models successfully reproduce various properties of the
observed Universe, such as the present-day mass density
of nuclear MBHs and the optical and X-ray luminosity
functions of quasars. GW observations may therefore pro-
vide an invaluable tool to constrain the birth and growth of
MBHs, particularly at high redshift.

B. Theoretically observable distributions:
the transfer function

In order to compare a set of observed events to a given
MBH population model, we must map the coalescence
distribution predicted by the model to a theoretically ob-
servable distribution which takes into account the ‘‘incom-
pleteness’’ of the observations resulting from the limited
sensitivity of any given GW detector. This information can
be encoded in a transfer function Tðz;M; qÞ, that depends
only on the detector characteristics and on the gravitational
waveform model.
We model the detector and the gravitational waveform

following Refs. [47,48]. The detector response is modeled
following Cutler [49]: the three-arm LISA constellation is
thought of as a superposition of a pair of linearly indepen-
dent two-arm right-angle interferometers, and we can es-
timate the effect of ‘‘descoping options’’ or a failure on one
satellite by assuming that only one of the two detectors is
operational. The MBHB inspiral signal is modeled using
the restricted post-Newtonian approximation, truncating
the GW phasing at second post-Newtonian order—i.e., at
order ðv=cÞ4, where v is the binary orbital velocity. We also
limit our analysis to circular inspirals of nonspinning
MBHs and neglect contributions to the observable signal
that come from higher harmonics in the inspiral signal and
from the (gravitationally loud) merger/ringdown phase.
The latter assumption significantly underestimates the en-
ergy carried in the GWs [50], the SNR of the signal [51]
and the accuracy in estimating the source parameters [15].

TABLE I. The ten ‘‘pure’’ MBH population models considered in this paper. For convenience,
in the following we will identify models by the integer, i, listed in the second column. In the last
column, �Ni denotes the predicted coalescence rate.

Name i Seeding Metallicity Accretion model Accretion geometry �Ni [yr
�1]

VHM-noZ-Edd-co 1 POPIII Z ¼ 0 Eddington coherent 86

VHM-noZ-Edd-ch 2 POPIII Z ¼ 0 Eddington chaotic 81

VHM-Z-Edd-co 3 POPIII all Z Eddington coherent 108

VHM-Z-Edd-ch 4 POPIII all Z Eddington chaotic 113

BVR-noZ-Edd-co 5 Quasistar Z ¼ 0 Eddington coherent 26

BVR-noZ-Edd-ch 6 Quasistar Z ¼ 0 Eddington chaotic 24

BVR-Z-Edd-co 7 Quasistar all Z Eddington coherent 22

BVR-Z-Edd-ch 8 Quasistar all Z Eddington chaotic 29

BVR-noZ-MH-co 9 Quasistar Z ¼ 0 Merloni & Heinz coherent 33

BVR-noZ-MH-ch 10 Quasistar Z ¼ 0 Merloni & Heinz chaotic 33
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From the point of view of studying MBH populations, it
also means that we discard all information on the mass and
spin distribution of MBHs formed as a result of each
merger [14]. In this sense, our assessment of the potential
of LISA to constrain MBH formation models should be
considered conservative.

An important advantage of working in the frequency
domain and of adopting a simplified waveform model is
that we can sample the three-dimensional space ðz;M; qÞ
by fast Monte Carlo simulations using an adaptation of the
FORTRAN code described in [47]. Typically, we can esti-

mate SNRs and parameter estimation errors of �106 bi-
naries in 1 d on a single processor. This would not be
possible with a more complex time-domain code including
spin dynamics, such as that used in [32]. We consider a
21� 21� 21 three-dimensional grid spaced logarithmi-
cally in the intervals q 2 ½10�3; 1�, M 2 ½103; 108�, and
approximately linearly in z (namely, we consider z ¼ 0:5
and then all values of z ¼ 1; . . . ; 20 in steps of�z ¼ 1), for
a total of 9261 points. At each point, we generate 1000
binaries assuming random position in the sky and orienta-
tion, random phase at coalescence, and coalescence time tc
in the range [0, 3 yr] (i.e., we consider only events that
coalesce during the LISA mission). The GW signal is
calculated in the Fourier domain in the stationary phase
approximation. Our statistical analysis, which will be dis-
cussed in Sec. II D, includes parameter measurement er-
rors, which are modeled as described in Appendix A. The
modeling of errors due to instrumental noise relies on the
computation of the so-called Fisher information matrix
[52]. For each system we compute the Fisher matrix and
its inverse by means of the LU decomposition, as described
in [47]. The accuracy of the inversion is usually worse for
certain values of the intrinsic parameters and of the angular
position/orientation of the binary. We discard ‘‘bad’’ Fisher
matrix inversions by monitoring a quantity �inv, defined as

�inv ¼ max
i;j

jInumij � �ijj; (2)

where Inumij is the ‘‘numerical’’ identity matrix obtained by

multiplying the inverse matrix by the original, and �ij is

the standard Kronecker delta symbol [47]. We set a maxi-
mum tolerance of �inv ¼ 10�3 to accept the inversion. For
the accepted events, we compute the SNR � and then we
define the transfer function as

Tðz;M; qÞ ¼ Nð� > �thrÞ
N

; (3)

where N ¼ 1000 is the number of successful matrix inver-
sions at any given grid point and Nð� > �thrÞ is the number
of binaries fulfilling the condition � > �thr, where �thr is a
prespecified SNR threshold.

We consider four transfer functions Tjðz;M; qÞ (j ¼ 1,

2, 3, 4) according to the following prescriptions: (1) one
interferometer, �thr ¼ 8; (2) one interferometer, �thr ¼ 20;
(3) two interferometers, �thr ¼ 8; (4) two interferometers,

�thr ¼ 20. The chosen thresholds correspond (roughly) to
the minimum SNR for which we expect to be able to claim
a confident detection (�thr ¼ 8) and the minimum SNR for
which we expect to obtain a decent accuracy in estimating
the parameters of the source (�thr ¼ 20). Note that, by
definition, 0 � Tðz;M; qÞ � 1.
Examples of T3ðz;M; qÞ in the ðM;qÞ plane at different

redshifts are shown in Fig. 1. As expected, the transfer
function is close to unity in the whole of the ðM;qÞ plane at
low redshifts, but a smaller number of events are observ-
able as we consider binaries coalescing at higher redshifts.
When we remember that high redshifted masses corre-
spond to low observation frequencies, it is easy to under-
stand that the characteristic shape of the contour plots for
large redshift (say, z ¼ 20) reflects the shape of the
LISA sensitivity curve (cf. Fig. 1 of Ref. [47]). More
details of the calculation of SNRs and parameter estima-
tion errors in the three-dimensional space ðM;q; zÞ are
given in Appendix B.
The transfer functions are coupled to the event distribu-

tions predicted by the models to obtain the theoretically
observable distributions NTðz;M; qÞ for each model under
the different assumptions on the transfer function; namely,

NTi;j
ðz;M; qÞ ¼ d3Ni

dzdMdq
� Tjðz;M; qÞ; (4)

where i labels the MBH population model being consid-
ered and j labels the assumed detector specifics.1 These are
the distributions which should be compared to simulated
observed catalogs of MBHBs.
For illustration, in Fig. 2 we compare the marginalized

distributions

dNi

dM
¼

Z
dz

Z
dq

d3Ni

dzdMdq
and

dNi

dz
¼

Z
dM

Z
dq

d3Ni

dzdMdq
(5)

(thin lines) with the corresponding marginalized distribu-
tions

NTi;3
ðMÞ ¼

Z
dz

Z
dqNTi;3

ðz;M; qÞ and

NTi;3
ðzÞ ¼

Z
dM

Z
dqNTi;3

ðz;M; qÞ (6)

(thick lines). Note that for some of the heavy seed models
(namely, the short-dashed line corresponding to model
BVR-noZ-MH-co) the two curves perfectly overlap: in
these cases LISA observations do not miss events, i.e.
they are ‘‘complete’’.

1Note that, in principle, the transfer function may depend on a
third index k, which labels the waveform model used for
matched filtering. We do not consider this problem here, but
the impact of waveform models on constraining the MBH
population is an important topic for future study.

SESANA et al. PHYSICAL REVIEW D 83, 044036 (2011)

044036-6



C. Synthetic Monte Carlo catalogs

To simulate LISA observations we perform 1000
Monte Carlo samplings of the d3Ni=dzdMdq distribution
predicted by each model, producing 1000 catalogs of
coalescing binaries over a period of three years. In each
catalog, the source position in the sky and the direction of
the orbital angular momentum are assumed to be uniformly
distributed. The phase at coalescence �c and the coales-
cence time tc are randomly chosen in the range [0, 2�] and
[0, 3 yrs], respectively. Each waveform is described by the
set of parameters

� ¼ ðlogA; logM; log�; tc;�c; �S;�S; �L;�LÞ; (7)

where ðtc;�cÞ are the phase and time of coalescence,
ð�S;�SÞ represents the source location in ecliptic coordi-
nates, ð�L;�LÞ give the orientation of the orbital angular
momentum of the binary and the GW amplitude of the
signal

A / M5=6
z

DL

; (8)

where

DL ¼ 1þ z

H0

Z z

0

dz0

ð1þ z0Þ2½�Mð1þ z0Þ3 þ���1=2
(9)

is the luminosity distance to the source. Our theoretical
distributions are not functions of ðM;�;DLÞ, but rather

functions of ðM;q; zÞ, and the mapping between the two
sets of parameters is given in Appendix A.
LISA measurements will yield a set of data fDkg,

k ¼ 1; . . . ; N, where N is drawn from a Poisson distribu-
tion with mean �Ni coincident with the theoretical
number of events predicted by the model we consider
(cf. Table I). Each element in the set is described by
ð�z; �z; �M;�M; �q;�qÞ, where �z, �M, �q are the true parameters

of the system and �z, �M, �q are the diagonal elements of

the variance-covariance matrix describing the measure-
ment errors. The latter are computed as described in
Appendix A and include contributions from instrumental
noise, from uncertainties in cosmological parameters and
from weak-lensing. We approximate the covariance matrix
as diagonal since this is conservative, and the covariances
are generally small. Strictly speaking we are not justified in
ignoring the large covariance between any two mass pa-
rameters (say, M and �); however the errors on the mass
parameters are always negligible when compared with
errors on luminosity distance, cosmological parameters
and weak-lensing (see Appendix A). The probability den-
sity function for the measured source parameters is then a
multivariate Gaussian with these standard deviations, cen-
tered at the true source parameters. As discussed in the next
section, the errors can be folded into the analysis in two
ways. The one we adopt is to construct the theoretically
observable distribution, N i;jðz;M; qÞ as described in

Sec. II B, by spreading each source over multiple bins
according to the Gaussian probability distribution for the
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FIG. 1 (color online). Transfer function for the case �thr ¼ 8 and observation with two interferometers, for z ¼ 0:5, 2, 5, 10, 15, 20.
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measurement errors. We then construct data sets by assign-
ing a unique set of observed parameters to each event
that is equal to the true parameters, plus a random error
drawn from the same probability distribution. For each
‘‘pure’’ MBH population model (label ‘‘i’’) and LISA
transfer function (label ‘‘j’’), we produce 1000 of these
‘‘observed’’ data sets fDkgi;j, to compare to the theoreti-

cally observable distributions. Examples of Monte Carlo
generated data sets are shown in Fig. 3.

Throughout our study, we will assume Tobs ¼ 3 yrs as
the fiducial LISA mission lifetime. However, it is interest-
ing to study how the performance of LISA improves as a
function of the duration of the data stream used in the
analysis. This problem could be particularly relevant if,
as expected, there are gaps in the LISA data stream. For
this reason we will consider increasing observation times,
Tobs, of 3 months, 6 months, 1 yr, 18 months, 2 years and
3 years, respectively. To construct these reduced data sets,
we just pick events from the catalog that coalesce at
tc < Tobs, and then renormalize the theoretical distribu-
tions by a factor Tobs=3 yr. In doing this, we ignore sources
that coalesce outside the reduced observation time, but
which may have enough SNR to be detected in the shorter
data segment. This is conservative since we are effectively

choosing only to include the coalescing sources in our
analysis. However, for MBHBs, unlike the EMRI case
(see Ref. [53]), almost all of the source SNR (and, con-
sequently, the accuracy in the determination ofM, q, and z)
is accumulated in the last month of inspiral, and so there
would not be a great deal to gain by including these sources
in the analysis.

D. Statistical analysis tools

In this work we will adopt a Bayesian approach to model
selection and parameter estimation. This requires a para-
metric model for the distribution of events that LISA will
observe. A particular astrophysical model of MBH forma-
tion cannot predict the actual number of events that will
occur during the LISA mission, as the mergers will occur
stochastically, but instead predicts the rate at which events
with particular parameters occur. Assuming random start
times, the number of events, ni, that will be seen in a
particular bin, Bi, in parameter space will be drawn from
a Poisson probability distribution with parameter ri equal
to the rate integrated over the bin:

pðniÞ ¼ ðriÞnie�ri

ni!
: (10)

FIG. 3 (color online). Examples of Monte Carlo generated data
sets. The left panels show the dNi=dM distributions, the central
panels show the dNi=dq distributions and the right panels show
the dNi=dz distributions. The upper panels refer to model BVR-
Z-Edd-co, the lower panels to model VHM-Z-Edd-co. In each
panel the dotted curves represent the theoretical distributions,
and the solid curves represent the theoretically observable
distribution filtered with the transfer function T3. The thick
histograms show one Monte Carlo realization of the theoretical
distribution, as observed by LISA, under the assumption of two
operational interferometers and �thr ¼ 8.

FIG. 2 (color online). Examples of the marginalized distribu-
tions dNi=dM (upper panel) and dNi=dz (lower panel) predicted
by different MBH formation models. In each panel we plot the
following models: VHM-noZ-Edd-co (solid red lines); BVR-noZ-
Edd-ch (long-dashed green lines); BVR-noZ-MH-co (short-
dashed blue lines). Thin lines represent the coalescence distri-
butions predicted in three years, while thick lines represent the
theoretically observable distributions after the transfer function
T3ðz;M; qÞ has been applied, namely, NTi;3

ðMÞ and NTi;3
ðzÞ (see

text for details).
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If we divide the parameter space up into a certain number
of bins, K say, then the information that comes from LISA
(the data D) is the number of events in each bin. The

overall likelihood, pðDj ~�; XÞ of seeing this data under

the model X with parameters ~� is the product of the
Poisson probabilities for each bin

pðDj ~�; XÞ ¼ YK
i¼1

ðrið ~�ÞÞnie�rið ~�Þ

ni!
: (11)

The rates that enter this expression are the rates for ob-
served events, i.e., the product of the intrinsic rate pre-
dicted by the model with the LISA transfer function, as
discussed in the previous section. It is straightforward to
take the limit of this expression as the bin sizes tend to zero
to derive a continuum version of this equation [53].

LISA will not be able to measure the parameters of
each system perfectly due to instrumental noise. In addi-
tion, weak-lensing will introduce errors in the measure-
ments of luminosity distance. Since we wish to use redshift
rather than distance as a parameter, further errors will be
introduced from imperfect knowledge of the luminosity
distance-redshift relation. The modeling of these errors
was mentioned earlier, and is described in detail in
Appendix A. There are two ways in which the errors can
be folded into the statistical analysis. Once LISA observa-
tions have been made, we will obtain posterior probability
distributions for the source parameters which account for
the error-induced uncertainties. The likelihood will then be
computed by integrating the continuum version of Eq. (11)
over the posterior, as described in [53]. The second ap-
proach, which we adopt here as it is more appropriate for a
priori studies of this type, is to fold the expected errors into
the computation of the observed rates, ri. In practice, we
compute these rates directly from the Monte Carlo realiza-
tions described in the preceding section. For each source in
the catalog we can assign fractional rates to every bin in
parameter space, computed by integrating the error proba-
bility distribution for the source over that particular bin.
In other words, we spread each source out into multiple
bins, as predicted by the error model described earlier.
When generating realizations of the LISA data set, we
assign each source to one bin only, according to some
‘‘observed parameters’’ (which could represent, for in-
stance, the maximum a posteriori parameters of the
source). We take these observed parameters to be equal
to the true parameters plus an error drawn from the same
error distribution.

Given the likelihood described above, Bayes theorem

allows us to assign a posterior probability, pð ~�jD;XÞ, to the
parameters, ~�, of a model, X, given the observed data, D,

and a prior, �ð ~�Þ, for the parameters ~�:

pð ~�jD;XÞ¼pðDj ~�;XÞ�ð ~�Þ
Z

; Z¼
Z
pðDj ~�;XÞ�ð ~�ÞdN�:

(12)

When comparing two models, A and B, that could each
describe the data, we can compute the odds ratio (see, for
example, [54])

OAB ¼ ZAPðAÞ
ZBPðBÞ ; (13)

in which PðXÞ denotes the prior probability assigned to
model X. If OAB � 1ðOAB 	 1Þ, model A (model B)
provides a much better description of the data.
In this paper, we will consider two types of model

comparison. In Sec. IV, we will consider mixed models
in which the observed distribution is drawn from a super-
position of two or more of the underlying ‘‘pure’’ models.
In those cases, the models depend on one or more free
‘‘mixing’’ parameters for which we will obtain posterior
distributions using Eq. (12). First, however, in Sec. III, we
will make direct comparisons between the pure models. In
that case, the models do not have any free parameters. The
odds ratio, (13), then reduces to the product of the like-
lihood ratio with the prior ratio

OAB ¼ pðDjAÞPðAÞ
pðDjBÞPðBÞ : (14)

The models we consider have all been tuned to match
existing constraints, and so at present we have no good
reason to prefer one model over the others. We therefore
assign equal prior probability to each pure model, PðAÞ ¼
PðBÞ ¼ 0:5, and the odds ratio becomes the likelihood
ratio. We assign probability pA ¼ pðDjAÞ=ðpðDjAÞ þ
pðDjBÞÞ to model A, and pB ¼ 1� pA to model B.
Once LISA data is available, each model comparison

will yield this single number, pA, which is our confidence
that model A is correct. Since the LISA data is not currently
available, we want to work out how likely it is that we will
achieve a certain confidence with LISA. So, we generate
1000 realizations of the LISA data stream and look at the
distribution of the likelihood ratio and confidence over
these realizations. We can represent the results of this
analysis in two alternative ways. These are illustrated in
Fig. 4, and we will refer to the two panels of this figure
extensively in the following. The left panel shows a re-
ceiver operator characteristic (ROC) curve. This is a
‘‘frequentist’’ way to represent the data. To generate this
plot, we assume that we have specified a threshold on the
statistic, in this case the likelihood ratio, before the data is
collected. If the value of the statistic computed for the
observed data exceeds the threshold then model A is
chosen, otherwise model B is chosen. For a given thresh-
old, the frequency with which the threshold is exceeded for
realizations of model B defines the false alarm probability
(FAP), while the frequency with which the threshold is
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exceeded for realizations of model A defines the detection
rate. The ROC curve shows detection rate vertically versus
FAP horizontally. In the figure, we indicate how, for an
FAP of 10%, we can find the detection rate, which in this
case is 49%. This is the format we used to present our
previous results in Ref. [33]. While the ROC is a conve-
nient way to represent the data, it is incomplete, in that it
does not tell us by how much we exceed the threshold: the
result is far more convincing if we obtain a likelihood ratio
10 times the threshold, than 1.1 times the threshold.

The right panel of Fig. 4 shows an alternative represen-
tation of the same data which contains this additional
information. It shows the cumulative distribution function
(CDF) for the ‘‘confidence’’ we would have in model A,
based on our observation, i.e., the probability, pA, we
assign to model A in a Bayesian interpretation of the results
of an observation. The upper curve is the CDF computed
over multiple realizations of model A (i.e., the horizontal
axis then shows our confidence in the true model), while
the lower curve shows the CDF computed from realizations
of model B (i.e., the horizontal axis then shows our con-
fidence in the wrong model). The best way to interpret this
plot is to choose a certain confidence level, e.g., p ¼ 0:95
(approximately 2�). The value on the upper curve is the
frequency with which this confidence level, or better,
would be achieved in a LISA observation when that model
was correct, while the value on the lower curve at 1� p is
the frequency with which we would not be able to rule out
model A with that confidence, when it was not true.

The CDF plot encodes the same information as the ROC
curve. If we assign a certain FAP, say 10% as before, we
draw a horizontal line at that value and find where it
intersects the lower curve. This tells us the confidence level
corresponding to that FAP, in this case 0.67. The value on

the upper curve at this confidence level is the detection rate
at that FAP, and we find that it is 49%, as expected. In the
current paper, we will use this second, Bayesian, represen-
tation of the results for all the remaining plots, as it encodes
all of the information that can be gleaned from the
Monte Carlo simulations. The Bayesian approach assigns
relative probabilities to the models, rather than making a
binary statement that model A is ‘‘right’’ or model B is
‘‘right’’.
The models we consider differ not only in the distribu-

tion of events that they predict, but also in the total number
of events. As the latter could be considered a less robust
prediction of the models, we can ask whether it carries
much weight for model selection. This can be done by
introducing a free parameter into each model, which is an
overall normalizing factor, and then marginalizing over it,
i.e., integrating the posterior probability over this parame-
ter. We write ri ¼ N~ri, where ~ri is the rate in bin i for a
model that predicts 1 event in total. The probability margi-
nalized over N is

~pðDjXÞ ¼
�YK
i¼1

~rnii
ni!

� X1
n¼1

nNobse�n; (15)

where Nobs ¼
P

ni is the total number of events observed.
The summation in the second term is dependent only on
Nobs and, as such, is model-independent. It can thus be
seen that

~pðDjXÞ / pðDjXÞeNXN�Nobs

X ; (16)

where NX is the number of events predicted by the un-
normalized model X. We can decouple the contribution
from the total number of events and the distribution of
event parameters by replacing the likelihood pðDjXÞ by the
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FIG. 4 (color online). Two alternative ways to represent our ability to distinguish models. The left panel shows an ROC curve, while
the right panel shows the CDF of the confidence achieved over multiple realizations of the correct (upper curve) and wrong (lower
curve) model. More details are given in the text. The model comparison used for this figure was VHM-noZ-Edd-co to VHM-noZ-Edd-
ch, for a three-month LISA observation and the most pessimistic assumption (T2) on the transfer function.
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marginalized likelihood ~pðDjXÞ in the likelihood ratio.
In Fig. 5 we show the effect this has on the CDFs for the
Bayesian confidence, for the comparison between model
VHM-noZ-Edd-co and VHM-noZ-Edd-ch. We see that in-
cluding marginalization makes very little difference to the
results. This implies that the number of events predicted by
a model contains little information relative to the parame-
ter distribution. For the remaining plots in this paper, we do
not marginalize over NX, but we have checked that in all
cases the effect of the marginalization is small.

III. RESULTS FOR THE PURE MODELS

We now describe the results of our analysis. In this
section we will compare pairs of pure models using the
technique described in the previous section. We generated
1000 realizations for each model, as described in Sec. II C.
For each pair of models A and B, we computed the CDF of
the Bayesian confidence of model A versus model B over
the realizations of model A and those of model B. We
present selected results in Fig. 6 using the CDF curves
described in the previous section.

Each panel in Fig. 6 shows the results for pairs of
models that differed in only one of the four aspects of
the input physics detailed in Sec. II A and listed in Table I.
To be conservative, we consider a pessimistic scenario for
the detector (transfer function T2: one interferometer,
�thr ¼ 20).

In the upper-left panel we show all possible (five) com-
parisons among pairs of models differing only in the
accretion geometry (e.g., BVR-noZ-Edd-co vs BVR-noZ-
Edd-ch), assuming a 1 yr observation. Since we ignore the

spin distributions, this is the property to which we are least
sensitive, as clearly shown by the relatively small separa-
tion of some pairs of curves in the panel. In most cases the
models are barely distinguishable at any reasonable con-
fidence level.
In the upper-right panel we compare models differing in

their accretion model (Edd vs MH, two comparisons),
assuming a three-month observation. Our models are
clearly more sensitive to this parameter, and they can be
clearly discriminated with only three months of data.
In the lower-left panel we investigate the impact of

metallicity (Z vs noZ, four comparisons). Pairs of models
are generally well separated even under pessimistic as-
sumptions (a three-month observation), and we can put
forward an interesting astrophysical interpretation of the
results. This panel shows that metallicity ‘‘feedback’’ is
better discriminated in high-mass seed models (BVR). This
is because the effect of metallicity is to change the redshift
distribution of the seeds. If seeds are massive, we can
clearly detect this redshift difference by directly observing
the first coalescing seeds in the Universe (recall that LISA
observations are basically complete for massive seed mod-
els, as shown in Fig. 2). Unfortunately, LISA is deaf to
coalescences of a few hundred solar mass binaries at
high z. Therefore, in low-mass seed models, we can only
measure the redshift distribution of the seeds indirectly
(by observing the distribution of mergers at a later cosmo-
logical epoch), and models are consequently harder to
discriminate.
Finally, in the lower-right panel, we look at the seeding

process (left: VHM vs BVR, four comparisons). Here the
result is very similar to the effect of metallicity. Pairs of
models are typically well separated, especially if seeds
form even at later times (the Z models). If seeds form at
high redshift only, then the mass distribution of coales-
cences at lower redshift tends to be more similar, as mass
growth by accretion erases the differences in the initial
seed masses.
We emphasize that the results discussed so far have

made the most pessimistic assumptions about the detector
performance, i.e., three months of observation with a single
interferometer and �thr ¼ 20. Under such assumptions
only a handful of sources will be detected, but this is
already sufficient to discriminate among most of the mod-
els. In Figs. 7 and 8 we consider a specific model com-
parison (namely VHM-noZ-Edd-co vs VHM-noZ-Edd-ch)
to display the effect of relaxing these assumptions.
Figure 7 shows that the detector performance does not

affect the results substantially. Lowering �thr from 20 to 8
for two operational interferometers only adds a few, low
SNR, sources to the detected sample, and the gain in
discrimination power is limited. On the other hand,
Fig. 8 shows that the observation duration is crucial.
With an observation time of three months, we would
achieve a 2� confidence level (pA ¼ 0:95) with only
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FIG. 5 (color online). Comparison of performance of model
selection when including the total number of events as a pa-
rameter of the model (labeled ‘‘no marginalization’’) and when
this parameter is marginalized over (labeled ‘‘with marginaliza-
tion’’). The small difference indicates that the total number of
events contains relatively little information compared to the
shape of the parameter distributions. We show the same model
comparison as in Fig. 4.
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�10% probability (i.e., if we repeated an independent 3
month LISA observation 10 times, we would expect one of
these to reach 2� confidence). However, with an observa-
tion time of three years, the probability that wewill achieve
2� confidence in the underlying model is more than 90%
(upper dashed-black curve). There is a similar trend in all
model comparisons, although the three-month result is
particularly bad for this particular comparison, since these
models differ only in the accretion geometry which we
have seen is the most difficult aspect to distinguish. The
trend with observation duration arises simply because the
number of detected sources increases linearly with the
observation time, and so we have a much better sampling
of the underlying model for longer mission durations.

Comparisons between all possible pairs of models are
given in Table II, where we assume a pessimistic detector

performance and three months (left) or 1 yr of observation
(right), respectively. Even though it is difficult to discrimi-
nate among some specific pair of models in the three-
month observation case, model discrimination is almost
perfect in most cases for a 1 yr observation. The exception
are the models differing in their accretion geometry only
(bold numbers in the table), for which discrimination is
difficult. However, even for such similar models we will
obtain a high confidence level with probability close to
unity if we assume a standard LISA configuration with two
operational interferometers observing for three years.

IV. MIXED MODELS

In the preceding section we (successfully) demonstrated
the potential of LISA to discriminate among a discrete set
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FIG. 6 (color online). Results for comparisons of the pure models. Each plot shows all possible comparisons varying only one of the
elements listed in Table I. Top left panel: we consider the effect of the accretion geometry, comparing coherent to chaotic for each of
the combinations of the other ingredients. Top right panel: we consider the effect of the accretion model, comparing Eddington
accretion toMerloni-Heinz accretion for the BVR-noZ models. Bottom left: we consider the effect of metallicity by comparing the noZ
to Z models for VHM-co, VHM-ch, BVR-co and BVR-ch. Bottom right: we consider the effect of the seeding assumption, comparing
the VHM to BVR models for the four combinations noZ-co, noZ-ch, Z-co and Z-ch, each with Eddington accretion. In all panels we are
making the most pessimistic assumptions about the detector, i.e., we use the transfer function T2 (one interferometer, �thr ¼ 20). These
results are for a 3 month LISA observation, except for the top left panel which is for a 1 yr observation.
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VHM-noZ-Edd-ch, assuming a fixed LISA mission duration of 3
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on the pure model selection results. We compare VHM-noZ-Edd-
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for the transfer function.

TABLE II. Summary of all possible comparisons of the pure models. The table on the left (right) assumes a LISA observation time
of three months (one-year), respectively. Models are labeled by an integer i, as listed in Table I. We take a fixed confidence level of
p ¼ 0:95. The numbers in the upper-right half of each table show the fraction of realizations in which the row model will be chosen at
more than this confidence level when the row model is true (in the Bayesian figures, this would be the point where a vertical line at
x ¼ p intersects the upper curve). The numbers in the lower-left half of each table show the fraction of realizations in which the row
model cannot be ruled out at that confidence level when the column model is true (in the Bayesian figures, this would be the point
where a vertical line at x ¼ 1� p intersects the lower curve). These results are for the pessimistic transfer function (T2).

Three-month observation

1 2 3 4 5 6 7 8 9 10

1 � 0.10 0.72 0.68 0.86 0.88 0.19 0.17 0.91 0.92

2 0.93 � 0.75 0.69 0.91 0.91 0.17 0.22 0.93 0.93

3 0.42 0.32 � 0.24 0.45 0.42 0.72 0.69 0.88 0.89

4 0.65 0.63 0.83 � 0.77 0.76 0.48 0.49 0.80 0.81

5 0.13 0.08 0.58 0.19 � 0.03 0.93 0.92 0.98 0.99

6 0.12 0.07 0.58 0.21 0.97 � 0.94 0.92 0.98 0.98

7 0.57 0.57 0.16 0.20 0.05 0.04 � 0.01 0.93 0.94

8 0.58 0.51 0.16 0.19 0.07 0.07 0.98 � 0.94 0.95

9 0.16 0.12 0.23 0.31 0.03 0.04 0.17 0.15 � 0.01

10 0.09 0.07 0.15 0.18 0.02 0.03 0.14 0.13 0.95 �

One-year observation

1 2 3 4 5 6 7 8 9 10

1 � 0:49 0.99 0.99 1.00 1.00 0.91 0.88 1.00 1.00

2 0:50 � 0.99 0.99 1.00 1.00 0.92 0.93 1.00 1.00

3 0.00 0.00 � 0:83 0.97 0.97 1.00 1.00 1.00 1.00

4 0.02 0.02 0:19 � 0.99 0.99 0.99 0.99 0.99 0.99

5 0.00 0.00 0.03 0.00 � 0:07 1.00 1.00 1.00 1.00

6 0.00 0.00 0.03 0.00 0:93 � 1.00 1.00 1.00 1.00

7 0.07 0.06 0.00 0.00 0.00 0.00 � 0:16 1.00 1.00

8 0.09 0.05 0.00 0.00 0.00 0.00 0:85 � 1.00 1.00

9 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 � 0:31
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0:61 �
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of ‘‘pure’’ models given a priori. However, the true MBH
population in the Universe will probably result from a
mixing of the physical processes described in Sec. II A,
or even from a completely unexplored physical mecha-
nism. It is therefore important to test whether we will be
able to extract useful information when the distribution of
observed events comes from a mixture of the different
models, as an approximation to possible unknowns. For
this case study, we will concentrate on the details of the
seeding mechanism (mass function and redshift distribu-
tion), deferring the more complicated details related to
accretion to a future study. Recall in this context that
accretion will leave a trace in the spin distribution of
MBHs, but our simplified analysis neglects the MBH spins
by construction.

We tested two mixing procedures: (i) we generated
artificially mixed models that were a linear combination
of the pure model distributions presented in Sec. II A;
(ii) we constructed two consistently mixed models, in
which seeds were generated according to a mixing of two
prescriptions, and their evolution was followed self-
consistently in the halo merger tree realizations. The goal
here is to assess whether artificial models can reproduce
the salient features of the consistently mixed models, and
to estimate the amount of mixing necessary to ‘‘best fit’’
the consistently mixed models. This procedure mimics the
analysis of a ‘‘real’’ LISA datastream, for which the data
is unlikely to match exactly any one of the pure model
predictions.

In this section we describe details of the artificially and
consistently mixed models. In Sec. V that follows we will
present the results of the ‘‘reconstruction experiment’’.

Artificial mixing simply consists in drawing coales-
cences from a linear combination of the theoretical coales-
cence distributions predicted by the pure models. Here, for
concreteness, we fix the accretion to be Eddington-limited
and coherent, and we mix different seeding recipes. We
therefore consider models VHM-noZ-Edd-co, VHM-Z-
Edd-co, BVR-noZ-Edd-co, and BVR-Z-Edd-co (i ¼ 1, 3,
5 and 7, respectively, in the notation of Table I).

Each model i is characterized by a mean number of
predicted coalescences �Ni and a probability distribution

for the parameters of the coalescing binaries piðM;q; zÞ.
The predicted event distribution N i ¼ d3Ni=dzdMdq
(see Sec. II A) can therefore be factorized as

N i ¼ �Ni � piðM;q; zÞ: (17)

The mixing is described by four parameters fi (i ¼ 1, 3, 5,
7) which determine the fraction of model i included in
the mixed distribution. These fractions are constrained to
add up to 1.

A. Artificial mixing

We tried two different mixing prescriptions. In the first
case we ignored the number of coalescences predicted by
each specific model, by mixing the respective piðM;q; zÞ
distributions (p mixing) and normalizing the mixed distri-
bution to some arbitrary number:

N p ¼ �Nmff1p1 þ f3p3 þ f5p5 þ f7p7g; (18)

where �Nm was fixed to 200 coalescences in three years. In
the second case we considered the number of predicted
events to be an intrinsic property of each individual model,
and we simply mixed the NiðM;q; zÞ distributions (N
mixing) in the same way:

N N ¼ f1N 1 þ f3N 3 þ f5N 5 þ f7N 7: (19)

The total number of coalescences is now automatically
determined by the values of the mixing parameters. In
practice, in order to enforce the constraint that the fractions
add up to 1, we actually use a ‘‘nested’’ prescription based
on three parameters 	, 
 and �, which are allowed to take
any value in the range [0, 1]. We then set

N N ¼ 	N 1 þ ð1� 	Þf
N 3

þ ð1� 
Þ½�N 5 þ ð1� �ÞN 7�g:
We quote our results in terms of the model fractions fi, as
these are the physically relevant quantities.
Table III lists eight mixed models that we investigated.

Examples of N -mixed model (model N -I and N -IV)
are also shown in Fig. 9. The theoretically observable

TABLE III. ‘‘Artificially mixed’’ models. Columns 3–6 list the mixing parameters used to generate the models. Columns 7–10 list
the best-fit values recovered by our analysis (see Sec. V).

NAME Mixing f1 f3 f5 f7 f1 fit f3 fit f5 fit f7 fit f1 þ f3 fit

p-I p 0.15 
 
 
 0.85 
 
 
 0:15� 0:05 
 
 
 0:85� 0:05 
 
 
 
 
 

p-II p 0.54 
 
 
 0.46 
 
 
 0:55� 0:1 
 
 
 - 0:45� 0:1 
 
 
 
 
 

p-III p 0.41 0.13 0.12 0.34 0:3� 0:2 0:25� 0:25 0:1� 0:05 0:35� 0:1 0:6� 0:05
p-IV p 0.11 0.49 0.22 0.18 0:29� 0:29 0:3� 0:3 0:21� 0:05 0:2� 0:05 0:4� 0:05
N -I N 0.23 
 
 
 0.77 
 
 
 0:2� 0:1 
 
 
 0:8� 0:1 
 
 
 
 
 

N -II N 0.61 
 
 
 0.39 
 
 
 0:6� 0:15 
 
 
 0:4� 0:15 
 
 
 
 
 

N -III N 0.31 0.16 0.23 0.3 0:4� 0:2 0:1� 0:1 0:2� 0:05 0:3� 0:05 0:5� 0:05
N -IV N 0.08 0.22 0.56 0.14 0:15� 0:15 0:15� 0:15 0:5� 0:1 0:2� 0:1 0:3� 0:05
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distributions are generated in the same way as for the pure
models, by multiplying the N distributions by the appro-
priate transfer function. Observed data sets Dk are then
generated from the mixed distribution as outlined in
Sec. II C. Given a data set Dk, the idea is to parametrize
the distribution as a mixture of the available ‘‘pure’’ dis-
tributions according to Eqs. (18) or (19), and obtain a
posterior distribution for the mixing parameters given the
observed data. These posterior distributions allow us to
assess which models were mixed, and at what mixing level.
To make the test ‘‘realistic’’, the theoretical mixing and
the simulated LISA observations were performed by
A. Sesana. The observed data sets Dk were then analyzed
blindly by J. Gair, who did not know which models were
mixed nor the amount of mixing.

B. Consistent mixing

We used the consistently mixed models (hybrid models,
henceforth labeled ‘‘HY’’) described in Ref. [24].
The seeding process was a mixture of the VHM-Z and
BVR-Z mechanisms, and the MBH mass growth assumed

Eddington-limited, coherent accretion. We considered two
models with fixed POPIII seeding, but different quasistar
seeding efficiencies. The quasistar seeding efficiency is
related to the maximum halo spin parameter, �, that
allows efficient transfer of gas to the center to form a
quasistar (see Ref. [24] for details). We test an inefficient
quasistar seeding model (� ¼ 0:01, HY-I) and an effi-
cient quasistar seeding model (� ¼ 0:02, HY-II) that pre-
dict MBH population observables (local mass function,
quasar luminosity function, and so on) bracketing the
current range of allowed values.
To check the effectiveness of our analysis tools in ex-

tracting information about the parent MBH population, we
try to recover the hybrid model distributions as a mixing of
the VHM-Z and BVR-Z ‘‘pure’’ models, of the form given
by either Eq. (18) or (19). The procedure is the same as
detailed in the previous section.
Let us stress again that the MBH evolution through

cosmic history is followed self-consistently in the hybrid
models. This means that the predicted theoretical distribu-
tion is not, in general, described as a simple mixing of the
form given by Eqs. (18) or (19). This is a crucial point: the
success of this experiment will tell us that we can extract
valuable information on complex MBH formation scenar-
ios by mixing a set of ‘‘pure’’ models based on simple
recipes.

V. RESULTS FOR THE MIXED MODELS

In the context of mixed models, we are no longer com-
paring two preassigned models A and B as descriptions
of the observational data. We deal instead with a single,
continuous parameter space of models, where the parame-
ters are the mixing fractions of some subset of ‘‘pure’’
models. For example, if we mix models 1 and 3, we have a
one-dimensional parameter space given by the contribution
of model 1 (f1) to the total population (the contribution of
model 3 is fixed by the constraint f1 þ f3 ¼ 1). Given a
particular observation, we can then compute the posterior
probability distribution function (PDF) given by Bayes
theorem, Eq. (12), for the mixing fractions. The computa-
tion of the posterior can be done either over a grid of points
in the parameter space, or by exploring the parameter space
by means of Markov Chain Monte Carlo simulations
(which become much more practical as the dimension of
the parameter space increases).
For each mixed model, 100 different realizations of the

LISA data were generated and a posterior probability
distribution for the mixing fractions was obtained for
each one. The width of the posterior in a single realization
reflects how well that particular data set can constrain the
mixing fractions. The location of the peak of the posterior
will change from realization to realization, but we would
expect the width to remain approximately the same. We
also expect that the distribution of the location of the peak
of the posterior over many realizations should resemble the

FIG. 9 (color online). Examples of mixed models. In the upper
panels we show marginalized dNi=dM (left) and dNi=dz (right)
distributions for the model N -I (thick solid black lines), in
which we mix models VHM-noZ-Edd-co (thin solid red line) and
BVR-noZ-Edd-co (thin long-dashed green line). The relative
contribution of the models is given by Eq. (19) with f1 ¼
0:23, f3 ¼ 0:77 (cf. Table II). In the lower panels we show the
same distributions for the model N -IV (thick solid black lines)
in which we mix four ‘‘pure’’ models. The thin lines represent
the relative contribution of the individual models VHM-noZ-
Edd-co (solid red), VHM-Z-Edd-co (short-dashed blue), BVR-
noZ-Edd-co (long-dashed green), and BVR-Z-Edd-co (dot-
dashed magenta). The relative contribution of the models is
given again by Eq. (19) with f1 ¼ 0:08, f3 ¼ 0:22, f5 ¼ 0:56
and f7 ¼ 0:14 (cf. Table II).
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posterior for the mixing fractions computed in any single
realization.

We considered a total of eight different mixed models, as
listed in Table III, mixing either just VHM-noZ-Edd-co and
BVR-noZ-Edd-co or these two models plus VHM-Z-Edd-co
and BVR-Z-Edd-co. For each case, we assumed that we
were using three years of LISA data, but made pessimistic
assumptions (T2) for the transfer function. While this latter
assumption is slightly conservative, we checked that there
was not much difference in performance when using the
most optimistic assumptions (i.e., the transfer function T3).

The posterior distributions of the mixing fraction found
in one particular realization each of modelsN -I andN -II
are shown in the left panel of Fig. 10. The PDFs peak
around f1 ¼ 0:2� 0:05 for model N -I and f1 ¼ 0:55�
0:1 for model N -II, which is consistent with the injected
fractions listed in Table III.

As mentioned above, we expect the peak and width of
the posterior PDF to fluctuate from realization to realiza-
tion. To assess the statistical robustness of this result we
therefore repeat the experiment. In the right panel of
Fig. 10, we plot the distribution of the location of the
peak of the posterior PDF found in each of 100 realizations

of the models. As we expect, the widths of these distribu-
tions are very similar to the PDFs found in each of the
individual realizations. The distribution peaks around f1 ¼
0:2� 0:05 for modelN -I and around f1 ¼ 0:55� 0:1 for
model N -II, in agreement with the true injected fractions
listed in Table III. This experiment shows that most of the
time we can correctly infer the relative contribution of the
two models, but there is still the possibility to draw erro-
neous conclusions from a single observation. For example,
in two realizations of model N -II we would prefer an
almost pure VHM model, while the underlying distribution
is in fact 45% BVR. However, in these cases the posterior
PDF is also very wide, which would be an indicator that the
data set was not placing particularly good constraints on
the model in that specific case.
Figure 11 shows the results for the more complex case of

model N -III, where all four of the pure models were
mixed and the mixing parameter space is three-
dimensional. Again, both the posterior PDFs given by a
specific realization (left panel) and the distribution of the
peak values of the posterior PDFs in a sample of 100
realizations return mixing fractions which are consistent
with the injected values (see Table III). However, in this
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FIG. 10 (color online). Summary of the model mixing results for models N -I and N -II. In both panels, the horizontal axis shows
the mixing fraction for model VHM-noZ-Edd-co. The left panel shows the posterior probability distribution function for this mixing
fraction as found in one particular realization of each model. The right panel shows how the peak of the posterior was distributed over
100 different realizations of each of the two models. The vertical lines show the true values of the mixing fraction.
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FIG. 11 (color online). Summary of model mixing results for model N -III. We show the mixing fraction of the given model on the
horizontal axis. The left panel shows the posterior probability distribution of the mixing fraction for each of the four models, VHM,
BVR, VHM-Z and BVR-Z, found when analyzing a single realization of modelN -III. The central panel shows the same thing, but now
considering the fractions of BVR, BVR-Z and the sum VHM+VHM-Z in the mixed model. The right panel shows the distribution of the
peak of the posterior pdf found over 100 different realizations of the N -III model.

SESANA et al. PHYSICAL REVIEW D 83, 044036 (2011)

044036-16



case the width of the VHM-noZ and VHM-Z posterior PDFs
is large (� 0:2), indicating a certain degree of degeneracy
between those two models. If we consider the sum, then the
posterior PDF is much narrower and peaks at the right
value (f1 þ f3 ¼ 0:47, see Table III), showing that there
is much less degeneracy between the VHM and the BVR
models. This is also nicely shown by the two-dimensional
posterior PDFs plotted in Fig. 12. All the ellipse contours
have principal axes more or less directed along the x and y
axes, with the exception of the VHM-noZ versus VHM-Z
PDF, which shows a clear anticorrelation between those
two fractions.

Although we focused on the N models, the same
level of accuracy in the determination of the mixing frac-
tions is achieved for p models. The results are collected in
Table III. The results shown in the table refer to the most
pessimistic transfer function; slightly better constraints on
the mixing fractions can be obtained if we assume two
operational interferometers and �thr ¼ 8.

As a final step we present our results for the consistent
mixing model. In the two hybrid models HY-I and HY-II,
VHM-Z and BVR-Z seeding prescriptions are simulta-
neously employed in a consistent way in the merger trees,
and we do not expect the resulting binary population to be
perfectly reproduced by any combination of our pure mod-
els. The test here is to combine the two ‘‘pure’’ VHM-Z

(i ¼ 3) and BVR-Z (i ¼ 7) models to see if we can mimic
the true distribution with some combination of the two. We
proceed exactly as for the artificial mixing, by recovering
the posterior PDF of the mixing parameter. In this case we
used only the p-type mixing model, and included margin-
alization over the total number of events as given by
Eq. (16). The rationale for this was that we thought a
consistent mixed model of this type would not necessarily
have the same number of events as the underlying models,
and so we wanted to eliminate bias that would be intro-
duced by using the number-of-event information. We also
computed results using the N -type mixing and/or not
marginalizing over the number. These results were also
reasonable, but the match between the intrinsic and recov-
ered distributions was not as good.
For p-type mixing with marginalization over number,

we find that model HY-I and HY-II are best reproduced by
setting f3 ¼ 0:85 and f3 ¼ 0:45, respectively. The margi-
nalized mass and redshift distributions of the best-fitting
model are shown as red lines for model HY-I in Fig. 13. As
expected, we can not perfectly match the true model dis-
tribution, but the overall agreement is good. Even though
there is no ‘‘true answer’’ in this case, we can still extract
useful information about the models. For example, we can
confidently say that in model HY-II the contribution of the
heavy seeding process is much higher than in model HY-I.
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FIG. 12 (color online). Two-dimensional marginalized posterior PDFs obtained from a single realization of model N -III. Each plot
shows the mixing fraction of one model component against the mixing fraction of a second component. The models are numbered from
1, 3, 5 and 7, corresponding to VHM, VHM-Z, BVR and BVR-Z respectively, as in Table I. The top row shows comparisons between
model 1 (horizontally) and models 3, 5 and 7, respectively. The bottom row shows comparisons 3 to 5, 3 to 7 and 5 to 7, respectively.
Note that the individual components of VHM and VHM-Z are poorly constrained, which is why the plots involving VHM models have
larger correlation contours than the BVR to BVR-Z comparison (bottom right).
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This is consistent with the fact that model HY-II assumes a
much more efficient quasistar formation prescription.

VI. CONCLUSIONS

In this paper we explored the ‘‘inverse problem’’ for GW
observations, which is fundamental in assessing the pos-
sible astrophysical impact of GWastronomy. The question
we addressed in this paper was: given a sample of observed
MBHB coalescences (with relative parameter estimation
errors), what astrophysical information about the physical
processes governing their formation and cosmological
evolution can we extract from the observations? More
informally: are GW observations a valuable tool for
astrophysics? We answered this question by applying the
statistical framework of Bayesian model selection to simu-
lated LISA observed data sets. We chose LISA as a case
study, but the analysis could straightforwardly be general-
ized to any other GW detector.

We considered ten different ‘‘pure’’ MBH formation and
evolution models (see Table I) differing in certain key
aspects of the input physics, specifically: (i) the seed for-
mation mechanism, (ii) the redshift distribution of the first
seeds, (iii) the accretion efficiency during each merger and

(iv) he geometry of accretion (see Sec. II A). For each
model we computed the intrinsic coalescence distributions
d3Ni=dMdqdz. We then constructed the theoretically ob-
servable distributions by filtering the intrinsic distributions
with four transfer functions Tj. These transfer functions

account for different levels of completeness of the LISA
observations according to four different sets of assumption
about the performance of the LISA detector (Sec. II B). For
each model we generated 1000 observed data sets (includ-
ing observational errors), and we analyzed them using a
Bayesian model selection framework to assess their dis-
tinguishability as a function of the detector performance
and of the duration of the data set used for the model
comparison. We find that:
(i) LISAwill be able to discriminate among almost any

pair of such ‘‘pure’’ models, even under pessimistic
assumptions about the detector performance, after
only 1 yr of operation (see Table II). In particular, it
will be easy to identify the mass and redshift distri-
bution of the seeds, and the efficiency of the accre-
tion mechanism.

(ii) Models differing only by their accretion geometry
are more difficult to discriminate. However, this was
partly a consequence of our choice to consider
measurements of only three parameters for each
inspiralling binary (mass, mass ratio and redshift),
i.e., we ignored the information encoded by MBH
spins and in the merger/ringdown. Including spins
in the analysis will probably make such models
easily distinguishable, as demonstrated in a similar
study by Plowman et al. [32]. In any case, even
without the extra information carried by the spins,
we can discriminate between these models if we
consider the optimal LISA performance and three
years of observation.

(iii) The impact of the detector performance on the
analysis is relatively mild. This is because lowering
the threshold to �thr ¼ 8 and considering two in-
terferometers only adds a small number of sources
to the detected sample, and only slightly improves
parameter estimation.

(iv) Not surprisingly, the length of the observation is
important, as the expected number of MBHBs in
the sample increases linearly with the observation
time. To give a specific figure of merit, with a three-
year observation window we have more than a 90%
probability that the parent model of an observed
sample will be safely identified at a two-sigma
confidence level (95%).

To go beyond the pure model analysis, we considered
the possibility of model mixing. First we created new,
‘‘artificial’’ models by mixing the coalescence distribution
functions of different ‘‘pure’’ models (namely, models 1, 3,
5 and 7, see Tables I, II, and III). We used pure models
differing in their seeding mechanism and in the redshift

FIG. 13 (color online). Comparison of intrinsic and ‘‘recov-
ered’’ distributions for the consistently mixed models. In each
panel, the thick solid black curve shows the intrinsic distribution
of mergers in the model, the red solid line shows the ‘‘recov-
ered’’ distribution, which is a sum of the VHM-Z and BVR-Z
models, weighted by the best-fit mixing parameter. The thin lines
show the contributions to this recovered distribution from the
VHM-Z (solid blue) and BVR-Z (dashed magenta) models. The
left panels show the distributions of the masses of mergers, while
the right panels show the distributions of the redshifts of merg-
ers. The upper panels show the distribution for observed merger
events, while the lower panels show the intrinsic distribution of
mergers.
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distribution of the seeds (different metallicity ‘‘feed-
back’’). The new models are characterized by the fractions
fi of the ‘‘pure’’ models used in the mixing, with the
constraint

P
ifi ¼ 1. Then we considered two hybrid

models, where halos were simultaneously seeded accord-
ing to the VHM-Z (i ¼ 3) and the BVR-Z (i ¼ 7) prescrip-
tion, and the evolution of the seeds was self-consistently
followed in the halo hierarchy. We produced several
LISA observed data sets for both the artificial and the
hybrid models. We then tried to recover the combination
of ‘‘pure’’ models that best reproduces each mixed
model by maximizing over the posterior probability
distribution function of the likelihood (Sec. V). We find
that:

(i) When the ‘‘pure’’ models used in the mixing differ
only in their seeding prescription (VHM vs BVR), so
that we have only a single mixing parameter (sinceP

ifi ¼ 1), we can correctly infer this mixing pa-
rameter with an accuracy of about 10%.
When we mix four different models we can still infer
the mixing fractions with the same accuracy, but
there is a certain degree of degeneracy between the
two VHM models (i ¼ 1 and i ¼ 5); i.e., the effect
of metallicity ‘‘feedback’’, as the detectable
MBH population does not differ much between these
two models. However, the fraction f1 þ f5 is very
well constrained, and we can clearly distinguish the
relative contribution from the different seeding
mechanisms.

(ii) Finally, we can also get a fairly good match to the
hybrid models by combining ‘‘pure’’ models. This
is probably the most important result of our analy-
sis. The formation and merger history of MBHs is a
complex process, involving several physical ingre-
dients which are poorly understood, and it is diffi-
cult to imagine that we will have a comprehensive
theoretical understanding of the underlying physics
before LISA flies. However, we will certainly be
able to construct a set of models based on simple
physical prescriptions that can be tested against the
observations. Our experiment with the hybrid mod-
els demonstrates that we can extract valuable infor-
mation about more complex MBH formation
scenarios by mixing a set of ‘‘pure’’ models based
on simple recipes.

The use of a Bayesian framework is crucial for the
model mixing results, since it allows us to recover a
posterior probability distribution for the ‘‘mixing parame-
ters’’ that characterizes the fraction of each model contrib-
uting to the observed data set. In this respect, our analysis
goes considerably beyond the work recently presented in
Ref. [32], where only pure models were considered and
the statistical analysis was based on two-dimensional
Kolmogorov-Smirnov tests performed on the distributions
of pairs of measured parameters.

Despite this improvement, the building blocks of the
present work can be improved in many ways. The set of
distinct ‘‘pure’’ models can not be representative of all the
physical complexity of the problem. A more powerful
approach to MBH population modeling would be to de-
scribe the relevant physics using a set of continuous pa-
rameters representing the critical features of the models
(seed mass function, accretion efficiency and so on), and
then attempt to measure those parameters by performing
a similar Bayesian analysis. We have also adopted several
simplifying assumptions about the GW observations,
which can be refined by developing a more realistic model
for the GW signal, including spins, higher harmonics,
merger and ringdown. We can then attempt a more sophis-
ticated analysis and explore the posterior probability
distribution function in a larger and more complex parame-
ter space, to maximize the recovered information. All these
issues should be explored in the future.
Besides the scientific impact of a GW detection in and

by itself, the ambitious goal of doing GW astronomy
requires that we maximize the astrophysical information
that will be extracted from such detections. In this respect,
addressing the ‘‘inverse problem’’ in GW astronomy is
extremely important. In this paper we have made a first,
small step in this direction. We hope that our work will
encourage relativists and GW astronomers to consider in
greater depth the astrophysical impact of GW detections.
At the same time, we hope to convince ‘‘ordinary’’ astron-
omers that GWs can be an important tool, not only for tests
of general relativity and as a laboratory for fundamental
physics, but also in astrophysics.
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APPENDIX A: ERROR MODELING

We describe here how measurement errors are included
in the analysis. Errors arise due to instrumental noise in
the LISA detector, and from the transformation between
different coordinates. The error propagation expressions
described below are probably not new, and the end result is
expected, but we include the derivation here for complete-
ness and to clarify the underlying assumptions.
LISA observations will determine the luminosity dis-

tance to a given source, but we want to characterize the
source by the redshift instead. The conversion can be done
using the concordance cosmology at the time LISA flies,
but this introduces additional errors, since the cosmologi-
cal parameters will be known imperfectly. Suppose we
want parameters ~x which are given by the measured pa-

rameters, ~y, and a transformation ~xð ~y; ~�Þ that depends on
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some imperfectly known parameters, ~�. Suppose further

that the probability distribution for ~� is Lð ~�Þ and that for ~y
is Yð ~yÞ. The probability distribution for ~x is then

Xð ~xÞ ¼
Z

Lð ~�ÞYð ~yð ~x; ~�ÞÞJð ~x;�Þdn��; (A1)

in which Jð ~x;�Þ is the Jacobian for the transformation

between ~y and ~x and n� is the dimensionality of the ~�
parameter space. We now make two simplifying assump-

tions: (i) the distributions of the errors in ~y and ~� are
multivariate Gaussians with inverse variance-covariance
matrices �y and ��, respectively; (ii) the errors are small,
so that the distributions are peaked near the true values of
~y0 and �0. This latter assumption means that we can use a
linear approximation in the interesting region of the dis-
tributions

yið ~x; ~�Þ � yið ~x0;�0Þ þ @yi
@xj

ðxj � x0jÞ þ @yi
@�j

ð�j � �0jÞ;
(A2)

where the derivatives are evaluated at ~y0, ~�0. We can also
ignore the Jacobian in the integrand of Eq. (A1), since it
will be approximately constant across the domain of inte-
gration and therefore it plays the role of a normalization
factor. Using the notation

~x i¼xi�x0i; ��i¼�i��0i; Dx
ij¼

@yi
@xj

; D�
ij¼

@yi
@�j

;

(A3)

we see that the integrand is proportional to the expo-
nential of

� 1

2
fððDx~xÞT þ ��TD�Þ�yðDx~xþ ðD�ÞT��Þ

þ ��T����g; (A4)

where matrix notation is being used. This can be rear-
ranged to give

� 1

2
fðDx~xÞT�yDx~x� aTð�� þD��yðD�ÞTa

þ ð��þ aÞTð�� þD��yðD�ÞTÞð��þ aÞÞg; (A5)

where

a ¼ ð�� þD��yðD�ÞTÞ�1D��yDx~x: (A6)

The term on the second line of Eq. (A5) is just a Gaussian,
whose center has been shifted to a, and with variance-
covariance matrix that is independent of ~x. When we

integrate over the distribution of ~�, i.e., over ��, we find
the probability distribution is proportional to the exponen-
tial of

� 1

2
fðDxxÞT�yDxx� aTð�� þD��yðD�ÞTag; (A7)

which is a multivariate Gaussian with variance-covariance
matrix �x equal to

ðDxÞT
�
�y � �yðD�ÞTð�� þD��yðD�ÞTÞ�1D��y

�
Dx:

(A8)

Although this expression looks complicated, the inverse of
this matrix takes the simple form

ð�xÞ�1 ¼ ðDxÞ�1ðð�yÞ�1 þ ðD�ÞTð��Þ�1D�ÞððDxÞTÞ�1:

(A9)

As it is this inverse matrix which determines the width of
the distributions, we see that it takes the form we might
expect, i.e., the error is the sum of the error contributions
from the instrumental noise, �y, and that from the uncer-
tainty in the cosmological parameters, ��. The remaining
terms just propagate the errors through the transformation
in the standard way.
In this paper, we estimate the errors in the observed

parameters, �y, using the Fisher matrix formalism of
Ref. [47]. These errors are given in terms of the chirp
mass, M, the amplitude, A, and the symmetric mass ratio,
�, so we must transform these coordinates to mass, M,
luminosity distance, DL, and mass ratio, q. We convert
luminosity distance to redshift by inverting the standard
cosmological relation of Eq. (9). We assume that there
are errors in H0 and �� but enforce flatness (i.e.,
�M þ�� ¼ 1).
The diagonal components of the total error matrix in the

new variables, ð�xÞ�1, are then

ð�xÞ�1
lnq lnq ¼

1

1� 4�
ð�yÞ�1

ln� ln�;

ð�xÞ�1
lnM lnM ¼ ð�yÞ�1

lnM lnM þ 9

25
ð�yÞ�1

ln� ln� � 6

5
ð�yÞ�1

lnM ln�;

ð�xÞ�1
zz ¼

�
@DL

@z

��2
�
D2

L

�
5

6
ð�yÞ�1

lnM lnM þ ð�yÞ�1
lnA lnA

þ 5

3
ð�yÞ�1

lnM lnA þ �H2
0

H2
0

�
þ ��2

�

�
@DL

@��

��
:

(A10)

where ð�yÞ�1
ij denotes the components of the inverse Fisher

matrix as given in Ref. [47], and �H0, ��� are the errors
in the cosmological parameters at the time of the LISA
mission, which we take to be �H0=H0 ¼ ���=�� ¼
0:01. The off-diagonal components in the total error matrix
come only from the rotation of the noise error matrix,
ðDxÞ�1ð�yÞ�1ððDxÞTÞ�1, but in practice we ignore these
and draw errors based on the diagonal variance-covariance
matrix with components as above. This is conservative, in
that it approximates the error ellipse by a bounding circle,
but we have also checked that our results did not signifi-
cantly change when they were recomputed using the full
error model including correlations.
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We note that there is a singularity in the transformation
between � and q when q ¼ 1 (� ¼ 0:25, which is
indicated by the divergence of ð�xÞ�1

qq there). The probabil-

ity that two galaxies with exactly the same black hole mass
merge is zero, and so this was not a problem in practice.

Additional errors arise from the effects of weak-lensing.
This means that the apparent luminosity distance, dA, of a
source at the Earth is changed by a factor � from the true
luminosity distance, dT , so that dA ¼ �dT . If we assume
that the weak-lensing (de-)magnification is drawn from a
Gaussian distribution (which is a reasonable approxima-
tion in the weak-lensing limit, although not for stronger
lensing), we can use the preceding arguments in this case
as well. The parameters ~x are the parameters we assign to
the source, which are the same as the measured parameters
~y. However, for a fixed value of �, the distribution of ~y is
centered at a luminosity distance �dT . When we margin-
alize over possible values of �, we end up with an integral
of the form (A1), but the dependence of the integrand on
the unknown parameter is through the center of the distri-
bution, ~y0, rather than through the mapping to ~x. We can
follow the same arguments as before, but replace the
derivatives in Eq. (A2) by derivatives of ~y� ~y0. The end
result then takes the same form. If the distribution of� is a
Gaussian expð����ð�� 1Þ2=2Þ, we find the ð�xÞ�1

dd com-

ponent must be corrected by addition of d2T=���. In prac-

tice, we take the weak-lensing error estimate �zwl from
Ref. [55], and directly modify the zz component as
ð��1Þzz ! ð��1Þzz þ ð�zwlÞ2.

While we formulated the above in terms of computing
the distribution of errors in the parameters we measure
from our observation, the same framework can be applied
to the analysis of the real LISA data set. Once we obtain a
posterior PDF for the measured waveform parameters,
Yð ~yÞ, we can combine this with a posterior on the cosmo-
logical parameters and on the lensing magnification distri-
bution through Eq. (A1) to derive the posterior on the
inferred source parameters ~x. With the assumption that
these measured posteriors are Gaussians, the final result
will take the same form.

APPENDIX B: EFFECT OF LISA MOTION ON SNR
AND ESTIMATION OF INTRINSIC PARAMETERS

In this paper we tried to provide conservative estimates
of the astrophysical potential of LISA through observing
MBH binaries. For this reason we only considered MBHB
inspiral waveforms in the restricted post-Newtonian ap-
proximation. The choice of simple, frequency domain
waveforms has the advantage that it significantly speeds
up parameter estimation calculations: we can easily com-
pute the SNR and parameter estimation accuracy of �106

binaries in 1 d on a single processor, something that would
be impossible if we used time-domain waveforms includ-
ing spin precession. Computational requirements were
indeed a limiting factor in the analysis by Plowman et al.

[32], who used an advanced parameter estimation code
developed by the Montana group [13].
In Ref. [47], the potential of LISA to estimate binary

parameters was assessed using two independent formalisms.
In one case (‘‘non angle-averaged’’) the motion of LISAwas
taken into account using the formalism developed by Cutler
[49]; in the other case (‘‘angle-averaged’’) the authors aver-
aged over the LISA beam-pattern functions. The angle-
averaging procedure removes all information related to the
Doppler shift due to the motion of LISA around the Sun, so
in the angle-averaged formalism it is impossible to estimate
the distance and angular location of the source in the sky.
However, it is still possible to obtain an ‘‘angle-averaged’’
estimate of the SNR and of the intrinsic parameters of the
source (for our nonspinning binary model there are only two
of them: M and q, or equivalently, M and �).
In summary, there are two ways of assessing the parame-

ter estimation capabilities of LISA. In the first method we
angle-average over pattern functions, then we estimate the
SNR and the accuracy in determining (say) M and �. In
the second method we perform a Monte Carlo sampling of
the pattern function (by assuming that the source location
and angular orientation in the sky are isotropically distrib-
uted). In this way we can estimate the SNR of each source,
as well as the accuracy in determining (say) M, �, the
luminosity distance DL and the angular position of the
source ��.
In this Appendix we address the question: when these

two procedures can be compared at all (i.e., in the case of
M, � and the SNR), how are they related? If the angle-
average over pattern functions provides a sensible estimate
of SNRs and of the intrinsic binary parameters, it could
provide a significant saving in terms of computational time
for future studies of MBH populations.
In Fig. 14 we show contour plots of the SNR in the

ðM;qÞ plane at selected values of the redshift, for both the
averaged and the nonaveraged cases. This plot is encour-
aging: it shows that the shape of these contour plots is
essentially identical. Indeed, a more careful analysis re-
veals that the ratio between the averaged and nonaveraged
SNRs is SNRA=SNRNA ’ 1:3 and it is (to a very good
approximation) independent of ðM;q; zÞ.
Fisher matrix calculations are inaccurate when the SNR

is not much larger than unity (see e.g. [52]). Figure 14 can
be used to identify regions where the SNR becomes so
small that the Fisher matrix approach will fail, and other
parameter estimation techniques (such as Markov Chain
Monte Carlo) will become necessary. For example, by
looking at the contour line with SNR � ¼ 8 we see that
Markov Chain Monte Carlo calculations will be necessary
to estimate the parameter estimation errors for mergers of
low-mass black holes at high redshift. In this context, recall
that M ¼ ð1þ zÞMr, so (for large redshifts) the total mass
in the source frameMr is smaller than the massM appear-
ing on the y axis of the contour plots.
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FIG. 14 (color online). SNR contours in the ðM; qÞ plane at different redshifts (from left to right: z ¼ 0:5, 5 and 20). The top row
refers to the averaged code, the bottom row to the Cutler code with Tobs ¼ 3 yrs and two interferometers.
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FIG. 15 (color online). Contours of the error on the chirp mass in the ðM;qÞ plane at different redshifts (from left to right: z ¼ 0:5, 5
and 20). The top row refers to the averaged code, the bottom row to the Cutler code with Tobs ¼ 3 yrs and two interferometers.

SESANA et al. PHYSICAL REVIEW D 83, 044036 (2011)

044036-22



Canwe findmore empirical relations between the pattern-
averaged formalism and the Cutler approach? Figure 15
shows contour plots of the chirp mass determination accu-
racy in the two formalisms. Once again, we see that there is
indeed an approximate proportionality between mass esti-
mation accuracies in the two approaches. The ratios of the
chirp mass errors show small random fluctuations consistent
with the Poisson noise in the 103 Monte Carlo realizations at
each point, but it is clear that the angle-averaged approach
does a good job at predicting the SNR and the intrinsic
parameter errors. This is true at any redshift. Indeed, we find
that ratios in the errors onM and� are pretty much redshift
independent, and they show a very mild variation (in the
range �1–1:2) in the ðM;qÞ plane. If a similar proportion-
ality applies also to estimates of the MBH spins, the pattern-
averaging may turn out to be a very useful simplification for
future MBH population studies.

To finish, we will point out an interesting trend in the
expected accuracy of angular resolution. We are not aware
of systematic calculations of the angular resolution in the
three-dimensional ðM;q; zÞ parameter space, so we present
such a study in Fig. 16. Angular resolution degrades with
redshift, as expected. The plot shows that, for any given
redshift, the angular resolution accuracy has a bimodal
distribution—i.e., there are two islands of good angular
resolution accuracy in the ðM;qÞ plane. In hindsight, this is
not too surprising: the ‘‘lower’’ island corresponds to low-
mass binaries from which the GW emission is in the
optimal sensitivity bucket of LISA; the ‘‘upper’’ island
correspond to higher-mass binaries that merge at lower
frequency, but have SNR large enough to compensate for
the relatively small number of cycles spent in band. It will
be interesting to verify if such a bimodal distribution
persists when the merger/ringdown signal is also included
in the analysis.

APPENDIX C: BLACK HOLE MODELS

In this paper we investigate the formation and evolution
of black holes via cosmological realizations of the

merger hierarchy of dark matter halos from early times
to the present in a �CDM cosmology [56]. The models
are described in detail in several papers: see e.g.
[3,23,24,26–28,37,57–59].

1. Metallicity evolution

We model the evolution of metallicity by the ‘‘high
feedback, best guess’’ model of Scannapieco et al. [60].
These authors model metal enrichment via pair-instability
supernovae winds, by following the expansion of spherical
outflows into the Hubble flow. They compute the comoving
radius, at a given redshift, of an outflow from a population
of supernovae that exploded at an earlier time. Using a
modification of the Press–Schechter technique [61], they
then compute the bivariate mass function of two halos of
arbitrary mass and collapse redshift, initially separated by a
given comoving distance. From this function they calculate
the number density of supernovae host halos at a given
comoving distance from a ‘‘recipient’’ halo of a given mass
Mh that form at a given redshift z. By integrating over this
function, one can calculate the probability that a halo of
massMh forms from metal–free gas at a redshift z. When a
halo forms in our merger tree we calculate the probability
that it is metal-free (hence, it can form Pop III stars) and
determine if this condition is satisfied.

2. Black hole seeding

(i) VHM-noZ
Following Ref. [3], we assume that one seed MBH
forms in each of the rare density peaks above ’
107M� at z ¼ 20. All seed BHs are assigned a
mass mseed ¼ 150M�.

(ii) VHM-Z
We assume that one Pop III star forms in metal-free
halos with Tvir > 2000 K [62]. If a Pop III star
forms in a halo, we conservatively assume that
all gas is expelled, leading to a nil gas fraction,
fgas ¼ 0. Gas is replenished only via mergers with
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FIG. 16 (color online). Contours of the angular resolution error in the ðM; qÞ plane at different redshifts (from left to right and from
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gas-rich halos, that is, halos that have never experi-
enced mass loss through Pop III outflows. We as-
sume a logarithmically flat initial mass function
(dN=d logM ¼ const) between 10M� and 600M�,
where the upper limit comes from Ref. [63], and
suppose that seed black holes form when the pro-
genitor star is in the mass range 40–140M� or
260–600M� [64]. The remnant mass is taken to be
one-half the mass of the star.

(iii) BVR-noZ
The formation of quasistars and black hole seeds
requires large gas inflows, _M> 1M� yr�1, within
the inner region (subparsec scales) of a galaxy [23].
We associate these inflows with global dynamical
instabilities driven by self-gravity [65]. Following
[23] we assume that fragmentation and global star
formation are suppressed only if the gas tempera-
ture remains close to the virial temperature, due to
lack of metals and molecular hydrogen. In this
model, black hole seeds can be formed only out
of zero-metallicity gas. When selecting the sites of
black hole formation, we additionally require that
the host has very low angular momentum, which
ensures the optimal conditions for gas infall [23].
We parametrize the angular momentum of a dark
matter halo with massMh via its halo spin parame-
ter, �spin. Black holes form only in metal-free halos

with �spin < 0:02 [23]. We further assume that if a

seed MBH is already present, quasistar formation is
suppressed. This criterion comes from the fact that
any quasistar with a black hole mass exceeding
about 1% of the envelope mass will violate the
minimum temperature condition and be dispersed
by radiation pressure [66].

(iv) BVR-Z
Global bar-driven instabilities have now been ob-
served in high-resolution numerical simulations of
gas-rich galaxies [43,67–69]. Some of these simu-
lations find strong inflows that occur before most of
the gas fragments and forms stars also at solar
metallicities. In this model we therefore relax the
assumption that quasistars can be formed only out
of zero-metallicity gas [24]. Inspired by [43], we
instead assume that inflows are triggered by gas-
rich major mergers. D’Onghia and Navarro [70]
investigate the spins of halos that are remnants of
major mergers, and compare them to the ‘‘global’’
population using cosmological N-body simulations.
They quantify the spin parameter distributions for
post-merger halos and relaxed halos. In both cases
the distributions are log-normal, but with different
parameters. When a halo forms, we pick its spin
parameter from the distribution for relaxed halos.
After a major merger, we pick a new �spin from the

unrelaxed log-normal distribution, and compare it

to �thr. �thr defines the ‘‘efficiency’’ of black hole
formation. We set �thr ¼ 0:01 for our reference
case, and �thr ¼ 0:02 for a very efficient black
hole formation model that sets an upper limit to
black hole occurrence, by being close to overpro-
ducing population observables (local mass func-
tion, quasar luminosity function, and so on). If the
halo has a spin parameter below the threshold, we
consider the halo a candidate for quasistar forma-
tion. If the central mass accretion rate _M ¼
v3
c=G> 1M�=yr then a quasistar and a seed black

hole form. As in the BVR-noZ model, if a seed
MBH is already present, quasistar formation is sup-
pressed. The impact of the adopted seeding pre-
scription on the subsequent evolution of the MBH
population is shown in Fig. 17, where the MBH
comoving number densities predicted by the four
models are compared.

3. Accretion

We base our model for MBH mass growth on a set of
simple assumptions, supported by both simulations of
quasar triggering and feedback [71], and analysis of the
relationship between MBH masses (MBH) and the proper-
ties of their hosts in today’s galaxies [72–74]. The main
features of the models have been discussed elsewhere
[3,59]. We summarize in the following the relevant
assumptions. MBHs in galaxies undergoing a major
merger (i.e., having a mass ratio >1:10) accrete mass
and become active. Each MBH accretes an amount of
mass �M ¼ 9� 107ð�=200 km s�1Þ4:24M�, where � is
the velocity dispersion after the merger. This relationship
scales with the MBH � � relation, as it is seen today [75]:

MBH ¼ 1:3� 108
�

�

200 km s�1

�
4:24

M�; (C1)

FIG. 17 (color online). Comoving number density of MBHs in
the four formation models we have considered. Solid curve:
BVR-Z. Dotted curve: BVR-noZ. Short-dashed curve: VHM-
noZ. Long-dashed curve: VHM-Z.
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the normalization in �M was chosen to take into account
the contribution of mergers, without exceeding the mass
given by the MBH � � relation.

We link the central stellar velocity dispersion of the host,
i.e. � in Eq. (C1), to the asymptotic circular velocity (vc)

as � ¼ vc=
ffiffiffi
3

p
, assuming orbital isotropy [74,76,77]. The

asymptotic circular velocity is a measure of the total mass
of the dark matter halo of the host galaxy. We calculate the
circular velocity from the mass of the host halo and its
redshift [24].

The rate at which mass is accreted scales with the
Eddington rate for the MBH, and we set either a fixed
Eddington ratio of fEdd ¼ 1, or an accretion rate derived
from the distribution discussed in [44]. Accretion starts
after a dynamical time scale and lasts until the MBH, of
initial mass Min, has accreted a mass �M. The lifetime of
an AGN therefore depends on how much mass it accretes
during each episode:

tAGN ¼ tEdd
fEdd

�

1� �
lnðMfin=MinÞ; (C2)

where � is the radiative efficiency (� ’ 0:1),
tEdd ¼ 0:45 Gyr and Mfin ¼ min½ðMin þ �MÞ; 1:3�
108ð�=200 km s�1Þ4:24M��.
We further assume that, when two galaxies hosting

MBHs merge, the MBHs themselves merge within the
merger time scale of the host halos, which is a plausible
assumption for MBH binaries formed after gas-rich
galaxy mergers [78]. We adopt the relations suggested
by Ref. [79] for the merger time scale. Black holes are
allowed to accrete during the merging process if the time
scale for accretion, corresponding to the sum of the dy-
namical time scale and tAGN, is longer than the merger time
scale.
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