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Instituto de Fı́sica, Pontificia Universidad Católica de Valparaı́so, Casilla 4059, Valparaı́so, Chile
and Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Golm, Germany

Rodrigo Olea†
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Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field

theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-

Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are

studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the

electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D

and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the

black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the

literature. Altogether, it extends toD> 4 the four-dimensional solution obtained by Soleng in logarithmic

electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromag-

netic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and

vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed

using a background-independent regularization of the gravitational action based on the addition of

counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.
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I. INTRODUCTION

Gauge theories which are described by a nonlinear
action for Abelian or non-Abelian fields have become
standard in the context of superstring theory. Indeed, it
was proposed in Ref. [1] that all order loop corrections to
gravity should be summed up as a Born-Infeld (BI) type
Lagrangian [2]. Furthermore, the dynamics of D-branes is
given in terms of a non-Abelian Born-Infeld action [3].

On the other hand, coupling nonlinear electrodynamics
(NED) to gravity has been considered in the literature
as a plausible mechanism to obtain regular black hole
solutions (see, for instance, Ref. [4]). In this respect, the
metric for static, spherically symmetric black holes for the
BI theory minimally coupled to Einstein gravity was
derived in a number of papers [5,6]. Other gravitating
NED models supporting electrically charged black hole
solutions have been also investigated, e.g., in Ref. [7] for
the Euler-Heisenberg effective Lagrangian of QED, in
Ref. [8] for a logarithmic Lagrangian, and in Ref. [9] for
a Lagrangian defined as powers of the Maxwell term. In
the same spirit, as an example of lower-dimensional mod-
els, it is worth mentioning the study of black holes gen-
erated by Coulomb-like fields in (2þ 1) dimensions [10],
and a similar treatment which includes torsion in
Ref. [11].

Within the framework of anti-de Sitter/conformal field
theory (AdS/CFT) correspondence, higher-derivative cor-
rections to either gravitational or electromagnetic action in
AdS space are expected to modify the dynamics of the
strongly coupled dual theory. In particular, in hydrody-
namic models, the addition of R2 terms changes the ratio
of shear viscosity over entropy density [12], violating the
universal bound 1=4� proposed in Ref. [13]. In turn, it has
been proven that higher-derivative terms for Abelian fields
in the form of NED do not affect this ratio [14] (for
hydrodynamic models dual to R-charged black holes,
see, e.g., Ref. [15]). Also, in applications of the AdS/
CFT conjecture to high Tc superconductivity, higher-
curvature terms violate a universal relation between the
critical temperature of the superconductor and its energy
gap [16,17]. While the Gauss-Bonnet term makes the con-
densation easier, the inclusion of Born-Infeld electrody-
namics produces the opposite effect [18].
Motivated by the recent results mentioned above, we

study black hole solutions in Einstein-Gauss-Bonnet gravity
with negative cosmological constant coupled to an arbitrary
NED theory. As it is required in the context of AdS/CFT, we
provide definitions for the conserved quantities following a
background-independent regularization procedure.

II. ACTION AND EQUATIONS OF MOTION

We consider a fully-interacting theory of gravity
minimally coupled to nonlinear electrodynamics in a
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D-dimensional manifold M, which comes from the
action

I0 ¼
Z
M

dDx
ffiffiffiffiffiffiffi�g

p
L0 ¼ Igrav þ INED: (1)

The pure gravity part of the bulk action with the metric
g��ðxÞ as the dynamic field is given by

Igrav ¼ 1

16�G

Z
M

dDx
ffiffiffiffiffiffiffi�g

p ½R� 2�

þ �ðR2 � 4R��R
�� þ R����R

����Þ�; (2)

which contains the Einstein-Hilbert (EH) action (linear in
the curvature of spacetime), a cosmological term, and a
quadratic-curvature correction given by the Gauss-Bonnet
(GB) term. The cosmological constant � is expressed in
terms of the AdS radius ‘ as � ¼ �ðD� 1ÞðD� 2Þ=2‘2
and G is the gravitational constant. The GB coupling
constant � is of dimension [length2], which takes only
positive values and it is related to the Regge slope parame-
ter or string scale.

The matter and its interaction with gravity are described
by an electrodynamics action which is nonlinear in the
quadratic term F2 ¼ g��g��F��F��, where F��ðxÞ is the
Abelian field strength associated to the gauge connection
A�ðxÞ as F�� ¼ @�A� � @�A�. We shall assume an action

for nonlinear electrodynamics of the form

INED ¼
Z
M

dDx
ffiffiffiffiffiffiffi�g

p
LðF2Þ; (3)

where the Lagrangian density LðF2Þ is an arbitrary func-
tion of F2.

We will consider the spacetimes whose dimension is
D> 4. The case D ¼ 4 is special because the Euler-
Gauss-Bonnet term becomes a topological invariant that
does not contribute to the equations of motion. In that
sense, bulk dynamics in D ¼ 4 leaves the GB coupling
as completely arbitrary. It is expected, however, that
the GB term would modify the boundary dynamics of
the theory and the value of the Euclidean continuation
of the action. Indeed, in four-dimensional AdS gravity,
the only consistent way of achieving the finiteness of
both the conserved current and the Euclidean action is
setting � ¼ ‘2=4. Furthermore, nonlinear electrodynamics
in four dimensions is somewhat particular, because one can
consider a Lagrangian that depends additionally on another
quadratic invariant F�F ¼ 1ffiffiffiffiffi�g

p �����F��F��, which by

itself is a topological term. For a recent discussion on
electrostatic configurations in four-dimensional gravitating
NED, see Ref. [19]. This type of Lagrangian clearly cannot
be generalized to the higher-dimensional cases we are
interested in.

In order to find the equations of motion of Einstein-
Gauss-Bonnet (EGB) gravity, we first note that the gravi-
tational action can be rearranged as

Igrav ¼ 1

16�GðD� 2ÞðD� 3Þ
Z
M

dDx
ffiffiffiffiffiffiffi�g

p
	½�1����4�
½�1����4�

�
�
1

2
R�1�2
�1�2

	�3
�3
	�4
�4

þD� 2

D‘2
	�1
�1
	�2
�2
	�3
�3
	�4
�4

þ �ðD� 2ÞðD� 3Þ
4

R�1�2
�1�2

R�3�4
�3�4

�
; (4)

where the tensor 	
½�1����p�
½�1����p� denotes the totally antisymmet-

ric product of p Kronecker deltas (see Appendix A) and
we have used the identity

R2 � 4R��R
�� þ R����R

���� ¼ 1

4
	
½�1����4�
½�1����4� R

�1�2
�1�2R

�3�4
�3�4 :

(5)

This is a convenient form to take the variation of the
Riemann tensor as

	R�
��
 ¼ r�ð	��

�
Þ � r
ð	��
��Þ

in terms of the Christoffel symbol. In addition, using the
Bianchi identity for the Riemann curvature,

r½�R
�

��� ¼ r�R

�

�� þr�R

�

�� þr�R

�

�� ¼ 0;

one can show that the gravitational action changes under an
arbitrary variation of the metric as

	Igrav ¼ � 1

16�G

Z
M

dDx
ffiffiffiffiffiffiffi�g

p ðg�1	gÞ��ðG�
� þH

�
� Þ

þ
Z
@M

dD�1x�gravð	g; 	�Þ; (6)

where G
�
� is the Einstein tensor with cosmological

constant

G
�
� ¼ R

�
� � 1

2
	
�
� Rþ�	

�
� ; (7)

and the contribution of the GB term to the variation of the
bulk action is expressed in terms of the Lanczos tensor

H
�
� ¼ ��

8
	
½��1����4�
½��1����4� R

�1�2
�1�2R

�3�4
�3�4 (8)

¼ ��

2
	
�
� ðR2 � 4R�
R�
 þ R�
��R�
��Þ

þ 2�ðRR�
� � 2R��R�� � 2R

�
���R

�� þ R����R����Þ:
(9)

The boundary term in (6) that appears from the variation of
the bulk action reads
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Z
@M

dD�1x�grav¼� 1

16�G

Z
M

dDx@�

�
� ffiffiffiffiffiffiffi�g
p

	
½��1�2�3�
½��1�2�3� g��	��1

�1�

�
�
�R�2�3

�2�3
þ 1

ðD�2ÞðD�3Þ	
�2
�2
	�3
�3

��
:

(10)

On the other hand, arbitrary variations of the metric and
the gauge field A� in the NED action produce

	INED ¼
Z
M

dDx
ffiffiffiffiffiffiffi�g

p �
1

2
T�
� ðg�1	gÞ��

� 4r�

�
dL
dF2

F��

�
	A�

�
þ

Z
@M

dD�1x�NEDð	AÞ;
(11)

upon a suitable use of the Bianchi identity for the
field strength, @½�F��� ¼ @�F�� þ @�F�� þ @�F�� ¼ 0.

The energy-momentum tensor for the matter content,

T�� ¼ 2ffiffiffiffiffi�g
p 	INED

	g��
, has the form

T�
� ¼ 	�

�L� 4
dL
dF2

F��F��; (12)

and the surface term of the electromagnetic part is

Z
@M

dD�1x�NED ¼ 4
Z
M

dDx@�

� ffiffiffiffiffiffiffi�g
p dL

dF2
F��	A�

�
:

(13)

The variation of the total action (1) leads to the field
equations plus a surface term

	I0 ¼ �
Z
M

dDx
ffiffiffiffiffiffiffi�g

p �
1

16�G
E�
� ðg�1	gÞ�� þ 4E�	A�

�

þ
Z
@M

dD�1x�0ð	g; 	�; 	AÞ; (14)

where �0 is the total boundary term coming from the
variation of the bulk action, i.e., �0 ¼ �grav þ�NED.

The equations of motion are then obtained as
	I0=	g�� ¼ 0 and 	I0=	A� ¼ 0, that is,

E �
� � G

�
� þH

�
� � 8�GT

�
� ¼ 0; (15)

E � � r�

�
F�� dL

dF2

�
¼ 0: (16)

In general, the extremization of the action for the
fully-interacting theory does not only require the equation
of motion to be satisfied, but also the vanishing of the
surface term for given boundary conditions. Therefore, a
well-posed action principle leads to supplementing the
Lagrangian by suitable boundary terms, which will be
discussed below.

The Einstein tensor G
�
� can be conveniently rewritten in

terms of the AdS radius as

G�
� ¼ � 1

4
	½��1�2�
½��1�2�

�
R�1�2
�1�2

þ 1

‘2
	½�1�2�
½�1�2�

�
: (17)

Written in this compact form, the total equation of
motion (15) is

E�
� ¼ � 1

8
	
½��1����4�
½��1����4�

�
�R�1�2

�1�2R
�3�4
�3�4 þ

1

ðD� 3ÞðD� 4Þ
�

�
R�1�2
�1�2	

½�3�4�
½�3�4� þ

1

‘2
	½�1�2�
½�1�2�	

½�3�4�
½�3�4�

��
� 8�GT

�
� :

(18)

The GB contribution H�
� given by (8) modifies the cosmo-

logical constant in G�
� and therefore, the asymptotic

behavior of the solutions. This is particularly evident in
absence of matter fields, by taking the condition of maxi-
mally symmetric spacetimes with an effective AdS radius
‘eff , i.e.,

R�

�� ¼ � 1

‘2eff
	½�
�
½��� : (19)

The vacua of the theory are then solutions of global
constant curvature, where ‘2eff is a root of the quadratic

equation

�ðD� 3ÞðD� 4Þ 1

‘4eff
� 1

‘2eff
þ 1

‘2
¼ 0; (20)

so that

‘ð�Þ2
eff ¼ 2�ðD� 3ÞðD� 4Þ

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

‘2
ðD� 3ÞðD� 4Þ

q ;

� � ‘2

4ðD� 3ÞðD� 4Þ : (21)

The GB term, therefore, sets the equations of motion in the
quadratic-curvature form

� �

8
	
½��1����4�
½��1����4�

�
R�1�2
�1�2 þ

1

‘ðþÞ2
eff

	½�1�2�
½�1�2�

�

�
�
R
�3�4
�3�4 þ

1

‘ð�Þ2
eff

	
½�3�4�
½�3�4�

�
¼ 8�GT

�
� : (22)

For the discussion of the present paper, we shall consider
solutions that satisfy the condition (19) in the asymptotic
region, i.e., tend asymptotically to a constant-curvature
spacetime.

However, for different roots ‘ðþÞ2
eff � ‘ð�Þ2

eff , there is only

one branch of the theory of physical interest. This is
because the corresponding AdS radii can be expanded as

‘ðþÞ2
eff ¼ �ðD� 3ÞðD� 4Þ þOð�2Þ; (23)
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‘ð�Þ2
eff ¼ ‘2 þOð�Þ; (24)

and, thus, ‘ð�Þ2
eff reduces to the original AdS radius for

vanishing GB coupling, whereas ‘ðþÞ2
eff vanishes if the GB

term goes to zero.
EGBAdS gravity possesses a unique AdS vacuum when

both effective AdS radii are equal, ‘ðþÞ2
eff ¼ ‘ð�Þ2

eff ¼ ‘2=2,
case that corresponds to a GB coupling given by � ¼
‘2=4ðD� 3ÞðD� 4Þ. In five dimensions, at that particular
coupling value, the action features a group symmetry
enhancement from local Lorentz to AdS5, and it can be
expressed as a Chern-Simons density for the latter group.
This gravity theory has particular dynamical features that
will not be discussed here [20,21].

III. GENERIC TOPOLOGICAL STATIC
BLACK HOLE SOLUTION

A static black hole ansatz for the metric g�� in the

coordinate set x� ¼ ðt; r; ’mÞ is given by

ds2 ¼ g��ðxÞdx�dx�

¼ �f2ðrÞdt2 þ dr2

f2ðrÞ þ r2�mnð’Þd’md’n: (25)

The boundary @M is located at radial infinity (r ! 1),
and it is parametrized by xi ¼ ðt; ’mÞ. The metric �nm with
local coordinates ’m describes a (D� 2)-dimensional
Riemann space �D�2 with constant curvature, that is,

~R m1m2n1n2ð�Þ ¼ kð�m1n1�m2n2 � �m1n2�m2n1Þ; (26)

where k ¼ 0, þ1 or �1, that corresponds to flat, spherical
or hyperbolic transversal section, respectively.

We will consider that the solution possesses an
event horizon, defined as the largest root of the equation
fðrþÞ ¼ 0. The nonvanishing components of the Riemann
curvature R��

�� are

Rtr
tr ¼ � 1

2
ðf2Þ00;

Rtn
tm ¼ Rrn

rm ¼ � 1

2r
ðf2Þ0	n

m;

Rmn
kl ¼ 1

r2
ðk� f2Þ	½mn�

½kl� ;

(27)

where prime denotes radial derivative. The Ricci tensor

R�
� ¼ R��

�� has the components

Rt
t ¼ Rr

r ¼ � 1

2r
½rðf2Þ00 þ ðD� 2Þðf2Þ0�;

Rn
m ¼ � 1

r2
	n
m½rðf2Þ0 þ ðD� 3Þðf2 � kÞ�;

(28)

and the Ricci scalar R ¼ R��
�� is

R ¼ � 1

r2
½r2ðf2Þ00 þ 2ðD� 2Þrðf2Þ0

þ ðD� 2ÞðD� 3Þðf2 � kÞ�: (29)

For a static solution with a topology equal to the one of
the transversal section, we assume an ansatz for the gauge
field in the form

A� ¼ �ðrÞ	t
�; (30)

with the associated field strength

F�� ¼ EðrÞð	t
�	

r
� � 	t

�	
r
�Þ; (31)

where the electric field is given by

EðrÞ ¼ ��0ðrÞ: (32)

We solve the electric potential in the static ansatz (23)
and (31), where F2 ¼ �2E2, using the only nonvanishing
component of the Maxwell-type Eq. (16),

E t ¼ � d

dr

�
rD�2E

dL
dF2

��������F2¼�2E2

�
¼ 0; (33)

which leads to the generalized Gauss’ law

E
dL
dF2

��������F2¼�2E2
¼ � q

rD�2
: (34)

Here, q is an integration constant related to the electric
charge. Notice that the first integral of Eq. (34) does not
depend explicitly on the metric, but only on the function
EðrÞ. The algebraic equation in E can be solved as long as
the explicit form of NED action is given, and implies that
the electric field should vanish for q ¼ 0.
We define the electric potential at infinity measured with

respect to the event horizon rþ as � ¼ �ð1Þ ��ðrþÞ.
On the other hand, integrating out Eq. (32) one obtains

the electric potential at the distance r measured with
respect to radial infinity,

�ðrÞ ¼ �
Z r

1
dvEðvÞ; (35)

such that the quantity of physical interest� is the potential
evaluated at the horizon,

� ¼ ��ðrþÞ: (36)

In order to solve the function f2ðrÞ in the metric, we
write the only independent components of the Einstein and
Lanczos tensors,

Gt
t ¼ Gr

r

¼ D� 2

2r2

�
rðf2Þ0 þ ðD� 3Þðf2 � kÞ � ðD� 1Þ r

2

‘2

�
;

Ht
t ¼ Hr

r

¼ �ðD� 2ÞðD� 3ÞðD� 4Þ k� f2

r3

�
�
ðf2Þ0 � ðD� 5Þ k� f2

2r

�
: (37)
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A necessary and sufficient condition on the NED
Lagrangian density is the weak energy condition on the
symmetric energy-momentum tensor

T��u
�u� � 0; (38)

that ensures that an observer measures a non-negative
energy density �NED ¼ �T��u

�u� for a timelike vector

u�. For charged static black holes, the electromagnetic
stress tensor satisfies Tt

t ¼ Tr
r , such that the weak energy

condition is equivalent to

Tt
t ¼ Tr

r ¼ Lþ 4E2 dL
dF2

	 0; (39)

where the LagrangianL and its derivatives are evaluated at
F2 ¼ �2E2.

The above inequality restricts the function L, but not
its derivative. Indeed, in the asymptotic region the gener-

alized Gauss’ law implies E dL
dF2 ’ 0 and, assuming that

electric field vanishes asymptotically, the weak energy
condition leads to L 	 0 for large r. On the other hand,

the asymptotic behavior of dL
dF2 remains arbitrary. Indeed,

for Maxwell electrodynamics and Born-Infeld-like

Lagrangians, the expression dL
dF2 is finite for r ! 1. Also,

for the Lagrangians of the type ðF2Þp, the derivative van-
ishes when p > 1, and it is divergent if p < 1.
Additionally, one may demand the finiteness of the total
energy, that can be expressed as

Z 1

0
drrD�2Tr

r ðrÞ<1: (40)

Note that the above requirement on the EM energy, applied
to black hole solutions, also includes the interior region
protected by the horizon [22].

The equations of motion Et
t ¼ Er

r ¼ 0 read

16�Gr2

D� 2
Tr
r ¼ rðf2Þ0 þ ðD� 3Þðf2 � kÞ � ðD� 1Þ r

2

‘2

þ 2�ðD� 3ÞðD� 4Þ k� f2

r

�
�
ðf2Þ0 � ðD� 5Þ k� f2

2r

�
: (41)

One can show, using Eqs. (33) and (41), that Em
n ¼ 0 is

identically satisfied.

The differential Eq. (41) is integrable, because it can be
cast in the form�

rD�3ðf2 � kÞ
�
1� �ðD� 3ÞðD� 4Þ f

2 � k

r2

��0
¼ D� 1

‘2
rD�2 þ 16�G

D� 2
rD�2Tr

r ; (42)

which leads to the general solution

ðf2 � kÞ
�
1� �ðD� 3ÞðD� 4Þ f

2 � k

r2

�

¼ r2

‘2
� �

rD�3
þ 16�GT ðq; rÞ

ðD� 2ÞrD�3
; (43)

where � is an integration constant of dimension [mass�
16�G], and the function T ðq; rÞ for an arbitrary NED
Lagrangian is given by

T ðq; rÞ ¼
Z r

1
dvvD�2Tr

r ðvÞ

¼
Z r

1
dvðvD�2LðvÞ � 4qEðvÞÞ

¼ 1

D� 1
ðrD�1L� qrEþ ðD� 2Þ4q�Þjr1: (44)

The Gauss law (34) has been used to eliminate dL=dF2

from the integral, so that T depends on the integration
constant q. For a general procedure for Lovelock gravity
coupled to NED see, e.g., [23].
Electromagnetism does not deform the asymptotic re-

gion since the relation Tðq;1Þ ¼ 0 is identically satisfied
according to Eq. (44).
Then, the metric function in the static solution of EGB

gravity coupled to NED is obtained solving the quadratic
Eq. (43) in f2. The existence of a real root is ensured by the
condition

T ðq;rÞ� ðD�2ÞrD�1

16�G

�
1

4�ðD�3ÞðD�4Þ�
1

‘2
þ �

rD�1

�
;

(45)

that is proven to be satisfied for sufficiently large r, as the
r.h.s. is always positive [see the inequality in Eq. (21)].
Thus, the metric possesses two branches,

f2�ðrÞ¼kþ r2

2�ðD�3ÞðD�4Þ

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4�ðD�3ÞðD�4Þ

�
1

‘2
� �

rD�1
þ16�GT ðq;rÞ

ðD�2ÞrD�1

�s 3
5: (46)

The ground state � ¼ 0, q ¼ 0 corresponds to two AdS
vacua,

f2�ðrÞvac ¼ kþ r2

‘ð�Þ2
eff

: (47)

However, it has been shown in [24] that the vacuum
f2þðrÞvac is unstable and the graviton has negative mass,
while the solution f2�ðrÞvac is stable and is free of ghosts.
For a general solution, from (46) in the weak limit of GB
coupling, we have
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f2þðrÞ ¼ kþ r2
�

1

�ðD� 3ÞðD� 4Þ �
1

‘2

�
þ �

rD�3

� 16�GT ðq; rÞ
ðD� 2ÞrD�3

þOð�Þ; (48)

f2�ðrÞ ¼ kþ r2

‘2
� �

rD�3
þ 16�GT ðq; rÞ

ðD� 2ÞrD�3
þOð�Þ; (49)

because T does not depend on the constant �. The oppo-
site sign in the mass parameter � in f2þðrÞ indicates insta-
bilities of the graviton so that it is not of physical interest
for our discussion below.
On the other hand, the function f2�ðrÞ in the limit � ! 0

describes static black holes of Einstein-Hilbert AdS gravity
coupled to NED. Because of this reason, henceforth,
we consider only the negative branch of the metric,
fðrÞ � f�ðrÞ,

f2ðrÞ ¼ kþ r2

2�ðD� 3ÞðD� 4Þ

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�ðD� 3ÞðD� 4Þ

�
1

‘2
� �

rD�1
þ 16�GT ðq; rÞ

ðD� 2ÞrD�1

�s 3
5: (50)

When NED Lagrangian corresponds to the one of Maxwell

electromagnetism LMaxwellðF2Þ ¼ �F2, the function

T ðq; rÞ in Eq. (50) becomes T Maxwell ¼ 2q2

ðD�3ÞrD�3 , which

reproduces the charged black hole solution first found in

[25]. Expanding f2 for large r, one can notice that the
electromagnetic part possesses the same falloff as in
Reissner-Nordstrom case.

In general, the contribution of NED to f2 is smaller than
the one of the mass term and can therefore be neglected for
large r. Indeed, using Eq. (21), one can prove that, in
the asymptotic region, the metric function and its radial
derivative behave as

f2 ¼ kþ r2

‘2eff
� �

1� 2�
‘2
eff

ðD� 3ÞðD� 4Þ
1

rD�3
þO

�
1

r2D�6

�
;

(51)

ðf2Þ0 ¼ 2r

‘2eff
þ ðD� 3Þ�

1� 2�
‘2
eff

ðD� 3ÞðD� 4Þ
1

rD�2
þO

�
1

r2D�5

�
:

(52)

This fact will make evident that the NED term T ðq; rÞ in
Eq. (50) does not produce additional contributions to the
energy of the system, as we shall discuss in Sec. VIB.
In absence of electromagnetic fields, we have that

T ð0; rÞ ¼ 0, which means that the solution (50) reduces
to the topological version of Boulware-Deser black holes
in AdS spaces [24,26,27].
Different NED models have been proposed which pos-

sess particlelike solutions whose both electromagnetic and
gravitational fields are regular everywhere. However, this
does not imply that there are no curvature singularities.
The interior of the black hole is described by the metric

function obtained from Eq. (42) as

f2inðrÞ ¼ kþ r2

2�ðD� 3ÞðD� 4Þ

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�ðD� 3ÞðD� 4Þ

�
1

‘2
� c

rD�1
þ 16�G

R
r
0 dvv

D�2Tr
r ðvÞ

ðD� 2ÞrD�1

�s 3
5; (53)

where c is the integration constant. In consequence, when
one imposes the finiteness condition on the energy-
momentum tensor at the origin,

lim
r!0

1

rD�1

Z r

0
dvvD�2Tr

r ðvÞ<1; (54)

the metric function takes the value f2inð0Þ ¼ k�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

�ðD�3ÞðD�4ÞrD�5

q
. For c � 0, this is finite only in five di-

mensions, otherwise c must vanish. Further analysis is
needed to relate c to the asymptotic mass parameter �,
which would imply new conditions in order to remove the
conical singularity at the origin. One may also demand L
to be single-valued, continuous, and differentiable. For a
more detailed discussion on these issues for particular
cases see, e.g., Refs. [19,22].

So far, we have seen that for any nonlinear electrody-
namics theory coupled to EGB AdS gravity, both the
metric (50) and the electric potential (35) can be deter-
mined from the explicit form of the Lagrangian LðF2Þ.
We illustrate this with a few examples in the next section.

IV. CHARGED BLACK HOLES IN
PARTICULAR NED THEORIES

A. Born-Infeld electrodynamics

Born-Infeld electrodynamics [2] is described by the
Lagrangian density

L BIðF2Þ ¼ 4b2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F2

2b2

s 1
A; (55)
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where the coupling parameter b (with dimension of mass)
is related to the string tension �0 as b ¼ 1=2��0. This
Lagrangian reduces to the Maxwell case in the weak-
coupling limit b ! 1. Generally speaking, when a density
LðF2Þ recovers the Maxwell theory in weak-coupling
limit, i.e., LðF2Þ ¼ �F2 þOð1=b2Þ, it is said to be
Born-Infeld-type.

The BI energy-momentum tensor has the form

T�
� ¼ 4b2	�

�

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F2

2b2

s 1
Aþ 4F��F��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F2

2b2

q ; (56)

and it generates the electric field

EðrÞ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

b2
þ r2D�4

q : (57)

The corresponding electric potential is given by the for-
mula (35). Performing a variable change in the integral,
u ¼ ðr=vÞ2D�4, it can be expressed in terms of the hyper-

geometric functionF ðq; rÞ ¼ 2F1ð12 ; D�3
2D�4 ;

3D�7
2D�4 ;� q2

b2r2D�4Þ
(see Appendix B), and the solution for the potential is

�ðrÞ ¼ q

ðD� 3ÞrD�3
F ðq; rÞ: (58)

Then, the integration constant � ¼ ��ðrþÞ reads
� ¼ � q

ðD� 3ÞrD�3þ
F ðq; rþÞ: (59)

In order to find the metric for the black hole with
Born-Infeld electric charge, we solve explicitly the integral
(44) as

T BIðq; rÞ ¼ 4b2rD�1

D� 1

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

b2r2D�4

s 1
A

þ 4ðD� 2Þq2
ðD� 1ÞðD� 3ÞrD�3

F ðq; rÞ; (60)

and replacing in Eq. (50), we obtain

f2ðrÞ ¼ kþ r2

2�ðD� 3ÞðD� 4Þ

�
8<
:1�

2
41� 4�ðD� 3ÞðD� 4Þ

0
@ 1

‘2
� �

rD�1

þ 64�Gb2

ðD� 1ÞðD� 2Þ

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

b2r2D�4

s 1
A

þ 64�Gq2F ðq; rÞ
ðD� 1ÞðD� 3Þr2D�4

1
A
3
51=2

9=
;: (61)

This class of black holes has been discussed in Ref. [25].
The generalization to non-Abelian gauge fields has been
studied in Ref. [28]. In the limit of vanishing GB coupling,

the metric reduces to the one of topological Einstein-BI
black holes in AdS spaces [29–31].

B. Conformally invariant electrodynamics

Born-Infeld Lagrangian in higher dimensions is a physi-
cally sensible extension of four-dimensional Maxwell
electrodynamics. However, if one is interested in a general-
ization of the conformal invariance property of four-
dimensional (4D) Maxwell theory, there exist NED actions
given as power-law functions of the form

L CEDðF2Þ ¼ �2F2p; (62)

where  is a positive coupling constant [32]. Then the
conformal invariance g�� ! �2g��, A� ! A� is realized

for the power p ¼ D=4.
The energy-momentum tensor for A� reads

T�
� ¼ �2

�
	�
� � 4p

F��F��

F2

�
F2p; (63)

and it produces the electric field

EðrÞ ¼ ~q

r

; (64)

where 
 ¼ D�2
2p�1 and ~q ¼ ðð�1Þpþ1q

2pp Þ
=ðD�2Þ. When one de-

mands conformal invariance (p ¼ D=4), the electric field
takes the 4DMaxwell’s form, E ¼ ~q=r2, in any dimension.
Then, one can calculate explicitly the function (44) in

the metric,

T CEDðq; rÞ ¼ � 2ðD� 2Þð�2Þp~q2p

ð
� 1Þ

1

r
�1
; (65)

that, plugged in Eq. (50), produces a line element which
matches the form of the black holes found in Ref. [9] for
EGB AdS gravity.

C. Logarithmic electrodynamics

NED Lagrangians that contain logarithmic terms in the
electromagnetic field strength appear in the description of
vacuum polarization effects. These terms were obtained as
exact 1-loop corrections for electrons in a uniform elec-
tromagnetic field background by Euler and Heisenberg [7],
and therefore are a typical feature of quantum electrody-
namics effective actions.
Furthermore, logarithmic ED Lagrangians come as a

realization of the old idea of removing singularities in
the gravitational field, in a similar way as the BI electro-
dynamics removes divergences in the electric field. They
have also been used to describe an equation of state of
radiation in an alternative mechanism for inflation [33].
A simple example of a BI-like Lagrangian with a loga-

rithmic term, that can be added as a correction to the
original BI one, was discussed in Ref. [8] in asymptotically
flat Einstein gravity in D ¼ 4. This model does not cancel
the curvature singularity for small r, but makes the
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Kretschmann invariant behave as 1=r4, which is a weaker
singularity than in, e.g., Schwarzschild or Reissner-
Nordström black holes.

In an arbitrary dimension, the logarithmic ED lagran-
gian has the form

L LogðF2Þ ¼ �8b2 ln

�
1þ F2

8b2

�
: (66)

It can be shown from Eq. (34) that the electric field has two
branches, but only one features theMaxwell limit (b ! 1),

EðrÞ ¼ 2b2

q

0
@rD�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2D�4 þ q2

b2

s 1
A: (67)

Considering this, the electric potential reads

�ðrÞ ¼ � 2b2rD�1

qðD� 1Þ

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

b2r2D�4

s 1
A

� 2qðD� 2ÞF ðq; rÞ
ðD� 1ÞðD� 3ÞrD�3

; (68)

where F ðq; rÞ ¼ 2F1ð12 ; D�3
2D�4 ;

3D�7
2D�4 ;� q2

b2r2D�4Þ.
The electromagnetic contribution to the metric is then

given by

T Logðq; rÞ

¼ � 8b2rD�1

D� 1
ln

2
42b2rD�2

q2

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2D�4 þ q2

b2

s
� rD�2

1
A
3
5

þ 8b2ð2D� 3Þr
ðD� 1Þ2

0
@rD�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2D�4 þ q2

b2

s 1
A

þ 8q2ðD� 2Þ2F ðq; rÞ
ðD� 1Þ2ðD� 3ÞrD�3

: (69)

Using the fact that F ð0; rÞ ¼ 1 ¼ F ðq;1Þ, one can show
explicitly that electromagnetism vanishes asymptotically,
that is, T Logðq;1Þ ¼ 0. Also, in the zero charge limit,

T Logð0; rÞ vanishes, as expected.
It is straightforward to write down the metric function

f2ðrÞ by plugging in the above expression into EGB metric
in Eq. (50). This general solution reduces to the one of
Ref. [8] in 4D Einstein gravity without cosmological
constant.

A more realistic version of logarithmic NED action is
given by the Hoffmann-Infeld model [34], that do remove
singularities in both gravitational and electric fields for
static solutions. This theory is described by the Lagrangian

L HI ¼ 4b2ð1� �ðF2Þ � log�ðF2ÞÞ; (70)

where �ðF2Þ ¼ � F2

4b2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F2

2b2

q
Þ�1. It can be easily

checked from the expansion �ðF2Þ ¼ 1þ F2

8b2
þOð1=b4Þ

that LHIðF2Þ is also a BI-like Lagrangian in the

weak-coupling limit. In D ¼ 5, a solution to this model
was discussed in Ref. [22].

V. VARIATIONAL PRINCIPLE AND
BOUNDARY TERMS

Any gravity theory is not defined only by its equations of
motion in the bulk, but also by the set of boundary con-
ditions that guarantees that the action is truly stationary.
In general, this implies that the original bulk action must be
supplemented by a boundary term 
,

~I ¼ I0 þ
Z
@M

dD�1x
; (71)

such that the problem of a well-posed action principle
reduces to the on-shell cancelation of the total surface
term of the theory, that is,

	~I ¼
Z
@M

dD�1xð�0 þ 	
Þ ¼ 0: (72)

In our case, the term �0 is given as the sum of Eqs. (10)
and (13) and, in principle, 
 can be split in two parts,
namely, 
 ¼ 
grav þ 
NED.

A gravitational action whose variation vanishes for a
Dirichlet condition on the metric requires the addition of
(generalized) Gibbons-Hawking terms. This is particularly
easy to see in Gauss-normal coordinates

ds2 ¼ g��dx
�dx� ¼ N2ðrÞdr2 þ hijðr; xÞdxidxj: (73)

We will consider a manifold with a single boundary @M at
r ¼ 1, parametrized by the coordinates xi, and such that
hij is the induced metric on it. The extrinsic properties of

the boundary are given in terms of the outward-pointing

normal n� ¼ ðnr; niÞ ¼ ðN; ~0Þ. In particular, we define the

extrinsic curvature as the Lie derivative of the induced
metric along this normal,

Kij ¼ � 1

2
Lnhij ¼ � 1

2N
h0ij: (74)

As it is written in Appendix C, different components of the
Christoffel symbol can be expressed in terms of the extrin-
sic curvature. In doing so, the surface term �0 ¼ �grav þ
�NED has the form

�0¼ 1

8�GðD�2ÞðD�3Þ
ffiffiffiffiffiffiffi�h

p
	½jj1j2�
½ii1i2�

�
�
1

2
ðh�1	hÞikKk

j þ	Ki
j

��
	i1
j1
	i2
j2
þ2�ðD�2ÞðD�3Þ

�
�
1

2
Ri1i2

j1j2
�Ki1

j1
Ki2

j2

��
þ4

ffiffiffiffiffiffiffi�h
p dL

dF2
NFri	Ai; (75)

where the determinant of the metric satisfies
ffiffiffiffiffiffiffi�g

p ¼
N

ffiffiffiffiffiffiffi�h
p

and Rij
klðhÞ is the intrinsic curvature of the bound-

ary, which is related to the spacetime Riemann tensor by

Rij
kl ¼ Rij

kl � Ki
kK

j
l þ Ki

lK
j
k (see Appendix C).

In order to cancel �NED part of the surface term, it is a
sufficient condition to take 	Ai ¼ 0 at @M. This means
that 
 does not depend on the electromagnetic field,
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i.e., 
 ¼ 
grav. On the other hand, there is a systematic

construction of generalized Gibbons-Hawking terms for
Gauss-Bonnet and, in general, any Lovelock theory
[35,36], which for the present case gives


¼
ffiffiffiffiffiffiffi�h

p
8�GðD�2ÞðD�3Þ	

½j1j2j3�
½i1i2i3� K

i1
j1

�
�
	i2
j2
	i3
j3
þ2�ðD�2ÞðD�3Þ

�
1

2
Ri2i3

j2j3
�1

3
Ki2

j2
Ki3

j3

��
;

(76)

or, in the form which is commonly found in the literature,


 ¼
ffiffiffiffiffiffiffi�h

p
8�G

�
K þ 2�

�
K

�
KijKij � 1

3
K2

�

� 2

3
Ki

kK
k
jK

j
i � 2GijKij

��
;

where Gij ¼ Rij � 1
2Rhij is the Einstein tensor associ-

ated to the boundary metric.
In doing so, the corresponding Dirichlet variation of the

action is

�0þ	
¼
ffiffiffiffiffiffiffi�h

p
16�GðD�3ÞðD�4Þ	

½jj1j2j3�
½ii1i2i3� ðh�1	hÞijKi1

j1

�
�
	i2
j2
	
i3
j3
þ2�ðD�3ÞðD�4Þ

�
�
1

2
Ri2i3

j2j3
�1

3
Ki2

j2
K

i3
j3

��
þ4

ffiffiffiffiffiffiffi�h
p dL

dF2
NFri	Ai:

(77)

Notice that for a radial foliation of the spacetime, the
on-shell variation of the action can be cast in the form

	~I ¼
Z
@M

dD�1x
ffiffiffiffiffiffiffi�h

p �
1

2
�ij	hij þ �i	Ai

�
; (78)

where �ij and �i are the canonical momenta conjugate to
hij and Ai, respectively. If one uses �ij as a quasilocal

stress tensor in AdS gravity, the conserved quantities
derived from it are divergent in the asymptotic region. In
other words, a well-posed variational principle is not nec-
essarily linked to the problem of finiteness of the charges
and action.

In the context of AdS/CFT correspondence, the standard
way to deal with the regularization problem in a
background-independent way is the addition of local coun-
terterms at the boundary, which are constructed using
holographic normalization. However, the inclusion of
higher-curvature terms in the action turns this procedure
considerably more complicated. A practical method to
circumvent this obstacle in EGB AdS gravity is to assume
the same form of the counterterms as in the EH case, but
with arbitrary coefficients [37–39]. The coefficients are
then fixed requiring the convergence of the action for
particular solutions of the theory. It is clear from this

construction that the series cannot be obtained for an
arbitrary dimension.
The fact that in AdS gravity the leading order of the

asymptotic expansion of the extrinsic curvature is propor-
tional to the one of the boundary metric opens the possi-
bility to consider counterterms which depends on the
extrinsic curvature, as well. In this alternative scheme
(known as Kounterterm regularization), the boundary
terms are related to either topological invariants or
Chern-Simons forms in the corresponding dimensions. In
this way, it is possible to skip the technicalities of holo-
graphic procedures and to write down a general expression
for them in any dimension,

I ¼ I0 þ cD�1

Z
@M

dD�1xBD�1; (79)

where cD�1 is a given constant. For EH AdS gravity, the
Kounterterm series was shown in Refs. [40,41] as a given
polynomial of the extrinsic and intrinsic curvatures, which
defines a well-posed action principle. In general, the action
(79) varies as

	I ¼
Z
@M

dD�1x�

¼
Z
@M

dD�1xð�grav þ�NED þ cD�1	BD�1Þ; (80)

such that the boundary term in (79) makes the action to
have an extremum on-shell and solves the regularization
problem, as well.
For a given dimension, the series BD�1 possesses the

remarkable property of preserving its form for EGB AdS
gravity [42] and, in general, any theory of the Lovelock
type [43]. In what follows, we use the explicit form of the
boundary terms to construct the general variation of the
action in tensorial notation.

A. Even dimensions (D ¼ 2n)

In even dimensions D ¼ 2n > 4, the boundary term
B2n�1 in (79) is given by the nth Chern form [42]

B2n�1¼2n
ffiffiffiffiffiffiffi�h

p Z 1

0
dt	½j1���j2n�1�

½i1���i2n�1�K
i1
j1

�
1

2
Ri2i3

j2j3
� t2Ki2

j2
K

i3
j3

�
���

�
�
1

2
Ri2n�2i2n�1

j2n�2j2n�1
� t2Ki2n�2

j2n�2
Ki2n�1

j2n�1

�
; (81)

that is the scalar density whose derivative is locally equiva-
lent to the Euler invariant [globally they differ by the Euler
characteristic of the manifold, ðMÞ]. The integration in
the continuous parameter t generates the coefficients when
the boundary term is expanded as a polynomial. The
constant c2n�1 in front of the boundary term B2n�1 which
produces a well-defined variational principle is given in
terms of the effective AdS radius as
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c2n�1 ¼ � 1

16�G

ð�‘2effÞn�1

nð2n� 2Þ!
�

�
1� 2�

‘2eff
ð2n� 2Þð2n� 3Þ

�
: (82)

It can been proven that the same choice of c2n�1 ensures
the convergence of the Euclidean action. The total surface
term � can be read off from the on-shell variation of the
action (80), that in this case is

	I2n ¼ 1

16�Gð2n� 2Þ!2n�1

Z
@M

d2n�1x
ffiffiffiffiffiffiffi�h

p
	½j1���j2n�1�
½i1���i2n�1� ½ðh�1	hÞi1k Kk

j1
þ 2	Ki1

j1
�

�
�
ð	½i2i3�

½j2j3� þ 2�ð2n� 2Þð2n� 3ÞRi2i3
j2j3

Þ	½i4i5�
½j4j5� � � �	

½i2n�2i2n�1�
½j2n�2j2n�1�

� ð�‘2effÞn�1

�
1� 2�

‘2eff
ð2n� 2Þð2n� 3Þ

�
Ri2i3
j2j3

� � �Ri2n�2i2n�1

j2n�2j2n�1

�
þ 4

Z
@M

d2n�1x
ffiffiffiffiffiffiffi�h

p dL
dF2

NFri	Ai: (83)

The reader can easily check that imposing the asymptoti-
cally locally AdS condition for the spacetime, i.e.,

R�

�� þ 1

‘2eff
	½�
�
½��� ¼ 0; at @M; (84)

identically cancels the leading-order divergences in the
gravitational part of the above variation. As a remarkable
feature of the addition of Kounterterms, all other divergent
terms in (83) are exactly cancelled out. In this way, the
finite contribution is coupled to the conformal metric that is
kept fixed at the boundary. The NED part of the surface
term vanishes for a Dirichlet boundary condition for the
transversal components of A�,

	Ai ¼ 0; at @M: (85)

B. Odd dimensions (D ¼ 2nþ 1)

The extrinsic regularization developed for odd-
dimensional Einstein-Hilbert AdS gravity [40] can be
mimicked for EGB AdS theory, just replacing the AdS
radius ‘ by the effective one ‘eff in the boundary terms.
Thus, the Kounterterms series is given in terms of the
parametric integrations

B2n¼2n
ffiffiffiffiffiffiffi�h

p Z 1

0
dt
Z t

0
ds	½j1���j2n�

½i1���i2n�K
i1
j1
	i2
j2

�
�
1

2
Ri3i4

j3j4
� t2K

i3
j3
Ki4

j4
þ s2

‘2eff
	
i3
j3
	i4
j4

�
����

�
�
1

2
Ri2n�1i2n

j2n�1j2n
� t2Ki2n�1

j2n�1
Ki2n

j2n
þ s2

‘2eff
	i2n�1

j2n�1
	i2n
j2n

�
: (86)

The corresponding constant for this case incorporates the
information of the theory through the GB coupling in the
form

c2n¼� 1

16�G

ð�‘2effÞn�1

nð2n�1Þ!
�
�
1�2�ð2n�1Þð2n�2Þ

‘2eff

��Z 1

0
dtð1� t2Þn�1

��1

¼� 1

16�G

2ð�‘2effÞn�1

nð2n�1Þ!
ðn;12Þ
�
1�2�ð2n�1Þð2n�2Þ

‘2eff

�
;

(87)

where 
ðn; 12Þ ¼ 22n�1ðn�1Þ!2
ð2n�1Þ! is the Beta function for those

arguments.
The total action varies on-shell as

	I2nþ1 ¼ 1

2n�116�Gð2n� 1Þ!
Z
@M

d2nx
ffiffiffiffiffiffiffi�h

p
	½j1���j2n�
½i1���i2n� ½ðh�1	hÞi1k Kk

j1
þ 2	Ki1

j1
�	i2

j2

�
�
ð	½i3i4�

½j3j4� þ 2�ð2n� 1Þð2n� 2ÞRi3i4
j3j4

Þ	½i5i6�
½j5j6� � � �	

½i2n�1i2n�
½j2n�1j2n�

þ 16�Gð2n� 1Þ!nc2n
Z 1

0
dt

�
R
i3i4
j3j4

þ t2

‘2eff
	
½i3i4�
½j3j4�

�
� � �

�
Ri2n�1i2n
j2n�1j2n

þ t2

‘2eff
	½i2n�1i2n�
½j2n�1j2n�

��

þ nc2n
Z
@M

d2nx
ffiffiffiffiffiffiffi�h

p Z 1

0
dtt	½j1���j2n�

½i1���i2n� ½ðh�1	hÞi1k ðKk
j1
	i2
j2
� 	k

j1
Ki2

j2
Þ þ 2	i2

j2
	Ki2

j2
�

�
�
1

2
Ri3i4

j3j4
� t2Ki3

j3
Ki4

j4
þ t2

‘2eff
	i3
j3
	i4
j4

�
� � �

�
1

2
Ri2n�1i2n

j2n�1j2n
� t2Ki2n�1

j2n�1
Ki2n

j2n
þ t2

‘2eff
	i2n�1

j2n�1
	i2n
j2n

�

þ 4
Z
@M

d2nx
ffiffiffiffiffiffiffi�h

p dL
dF2

NFri	Ai: (88)
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Then, the surface term from the electromagnetic part
vanishes when fixing the gauge potential at the boundary,
Eq. (85).

Checking explicitly the cancellation of the leading-order
divergences in the above action proves to be slightly more
complicated than in the even-dimensional case, but one
may reason as follows: the second and third lines cancel
out when taking the condition on the asymptotic curvature
(84) for the particular value of c2n given by Eq. (87). On
the other hand, for any asymptotically AdS spacetime, the
extrinsic curvature Ki

j has a regular expansion in the

asymptotic region, Ki
j ¼ 1

‘eff
	i
j þOð1=rÞ. This means

that variations of the extrinsic curvature vanishes at the
leading order in the vicinity of @M. These conditions
guarantee a well-posed action principle for odd-
dimensional EGB AdS gravity, issue that was discussed
previously in Ref. [42].

VI. CONSERVED QUANTITIES

A. Electric charge

We will first derive the electric charge Q as a conserved
quantity associated toUð1Þ gauge symmetry 	�A� ¼ @��,

	�g�� ¼ 0, as its computation does not depend on the

spacetime dimension. The gravitational part of the surface
term in Eq. (80) is gauge-invariant, such that it implies the
conservation of the Noether current

	�I ¼
Z
M

dDx@�J
�ð�Þ

¼ 4
Z
M

dDx@�

� ffiffiffiffiffiffiffi�g
p

F�� dL
dF2

@��

�
; (89)

where the current J� transforms as a vector density of
weight þ1. In the radial foliation (73), the electric charge
is then the normal component of the above current

Q½�� ¼
Z
@M

dD�1x
1

N
n�J

�ð�Þ; (90)

which, using the fact that n� is covariantly constant, can be

rewritten as

ffiffiffiffiffiffiffi�h
p

n�
dL
dF2

F��@�� ¼ @i

�
�

ffiffiffiffiffiffiffi�h
p

n�F
�i dL
dF2

�
� �n�

ffiffiffiffiffiffiffi�h
p

E�: (91)

As a consequence, since E� ¼ 0, we are able to write down
the integrand in Eq. (90) as a total derivative. In order to
use the Stokes’ theorem, we take a timelike Arnowitt-
Deser-Misner foliation for the line element on @M with
the coordinates xi ¼ ðt; ymÞ, as
hijdx

idxj¼� ~N2ðtÞdt2þ�mnðdymþ ~NmdtÞðdynþ ~NndtÞ;ffiffiffiffiffiffiffi�h
p ¼ ~N

ffiffiffiffi
�

p
; (92)

that is generated by the timelike normal vector

ui ¼ ðut; umÞ ¼ ð� ~N; ~0Þ. The metric �mn describes the
geometry of the boundary of spatial section at constant
time �1.
Setting � ¼ 1, the Uð1Þ charge reads

Q ¼ 4
Z
�1

dD�2y
ffiffiffiffi
�

p
uiNFri dL

dF2
: (93)

For the static black hole metric (25) (where N ¼ 1=f2 and
~N ¼ f2) and the electromagnetic field strength (31), one
obtains a general formula for NED electric charge

Q ¼ �4Volð�D�2Þ lim
r!1

�
rD�2E

dL
dF2

�
: (94)

Finally, using the generalized Gauss law (34), it is possible
to define a finite electric charge of the black hole

Q ¼ 4Volð�D�2Þq; (95)

for an arbitrary NED Lagrangian. However, this definition
does not guarantee only by itself that the electric field is
well-behaved in the asymptotic region.

B. Black hole mass

In order to calculate the conserved quantities associated
to global isometries of the spacetime, we first consider the
action of diffeomorphisms 	x� ¼ ��ðxÞ on the fields g��

and A� in terms of the Lie derivative,

	�g�� ¼ L�g�� � �ðr��� þr���Þ;
	�A� ¼ L�A� � �@�ð��A�Þ þ ��F��; (96)

which implies the transformation rule of the Christoffel
symbol

L��
�
�� ¼ 1

2
ðR�

��
 þ R�
��
Þ�


� 1

2
ðr�r��

� þr�r��
�Þ: (97)

This leads to the transformation of the volume element,
Jacobian and Lagrangian density L0 defined by Eq. (1) as

	�ðdDxÞ ¼ dDx@��
�;

	�

ffiffiffiffiffiffiffi�g
p ¼ � ffiffiffiffiffiffiffi�g

p r��
�;

	�L0 ¼ @L0

@g��

L�g�� þ @L0

@�

��

L��


��

þ @L0

@A�

L�A� þ ��@�L0: (98)

Then the total action (79) transforms under diffeomor-
phisms as
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	�I ¼
Z
M

dDx½L�ð ffiffiffiffiffiffiffi�g
p

L0Þ þ @�ð ffiffiffiffiffiffiffi�g
p

��L0Þ� þ cD�1

Z
@M

dD�1x½L�BD�1 þ @ið�iBD�1Þ�

¼
Z
@M

dD�1xn�

�
1

N
��ð�Þ þ ffiffiffiffiffiffiffi�h

p
��L0 þ cD�1n

�@ið�iBD�1Þ
�
þ�

Z
M

dDx
ffiffiffiffiffiffiffi�g

p �
1

16�G
E��L�g�� þ 4E�L�A�

�
;

(99)

where �ð�Þ ¼ 1
N n��

�ð�Þ is the surface term in Eq. (80)
evaluated in the corresponding Lie derivative of the fields.

The Noether current derived from the diffeormorphic
invariance, 	�I ¼

R
M dDx@�J

�ð�Þ ¼ 0 is, therefore,

J�ð�Þ ¼ ��ð�Þ þ ffiffiffiffiffiffiffi�g
p

��L0 þ cD�1Nn�@ið�iBD�1Þ:
(100)

The conservation law @�J
� ¼ 0 implies the existence of a

conserved quantity, which corresponds to the normal com-
ponent of the current J�,

Q½�� ¼
Z
@M

dD�1x
1

N
n�J

�ð�Þ: (101)

In general, it is not guaranteed that the Noether charge can
be written as surface integral in (D� 2) dimensions.
However, for the action I, the radial component Jr ¼
1
N n�J

� in the foliation (73) is globally a total derivative

on @M, i.e.,

Jr ¼ @jð
ffiffiffiffiffiffiffi�h

p
�iðqji þ qjð0ÞiÞÞ: (102)

The splitting in the above integrand is justified as follows:

qji produces the mass and other conserved quantities for
black hole solutions. As we will show below, this part of
the charge identically vanishes for the vacuum states of the

theory. The term qjð0Þi gives rise to a vacuum energy, which

is present only in odd dimensions.
Therefore, the conserved charges Q½�� of the theory for

a given set of asymptotic Killing vectors f�g are expressed
as integrals on �1 [whose metric has been defined in
Eq. (92)],

Q½�� ¼
Z
�1

dD�2y
ffiffiffiffi
�

p
uj�

iðqji þ qjð0ÞiÞ: (103)

1. Even dimensions

In even dimensions, the expression for the surface term
�ð�Þ is obtained from (83) by replacing the variations by
the corresponding Lie derivative of the fields,

1

N
n��

�ð�Þ ¼
ffiffiffiffiffiffiffi�h

p
16�Gð2n� 2Þ!2n�1

	½j1���j2n�1�
½i1���i2n�1� ½ðh�1L�hÞi1k Kk

j1
þ 2L�K

i1
j1
�

�
�
ð	½i2i3�

½j2j3� þ 2�ð2n� 2Þð2n� 3ÞRi2i3
j2j3

Þ	½i4i5�
½j4j5� � � �	

½i2n�2i2n�1�
½j2n�2j2n�1� � ð�‘2effÞn�1

�
�
1� 2�

‘2eff
ð2n� 2Þð2n� 3Þ

�
Ri2i3
j2j3

� � �Ri2n�2i2n�1

j2n�2j2n�1

�
þ 4

ffiffiffiffiffiffiffi�h
p dL

dF2
NFriL�Ai: (104)

As a result of the Noether procedure, the integrand in the
conserved charge (103) is

qji ¼
1

16�Gð2n� 2Þ!2n�2
	½jj2���j2n�1�
½i1���i2n�1� K

i1
i

�
�
ð	½i2i3�

½j2j3� þ 2�ð2n� 2Þð2n� 3Þ

� Ri2i3
j2j3

Þ	½i4i5�
½j4j5� � � �	

½i2n�2i2n�1�
½j2n�2j2n�1� � ð�‘2effÞn�1

�
�
1� 2�

‘2eff
ð2n� 2Þð2n� 3Þ

�
R
i2i3
j2j3

� � �Ri2n�2i2n�1

j2n�2j2n�1

�
;

(105)

plus a NED contribution due to the last line in Eq. (104),
which vanishes for black hole solutions, as shown below.
At the same time, qjð0Þi ¼ 0 for even dimensions.
The second and third lines in the expression (105) can be

seen as a polynomial of rank (n� 1) in the Riemann tensor

and the Kronecker delta 1
‘2
eff

	½i2i3�
½j2j3�, which can be factorized

by (R
i2i3
j2j3

þ 1
‘2
eff

	
½i2i3�
½j2j3�). As a consequence of the fact that for

any maximally symmetric spacetime this factor vanishes,
any conserved quantity defined on it will be identically
zero in even dimensions.
The energy of black hole solution to EGB AdS gravity

coupled to NED (25) is computed evaluating the formula

(103) for the Killing vector �i ¼ ð1; ~0Þ and the unit normal

ui ¼ ð�f; ~0Þ which defines a constant time slice,
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M � Q½@t�
¼ � 1

16�Gð2n� 2Þ!2n�2

Z
�2n�2

d2n�2’
ffiffiffiffi
�

p
fr2n�2	½m1���m2n�2�

½n1���n2n�2� K
t
t

�
�
ð	½n1n2�

½m1m2� þ 2�ð2n� 2Þð2n� 3ÞRn1n2
m1m2

Þ	½n3n4�
½m3m4� � � �	

½n2n�3n2n�2�
½m2n�3m2n�2�

� ð�‘2effÞn�1

�
1� 2�

‘2eff
ð2n� 2Þð2n� 3Þ

�
Rn1n2
m1m2

� � �Rn2n�3n2n�2
m2n�3m2n�2

�
: (106)

From the explicit form of the extrinsic curvature

Ki
j ¼ � 1

2N
hikh0kj ¼

�f0 0
0 � f

r 	
m
n

� �
; (107)

and the boundary components of the Riemann tensor in
Eq. (27), one obtains a general formula for the mass in even
dimensions,

M¼Volð�2n�2Þ
16�G

lim
r!1r

2n�2ðf2Þ0
�
1�2�ð2n�2Þð2n�3Þ

�f2�k

r2
�
�
1� 2�

‘2eff
ð2n�2Þð2n�3Þ

�

�‘2n�2
eff

�
f2�k

r2

�
n�1

�
: (108)

In order to relate the above expression to the integration
constant�, one must consider the asymptotic expansion of
the metric function (51) in the following way:

f2�k

r2
¼ 1

‘2eff
� �

1� 2�
‘2
eff

ð2n�3Þð2n�4Þ
1

r2n�1
þO

�
1

r4n�4

�
;

(109)�
f2 � k

r2

�
n�1 ¼ 1

‘2n�2
eff

� ðn� 1Þ�
1� 2�

‘2
eff

ð2n� 3Þð2n� 4Þ

� 1

‘2n�4
eff r2n�1

þO
�

1

r4n�4

�
; (110)

and its derivative (52). When expanded, Eq. (108) might
contain divergences of order r2n�1. It is then a remarkable

fact that the divergent terms cancel out for the particular
value of c2n�1 in Eq. (82), which leaves a finite result for
the energy

M ¼ ð2n� 2ÞVolð�2n�2Þ�
16�G

; (111)

in agreement with the expression found in, e.g., Ref. [44].
Now, we turn our attention to the NED contribution to

the diffeomorphic transformation of the action, that is,
the last line in Eq. (104). This part of the surface term
produces, by virtue of the Noether theorem, an additional
piece with respect to the charge formula given by
Eq. (105), which is written in any dimension as

QNED½�� ¼ �4
Z
�1

dD�2y
ffiffiffiffi
�

p
uj

dL
dF2

NFrjð�iAiÞ: (112)

However, when we evaluate Eq. (112) for the Killing
vector � ¼ @t and the static black hole metric, we notice
that

QNED½@t� ¼ �4qVolð�D�2Þ�ð1Þ ¼ 0; (113)

as anticipated in the discussion following the deduction of
the charge formula.

2. Odd dimensions

The form of the surface term �ð�Þ in odd dimensions
(D ¼ 2nþ 1) follows from the on-shell variation of the
action, Eq. (88). Its expression is slightly more compli-
cated than in the even-dimensional case

1

N
n��

�ð�Þ ¼
ffiffiffiffiffiffiffi�h

p
16�Gð2n� 1Þ!2n�1

	½j1���j2n�
½i1���i2n� ½ðh�1L�hÞi1k Kk

j1
þ 2L�K

i1
j1
�	i2

j2

�
�
ð	½i3i4�

½j3j4� þ 2�ð2n� 1Þð2n� 2ÞRi3i4
j3j4

Þ	½i5i6�
½j5j6� � � �	

½i2n�1i2n�
½j2n�1j2n� þ 16�Gð2n� 1Þ!nc2n

�
Z 1

0
dt

�
Ri3i4
j3j4

þ t2

‘2eff
	½i3i4�
½j3j4�

�
� � �

�
Ri2n�1i2n
j2n�1j2n

þ t2

‘2eff
	½i2n�1i2n�
½j2n�1j2n�

��
þ nc2n

ffiffiffiffiffiffiffi�h
p

�
Z 1

0
dtt	½j1���j2n�

½i1���i2n� ½ðh�1	hÞi1k ðKk
j1
	i2
j2
� 	k

j1
Ki2

j2
Þ þ 2	i2

j2
	Ki2

j2
� �

�
1

2
Ri3i4

j3j4
� t2Ki3

j3
Ki4

j4
þ t2

‘2eff
	i3
j3
	i4
j4

�
� � �

�
�
1

2
Ri2n�1i2n

j2n�1j2n
� t2Ki2n�1

j2n�1
Ki2n

j2n
þ t2

‘2eff
	i2n�1

j2n�1
	i2n
j2n

�
þ 4

ffiffiffiffiffiffiffi�h
p dL

dF2
NFriL�Ai; (114)

where, for shortness’ sake, we have chosen not to use the explicit form of c2n given by Eq. (87).
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In odd dimensions, the Noether charge appears as the sum of two parts, since qjð0Þi in Eq. (103) is no longer vanishing.

The first part takes the form

qji ¼
1

16�Gð2n�1Þ!2n�2
	½jj2���j2n�
½i1���i2n� K

i1
i 	

i2
j2
�
�
ð	½i3i4�

½j3j4� þ2�ð2n�1Þð2n�2ÞRi3i4
j3j4

Þ	½i5i6�
½j5j6� ���	

½i2n�1i2n�
½j2n�1j2n�

þ16�Gð2n�1Þ!nc2n
Z 1

0
dt

�
R
i3i4
j3j4

þ t2

‘2eff
	
½i3i4�
½j3j4�

�
���

�
Ri2n�1i2n
j2n�1j2n

þ t2

‘2eff
	½i2n�1i2n�
½j2n�1j2n�

��
; (115)

whereas, the second one is given by

qjð0Þi¼nc2n
Z 1

0
dtt	½jj2���j2n�

½ki2���i2n� ðKk
i 	

i2
j2
þKk

j2
	i2
i Þ

�
�
1

2
Ri3i4

j3j4
� t2Ki3

j3
Ki4

j4
þ t2

‘2eff
	i3
j3
	i4
j4

�
����

�
�
1

2
Ri2n�1i2n

j2n�1j2n
� t2Ki2n�1

j2n�1
Ki2n

j2n
þ t2

‘2eff
	i2n�1
j2n�1

	i2n
j2n

�
: (116)

We recall the fact that the constant c2n was chosen to
cancel at least the leading-order divergence in the variation

of the action (88). Thus, it can be readily checked that qji is
identically zero for global AdS spacetime which satisfies
(19) in the bulk. This means that the second and third lines

in the expression (105) are again a polynomial of
rank (n� 1) in the Riemann tensor and the Kronecker

delta 1
‘2
eff

	
½i2i3�
½j2j3�, where R

i2i3
j2j3

¼ � 1
‘2
eff

	
½i2i3�
½j2j3� is a root of it.

Therefore, any maximally symmetric spacetime will have
vanishing mass and angular momentum due to the fact that

qji ¼ 0, such that all the contributions to the vacuum energy
will come necessarily from Eq. (116), as shown below. On
the other hand, the presence of c2n in the formula of
vacuum energy reflects the fact that its existence is entirely
due to the addition of the Kounterterm series (86).
Proceeding as in the even-dimensional case, we compute

the black hole mass evaluating the first term in the formula
(103),

M ¼
Z
�1

dD�2y
ffiffiffiffi
�

p
ut�

tqtt

¼ � 1

16�Gð2n� 1Þ!2n�2
lim
r!1

Z
�2n�2

d2n�2’
ffiffiffiffi
�

p
fr2n�1	½m1���m2n�1�

½n1���n2n�1� K
t
t	

n1
m1

�
��

	½n2n3�
½m2m3� þ 2�ð2n� 1Þð2n� 2ÞRn2n3

m2m3

�
	½n4n5�
½m4m5� � � �	

½n2n�2n2n�1�
½m2n�2m2n�1�

þ 16�Gð2n� 1Þ!nc2n
Z 1

0
dt

�
Rn2n3
m2m3

þ t2

‘2eff
	½n2n3�
½m2m3�

�
� � �

�
Rn2n�2n2n�1
m2n�2m2n�1

þ t2

‘2eff
	½n2n�2n2n�1�
½m2n�2m2n�1�

��
:

Using the Riemann tensor in Eq. (27) and the extrinsic
curvature for the generic black hole metric given by
Eq. (107), the above formula reduces to

M ¼ Volð�2n�1Þ
16�G

lim
r!1r

2n�1ðf2Þ0

�
�
1� 2�ð2n� 1Þð2n� 2Þ f

2 � k

r2

þ 16�Gð2n� 1Þ!nc2n
Z 1

0
dt

�
k� f2

r2
þ t2

‘2eff

�
n�1

�
:

(117)

It is straightforward to express the mass M in terms of the
constant � in the metric, by means of the expansion of the
metric function in Eq. (109), its derivative (52) and the last
line in the above relation,

Z 1

0
dt

�
k� f2

r2
þ t2

‘2eff

�
n�1 ¼ � 1

16�Gð2n� 1Þ!nc2n
�

�
1� 2�

‘2eff
ð2n� 1Þð2n� 2Þ

�

�
�
1� ‘2eff

2

ð2n� 1Þ�
1� 4�ð2n�2Þð2n�3Þ

‘2
eff

1

r2n

�
þO

�
1

r4n�3

�
: (118)

Unless the constant c2n is fixed as in Eq. (87), the formula
(117) contains divergences of order r2n. Therefore, the
boundary term c2nB2n plays a double role: it cancels out
the divergences in the Noether charge, but also contributes
with a finite piece to give the correct result for the mass

M ¼ ð2n� 1ÞVolð�2n�1Þ�
16�G

; (119)

which matches the one in Ref. [44]. In turn, the vacuum
energy for asymptotically AdS (AAdS) black holes is
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reflected in the formula (116), that in the black hole ansatz
(25) adopts the form

Evac ¼
Z
�1

dD�2y
ffiffiffiffi
�

p
ut�

tqtð0Þt

¼ 2nc2n lim
r!1

Z
�2n�1

d2n�1’
ffiffiffiffi
�

p
r2n�1f	½m1���m2n�1�

½n1���n2n�1�

� ðKt
t	

n1
m1

� Kn1
m1
Þ� (120)

Z 1

0
dtt

�
1

2
Rn2n3

m2m3
� t2Kn2

m2
Kn3

m3
þ t2

‘2
	n2
m2
	n3
m3

�
� � � �

�
�
1

2
Rn2n�2n2n�1

m2n�2m2n�1
� t2Kn2n�2

m2n�2
Kn2n�1

m2n�1
þ t2

‘2
	n2n�2
m2n�2

	n2n�1
m2n�1

�
:

(121)

More explicitly, plugging in the components of the bound-
ary curvature,

R n1n2
m1m2

¼ k

r2
	½n1n2�
½m1m2�; Rtn

tm ¼ 0; (122)

the zero-point energy of the system is

Evac ¼ 2nð2n� 1Þ!c2n Volð�2n�1Þ lim
r!1

Z 1

0
dtt

�
�
f2 � rðf2Þ0

2

��
kþ

�
r2

‘2eff
� f2

�
t2
�
n�1

: (123)

As the metric function and its derivative can be expanded
as in Eqs. (51) and (52), we notice that all the terms that
depend on the parameter � vanish in the limit r ! 1. As
expected, the vacuum energy depends only on the topo-
logical parameter k, the effective AdS radius and GB
coupling, that is,

Evac ¼ ð2n� 1Þ!c2n Volð�2n�1Þkn

¼ ð�kÞn Volð�2n�1Þ
8�G

‘2n�2
eff

ð2n� 1Þ!!2
ð2nÞ!

�
�
1� 2�

‘2eff
ð2n� 1Þð2n� 2Þ

�
: (124)

The above formula matches the vacuum energy in EGB
gravity obtained in Ref. [42] by means of Kounterterm
regularization. This implies that for an arbitrary NED
Lagrangian the falloff of the electromagnetic field is
always such that it does not contribute to the total energy
of the gravitational configuration.

VII. CONCLUSIONS

We have used counterterms for Einstein-Gauss-Bonnet
gravity coupled to nonlinear electrodynamics in the form
of polynomials in the extrinsic and intrinsic curvatures of
the boundary in order to regularize the conserved charges
in the AdS sector of the theory. It has been shown that this
regularization scheme (also known as Kounterterm
method) provides finite values for the mass for charged
static black holes with spherical, locally flat and hyperbolic
transversal section in all dimensions, and the correct
vacuum energy in odd dimensions.

We have also analyzed the falloff conditions that ensure
the finiteness of the electric charge for an arbitrary NED
Lagrangian LðF2Þ, which do not produce additional con-
tributions to the mass of black hole in Einstein-Gauss-
Bonnet AdS gravity.
It is well-known that a vacuum energy for global AdS

spacetime in odd dimensions appears only in background-
independent methods to compute conserved quantities.
This is particularly important from the semiclassical point
of view in order to interpret the Noether charges as ther-
modynamic variables, and to consistently incorporate the
vacuum energy in the definition of internal energy of the
system [45], in a similar fashion as in Einstein-BI system
[46] (for a thermodynamic analysis of the same system
using a background-subtraction method, see Ref. [47]).
The addition of a series of intrinsic counterterms in pure
EGB AdS gravity (see, e.g., Refs. [37–39]) presents the
advantage of obtaining the conserved quantities from a
boundary stress tensor, that is, as holographic charges.
However, the explicit form of such series does not exist
for a high enough dimension. On the contrary, an expres-
sion for the Kounterterms is given by Eqs. (81) and (86) in
all dimensions. In that respect, one would like to see the
above charges as coming from a quasilocal stress (Brown-
York) tensor. There are good reasons that make us think
that this could be possible, despite the fact that the on-shell
variation of the action takes the form

	ID ¼
Z
@M

dD�1x
ffiffiffiffiffiffiffi�h

p

�
�
1

2
�ji ðh�1	hÞij þ �j

i	K
i
j þ�i	Ai

�
; (125)

where one cannot directly define a quasilocal stress tensor

as Tij ¼ ð2= ffiffiffiffiffiffiffi�h
p Þð	ID=	hijÞ.

Indeed, there are gravity theories where the surface term
in 	I contains variations of the extrinsic curvature 	Ki

j,

which cannot be eliminated by the addition of a general-
ized Gibbons-Hawking term, and where a holographic
stress tensor for AAdS spacetimes can be still read off
from the variation of the action. One example featuring
this property is Topologically Massive Gravity in three-
dimensional, where the surface term coming from the
variation of the gravitational Chern-Simons term contains
	Ki

j. It is known that there is no term that can be added to

the action to trade it off by a piece along 	hij. However, it

can be shown that in the asymptotically AdS sector of the
theory, there is a contribution from the gravitational Chern-
Simons term to the holographic stress tensor which couples
to the conformal structure gð0Þij, even though a quasilocal

stress tensor associated to 	hij cannot be defined [48]. This

follows from the fact that, for AAdS spaces, the leading
order in the expansion of the boundary metric is the same
as the leading order of the extrinsic curvature. A quasilocal
stress tensor cannot be identified either in 4D AdS gravity
when one adds the (topological) Gauss-Bonnet term to the
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Einstein-Hilbert action. In this case, the Gauss-Bonnet
term does not change the field equations in the bulk but,
as expected, it modifies the surface term in the variation
of the action. In this case, 	I also adopts the form of
Eq. (125). However, the second term in (76)—which in
D> 4 sets a well-defined action principle when the metric
is held fixed at the boundary—cannot be used for the same
purpose in four dimensions. One can show that the varia-

tion of the action produces a boundary stress tensor �ji for
AdS gravity (upon a suitable choice of the GB coupling)
which is finite and the same as the one prescribed by
holographic renormalization [49]. This is a consequence

of the fact that the contribution
ffiffiffiffiffiffiffi�h

p
�j

i	K
i
j vanishes

identically when one performs an asymptotic expansion
of the fields.

The above examples give some indication on what
should be the pattern in higher-dimensional Einstein-
Hilbert and Einstein-Gauss-Bonnet AdS case: in D ¼ 2n
dimensions, the term that contains 	Ki

j should always

vanish as we approach to the asymptotic region, such that
the quasilocal stress tensor can be read off directly from

Eq. (125). On the other hand, in odd dimensions, �j
i	K

i
j

should contribute with a finite piece to the holographic
stress tensor which does not modify the Weyl anomaly.
We expect to provide a proof of the above claim elsewhere.
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APPENDIX A: KRONECKER DELTA OF RANK p

The totally antisymmetric Kronecker delta of rank p is
defined as the determinant

	
½�1����p�
½�1����p� :¼

��������������������

	�1
�1 	�2

�1 � � � 	
�p
�1

	�1
�2 	�2

�2 	
�p
�2

..

. . .
.

	�1
�p 	�2

�p � � � 	
�p
�p

��������������������
: (A1)

A contraction of k � p indices in the Kronecker delta of
rank p produces a delta of rank p� k,

	
½�1����k����p�
½�1����k����p�	

�1
�1

� � �	�k
�k

¼ ðN � pþ kÞ!
ðN � pÞ! 	

½�kþ1����p�
½�kþ1����p�;

(A2)

where N is the range of indices.

APPENDIX B: HYPERGEOMETRIC FUNCTION

We use an integral representation of the Gauss’ hyper-
geometric function,

2F1ða; b; c; zÞ ¼
�ðcÞ

�ðbÞ�ðc� bÞ
Z 1

0
du

ub�1ð1� uÞc�b�1

ð1� zuÞa ;

(B1)

where c is not a negative integer and either jzj< 1, or
jzj ¼ 1 with <eðc� a� bÞ> 0. In particular, the follow-
ing integral is solved in the text,

Z 1

0
du

ub�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zu

p ¼ 1

b 2F1

�
1

2
; b;bþ 1;�z

�
; b > 0:

(B2)

The first derivative of the hypergeometric function is

d

dz 2F1ða; b; c; zÞ ¼
ab

c 2F1ðaþ 1; bþ 1; cþ 1; zÞ; (B3)

and it expands for small z as

2F1ða;b;c;zÞ ¼ 1þab

c
zþaðaþ 1Þbðbþ 1Þ

2cðcþ 1Þ z2 þOðz3Þ:
(B4)

APPENDIX C: GAUSS-NORMAL
COORDINATE FRAME

In Gaussian coordinates (73), the only relevant compo-
nents of the connection ��

�� are expressed in terms of the

extrinsic curvature Kij ¼ � 1
2N h

0
ij as

�r
ij ¼

1

N
Kij; �i

rj ¼ �NKi
j; �r

rr ¼ N0

N
: (C1)

The radial foliation (73) implies the Gauss-Codazzi rela-
tions for the spacetime curvature, as well,

Rir
kl ¼

1

N
ðrlK

i
k �rkK

i
lÞ; (C2)

Rir
kr ¼

1

N
ðKi

kÞ0 � Ki
lK

l
k; (C3)

Rij
kl ¼ Rij

klðhÞ � Ki
kK

j
l þ Ki

lK
j
k � Rij

kl � K½i
½kK

j�
l� ; (C4)

where ri ¼ riðhÞ is the covariant derivative defined in the
Christoffel symbol of the boundary �k

ijðgÞ ¼ �k
ijðhÞ and

Rij
klðhÞ is the intrinsic curvature of the boundary.

OLIVERA MIŠKOVIĆ AND RODRIGO OLEA PHYSICAL REVIEW D 83, 024011 (2011)

024011-16



[1] E. S. Fradkin and A.A. Tseytlin, Phys. Lett. 163B, 123
(1985).

[2] M. Born and I. Infeld, Proc. R. Soc. A 144, 425 (1934).
[3] R. G. Leigh, Mod. Phys. Lett. A 4, 2767 (1989).
[4] E. Ayon-Beato and A. Garcia, Phys. Rev. Lett. 80, 5056

(1998).
[5] B. Hoffmann, Phys. Rev. 47, 877 (1935); G.W. Gibbons

and D.A. Rasheed, Nucl. Phys. B454, 185 (1995).
[6] H. P. de Oliveira, Classical Quantum Gravity 11, 1469

(1994).
[7] W. Heisenberg and H. Euler, Z. Phys. 98, 714

(1936); translation by W. Korolevski and H. Kleinert,
arXiv:physics/0605038.

[8] H. H. Soleng, Phys. Rev. D 52, 6178 (1995).
[9] H. Maeda, M. Hassaine, and C. Martinez, Phys. Rev. D 79,

044012 (2009).
[10] M. Cataldo, N. Cruz, S. del Campo, and A. Garcı́a, Phys.

Lett. B 484, 154 (2000).
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