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Horizon-entropy increase laws for spherically

symmetric horizons in Brans-Dicke theory.

Alex B. Nielsen
Max-Planck-Institut für Gravitationsphysik,
Am Mühlenberg 1, D-14476 Golm,
Germany
E-mail: alex.nielsen@aei.mpg.de

Abstract. We derive the horizon-entropy increase law for spherically symmetric quasi-local
horizons in Brans-Dicke theory. The quasi-local horizons used do not marginally trap null rays,
and hence are not apparent horizons or foliated by marginally trapped surfaces, but instead
have instantaneously constant gravitational entropy in the outgoing null direction. The relation
derived has a very direct comparison with the horizon-entropy increase law for event horizons.

Perhaps one of the first to suggest black hole thermodynamics be applied to quasi-local
horizons such as apparent horizons rather than event horizons was Hajicek [1] who conjectured
that Hawking radiation originates from the region close to the apparent horizon independently
of whether an event horizon exists or not. This idea was further examined by Hiscock [2] who
proposed identifying the entropy with one quarter the area of the apparent horizon and Collins
[3] who obtained a TdS = dQ like relation for apparent horizons. An important contribution
was made by Hayward [4] who defined an outer condition for apparent horizons and was able
to show that the area of a future outer trapping horizon is non-decreasing if the null energy
condition is satisfied on the horizon. These ideas received further attention when it was shown
that the microstates of black hole entropy can be counted in loop quantum gravity for a constant
area apparent horizon [5] and in analogue models where an event horizon is not necessary for the
production of Hawking radiation [6]. The first tentative observations of this effect in analogue
models may already have been observed [7].

Here we consider the horizon-entropy increase law for quasi-local horizons. We will consider
the case of spherically symmetric horizons in a spherically symmetric spacetime using a Brans-
Dicke action. In this case horizon generators can be written as ra = Bla + Cna with la and
na the ingoing and outgoing radial null vectors respectively and B > 0 and C spherically
symmetric functions on the horizon. Generalisations to non-spherically symmetric situations in
more general theories can be found in [8].

Brans-Dicke theory is the prototype alternative theory of gravity with scalar and tensor
modes. The action is given by

S =

∫
d4x

√
−g

[
1

16π

(
φR− ω

φ
∇aφ∇aφ

)
+ Lmatter

]
. (1)

ω is the Brans-Dicke parameter and we assume the scalar field satisfies φ > 0. Variation of this
action with respect to the metric gives the gravitational field equations, which, when contracted
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twice with a null vector la give

Rabl
alb =

ω

φ2
(la∇aφ)

2 +
8π

φ
Tabl

alb +
lalb∇a∇bφ

φ
, (2)

where Tab is the energy-momentum tensor of the matter fields. The last term arises from an
integration by parts in the variation of the φR term. Because of this last term the sign of Rabl

alb

is indeterminate. Even in situations where the null energy condition holds, Tabl
alb ≥ 0, the null

curvature condition Rabl
alb ≥ 0 may not be satisfied. This is the condition that appears in the

Raychaudhuri equation and on which the results of Hawking [9] and Hayward [4] depend. It
was noticed for example in [10] that the apparent horizon can appear outside the event horizon
in dynamical black hole collapse models in Brans-Dicke gravity.

Under a conformal transformation Brans-Dicke theory can be put into the form of Einstein
gravity plus a scalar field non-minimally coupled to matter. Transforming

gab → g̃ab = φ(x)gab , (3)

transforms the action to

S =

∫
d4x

√
−g̃

[
1

16π

(
R̃− (3 + ω)

2φ2
∇̃aφ∇̃aφ

)
+

Lmatter

φ2

]
. (4)

In this Einstein frame the contracted Ricci tensor is

R̃abl
alb =

(3 + ω)

2φ2

(
la∇̃aφ

)2
+

8π

φ2
Tabl

alb . (5)

The theory automatically satisfies the null curvature condition in the Einstein frame if it satisfies
the null energy condition. In the Einstein frame the apparent horizon appears inside the event
horizon [10]. The reason why the apparent horizon can be outside the event horizon in one
frame, but inside the event horizon in another is because the location of the trapping horizon
is not invariant under a conformal transformation. The conformal transformation leaves the
spacetime coordinates, causal structure and null rays unchanged. The location of the event
horizon remains the same. But the area of a two-dimensional surface will change as

A → Ã = φA . (6)

In spherical symmetry the expansion of a congruence of rays normal to a spherically symmetric
surface can be found by calculating the change of the area. Under a conformal transformation
the expansion changes as

θl → θ̃l =
la∇aÃ

Ã
= θl +

la∇aφ

φ
. (7)

The vanishing of θl for a given surface is therefore not necessarily invariant under a conformal
transformation. And thus the location of an apparent horizon satisfying θl = 0 is not necessarily
invariant.

A general result for the stationary entropy of a diffeomorphism invariant gravity theory was
given in [11].

Sg = −2π

∫
H

∂L

∂Rabcd
ε̂abε̂cd

√
q d2x+ higher derivative terms, (8)

where ε̂ab is the antisymmetric binormal form for the surface H, ε̂ab = lanb − nalb and L is
the full Lagrangian density. For ordinary Einstein gravity this formula gives the familiar result
Sg = A/4 and for Brans-Dicke theory it gives the gravitational entropy as Sg = φA/4.
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Consider now the following conditions

la∇aSg = 0 ,

na∇aSg < 0 ,

na∇a (l
c∇cSg) < 0 . (9)

The conditions relate to how Sg is changing in the null directions normal to the horizon surface.
In Brans-Dicke theory the first condition would be satisfied where θl + la∇aφ/φ = 0. Therefore
these conditions are not satisfied by apparent horizons in Brans-Dicke theory. In ordinary
Einstein gravity however, these would reduce to the requirements on the null expansions for a
trapping horizon given in [4] since, in this case, Sg = A/4. The variation of the generalised
entropy is now

ra∇aSg = Cna∇aSg. (10)

Since we require the tangent ra to generate evolution along the generalised trapping horizon, on
which la∇aSg = 0, we have ra∇a(l

b∇bSg) = 0 and thus

C = −
Bla∇a

(
lb∇bSg

)
nc∇c (ld∇dSg)

. (11)

Putting this together with the Raychaudhuri equation and the equations of motion (2), the final
result for the change of Sg along the horizon is then

ra∇aSg =
AφBna∇aSg

nc∇c (ld∇dSg)

(
θ2l
2

+
ω + 1

φ2
(la∇aφ)

2 +
8π

φ
Tabl

alb
)

. (12)

Since these horizons satisfy θl + la∇aφ/φ = 0 the term 1
2 θ

2
l + ω+1

φ2 (la∇aφ)
2 is guaranteed

positive if ω > −3/2. For a Brans-Dicke theory of this form and matter obeying the null energy
condition Tabl

alb ≥ 0, the generalised entropy is guaranteed to be non-decreasing on horizons
satisfying the conditions (9).

A similar result can be derived for causal horizons such as event horizons. Because causal
horizons are generated by null rays we have ra = la and immediately

lb∇b (l
a∇aSg) = Aφ

[(
θl +

la∇aφ

φ

)2

+ κ

(
θl +

la∇aφ

φ

)
−
θ2l
2

− ω + 1

φ2
(la∇aφ)

2 − 8π

φ
Tabl

alb
]
. (13)

This is now the second derivative of the horizon-entropy. But if the causal horizon settles down
to a Killing horizon at late times, then it can be shown that the first derivative of the horizon-
entropy cannot ever be negative [8]. Causal horizons will not coincide in general dynamical
situations with the quasi-local horizons considered here [12].

Similar results can be extended to other theories such as scalar-tensor and f(R) theories
and non-spherically symmetric horizons [8]. These models cover a wide variety of cases from
low-energy effective string theory actions, Kaluza-Klein compactifications of higher dimensions
and quantum loop corrections. The quasi-local horizons used coincide with trapping horizons
in Einstein gravity, but are generally different in all these other theories and models. Even if
one restricts attention purely to Einstein gravity, the use of modified theories shows that the
instantaneous constancy of gravitational entropy, rather than the focussing of light rays, is what
is required to prove the horizon-entropy increase law. This has obvious implications for our
understanding of entropy of the gravitational field and its relation to horizons.
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The gravitational entropy used here was first derived for purely stationary systems and its
extension to dynamical situations is known to contain some ambiguities [11]. The extension
of other gravitational-thermodynamic properties to dynamical situations also contains some
ambiguities [13, 14, 15]. But we have explicitly applied this horizon-entropy to dynamical
situations here and found that a horizon-entropy increase law can be derived for different gravity
models and for both quasi-local and causal horizons.

The definition also impacts our understanding of black holes. Ideally we would like to define
a black hole in a way that indicates the presence of certain properties that are absent from
objects such as neutron stars. Such properties might be the production of Hawking radiation
transporting energy from the gravitational field to null infinity or regions with large deviations
from classical metric geometry or some measure of black hole thermodynamics with horizon-
entropy [16]. Black hole thermodynamics needs a surface in order to compute an area to equate
with entropy. The non-uniqueness of trapping horizons [17] will also apply to the surfaces
proposed here. But the horizon-entropy will only be conformally invariant for certain types
of surfaces, typically requiring the scalar field to be constant on the horizon slice, such as
the spherically symmetric surfaces considered here. This may pick out a preferred horizon
for computing the horizon-entropy, or it may be that there is no unique definition of such a
surface. The physical effects we commonly associate with black hole spacetimes may not be
easily associated to a single surface [18], in which case the implications of the area-entropy
relation and related holographic principles will need to be revisited.
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