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1 Summary 

 

For the proper formation of neuronal circuits, the precise interconnection of axonal 

processes with dendritic branches is indispensible. To achieve this, one important 

aspect is the establishment of a cell type specific dendritic branching pattern, capable to 

fulfil the required function.  

In the last years, numerous studies identified molecules and mechanisms that are 

required in the formation of dendritic trees. However, regarding the huge variety of 

dendritic morphologies, we are still far from understanding how distinct types of 

dendritic branches are formed. Especially, studies in the Drosophila Peripheral Nervous 

System (PNS) suggest that specific dendritic morphologies are coming along with 

distinct transcriptional codes. But how these transcriptional programs are implemented 

and which molecules underlie the establishment of distinct dendritic branches remains 

to be solved.  

In this work, I investigated the role of the conserved actin bundling molecule fascin, 

called Singed in Drosophila, in the development of specific dendritic morphologies. 

Focussing on two distinct neuronal classes, the class III and class IV neurons of the 

Drosophila PNS, I found that the terminal branchlets of these two neuronal classes are 

made by distinct molecular mechanisms: class III neurons require singed for their 

terminal branchlets, while class IV neurons do not. Moreover, Singed defines the 

morphological distinction between terminal branchlets of these two classes as revealed 

by loss and gain of function experiments. Finally, the transcription factor Cut, a 

regulator of class specific dendritic branching patterns in these neurons was found to 

act through Singed to define the class III specific morphology.  

Here, I could show for the first time that an actin-regulating molecule is implementing 

the morphological distinction of two different sensory neuron classes. Furthermore, my 

experiments suggest that that molecularly distinct regulation of cytoskeletal function is 

the basis for type-specific dendritic arborization. 
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2 Introduction 

 

2.1 Dendrites 

 

Neurons are highly polarized cells with specialized subcellular compartments: they 

develop an axon that is able to connect to very distant targets and one or more dendrites 

that can reach high complexity. While the axon is responsible for the transmission of 

information to other neurons, the dendrites are receiving and processing this 

information. To be able to fulfill its complex tasks, it is not surprising that the nervous 

system consists of an enormous number of neurons that differ in shape, size, position 

and connectivity. 

To connect the neurons into a functional circuit, precise targeting as well as the 

appropriate dendritic and axonal morphology are indispensible. Targeting of dendrites 

to particular regions of the nervous system contributes to the selection of connecting 

partners and, thereby, defines the types of received information. Moreover, the dendrite 

arborization pattern determines the number and arrangement of the sensory or synaptic 

input (London and Hausser 2005). Even timing or special arrangement of input that 

comes on a single dendritic branch or a subdomain of the dendritic arbor can influence 

the way the neuron integrates and processes the information (Magee 2000; Branco, 

Clark et al. 2010).  

The formation of a dendritic tree includes several processes that all need to be tightly 

regulated to achieve the desired branching pattern that allows for a functional circuit. 

These processes include outgrowth and retraction of filopodia, stabilization of single 

branches, elongation and sometimes also remodeling of already formed branchlets 

(Corty, Matthews et al. 2009).  

Within the last years, progress has been made to identify molecules and underlying 

mechanisms that are required to establish a dendritic tree. But we still do not know how 

morphologically and probably also functionally different dendritic branches are formed.  
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2.2 Dendrite differentiation 

 

2.2.1 Transcription factors 

Intrinsic properties of cells are determined by the expression of a defined set of 

transcription factors, and also specific dendritic arborization patterns have been shown 

to be controlled by distinct transcriptional regulation. Due to the availability of suitable 

genetic tools in Drosophila, candidate-prompted as well as large scale screens, revealed 

that class specific dendritic branching patterns of larval PNS neurons are determined by 

distinctive transcriptional codes (reviewed in (Jan and Jan 2010). Nevertheless, built-in 

regulation of dendrite morphology by specific transcription factors was also identified 

in other systems. Interestingly, the Drosophila transcription factor cut and also its 

vertebrate homologues Cux1 and Cux2 were reported to regulate dendritic branching in 

defined sets of neurons (Grueber, Jan et al. 2003; Cubelos, Sebastian-Serrano et al. 

2010). Additionally, Neurogenin2, a bHLH transcription factor was identified to be 

required for proper dendrite formation of pyramidal neurons in the rodent cortex. 

There, it defines the unipolar dendritic morphology, which is characteristic for these 

pyramidal neurons (Hand, Bortone et al. 2005).  

 

 

2.2.2 Guidance receptors and ligands 

Besides transcription factors, receptors that sense the environment for specific cues 

affecting growth, are crucial to specify dendritic morphology. Indeed, dendrites of 

mammalian pyramidal neurons respond to a wide range of different neurotrophins 

(McAllister, Lo et al. 1995).  

Several guidance/receptor pairs that are known to function in axonal guidance are also 

important for dendritic development. For example, the guidance molecule Slit and its 

receptor Robo have been shown to play a general role in the development and targeting 

of dendritic branches of the Drosophila CNS and PNS neurons (Furrer, Kim et al. 

2003; Furrer, Vasenkova et al. 2007; Dimitrova, Reissaus et al. 2008; Brierley, Blanc et 

al. 2009; Mauss, Tripodi et al. 2009). Likewise, in cultured neurons from the rodent 

cortex, Slit and Robo signaling is important for the elongation and branching of the 

dendritic tree (Whitford, Marillat et al. 2002). Moreover, the ligand receptor pair Netrin 
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and Frazzled and its homologues Unc-6 and Unc-5 have been shown to regulate 

dendritic targeting in neurons of Drosophila and C. elegans (Furrer, Kim et al. 2003; 

Brierley, Blanc et al. 2009; Mauss, Tripodi et al. 2009; Mrkusich, Osman et al. 2010; 

Teichmann and Shen 2011). While in mammalian cortical pyramidal neurons the 

receptor Neuropilin-1 directs dendritic growth towards a source of Semaphorin-3A to 

apical regions, different levels of Semaphorin-1 guide Drosophila projection neuron 

dendrites to defined areas of the antennal lobe (Polleux, Morrow et al. 2000; 

Komiyama, Sweeney et al. 2007).  

 

 

2.2.3 Establishment of dendritic branches 

The elaboration of a dendritic tree is a very dynamic process where short branchlets or 

filopodia are constantly formed and retracted until selected ones get stabilized and 

become a durable part of the dendritic tree. Like in axonal development, interstitial 

branching, where new branches are formed on the side of existing ones, as well as 

growth cone splitting have been observed in dendrite development. In the dendrites of 

Xenopus optical tectal neurons, for example, small branches are rapidly added and 

retracted on the axis of an existing branch during the development (Wu, Zou et al. 

1999). Also developing pyramidal neurons of rat hippocampal slices add and retract 

branches on their primary dendrite (Dailey and Smith 1996). Drosophila PNS class IV 

neurons develop their complex dendritic trees through splitting of their tips combined 

with interstitial branching (Sugimura, Yamamoto et al. 2003; Dimitrova, Reissaus et al. 

2008).  

The selection of the filopodia that are stabilized to form proper dendritic branches is 

thought to happen in an activity-dependent way. For instance, the long-standing 

synaptotrophic hypothesis is based on the idea that synaptic input controls the 

development of a dendritic tree. It was originally stated by Vaughn in 1989 and is 

supported strongly by several in vivo imaging studies of developing dendrites. For 

example, in Xenopus optic tectal neurons, glutamate receptor activity is required for the 

elaboration of a proper dendritic tree, as the blocking of NMDA receptor activity 

decreases dendritic dynamics (Rajan and Cline 1998; Rajan, Witte et al. 1999). 

Moreover, dendritic arbors in the optic tectum of zebrafish larvae develop via dynamic 
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filopodia that are stabilized at sites of perdurable PSD accumulation and develop into 

new branches (Niell, Meyer et al. 2004). Also spontaneous waves of activity associated 

with mammalian brain development argue for the importance of synaptic input for the 

development of precise neuronal circuits, including proper dendritic and axonal 

targeting (Katz and Shatz 1996; Feller 1999). 

 

The architecture of the dendritic tree itself, however, is formed by the underlying 

cytoskeleton. Not surprisingly, regulators of actin and microtubule cytoskeleton have 

been linked to dendrite development. Especially the studies on the small GTPases 

Rac1, Cdc42 and RhoA pointed out the importance of the actin cytoskeleton in this 

process (Luo 2000; Lee, Li et al. 2003; Scott, Reuter et al. 2003; Andersen, Li et al. 

2005). 
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2.3 Md-da neurons of the Drosophila PNS 

 

2.3.1 Morphological characterization 

One of the best studied model systems in dendrite differentiation is a defined subset of 

neurons of the Drosophila PNS, the multidendritic dendritic-arborization (md-da) 

neurons. Md-da neurons are located in between the epidermis and the muscular body 

wall and grow and branch in two dimensions (Fig. 2.1 A). They start to develop their 

dendritic tree in the embryo and reach their maximal dendritic complexity in the 

transparent third instar larvae, with the experimental advantage of imaging the whole 

animal without dissection. Unlike the mammalian peripheral sensory endings, that are 

predominantly axon-like, the Drosophila peripheral sensory endings are dendritic-like 

compartments (Bodmer, Barbel et al. 1987). They do not receive synaptic input, but 

they transduce signals from the external environment, like mechanical input or heat. A 

fundamental marker for mammalian dendrites is the mixed population of microtubules: 

plus- and minus-ends of microtubules are directed towards the periphery of dendrites. 

In axons instead, most microtubules are directed with the plus-ends towards the growth 

cone (Baas, Deitch et al. 1988). The sensory endings of the md-da Drosophila PNS 

neurons as well as Drosophila mushroom body neuron dendrites, which actually 

receive axonal input in the brain, also show mixed microtubule polarity. In the md-da 

neurons, even most of the dendritic microtubules are directed with their minus-ends 

distally (Lee, Winter et al. 2000; Andersen, Li et al. 2005; Mattie, Stackpole et al. 

2010). 

 

There are 15 md-da neurons per larval hemisegment, which were divided into four 

different classes according to the complexity of their dendritc tree (Grueber, Jan et al. 

2002)(Fig. 1C). Class I neurons have the least complex dendrites and usually show one 

long primary dendrite which is directed dorsally, and several secondary branches with 

anterioposterior orientation. Class I neurons are important for a sensory feedback loop, 

that reports successful contraction of the larval muscles, which is essential for 

coordinated crawling (Hughes and Thomas 2007; Cheng, Song et al. 2010). Class II 

neurons have relative long, symmetrically bifurcated dendrites that extent to distant 

targets and only show few higher order branches. Class III neurons show a similar basic 
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branching pattern as class II neurons, but are decorated with numerous spiked 

protrusions, short terminal branchlets, along their main branches. So far, a clear 

functional role for class II or class III neurons was not found. The most complex 

dendritic trees are established by the class IV neurons, which are space filling and 

cover the larval body wall completely. Class IV neurons are important for sensation of 

pain, heat and light (Hwang, Zhong et al. 2007; Xiang, Yuan et al. 2010)(Fig. 2.1 B, C). 

The four different classes of md-da neurons have extensively overlapping dendritic 

trees. However, it was shown for class III and class IV neurons that neurons of the 

same class avoid dendritic territories of the neighboring neuron, a phenomenon called 

tiling. Additionally, these neurons show a high self-avoidance, meaning that there are 

only rare cases where dendritic braches of the same cell cross each other (Grueber, Jan 

et al. 2002). 
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Figure 2.1: The Drosophila peripheral nervous system 

(A) The neurons of the Drosophila PNS are squeezed in between the epidermis and the muscular body wall. Picture adapted 

from Yamamoto (Yamamoto, Ueda et al. 2006). (B) Diagram of the Drosophila abdominal PNS, one larval hemisegment is 

represented. Md-da neurons: red diamonds. External sensory neurons: yellow circles. Other mutidendritic neurons: green 

triangles. Chordotonal organs: blue rectangles. Important neurons for this work are indicated. Taken from Grueber  

(Grueber, Jan et al. 2002). (C) Representive dendritic branching patterns of the four classes of md-da neurons. 
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2.3.2 Transcriptional code affecting md-da dendrite morphology 

Interestingly, the specific and distinct dendritic morphology of the different classes of 

md-da neurons is controlled by distinct transcriptional codes.  

For example, the transcription factor Abrupt is only expressed in class I neurons and is 

responsible for their simple dendritic branching pattern. Ectopic expression of Abrupt 

in the complex classes III and IV leads to a simplification of their dendritic trees 

(Sugimura, Satoh et al. 2004).  

Spineless, instead, is a transcription factor that is expressed in all md-da neurons, 

though with different effects on the distinct classes. In the simpler class I and class II 

neurons, mutants of spineless give rise to more complex dendritic trees. The complex 

class III and class IV neurons show a reduced dendritic branching pattern in spineless 

mutants. On top, overexpression of Spineless in class IV neurons also results in a 

decreased dendritic branching pattern. Possibly, Spineless is activated by different 

upstream factors in different cell types, which could result in the class specific 

morphologies dependent on this transcription factor (Kim, Jan et al. 2006).  

Similar to Spineless, the transcription factor Cut is also expressed in several classes of 

neurons. While in class I neurons Cut is absent, class II, class III and class IV neurons 

show different Cut expression levels. Highest levels of Cut can be detected in class III 

neurons. Accordingly, loss of cut leads to the complete loss of the typical class III 

spiked protrusions and to defects in the outgrowth of the main dendritic branches. 

Medium expression levels of Cut are detected in class IV neurons where mutations of 

cut also lead to a decreased complexity and total dendrite length. Class II neurons only 

show a weak Cut expression, however, their morphology is strongly affected by the 

loss of cut. Class II neurons, which are mutant for cut, seem to fail almost completely 

to extend their dendrites; nonetheless they are still capable to branch. Ectopic 

overexpression of Cut induces the formation of numerous small terminal branchlets in 

class I, II and class IV neurons that resemble the typical class III spiked protrusions. 

Taken together, cut promotes md-da neuron dendritic complexity and the formation of 

small terminal branchlets (Grueber, Jan et al. 2003).  

Class III and class IV neurons both express cut but still have very different dendritic 

morphologies. For the morphological distinction between class III and class IV neurons 

an additional transcription factor, called knot/collier, is required. It is only expressed in 
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class IV neurons and is responsible for the complex branching pattern of this class 

possibly by regulating microtubule dynamics (Hattori, Sugimura et al. 2007; Jinushi-

Nakao, Arvind et al. 2007; Crozatier and Vincent 2008). 

 

These examples show that dendritic complexity is likely the consequence of the 

combined actions of a large number of regulatory genes. Indeed, a RNA interference 

based screen identified 76 transcription factors that influence the dendritic morphology 

of class I neurons (Parrish, Kim et al. 2006).  
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2.4 Actin cytoskeleton 

 

Although the specific branching pattern of dendrites is controlled by a number of 

intrinsic and extrinsic factors, the final dendritic morphology is regulated by dynamic 

changes in the cytoskeleton. There are three main cytoskeletal components: actin 

filaments, microtubules and intermediate filaments, but in Drosophila only actin and 

microtubules can be found. Long actin filaments are located beneath the plasma 

membrane where they build the cell cortex, and are responsible for the shape and 

motility of the cell. A variety of cellular protrusions is formed by actin filaments: 

filopodia, lamellipodia, microvilli and hair cell stereocilia (Shibayama, Carboni et al. 

1987; Tilney, Tilney et al. 1992; Small, Rohlfs et al. 1993). Filopodia and lamellipodia 

are highly motile structures that extend and retract from the cell surface (Small, Stradal 

et al. 2002). To carry out these dynamic changes, filamentous actin displays intrinsic 

dynamics that is enhanced and controlled by regulators of the actin cytoskeleton. 

 

 
2.4.1 Basic dynamic properties of actin 

Actin is a 43 kDa monomeric globular protein, though under physiological conditions 

actin monomers assemble into long and stable filaments. However, the initial step of 

polymerization is slow because small oligomers are very unstable (Sept and 

McCammon 2001). Filamentous actin consists a helical polymer of globular subunits, 

all arranged in a head to tail fashion resulting in a polarized filament. Based on the 

arrowhead pattern created by decoration with myosin, an F-actin binding motor protein, 

one end is called barbed end and the other one pointed end (Small, Isenberg et al. 

1978).  

Actin monomers assemble at both ends of the filaments but with different kinetics. At 

the barbed end, which is also called plus end, actin monomers are incorporated faster 

into the filament than at the pointed end, also called minus end (Pollard 1986). The free 

actin monomers in the cell are bound to ATP or ADP. As soon as an ATP bound actin 

monomer is incorporated into the filament at the barbed end, ATP is hydrolyzed 

(Blanchoin and Pollard 2002). The γ-phosphate dissociates later as the integrated 

molecule travels away from the barbed end and ADP-actin finally dissociates from the 

filament at the pointed end (Pollard 1986; Carlier and Pantaloni 1988; Fujiwara, 
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Takahashi et al. 2002). The result is a slow treadmilling of subunits from the barbed 

end where the subunits are added to the pointed end at which the subunits are lost. 

 

 

2.4.2 Actin regulating proteins in dendrite development  

Actin dynamics is regulated by a big group of actin-regulating proteins, that are capable 

of maintaining a pool of actin monomers, initiating polymerization, regulating the 

assembly and turnover of actin filaments, and cross-linking filaments into networks or 

bundles (Pollard and Cooper 2009). These actin-regulating proteins can in turn be 

regulated by small GTPases that respond to a variety of extracellular stimuli. Especially 

the role of Cdc42, Rac1 and RhoA, small GTPases of the Rho family, in dendrite 

development has been extensively studied in the past years.  

Investigating Rac1, most studies support a general positive regulatory role in the 

formation a dendritic tree. For example, triple mutants for all three Drosophila Rac1 

related genes, rac1, rac2 and mtl, in mushroom body neurons, show reduced dendritic 

length and branching (Ng, Nardine et al. 2002). Similarly, rac1 mutant md-da neurons 

of the Drosophila larvae exhibit reduced dendritic branching, whereas overexpression 

of Rac1 promoted branching. However, rac1 did not affect early stages of dendrite 

development in the embryo what could be due to functional redundancy with the other 

Rac1 related genes (Lee, Li et al. 2003; Andersen, Li et al. 2005). Other studies mainly 

implemented constitutively active or dominant negative forms of Rac1. In Xenopus 

optic tectal neurons overexpression of a constitutively active form of Rac1 leads to 

increased branch additions and retractions and a dominant negative form only to 

increased retractions (Li, Van Aelst et al. 2000). In cultured rat cortical neurons the 

effect is even more drastic, the constitutively active form Rac1 leads to increased 

primary and basal dendrites and the dominant negative form to a reduction in the 

number of primary dendrites (Threadgill, Bobb et al. 1997). However, there is also 

experimental data that interferes with the idea of Rac1 being a general positive 

regulator of dendrite branching and outgrowth. For instance, overexpression of 

constitutively active Rac1 in the Drosophila md-da neurons results in a reduced number 

of secondary branches and a primary branch that fails to extend properly, what could be 
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also due to non-specific effects generated by strong overexpression of the construct 

(Gao, Brenman et al. 1999).  

Cdc42 can act either positive or negative on dendrite development, depending on the 

observed cell type. Analysis of constitutively active Cdc42 suggests a positive role of 

dendrite development in chick primary spinal neurons and Xenopus optic tectal neurons 

(Kuhn, Meberg et al. 2000; Li, Van Aelst et al. 2000) . Vice-versa dominant negative 

Cdc42 is reducing the number and length of Xenopus retinal ganglion dendrites and 

also argues for a positive role of Cdc42 in this process (Ruchhoeft, Ohnuma et al. 

1999). Other studies suggest a negative regulation of Cdc42 on dendrite formation. For 

example expression of constitutively active Cdc42 leads to reduced dendritic branching 

and outgrowth in Drosophila md-da neurons and Xenopus retinal ganglion cells (Luo, 

Liao et al. 1994; Gao, Brenman et al. 1999; Ruchhoeft, Ohnuma et al. 1999). 

Strikingly, cdc42 mutant vertical sensory neurons of the Drosophila visual system 

show increased dendritic length while maintaining a normal dendritic complexity 

(Scott, Reuter et al. 2003). The contrasting effects of Cdc42 on dendrite development 

could be possibly explained by different ways of activation existing in different types 

of cells (Govek, Newey et al. 2005). However, in most cases the analysis of Cdc42 

mutant cells is missing which could rule out possible side-effects of the dominant-

negative or constitutively active forms.  

RhoA seems to be a general suppressor of dendrite growth. Mutants and dominant-

negative forms of RhoA result in increased dendritic branch length in Drosophila 

mushroom body neurons, Xenopus optic tectal neurons and hippocampal neurons in 

culture (Lee, Winter et al. 2000; Li, Van Aelst et al. 2000; Ahnert-Hilger, Holtje et al. 

2004). Consistently, constitutively active RhoA or activation of endogenous RhoA 

results decreased branch extension and complexity in these cell types (Lee, Winter et 

al. 2000; Li, Van Aelst et al. 2000; Pilpel and Segal 2004). Endogenous Rho signalling 

should therefore be low to allow dendrite growth and activated Rho signalling could 

locally limit dendrite growth when needed (Govek, Newey et al. 2005).  

The direct role of diverse actin-regulating molecules on dendrite development was 

investigated in the Drosophila md-da neurons. For example, ena encodes a protein that 

belongs to a conserved family of actin regulatory proteins that associate with the barbed 

ends of actin filaments and antagonize filament capping by capping protein (CapZ) and 
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thereby allow prolonged elongation (Krause, Dent et al. 2003). In all classes of md-da 

neurons, mutations of ena result in a reduction of dendritic branching, suggesting that 

the prolonged elongation of actin filaments is required for the formation of dendritic 

branches (Li, Li et al. 2005).  

Tropomyosin, an F-actin stabilizing protein, binds as a dimer along the length of actin 

filaments (Pruyne, Schott et al. 1998). A mutation of tropopyosin II, a gene encoding 

multiple Tropomyosin isoforms, fails to restrict the dendritic field size of class I and 

class IV neurons and is therefore important to preserve the overall extension of the 

dendritic branches. In the absence of Tropomyosin, F-actin might be less stabilized, 

what could allow for increased dendrite growth (Li and Gao 2003).  

Cofilin can disassemble actin by severing and depolymerizing actin-filaments. 

However without the recycling of the Cyclase-Associated Protein (CAP), cofilin 

remains bound to G-actin (Moriyama and Yahara 2002; Balcer, Goodman et al. 2003). 

Mutations in the Drosophila CAP orthologue capulet lead to abnormal actin aggregates 

in md-da dendrites, interfering with microtubule based mitochondria transport (Medina, 

Worthen et al. 2008).These experiments show that also minor changes in the regulation 

of the actin-cytoskeleton that do not directly lead to changes in the dendritic branching 

pattern could affect other important cellular functions, like in this study, energy supply.  

Importantly, even though the morphologies of the distinct classes of md-da neurons are 

quite different and are regulated by defined transcriptional codes, the actin-regulating 

molecules investigated so far seem to have similar effects on the different classes and 

thus a general function on dendrite branching.  

 

 
2.4.3 Formation of filopodia 

Filopodia are short and thin actin-based cellular protrusions, which are especially 

important for cells to probe their environment and allow for directed cell migration. 

Neuronal growth cones exhibit numerous filopodia, which are essential for sensing 

gradients of guidance cues to turn the neurites in a preferred direction of growth 

(Gundersen and Barrett 1980; Bentley and Toroian-Raymond 1986; Zheng, Wan et al. 

1996). Besides playing an important role for growth cone turning, the formation of 

filopodia is thought to be in general the initial step of dendritic branching (Heiman and 

Shaham 2010). 
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Characteristic for filopodial protrusions are long, parallel and tightly bundled actin 

filaments where the fast growing barbed ends are directed towards the membrane 

pushing it outwards during filament growth (Lewis and Bridgman 1992; Pollard and 

Borisy 2003).  

Different mechanisms underlying the generation of filopodial protrusions are discussed 

in the field (Gupton and Gertler 2007; Mattila and Lappalainen 2008; Faix, 

Breitsprecher et al. 2009). One the one hand, EM studies of melanoma cells led to the 

“convergent elongation model”. In this model filopodial actin bundles are thought to 

emerge from the branched cortical actin network, facilitated by the Arp2/3 complex 

that allows nucleation on the side of existing filaments (Svitkina, Bulanova et al. 2003). 

Knockdown of Arp2/3 complex in primary neurons and neuroblastoma cells inhibited 

initiation and dynamics of filopodia supporting earlier EM studies (Korobova and 

Svitkina 2008).  

According to the “convergent elongation model” some of the barbed ends in the 

cortical actin network are bound by capping proteins to terminate elongation, while 

others are bound by a tip complex that allows continuous elongation and linking of the 

filaments (Schafer, Jennings et al. 1996; Bear, Svitkina et al. 2002). Actin bundling 

molecules, especially Fascin, are thought to provide stiffness to the bundle for pushing 

the membrane outwards (Vignjevic, Kojima et al. 2006).  

On the other hand, another model, the “filament nucleation model” proposes filopodia 

formation independent of Arp2/3 and the branched actin network. Instead, actin 

filaments are thought to be nucleated de novo by formins. Supporting experimental data 

come from Dictyostelium discoideum and mammalian cells, where filpodia can form in 

the absence of Arp2/3 complex (Steffen, Faix et al. 2006). Moreover, in Dictyostelium 

the formin Dia2 is essential for filopodia formation (Schirenbeck, Bretschneider et al. 

2005). Cryo-electron tomography of Dictyostelium filopodia also revealed a different 

actin organization than the EM studies of melanoma cells. In Dictyostelium the shaft of 

the filopodium consists of discontinuous actin filaments that are shorter than the 

protrusion itself. Nevertheless, they are arranged in parallel bundles, possibly cross-

linked by Fascin. (Medalia, Beck et al. 2007). 

Despite this controversy about the initiation of filopodia, certain core activities seem to 

be required for the formation of a filopodium (Faix, Breitsprecher et al. 2009). 
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Especially important are actin bundling proteins that are necessary to generate a force 

that can protrude the membrane (Mogilner and Rubinstein 2005). In melanoma cells, 

Fascin has been identified as the major actin-cross linker in filopodia. Even though 

other actin cross-linking proteins as Fimbrin and Espin are also localized to filopodia, 

Fascin knock down was shown to affect strongly filopodia formation (Vignjevic, 

Kojima et al. 2006). Likewise, in various other cell types, Fascin localizes to filopodia 

including neurons, HeLa and epithelial cells (Yamashiro-Matsumura and Matsumura 

1986; Sasaki, Hayashi et al. 1996; Cohan, Welnhofer et al. 2001). Moreover, Fascin is 

one of three components, including Fascin, Arp2/3 complex and the activator of the 

Arp2/3 complex WASP, that could together initiate filopodia-like bundles in vitro 

(Vignjevic, Yarar et al. 2003).  
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2.5 Fascin 

 

Fascin forms tight and stable bundles with F-actin and was therefore named after the 

Latin fasiculus, which means bundle (Otto, Kane et al. 1979). It was identified in 

extracts of the cytoplasm of sea urchin eggs while Kane tried to polymerize 

microtubules but instead got highly organized needle-like structures consisting of fascin 

and actin (Hartwig and Stossel 1975; Kane 1975; Mabuchi and Kane 1987).  

 

 

2.5.1 Fascin structure 

Fascin is a monomeric 55 kDa protein and belongs to the group of β-trefoil molecules 

which consists of a number of functional unrelated proteins (Yamashiro-Matsumura 

and Matsumura 1985). Characteristic for these proteins is the β-trefoil fold, a structure 

consisting of six two stranded β-hairpins, where three of them form a barrel and the 

remaining three build a cap on the barrel (Graves, Hatada et al. 1990; Eriksson, 

Cousens et al. 1991; Ponting and Russell 2000). The crystal structure of human fascin-1 

was solved in 1999 and showed the presence of 4 β-trefoil folds, which pack to form a 

distorted tetrahedron organized in two lobes with a skew angle of approximately 56° 

(Sedeh, Fedorov et al. 2010).  

For the actin-crosslinking function as a monomer, fascin needs two actin-binding sites. 

However, so far no structure of the fascin-F-actin complex is available which allows 

mapping the precise acin-bindling sites. Nevertheless, one binding site was located by 

limited proteolysis experiments to the C-terminal part of the protein, between the 

residues 277 and 493 (Ono, Yamakita et al. 1997). These findings were supported by in 

vivo data from Drosophila, where mutations from Ser 289 to Asn or Gly 409 to Glu 

disrupted actin binding activity (Cant and Cooley 1996). Another putative actin binding 

site was mapped to the first β-trefoil where a highly conserved region shows similarity 

to the actin-binding site of myristilated alanine rich C-kinase substrate (MARCKS). 

(Yamakita, Ono et al. 1996; Ono, Yamakita et al. 1997)(Fig.2.2). 
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2.5.2 Actin bundling through Fascin 

In vitro, fascin bundles actin in a hexagonal manner, so that each actin filament is 

linked to six neighbor filaments (DeRosier and Edds 1980). The hexagonal packing of 

these filaments produces a 11 nm periodic transverse banding pattern on the bundles 

(Bryan and Kane 1978; Edwards, Herrera-Sosa et al. 1995). Transmission electron 

microscope images show that in actin bundles cross-linked by fascin, unipolar F-actin 

filaments are very tightly packed together with a 8 nm spacing between the filaments 

(Bryan and Kane 1978; Maekawa, Endo et al. 1982; Cant, Knowles et al. 1994). 

Saturation experiments revealed a protein ratio of 1 fascin molecule per 4.76 actin 

monomers, showing that fascin is incorporated in very high concentrations into the 

bundles (Bryan and Kane 1978). Corresponding results were achieved with human 

fascin-1, recombinant Drosophila fascin and recombinant mouse fascin (Yamashiro-

Matsumura and Matsumura 1985; Cant, Knowles et al. 1994; Edwards, Herrera-Sosa et 

al. 1995). Interestingly, fascin as well as other F-actin crosslinking proteins modify the 

helical symmetry of actin filaments. The native form of a left-handed helix rotating 

through six turns per 13-monomer repeat is unfavorable for hexagonal symmetry 

achieved by fascin bundling. Indeed, fascin bundled actin filaments were shown to be 

overtwisted by roughly -0.01 monomers/turn (Purdy, Bartles et al. 2007; Shin, Purdy 

Drew et al. 2009). 

 

 

2.5.3 Fascin regulation through phosphorylation 

The actin-binding activity of fascin has been shown to be regulated by phosphorylation. 

In human fascin-1 a serine at position 39, which is located within the MARCKS 

homology motif, is the major site for phosphorylation by protein kinase Cα (PKCα) 

(Fig. 2.2). This site is well conserved among fascins of different species, including 

human, mouse, Xenopus and Drosophila. The only exception is sea urchin fascin, 

which has a threonine instead of a serine at this position. Additionally, the sequence 

surrounding the phosphorylation site is the most conserved domain among these fascins 

(Ono, Yamakita et al. 1997; Sedeh, Fedorov et al. 2010).  

Phosphorylation of Ser-39 reduces the actin-binding activity of human fascin in vitro 

(Yamakita, Ono et al. 1996). Additionally, a phosphomimetic S39D fascin mutant leads 
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to reduced formation of fascin-containing protrusions on matrix adherent cells (Adams, 

Clelland et al. 1999). Similar results were obtained in B16F1 melanoma cells where 

expression of the phosphomimetic mutant decrased the number of filopodia and 

resulted in looslely bundled actin filaments in the remaining filopodia. The non-

phosphorylatable S39A mutant instead induced long, overabundant filopodia. 

(Vignjevic, Kojima et al. 2006). Additionally, it was shown that in N2a cells, 

phosphorylated fascin is mainly freely diffusing in the cytoplasm, whereas actin 

bundling in filopodia is performed by dephosphorylated fascin (Aratyn, Schaus et al. 

2007).  

Nonetheless, the regulation of fascin activity by phosphorylation seems to be more 

complex in vivo. In Drosophila the migration of blood cells is dependent on fascin, but 

not regulated by Serine phosphorylation. This phosphorylation however, is important 

for the development of Drosophila bristles (Zanet, Stramer et al. 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Schematic drawing of Fascin structure 

Each grey box represents one β-trefoil fold. 
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2.5.4 Fascin regulation by small GTPases 

The small GTPases, general regulators of the cytoskeleton, were also shown to be 

important for the regulation of fascin.  

Myoblasts adhesive to the matrix glycoprotein thrombospondin-1 form fascin-

containing microspikes that are dependent on Rac1 and Cdc42. Likewise expression of 

constitutively active forms of Rac1 and Cdc42 promotes the localization of fascin to 

lamellipodia and filopodia in this cell type (Adams and Schwartz 2000). Interestingly, 

the interaction of fascin and PKC was shown to be dependent on Rac1 but not on 

Cdc42 in colon carcinoma cells, suggesting an additional regulatory activity of Rac1 on 

fascin that influences its colocalization with PKC (Parsons and Adams 2008). 

Another small GTPase, Rab35 was shown to affect the localization of fascin. Rab35 

mediates intracellular vesicle trafficking and is able to recruit fascin to distinct 

subcellular compartments (Zhang, Fonovic et al. 2009).  

 

 

2.5.5 Biological role of Fascin 

Fascin is a key element in cell motility and cancer invasion. It organizes actin-based 

cellular structures like dynamic cortical cell protrusions and cytoplasmic microfilament 

bundles.  

In humans there are three different fascin genes: fascin-1, retinal fascin (fascin-2) and 

testis fascin (fascin-3). Moreover, for mouse and bovine, tissue specific fascin genes 

were found as well, such as bovine retinal fascin (bovine fascin-2) and mouse testis 

fascin (mouse fascin-3) (Tubb, Bardien-Kruger et al. 2000; Kureishy, Sapountzi et al. 

2002; Tubb, Mulholland et al. 2002). However, most studies on fascin take only fascin-

1 into account. The only exception is human fascin-2, it was found to be linked with 

autosomal dominant retinitis pigmentosa (Wada, Abe et al. 2001).  

In general, increased expression of fascin induces membrane protrusions and increases 

cell migratory activity (Yamashiro, Yamakita et al. 1998). Fascin is known to be 

upregulated in a number of highly motile cell phenotypes, such as invasive cancer cells 

and Drosophila migrating hemocytes and plasmatocytes (Adams 2004; Vignjevic and 

Montagnac 2008; Zanet, Stramer et al. 2009). Moreover, knockdown of fascin in 

human colon carcinoma cells results in reduced cell migration (Hashimoto, Parsons et 
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al. 2007). Additionally, cell types that form complex cellular protrusions express fascin 

at high levels, like antigen presenting dendritic cells and neurons (Mosialos, Hanissian 

et al. 1994; Edwards, Herrera-Sosa et al. 1995).  

In the developing mouse embryo as well as in adult human tissues, fascin is highly 

expressed in neuronal cells (De Arcangelis, Georges-Labouesse et al. 2004; Zhang, Tao 

et al. 2008). Interestingly, fascin-1 deficient mice are viable and fertile and they do not 

show gross developmental abnormalities. However, fascin-1 is favorable for neonatal 

survival and dorsal root ganglion neurons derived from fascin-1 knockout mice have 

smaller growth cones and shorter filopodia when cultured (Yamakita, Matsumura et al. 

2009). In several studies, fascin has been shown to be important for neuronal growth 

cone morphogenesis and reorganization (Cohan, Welnhofer et al. 2001; Brown and 

Bridgman 2009). Recently, it was also show that downregulation of fascin in the mouse 

olfactory bulb is linked to memory formation (Li, Mauric et al. 2010).  

 

 

2.5.6 Singed, the Drosophila fascin homologue 

In Drosophila, there is only one gene for fascin called singed, a name describing the 

obvious bristle phenotype of several severe singed mutants (Bryan, Edwards et al. 

1993). The bristles and hairs on the head, thorax, legs and wings are gnarled, bent or 

kinked in varying degrees in singed mutant animals (Fig. 2.3). Additionally, singed 

affects the female germ line leading to sterility (Bender 1960). The defects in bristle 

formation and oogenesis result both from reduced actin bundling through the absence 

of the Singed protein. Nurse cells, deficient of singed lack cytoplasmic actin bundles 

during oogenesis, nurse cell nuclei are not kept in their position and finally block the 

cytoplasm flow into the oocyte (Cant, Knowles et al. 1994).  
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Moreover, singed affects neurite shape and trajectory in cultured neurons of the 

mushroom body which has been shown to be important for olfaction and learning. 

Mutant neurons fail to grow out long and straight processes; instead the neurites are 

curled and bended. This is accompanied by altered F-actin localization. F-actin, which 

is usually localized to distinct branchlets, is abnormally broad and uniform in singed 

mutants (Kraft, Escobar et al. 2006). 

On top, the migration ability of plasmatocytes is strongly inhibited in singed mutants; 

showing that also in vivo cell motility is affected by singed. In wildtype cells, Singed 

localizes to and is essential for the assembly of dynamic actin-rich microspikes within 

the plasmatocyte lamellae (Zanet, Stramer et al. 2009).  

 

 

2.5.7 Fascin and its potential role in dendrite differentiation 

As discussed above, the actin-bundling molecule fascin is highly expressed in neuronal 

tissue of several species, including mouse, human and Drosophila (De Arcangelis, 

Georges-Labouesse et al. 2004; Zhang, Tao et al. 2008; Zanet, Stramer et al. 2009). 

Moreover, fascin was found to be a structural component of axonal growth cones. 

Cultured dorsal root ganglion neurons of fascin-1 deficient mice are smaller and form 

less filopodia than usual (Yamakita, Matsumura et al. 2009). Also in Drosophila, MB 

neurons in culture show altered neurite outgrowth when lacking singed, the Drosophila 

Fascin homologue. Interestingly, neurites of axonal and dendritic character are both 

Figure 2.3: Singed bristle phenotype 

(A) Thorax of wild type fly, bearing long and straight bristles. (B) Thorax of a singed mutant fly. The bristles are 

severely gnarled and bended. 
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affected, suggesting that singed might be also important for dendritic development 

(Kraft, Escobar et al. 2006). Also the conserved role of fascin in the formation of 

filopodia is suggesting a potential function in dendrite development, because filopodia 

are thought to be the first step of dendritic branching (Heiman and Shaham 2010). 

However, data to explain the role of fascin for the elaboration of dendritic branching 

patterns in vivo are missing. Fascin-1 mutant mice showed normal brain morphology as 

revealed by Nissl staining of serial coronal brain sections (Yamakita, Matsumura et al. 

2009). Therefore, more detailed morphological analysis is required to shed light into 

the potential function of fascin for dendrite development.  
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3 Results 

 

The initial and general step in the outgrowth of a dendritic branch is thought to be the 

generation of a filopodium (Heiman and Shaham 2010). The formation of filopodia in 

turn is dependent tightly bundled actin filaments, often through fascin, to allow 

protrusion of the membrane (Vignjevic, Kojima et al. 2006). Indeed, fascin expression 

is high in neuronal tissue of several species, however so far in vivo data that could link 

fascin with the formation of dendritic branches is missing. Studies on fascin in dendritic 

branch formation could give important insight into how dendritic branches are formed 

molecularly and if the variety of dendritic morphologies is really achieved by the same 

cytoskeletal regulation. 

To address the role of the Drosophila fascin homologue, Singed, in dendrite 

development, I have investigated specific classes of md-da sensory neurons of the 

Drosophila larvae. The most important findings in my thesis are that different classes 

of md-da neurons are formed on the basis of molecularly separable mechanisms and 

that Singed, as an effector of the transcription factor Cut, defines the morphological 

distinction between two classes of neurons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results  37 

3.1 Singed expression in the Drosophila PNS 

 

3.1.1 Endogenous Singed in the md-da neurons 

To investigate if Singed might play a role in the formation of the dendritic branches in 

the Drosophila PNS neurons, I first looked at the expression pattern of singed in the 

Drosophila md-da neurons with monoclonal anti-Singed antibodies in wild type 

animals (Cant, Knowles et al. 1994). In third instar larval filets all cell bodies of the 

md-da neurons showed a clear Singed labeling with no detectable differences in the 

level of expression (Fig. 3.1 A-C). Additionally, epidermal cells were strongly labeled.  

As a mutant line I used the sn36a mutation, resulting from a 5.5 kb P element insertion 

in the 5’ untranslated region, which was reported to be a null mutation (Paterson and 

O'Hare 1991; Cant, Knowles et al. 1994) 

In the sn36a mutant larvae the staining of the md-da cell bodies and the epidermal cells 

was strongly reduced, however some residual protein was still detected (Fig. 3.1 D-F). 

Like many cytoskeletal elements in Drosophila, singed is maternally contributed. This 

could lead to residual protein levels even in the full mutant background. This 

observation was confirmed by Anastasia Tatarnikova (PhD student in the lab of Gaia 

Tavosanis, MPI of Neurobiology) by western blot analysis of single sn36a mutant 

larvae, showing a reduced but still detectable amount of Singed protein.  
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Interestingly, in contrast to the broad expression pattern in the cell bodies, I found a 

much more specific labeling at the dendritic branches. The dendrites of class III md-da 

neurons carry numerous filopodia-like terminal branchlets, called spiked protrusions. 

Singed was clearly enriched in these class III spiked protrusions in comparison to the 

main dendritic branches (Fig. 3.2 A-C). The major fraction of spiked protrusions 

showed a clear labeling for Singed and only very few of them did not display Singed 

enrichment. In sn36a mutant larvae the labeling of the spiked protrusions was 

completely gone (Fig. 3.2 D-F). Despite a clear expression of Singed in the cell bodies, 

in the most complex class of md-da neurons, the class IV neurons, I could never detect 

any enrichment of Singed at the dendrites, including main branches or small terminal 

Figure 3.1: Singed is expressed in all md-da neurons  

(A-F) Md-da neurons of the dorsal cluster highlighted with the diver reporter line 80G2. Immunolabeling of control 

third instar larval filets with anti-Singed and anti-GFP antibodies. Singed is detected in all four classes of md-da 

neurons. Roman numerals label the corresponding classes of neurons in (B). (D-F) Immunolabeling of sn36a third instar 

larval filets with anti-Singed and anti-GFP antibodies. Residual Singed was faintly detected in some cell bodies (see 

arrows in E). Scale bar: 10 µm. 
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branchlets (Fig 3.2 G-I). The very simple class I neurons showed very faint Singed 

labeling at the main branches but the small terminal branchlets were not enriched in 

Singed. Additionally, I could detect some Singed labeling at the branching points, 

though the specificity of this localization was not further investigated (Fig. 3.2 J-L).  

Hence, due to the expression of Singed in the md-da neurons and moreover the specific 

localization of Singed to the terminal branchlets of class III neurons, singed could be a 

potential candidate for the regulation of dendritic branching.  

 

 

 

Figure 3.2: Singed localizes to the terminal branchlets of class III neurons 

(A-F) Localization of endogenous Singed in class III neurons. (A-C) Wild type and (D-F) sn36a mutant class III ldaB 

neurons of third instar larvae expressing membrane tagged mCD8GFP under the control of c161Gal4. Singed is 

localized to the spiked protrusions of the wild type class III neuron; in the sn36a mutant this localization is lost and 

Singed is barely or no longer detected. (G-I) Localization of endogenous Singed in class IV ddaC neuron, expressing 

UASmCD8GFP under the control of 477Gal4. In class IV neurons endogenous Singed can be detected within the cell 

body (see also Fig 3.1.), but not at the terminal branches. (J-L) Localization of endogenous Singed in class I vpda 

neurons, expressing UASmCD8GFP under the control of 2-21Gal4, Singed can be detected at some branching points 

(arrow in K), but not at the terminal branchlets. Scale bar: 10 µm 
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3.1.2 Localization of fluorescently tagged Singed in terminal branchlets of md-da 

neurons 

The detection of endogenous Singed in the md-da neurons might be partially obscured 

by Singed expression in the epidermis or the underlying muscle. To exclude false 

negative results, I generated a fluorescently-tagged monomeric Kusabira-Orange singed 

construct (mKO::sn) which was cloned into the pUASt vector and inserted into the fly 

genome. With this expression vector system it was possible to drive the expression of 

the mKO::sn construct with different Gal4 driver lines in the tissue of interest (Brand 

and Perrimon 1993). First, to test if this fusion protein was functional, I tried to rescue 

the extreme sn3 bristle phenotype by expressing the mKO::sn fusion protein in the 

broad expression pattern of the actin-Gal4 driver. sn3 mutant flies have severely 

gnarled bristles; a phenotype due to reduced bundling of actin filaments during bristle 

development resulting from reduced Singed levels (Cant, Knowles et al. 1994) (Fig. 3.3 

A). Neither the UAS-mKO::sn construct nor the actin-Gal4 insertion on their own could 

rescue the bristle phenotype (Fig. 3.3 B, C). However, the combination of both resulted 

in the development of bristles with almost wild type appearance (Fig. 3.3 D-F). This 

experiment shows that the insertion of the UAS or the Gal4 construct into the fly 

genome does not affect the singed mutant bristle phenotype, but the expression of 

mKO-tagged Singed in the actin-Gal4 expression pattern can rescue the altered bristle 

morphology. Therefore, I considered the mKO::sn fusion protein as functional.  
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To test the localization of mKO::sn in the md-da neurons, I expressed the construct 

with different md-da neuron specific Gal4 driver lines. In class III neurons, I could 

confirm the localization of the endogenous protein revealed by antibody staining. 

Additionally to the localization to the cell bodies, fluorescently-tagged Singed localized 

to a vast majority of the spiked protrusions and was not enriched at the main branches 

(Fig. 3.4 A-C). In class IV neurons, fluorescently tagged Singed was visible in the cell 

bodies but did not localize to particular dendritic subdomains (Fig. 3.4 D-F). 

Expression of the Kushabira Orange tagged Singed in the simple class I neurons also 

resulted in the localization to the cell bodies and additionally, like the endogenous 

protein, to a faint localization at the branching points. At the observed levels of 

expression, mKO::sn seems not to lead to mislocalization or abnormal dendritic 

phenotypes.  

Importantly, in spite of the fact that singed was expressed in all four classes of md-da 

neurons in the cell bodies, Singed was only localized to distinct dendritic domains of 

class III neurons, namely the spiked protrusions, suggesting that singed plays a specific 

role in the class III dendritic branching.  

Figure 3.3: Functionality of the fluorescently tagged Singed construct 

(A-F) Test for the functionality of the mKO::sn construct. The severe sn3 bristle phenotype (A) can be rescued by 

expressing mKO::sn under the control of actinGal4 (E, F) to an almost wild type appearance (D). Neither actinGal4 

alone (B), nor mKO::sn alone (C) can rescue the bristle phenotype. 
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Figure 3.4: Fluorescently tagged Singed localizes to class III spiked protrusions 

(A-C) Class III ddaA neuron highlighted with 80G2 and expressing monomeric KushabiraOrange-tagged Singed 

(mKO::sn). mKO::sn is enriched within the terminal branchlets of class III neurons (arrows). (D-F) Class IV ddaC 

neuron expressing mCD8GFP and mKO::sn under the control of 477Gal4. mKO::sn shows no specific localization at 

terminal branches of class IV neurons. (G-H) Class I ddaE neuron expressing mCD8GFP and mKO::sn under the 

control of c161Gal4. mKO::sn is not enriched at terminal branches. There might be some enrichment at branching 

points. Scale bar: 10 μm. 
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3.2 Terminal branchlets of class III and class IV neurons 

 

3.2.1 Cytoskeletal organization 

The very specific localization of Singed to the spiked protrusions of class III neurons 

was surprising, because Singed expression was detected in all classes of md-da 

neurons. A possible explanation for this could be a different organization of the actin 

and microtubule cytoskeleton in the dendrites of the specific neuronal classes. Class I 

neurons were reported to have microtubule based dendritic trees, suggesting why the 

actin-bundling molecule Singed is not enriched in these branches (Jinushi-Nakao, 

Arvind et al. 2007). 

To investigate, if the basic dendritic cytoskeleton of class III and class IV neurons 

differs in its organization, I compared the localization of GFP tagged actin and tubulin 

in these neurons. As shown before, a large fraction of the class III terminal branchlets 

were completely filled with actin-GFP and only few terminal branchlets showed low 

levels of actin (Andersen, Li et al. 2005; Li, Li et al. 2005; Medina, Swick et al. 2006; 

Medina, Worthen et al. 2008) (Fig. 3.5 A-C). Also the terminal branchlets of class IV 

neurons showed actin-GFP enrichment. However only in shorter branchlets it was also 

decorating the branch over the whole length. In longer branchlets the signal was more 

discontinuous and often only enriched in subdomains (Fig. 3.5 D-F).  
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In contrast to the localization of actin to the spiked protrusions of class III neurons, 

tubulin-GFP only labelled the main branchlets and did never invade the short terminal 

branchlets (Fig. 3.6 A-C). This was consistent with previous results where the 

microtubule binding proteins Futsch and Tau could only be detected at the main 

branches of class III neurons (Andersen, Li et al. 2005; Li, Li et al. 2005). In class IV 

neurons, tubulin-GFP also localized to the main branches. Lots of terminal branchlets 

were completely devoid of tubulin, however, the signal in class IV neurons seemed to 

be weaker and more diffuse than in class III neurons (Fig. 3.6 D-F).  

Thus, the general cytoskeletal organization of class III and class IV neurons is similar 

in that actin localizes to the terminal branchlets and tubulin to the main branchlets. 

Moreover, the distinct localization of Singed to the terminal branchlets of the two 

Figure 3.5: Actin localization in class III and class IV neurons 

(A-F) Actin localization in terminal branchlets of class III (A-C) and class IV (D-F) neurons in the third instar larvae. 

The neurons express UAS-actinGFP and UASmCD8cherry under the control of 109(2)80-Gal4. (A-C) Actin-GFP 

localizes to the terminal branchlets of class III neurons. Arrows point to spiked protrusions where Actin-GFP is 

enriched over the whole length of the branchlet. Scale bar: 5 μm. (D-F) Actin-GFP localizes to terminal branchlets of 

class IV neurons, mainly within defined subdomains (arrows). Scale bar: 10 μm. 
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classes cannot be simply explained by a different basic localization actin and 

microtubules. Possibly, specific factors are missing in class IV neurons that could allow 

Singed to localize to distinct dendritic domains.   

 

 

 

 
 

Figure 3.6: Tubulin localization in class III and class IV neurons 

(A-F) Tubulin localization in dendtitic branches of class III (A-C) and class IV (D-F) neurons in the third instar larvae. 

The neurons express UAS-tubulinGFP and UASmCD8cherry under the control of 109(2)80-Gal4. (A-C) Tubulin-GFP 

localizes to the main branches of class III neurons, the spiked-protrusions are devoid of Tubulin-GFP. (D-F) Tubulin-

GFP localizes to main branches of class IV neurons; in many of the terminal branchlets Tubulin-GFP is not detectable. 

Scale bar: 10 μm. 
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3.2.2 Terminal branchlet bending 

Even though the general cytoskeletal organization of class III and class IV neurons is 

quite similar, class III and class IV neurons have many distinct morphological 

properties some of which were previously described. In comparison to class III, class 

IV dendrites have a larger dendritic field size and are more complex, judged by their 

higher dendrite branch order and number of dendrite termini (Grueber, Jan et al. 2002). 

Moreover, the terminal branches have clear and distinctive characteristics. Class III 

terminal branchlets, the spiked protrusions, are short, on average 5 µm and straight. In 

contrast the terminal branchlets of class IV neurons are longer, 15 µm on average and 

often bent (Fig. 3.5). For a quantitative evaluation of the curvature of the terminal 

branchlets Friedrich Förstner (former PhD student in the lab of Alexander Borst, MPI 

of Neurobiology) implemented the TREES toolbox and calculated the convex area 

delimited by a terminal branchlet (Cuntz, Forstner et al. 2010). Curved branchlets give 

rise to a higher convex area than straight terminal branchlets. To equal out the length 

differences of the terminal branchlets of class III and class IV neurons the convex area 

was normalized over the terminal branch length. Indeed, class IV neuron terminal 

branchlets showed a significantly larger convex hull/branch length than class III 

neurons (Fig. 3.7). 

These results show that the morphology of the terminal branchlets, especially their 

length and curvature, is a clear and distinctive feature between class III and class IV 

neurons. Since Singed is only localized to the class III terminal branchlets, it might also 

responsible for the class III spiked protrusions and their specific morphology.  
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Figure 3.7: Curvature of terminal branchlets of class III and class IV neurons 

(A) Examples of class IV terminal branchlets (dark red) enveloped by their convex hulls (light red). The path-

normalized convex hull can be used as a measure for the curvature of a terminal branchlet. Axes are set in 

micrometers. (B) Quantification of the curvature of terminal branchlets of class III and class IV neurons, shown as the 

terminal branch (tb) convex area normalized over the branch length. Class III neuron terminal branchlets have 

significantly smaller convex area/branch length compared to class IV neurons. In this and all subsequent figures:  

* p<0.05, ** p<0.01, *** p<0.001. SD is indicated. 
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3.3 Singed in class III neurons 

 

3.3.1 Singed affects the number and density of class III spiked protrusions 

The examination of the Singed expression pattern showed that Singed is expressed in 

all classes of md-da neurons, but only localized to the terminal branchlets of one 

specific class, the class III neurons. In order to analyze, if singed plays a role in the 

class III specific spiked protrusions, I used loss of function approach. I investigated two 

different alleles, the sn3 fertile hypomorph and the sn36a sterile null mutation (Paterson 

and O'Hare 1991; Cant, Knowles et al. 1994). The dendrites of class III ldaB neurons of 

third instar larvae exhibit lots of short, actin rich spiked-protrusions along their main 

branches (Fig. 3.5 A-C and Fig. 3.8 A, A’, D-F; number: 238 ±29; density: 0.1/µm). In 

the sn3 hypomorph the number and density of these protrusions was reduced (Fig. 3.7 

B, D-F; number: 179 ±30; density: 0.07/µm). However, this reduction was not 

statistically significant. In contrast, the sn36a null mutant showed a significantly reduced 

number and density of spiked protrusions compared to the control (Fig. 3.8 C, D-F 

number: 130 ±42; p<0.01; density: 0.04/µm; p<0.01). This defect in the number of 

spiked protrusions was not due to a general problem in dendrite extension, because the 

overall branch length of the dendritic tree was not affected in sn36a mutant larvae 

(control: 3888 µm ± 332; sn36a: 3981 µm ± 575; p>0.5).  

sn36a and sn3 full mutant larvae showed a clear reduction in the density of spiked 

protrusions of class III ldaB neurons. However, the Drosophila PNS neurons are 

localized in between the epidermis and the muscular body wall and are therefore in 

close contact with these tissues. Thus, it was possible that the observed phenotype was 

non-cell autonomous, especially, because antibody staining revealed that Singed is also 

expressed in the epidermis (Fig. 3.1). To test for a cell autonomous effect of Singed in 

the ldaB class III neurons, I tried to rescue the spiked protrusion phenotype by 

combining the sn36a mutant with one copy of Kushabira Orange tagged Singed 

specifically expressed in these neurons with the c161Gal4 driver line. This driver line 

only activates expression in class I, class II and class III neurons and not in epidermal 

or muscle cells. One copy of the mKO::sn construct in sn36a mutant background 

restored the number of spiked protrusions (240 ± 56; p>0.05) and protrusion density 

(0.1/µm of branch length; p>0.05) to control levels (Fig. 3.8 D, E-F). This experiment 
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revealed that the mutation of singed was responsible for the observed phenotype in 

reduction of spiked protrusion number and density, and that it acts in a cell autonomous 

manner.  

 

 

 

 

 

 

3.3.2 Singed controls terminal branchlet morphology and dendrite complexity 

In class III neurons mutant for singed, not only the density of spiked protrusions was 

reduced, but also the morphology of the remaining spikes was altered. Instead of the 

short and straight appearance of the wild type spiked protrusions, the sn36a mutant ones 

were longer and often bend (Fig. 3.9 A, B). The curvature of the terminal branchlets of 

sn36a mutant class III ldaB neurons was significantly increased compared to the control 

(analyzed by Friedrich Förstner; Fig. 3.9 C). Interestingly, this parameter was lying 

between the values obtained of class III and class IV neurons (see also Fig. 3.7 B). 

Figure 3.8: Loss of singed leads to the loss of class III spiked protrusions 

(A-D) Tracings and original image (A’) of class III ldaB neurons expressing mCD8GFP under the control of c161Gal4 

of third instar larvae of the following genotypes: (A, A’) Wild-type, (B) sn3, (C) sn36a. (D) Demonstrates the cell 

autonomous recue of the sn36a mutant phenotypes obtained by expressing mKO::sn in class III neurons. Scale bar: 50 

μm. (E) Quantification of the total number of spiked protrusions in class III ldaB neurons of wild-type, sn3, sn36a and 

class III-rescued third instar larvae. The number of spiked protrusions is significantly reduced in the sn36a mutant and 

is rescued to wild type levels by expressing one copy of mKO::sn with c161Gal4. (F) The density of spiked 

protrusions is significantly reduced in sn36a mutant larvae compared to wild type and is cell autonomously rescued to 

wild type levels. 
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Additionally, the percentage of long spiked protrusions, longer than 10 µm, was 

significantly increased from 12% (±3) in the control to 24% (±5; p<0.01) in the sn3 

mutant and to 20% (±8; p<0.05) in the sn36a mutant. The increase in the fraction of long 

spikes was cell-autonomously rescued with one copy of the mKO::sn construct to wild 

type levels (11% ±2; p>0.5; Fig. 3.9 D). 

The increased curvature and length of the terminal branchlets in the singed mutant class 

III neurons represented a clear shift of terminal branchlet properties of class III to class 

IV neurons, which are longer and more bent.  

 

 

 

 

 

 

 

Additionally to the changes in the density and morphology of the spiked protrusions, 

the sn36a class III neurons appeared to be more complex in the overall morphology of 

the dendritic tree than the control neurons. As a measure of the complexity of the 

dendritic tree, I quantified the number of all termini, excluding the spiked protrusions, 

which were defined as terminal branchlets of less than 30 µm (Fig 3.10 A-B’). As an 

increased complexity of the main branches would be masked by the massive loss of the 

spiked protrusions, I thereby eliminated the effect of the reduced spike density in the 

Figure 3.9: Singed controls spiked protrusion length and curvature 

(A, B) Terminal branchlets of a wild type (A) and a sn36a mutant (B) class III ldaB neuron expressing mCD8GFP 

under the control of c161Gal4 (arrows). Scale bar: 10 μm. (C) Quantification of the curvature of terminal branchlets of 

wild type and sn36a mutant class III ldaB neurons measured by the convex area spanning the branchlet, divided by its 

length. (D) Quantification of the spiked protrusions length distribution of wild type and sn36a mutant branchlets. The 

percentage of spiked protrusions that are longer than 10 μm is significantly increased in sn3 and sn36a mutants. This 

sn36a mutant phenotype is cell autonomously rescued by expressing mKO::sn under the control of the c161Gal4 driver. 
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sn36a mutant. The number of these defined termini was significantly increased from 29 

(±3) in the control to 40 (±4) in the sn36a mutant (p<0.01), demonstrating an increase in 

branching complexity (Fig. 3.10 C). Again this effect was rescued cell-autonomously 

by re-inserting one copy of the mKO::sn construct.  

Taken together, loss of singed modified the number, density and morphology of the 

class III neuron terminal branchlets. In addition, it increased the complexity of the 

dendrite tree. It appeared that loss of singed in the class III neurons leads to a partial 

shift towards the class IV morphology, including longer terminal branchlets, a higher 

curvature of the terminal branchlets and an increased complexity of the dendritic tree.  

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Singed controls dendrite complexity 

(A-B’) Tracing of a wild type (A) or of a sn36a mutant (B) class III 

ldaB neuron. (A’ and B’) The same tracings after eliminating the 

terminal branchlets shorter than 30µm. (C) The number of 

terminals left after pruning the terminal branchlets below 30 µm is 

significantly increased in the sn36a mutant and can be rescued cell 

autonomously. 
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3.3.3 Singed does not affect the general cytoskeletal organization in class III 

neurons 

In the last section, I could show that in sn36a mutants, class III spiked protrusions grow 

out longer and the main dendritic branching pattern gets more complex compared to 

control. In wild type class III neurons only the main branches show localization of 

microtubules and they never invade the spiked protrusions (Andersen, Li et al. 2005; 

Li, Li et al. 2005). In contrast actin-GFP is highly enriched in the spiked protrusions, 

nicely correlating with the localization of the actin bundling molecule Singed. 

Therefore, I was interested if the morphological changes were also accompanied by 

changes in the organisation of the cytoskeleton. First, I wanted to see if invasion of 

microtubules into the spiked protrusions lead to their increase in length and if 

microtubules are also responsible for the increased branching complexity. To label the 

microtubule positive domains of the dendritic tree I stained for Futsch, a MAP1B-like 

protein, that is specifically expressed in neurons (Hummel, Krukkert et al. 2000). 

However, the total extension of the futsch labelled, microtubule positive, dendrite 

domains was not increased in the sn36a mutant compared to the control (Fig. 3.11 A-C, 

D-F and G). Also the number of futsch positive branches was not modified by the 

mutation in singed (Fig. 3.11 F). Finally, singed mutant spiked protrusions did not 

show any invasion of futsch labelled microtubules like in the control (Fig. 3.11 A’-C’, 

D’-F’).  

These results show that the elongated branchlets resulting from the absence of singed 

do not contain microtubules. The morphological changes that lead to longer spiked 

protrusions and a more complex branching pattern seem to be all actin-based. 

Interestingly, singed mutant class III dendrites show larger regions that are devoid of 

microtubules as compared to wild type, a morphological feature that is again similar to 

class IV dendrites.  
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Figure 3.11: Futsch extension is not altered upon loss of singed 

(A, F’) Class III ldaB neurons expressing UASmCD8GFP under the control of c161Gal4. (A-C’) Control and (D-F’) 

sn36a mutant larvae stained against GFP and Futsch. Scale bar: 50 μm. (G) Quantification of the total length of futsch-

positive dendritic branches. (H) Quantification of the number of futsch-positive dendritic branches. 
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3.3.4 MARCM 

By re-expressing singed specifically in class III neurons in otherwise full mutant sn36a 

larvae, I could restore the wild type density and morphology of spiked protrusions, 

which demonstrated the cell autonomous effect of singed in this type of neurons. To 

confirm this mode of function, I additionally performed MARCM (Mosaic Analysis 

with a Repressible Cell Marker) analysis. With this system it is possible to generate 

mutant single cell clones that are at the same time labeled with GFP in a non-mutant, 

unlabeled background (Lee and Luo 1999). I analyzed single cell clones of class III 

ldaB neurons of the control and the sn36a mutation and found a clear trend showing the 

reduction of the spiked protrusion density in the sn36a mutant (0.06±0.003) compared to 

wild type clones (0.11±0.03). However, this difference was not significant (Fig. 3.12). 

In contrast to the results obtained by the analysis of the full mutant larvae, there was no 

difference in the length of the spiked protrusions. Moreover, single cell mutant clones 

did not show an increase in complexity of the main branches. This difference in the 

strength of the phenotype between single cell clones and full mutants might be due to 

higher protein levels remaining in the singed single cell clones compared to the full 

mutant larvae. Due to the genetics underlying MARCM, all cells are heterozygous for 

singed until the heat shock induces the recombination of paired chromosomal arms 

during mitosis. Singed protein and mRNA expressed from the wild type chromosome 

remain in the cytoplasm of the recombined singed mutant single cell clone. Thereby, 

additionally to the maternal contribution there is also contribution of singed from the 

mother cell, leading to a less pronounced phenotype.  

Even though I found a reduced spike density in the sn36a single cell clones, the 

reduction was not significant. Nevertheless, the specific rescue of singed in the class III 

neurons showed that singed acts cell autonomously in these neurons. 
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3.3.5 Singed accumulation is correlated with the outgrowth of spiked protrusions 

Loss of function experiments revealed that singed is required for the density of spiked 

protrusions and their typical morphology, which is short and straight. It was already 

shown with time-lapse analysis that the spiked protrusions of class III neurons are very 

dynamic and constantly grow and retract (Andersen, Li et al. 2005). However, the 

question remains at which stage of spiked protrusion formation, or also maintenance, 

Singed is required. Therefore, I was interested if the dynamic morphological changes of 

class III spiked protrusions are accompanied with alterations in Singed accumulation. 

Using a mCD8cherry membrane marker and GFP tagged Singed, I investigated the 

specific localization of Singed during extension and retraction of the spiked protrusions 

by time-lapse imaging. However, with classical confocal imaging, bleaching impeded 

time-lapse imaging with two different fluorophores. To solve this problem, I employed 

Figure 3.12: singed MARCM clones  

Mosaic clones of class III ldaB neurons of (A) wild type and (B) sn36a mutants. Scale bar: 50 µm. (A’-B’) Blow up of 

the indicated squares in A and B. (C) There is a clear, though not significant trend showing the reduction of the spiked 

protrusion density in the sn36a mutant clones compared to wild type clones 
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spinning disc confocal microscopy, a technique that allows much faster imaging and 

therefore also reduces bleaching. Second instar larvae expressing mCD8cherry and 

GFP::sn were imaged every 3 min over a time frame of 15 min. In these movies, I 

found a close correlation between the amount of Singed on a defined branchlet and its 

dynamic state (Fig. 3.13 A-C). While Singed accumulated on a large fraction of 

extending branches (81% ±7), only a small fraction (10% ±11) of the extending 

branchlets showed Singed enrichment before extension and a similar small fraction (9% 

±10) did not show any enrichment of Singed (Fig. 3.13 D). In contrast, retracting 

branchlets displayed a lower Singed signal that was either not detectable before (16% 

±10) or during the whole retraction (38% ±21), or was shrinking while the process 

retracted (46% ±12) (Fig. 3.13.E). I could not detect a clear accumulation of Singed 

predicting the site of new branch formation. However, this signal might have been well 

under detection levels.  

Taken together, Singed enrichment was a feature of extending spiked protrusions, 

suggesting that actin-bundling through Singed is required for the formation and the 

straight outgrowth of the spiked protrusions. Retracting spiked protrusions instead 

correlated with a reduction of Singed signal. Less actin-bundling through Singed could 

possibly allow shrinking of the spiked protrusions.  
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Figure 3.13: Singed accumulates within extending terminal branchlets of class III neurons 

Time lapse analysis of Singed localization during terminal branchlet dynamics in class III neurons that express 

membrane-tagged cherry (mCD8) and GFP-Singed (Singed). (A) One of the imaged neurons at time point 0. Scale bar: 

5 µm. (B, C) Time lapse sequence of the regions boxed in (A). (D) Singed preferentially accumulates within extending 

terminal branchlets. (E) Singed localization is more variable in retracting terminal branchlets, including branchlets that 

do not contain detectable Singed, that loose the Singed signal before retraction and ones in which the Singed signal 

diminishes during retraction. 
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3.4 Singed in class IV neurons 

 

3.4.1 Singed loss of function does not affect class IV dendritic branching 

As class III neurons that lack singed show dendrite morphology that is quantitatively 

partially shifted towards class IV neurons characteristics, I examined whether Singed 

also plays a role during dendrite formation of class IV neurons. I could show that 

Singed is only localized to the spiked protrusions of class III neurons and not to the 

terminal branchlets of other classes of neurons. Nevertheless, it is expressed in class IV 

neuron cell bodies, even to comparable levels as in class III neurons.  

To investigate the potential role of singed in class IV dendrite formation, I examined 

the effect of the severe sn36a mutation in ddaC class IV neurons. First, I quantified the 

number of termini, which did not differ between the mutant (470±40) and the control 

(463±25; p>0.5; Fig. 3.14 A-C). To reveal a possible difference in the distribution of 

the branches, I analyzed tracings of the neurons with Sholl-Analysis, where concentric 

circles are drawn around the cell body spaced from one another by 10 µm. All 

intersections of the dendritic tree with the respective concentric circles were counted 

and represented the dendrite branch distribution. Using this analysis, I could show that 

the loss of singed did also not affect the distribution of branches in class IV ddaC 

neurons (Fig. 3.14 D).  

Taken together, singed was necessary in class III neurons for proper terminal branchlet 

formation and to define tree complexity, but was dispensable in class IV neurons. Even 

though Singed was detectable within the cell body of class IV neurons, sn36a mutants 

did not show any alteration in the branching pattern of class IV dendrites. A possible 

explanation could be that in these neurons Singed was not activated or localized 

appropriately to function in the formation of spiked protrusions like it does in class III 

neurons. 
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3.4.2 Overexpression of Singed can induce spiked protrusions in class IV 

neurons 

In the last section, I could show that loss of singed does not affect dendritic branching 

of class IV neurons. Since class IV neurons nonetheless express Singed, one could 

imagine that Singed is not activated or localized to function in dendritic development in 

this class of neurons. If this was the case, massive overexpression of Singed might 

overrule this internal regulation in class IV neurons. To test this possibility, I expressed 

mKO::sn at high levels in the ddaC class IV neurons. For stable and high expression of 

the construct, mKO::sn was inserted into a defined position in the fly genome with the 

attP landing site system. This system allows the insertion of transgenes into 

predetermined intergenic regions in the fly genome. Therefore selection of insertion 

sites with a defined expression level, which could be high, low or intermediate, is 

possible (Bischof, Maeda et al. 2007). For the overexpression of mKO::sn in class IV 

Figure 3.14: Singed is not required for class IV terminal branching 

(A, B) Class IV ddaC neurons expressing mCD8GFP under the control of 477Gal4. (A, A’) Wild type and (B, B’) 

sn36a mutant neurons and their tracing. Scale bar: 100 µm. (C) There is no significant difference in the number of 

terminal branches between wild type and sn36a mutant neurons. (D) The number of intersections of dendritic branches 

with concentric circles drawn around the cell body (Sholl Analysis) is not different between wild type and sn36a mutant 

neurons. 
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neurons I chose the 51D landing site, which directs the insertion into a position in the 

fly genome that leads to high expression levels of the construct. With these high levels 

of expression, I could induce the formation of terminal branchlets that resembled 

spiked protrusions in class IV neurons in that they were shorter and straighter than 

terminal branchlets of the control (Fig. 3.15 A, B). There was a significant increase in 

the fraction of short terminal branchlets, measuring less than 10 µm in length (Fig. 3.15 

C). Analysis of the curvature of the terminal branchlets confirmed that overexpression 

of mKO::sn in class IV neurons lead to a reduced curvature of the terminals than in the 

control (analyzed by Friedrich Förstner). The convex area spanned by the terminal 

branchlets of class IV neurons overexpressing Singed was shifted towards class III 

values (Fig. 3.15 D; see also Fig. 3.7). Importantly, numerous of these shorter terminal 

branchlets accumulated Singed. This was not the case when the mKO::sn construct was 

expressed with lower levels, or when mKO was expressed on its own (Fig. 3.15 E-J; see 

also Fig. 3.4 D-F). 

 

Thus, it was possible to induce the formation of spiked protrusions in class IV neurons 

with high levels of Singed, showing that singed is not only necessary for spiked 

protrusion density and morphology, but also sufficient for their formation. 
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Figure 3.15: Singed overexpression in class IV neurons 

(A, B) Class IV ddaC neurons expressing mCD8GFP under the control of 477Gal4; the dorsal-posterior quarter of the 

dendritic tree is shown. Overexpression with 477Gal4 of the following constructs: (A) mKO, (B) mKO::sn. Scale bar: 

50 μm. (C) Overexpression of mKO::sn induces significantly more terminal branchlets that are shorter than 10 µm. (D) 

Overexpression of mKOsn straightens the terminal branchlets significantly compared to mKO only. (See also Fig. 3.7). 

(E-G) Kushabira Orange protein is uniformly distributed and not enriched at terminal branches in control neurons. (H-

J) Strong overexpression of mKO::sn that leads to the formation of short terminal branchlets is accompanied by 

recruitment of mKO::sn to the ectopic short branchlets (arrows). Compare to the absence of mKOsn enrichment in 

class IV neurons at low expression levels that does not induce a phenotype (Fig. 3.4 D-F). 
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3.5 Singed activity is modulated by phosphorylation 

 

3.5.1 Regulation through phosphorylation in class III neurons 

Several studies showed that fascin is negatively controlled by phosphorylation of a 

conserved Serine within the MARCKS homology domain. Phosphorylation of Serine-

39 leads to a reduced capacity of actin binding, and therefore probably also reduced 

bundling (Yamakita, Ono et al. 1996; Ono, Yamakita et al. 1997; Adams, Clelland et al. 

1999; Vignjevic, Kojima et al. 2006). In the Drosophila Singed protein, this Serine is 

located at position 52 and has been shown to be important for the role of Singed in 

bristle formation (Holthuis, Schoonderwoert et al. 1994; Zanet, Stramer et al. 2009). To 

address the regulation of phosphorylation at Ser52 in the formation of spiked 

protrusions, I generated phosophomimetic and non-phosphorylatable Singed constructs 

by site-directed mutagenesis. To mimic the phosphorylation of Serine 52, I replaced it 

with Aspartic Acid. This amino acid has a similar size and structural properties as 

Serine, but additionally an oxygen molecule and a negative charge, which leads to 

almost identical structural properties as phosphorylated Serine. For the generation of a 

non-phosphorylatable construct, I replaced Serine 52 with Alanine, which lacks the 

hydroxyl group where the phosphorylation of Serine usually takes place. To obtain 

similar expression levels, both constructs were inserted in the same landing site, 51D, 

which lead to high expression.  

First, I tested these constructs for their ability to rescue the sn36a mutant phenotype in 

class III neurons. As expected, the non-modified Singed, also inserted in the 51D 

landing site, was able to rescue the density of spiked protrusions to control levels. The 

same was true for the non-phosphorylatable mKO::snS52A. Surprisingly, also the 

phosphomimetic mKO::snS52D construct was able to rescue the spike density 

phenotype (Fig. 3.16 A-C). However, when I compared the spike densities rescued by 

the different constructs, it was obvious that the phosphomimetic mKO::snS52D 

construct resulted in a significant lower spiked protrusion density compared to the other 

two constructs. This might be due to a lower capacity to induce actin bundling 

(mKO::sn: 0.13 ±0.01; mKO::snS52A: 0.12 ±0.02; mKO::snS52D: 0.9 ±0.01; p<0.05; 

Fig. 3.16 D). These results show that phosphorylation is part of the control mechanism 
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for Singed activity in class III spike formation; however it seems not to be the major 

one, as all three constructs can rescue the phenotype. 

 

 

 

 

 

 

 

 

 

3.5.2 Regulation through phosphorylation in class IV neurons 

Overexpression of full length mKO::sn at high levels in class IV neurons resulted in the 

formation of terminal branchlets that resembled class III spiked protrusions. Since in 

Figure 3.16: Singed is partially regulated by phosphorylation 

(A-C) Rescue of the spiked protrusion density phenotype of sn36a mutant class III ldaB neurons with Singed wild-type 

or phosphovariant constructs inserted at the 51D landing site and expressed with c161Gal4. (A) Rescue with 

unmodified mKO::sn. (B) Rescue with non-phosphorylatable mKO::snS52A or (C) with phosphomimetic 

mKO::snS52D. Scale bar: 50 μm. (D) Quantification of the density of spiked portrusions of wild-type, sn36a mutant and 

landing site construct rescue in the sn36a mutant background. Unmodified mKO::sn, non-phosphorylatable 

mKO::snS52A and phosphomimetic mKO::snS52D rescue the spiked protrusion density defect of the sn36a mutants. 

However rescue with the phosphomimetic mKO::snS52D results in a significantly lower spiked protrusion density 

compared to the rescue with unmodified mKO::sn and non-phosphorylatable mKO::S52A. 
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the wild type Singed is expressed in class IV neurons, but does not play a role in the 

formation of terminal branchlets, it might be possible that Singed activity is 

downregulated in class IV neurons. As shown above, in class III neurons, regulation 

through phosphorylation at Serine 52 is not the major control mechanism for the 

formation of spiked protrusions. However, it is partially involved, since the 

phosphomimetic mKO::snS52D construct is not able to rescue the density of spiked 

protrusions to the same extent as full length and the non-phosphorylatable 

mKO::snS52A construct. To test, if this regulation is also involved in the suppression of 

Singed function in class IV neurons, I analyzed the effects of overexpressing 

phosphomimetic and non-phosphorylatable Singed in this class of neurons. Similar to 

the full length version of Singed, both phospho-variants were able to induce the 

formation of terminal branchlets that resembled spiked protrusions (Fig. 3.17 A, B; see 

also Fig. 3.15). Interestingly, overexpression of the non-phosphorylatable 

mKO::snS52A construct also induced increased formation of terminal branchlets 

compared to the control (Fig. 3.17 C). The non-phosphorylatable mKO::snS52A and the 

phosphomimetic mKO::snS52D constructs both increased the fraction of terminal 

branchlets shorter than 10 µm significantly compared to the control, but no difference 

was found in the fraction of short terminal branchlets compared to mKO::sn 

overexpression (Fig. 3.17 D). Also the convex area spanned by the terminal branchlets, 

as a measure of curvature, was reduced in a comparable range to mKO::sn 

overexpression using mKO::snS52D and mKO::snS52A constructs (analyzed by 

Friedrich Förstner; Fig. 3.17 E).  

Taken together, overexpression of Singed is sufficient to induce shortening and 

straightening of the class IV terminal branchlets. This effect is independent of the 

phosphorylation state of Singed. Still, regulation through phosphorylation restricts the 

capacity of Singed to induce high order branching in these neurons. Since all three 

phosphovariants can induce the formation of short, straight terminal branchlets in class 

IV neurons, it is unlikely that regulation through phosphorylation mediates the class III 

specificity of Singed function. 
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Figure 3.17: Singed is partially regulated by phosphorylation in class IV neurons 

(A, B) Class IV ddaC neurons expressing mCD8GFP under the control of 477Gal4; the dorsal-posterior quarter of the 

dendritic tree is shown. Overexpression with 477Gal4 of the following constructs: (A) mKO::snS52A and (B) 

mKO::snS52D. Scale bar: 50 μm. (C) Overexpression of mKO::SnS52A induces significantly more terminal branches 

compared to mKO only. Overexpression of the unmodified mKO::sn and the phosphomimetic mKO::snS52D 

constructs does not induce a significant increase in terminal branchlets. (D) There is a significant increase of terminal 

branches shorter than 10 μm upon overexpression of mKO::sn, mKO::snS52A and mKO::snS52D. (E) Overexpression 

of mKO::sn, mKOsnS52A and mKO::snS52D straightens the terminal branchlets significantly compared to mKO 

only. See also Fig. 3.15. 
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3.6 The transcription factor Cut is acting through Singed in spiked    

protrusion formation 

 

The transcription factor Cut has been described to be part of the transcriptional code 

that defines class III versus class IV morphology. In class III neurons Cut is expressed 

at very high levels and loss of cut leads to the complete loss of spikes and to defects in 

dendrite complexity. Overexpression of Cut in class I neurons, which is usually not 

expressed in this class of neurons, leads to an increased dendrite complexity and the 

formation of short terminal protrusions that are devoid of the microtubule binding 

protein Futsch (Grueber, Jan et al. 2003; Jinushi-Nakao, Arvind et al. 2007). Cut is also 

expressed in class IV neurons, however, at lower levels. Overexpression of Cut in these 

neurons also results in a partial shift to class III morphology, with numerous short 

terminal branchlets, but in contrast to class I neurons, not to an increase in dendritic 

complexity (Grueber, Jan et al. 2003).  

Here, I could show that singed is required for the formation of class III spiked 

protrusions and that is sufficient to induce short terminal branchlets in class IV neurons. 

These Singed-induced effects are similar to the morphological changes induced by cut. 

Therefore, I tested if Singed might be an effector of Cut, using the simple class I 

neurons, that usually do not express Cut as a model system. First, I investigated if 

singed itself has an effect on the branching pattern of class I neurons. Using sn36a 

mutant class I neurons, I could show that the gross morphology of the dendritic tree 

was not affected (Fig. 3.18 A, B). However, there was a slight increase in the number 

of termini compared to the control (control: 23 ±4; sn36a: 28 ±4; p<0.05), suggesting 

that Singed might be required to suppress branching in class I neurons. Overexpression 

of Cut in otherwise wild type class I neurons resulted, as shown before, in the 

formation of lots of short terminal branchlets (134 ±30; Fig. 3.18 C, C’, E). Using the 

same approach in the sn36a mutant background, the number of ectopic short terminal 

branchlets was clearly reduced by more than 40% (79 ±20; p<0.01; Fig. 3.18 D, D’, E). 

As reported before, overexpression of Cut also lead to a massive increase in the total 

branch length of the class I dendrites. But, in contrast to the formation of short terminal 

branchlets, this effect was not suppressed in the sn36a mutant (Fig. 3.18 F).  

 



Results  67 

 

 

 

Figure 3.18: Singed is essential for the formation of Cut-induced spiked protrusions 

(A-D) Class I vpda neurons expressing mCD8GFP under the control of 2-21Gal4. (A) Wild type and (B) sn36a mutant 

class I neurons. Loss of singed does not visibly affect the morphology of the class I neurons. (C-D) Overexpression of 

the transcription factor Cut in the wild type or in the sn36a mutant background. Scale bar: 50 μm. (C’-D’) blow up of 

the indicated regions from (C-D). (E) The number of ectopically formed short terminal branchlets upon Cut 

overexpression in class I neurons is significantly reduced in the sn36a mutant background. (F) There is a significant 

increase in dendrite length upon Cut overexpression, very prominent also in the sn36a mutant background. 
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Overexpression of Cut in class I neurons induces formation of short, terminal 

branchlets devoid of microtubules (Jinushi-Nakao, Arvind et al. 2007). However, these 

short terminal branchlets seem not to be as straight as class III spiked protrusions (Fig. 

3.18 C’). I therefore wanted to examine if Singed can be detected at the ectopically 

formed termini, as it is the case in the spiked protrusions of class III neurons. By 

antibody staining I found some ectopically formed spiked protrusions containing 

Singed (Fig. 3.19). This was in clear contrast to control class I neurons, where 

endogenous Singed or fluorescently tagged Singed constructs never localized to 

terminal branchlets (Fig. 3.2 J-L and Fig. 3.4 G-I).  

These experiments show that Singed is a special effector of Cut in the formation of 

spiked protrusions, however, not in the promotion of dendritic complexity. 

 

 

 

 

 

 

 

 

Figure 3.19: Singed localizes to ectopic spiked protrusions induced by Cut 

(A-C) Cut overexpressing class I vpda neurons show localization of endogenous Singed at several ectopically formed 

terminal branchlets. Scale bar: 25 μm. (A’-C’) Blow up regions marked with arrows in (A-C). 
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4 Discussion 

 

4.1 Summary of the results 

 

In this work, I have investigated how the specific morphologies of dendrites of 

distinct neuronal classes are formed. Using the md-da neurons of the Drosophila 

PNS as a model system I showed that the actin bundling molecule fascin, called 

Singed in Drosophila, is an important determinant of class III neuron dendrite 

morphology. Singed is necessary for the formation of the class III terminal 

branchlets, the spiked protrusions, and acts as an effector of the transcription factor 

Cut. In addition, loss of singed induces a partial transformation of class III neurons 

towards class IV neuron morphology and Singed overexpression in class IV 

neurons results in the formation of class III-typical spiked protrusions, indicating 

that singed is part of the distinction between these two neuronal types. 

I questioned whether the mechanisms that underlie the formation of different 

dendrite branch types are similar and rely on the same molecular factors. My loss- 

and gain-of-function experiments indicate that the precise molecular composition 

of the terminal branchlets can strongly influence their morphology. In fact, Singed 

strongly contributes to the morphology of a specific neuronal type and helps 

defining the distinction between two classes of neurons. Similar effects have been 

previously mainly ascribed to transcription factors.  
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4.2 The role of Singed in class III neurons 

 

4.2.1 Singed is required for the bundling of actin-filaments in class III 

neurons 

Loss of singed drastically affected the morphology of class III neurons, most 

strikingly, the density of the spiked protrusions was reduced. This phenotype could 

be due to a defect in spiked protrusion formation or also maintenance. In both 

cases, loss of singed would result in a decreased number and density of spiked 

protrusions at later developmental stages. In several cell culture systems, depletion 

of fascin results in a decreased number of filopodia. EM studies could show that 

the actin filaments of these cells were only loosely bundled and laying wavy along 

the cell edge, suggesting that they failed to bulge out the membrane to give rise to 

a mature filopodium. Also in singed mutant class III neurons, reduced actin 

bundling during spiked protrusion formation is likely the cause of the reduced 

spiked protrusion density. Indeed, time-lapse experiments done by Yun Zhang 

(PhD student in the lab of Gaia Tavosanis, MPI of Neurobiology) showed that the 

formation of new spiked protrusions was drastically reduced in the singed mutant 

class III neurons (data not shown).  

In addition to the decreased spiked protrusion density, the remaining spiked 

protrusions of singed mutant larvae were longer and more bended instead of being 

short and straight like in the wild type. Similarly, the straight bristles of 

Drosophila, become curved and gnarled upon loss of singed, a phenotype that was 

linked to reduced bundling of actin filaments during bristle development (Cant, 

Knowles et al. 1994). Also singed mutant mushroom body neurons in culture form 

abnormal curls and hooks if they are mutant for singed. These morphological 

changes are again accompanied with altered F-actin distribution (Kraft, Escobar et 

al. 2006). Therefore, the increased curvature of singed mutant spiked protrusions is 

also likely a direct result of reduced actin bundling. Still, the question remains why 

the spiked protrusions grow out longer in the singed mutant. Typically, class III 

neurons have the actin enriched spiked protrusions that are devoid of microtubules. 

One could imagine, that the tight actin-bundling through Singed prevents 

microtubule invasion into the spiked protrusions, what could possibly allow for 
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increased elongation of the branchlets. However, microtubule invasion seems not 

to be the reason for the elongated spiked protrusions in the singed mutant, because 

they still do not contain microtubules. A reasonable theory explaining the 

increased length of the singed mutant spiked protrusions could be found in their 

dynamic behavior. Singed is highly enriched on the elongating spiked protrusions 

and less abundant on the retracting ones (Fig. 3.13). It might be that the actin 

filaments bundled by Singed in the spiked protrusions are only able to reach a 

certain length before Singed comes off and allows for retraction. Without Singed 

the remaining spiked protrusions might be controlled molecularly in a different 

way, allowing for prolonged elongation.  

 

 

4.2.2 Singed does not influence the overall dendrite extension 

Interestingly, all morphological transitions observed upon loss of singed did not 

result in changes of the overall length of the dendritic branches. The reduction in 

spiked protrusion density combined with an increased length of the remaining ones 

and a higher number of terminal branchlets without spiked protrusion character 

equal out to the overall dendrite length of wild type neurons (Fig. 3.9). These 

results suggest an internal control mechanism independent of singed that regulates 

the overall dendrite length in class III neurons. To reach the final and 

predetermined total dendrite length, a defect in spiked protrusion formation was 

effectively rescued by the elongation of the existing dendritic branches. Similarly, 

in class IV neuron slit and robo mutants a reduction in the dendritic branching 

level was shown to be accompanied by an increased branch elongation rate, also 

suggesting a homeostatic regulation to reach the desired total dendrite length 

(Dimitrova, Reissaus et al. 2008). One possible candidate for regulating the overall 

length of the dendritic tree in class III neurons is the transcription factor Cut. In 

addition to the loss of spiked protrusions, cut mutant class III neurons show severe 

defects in the general outgrowth and elongation of dendritic branches. Moreover 

ectopic overexpression of cut in class I neurons leads to a huge increase in dendrite 

length which is not affected by singed (Grueber, Jan et al. 2003)(Fig. 3.18 F).  
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4.2.3 Dynamic Singed accumulation on dynamic spiked protrusions  

Previous studies showed that the md-da neurons of the Drosophila PNS have very 

dynamic terminal branchlets in the second instar larvae (Andersen, Li et al. 2005; 

Dimitrova, Reissaus et al. 2008). Especially the class III spiked protrusions were 

reported to be constantly formed and retracted. It seems that for the dynamic 

outgrowth of the spiked protrusions, for their formation and elongation, actin 

bundling through Singed is required to generate a force to protrude the membrane. 

Loss of this tight bundling could instead allow for the retraction of the spiked 

protrusions.  

During the formation of spiked protrusions also dynamic changes in the actin-

cytoskeleton were observed. Patches of F-actin accumulation predicted the sites of 

new spiked protrusion formation (Andersen, Li et al. 2005). However, I never 

observed Singed accumulation before a new spiked protrusion was formed. One 

could imagine that this very initial step of spiked protrusion formation is 

independent of Singed and can be therefore not detected at this stage. But possibly, 

there is still Singed accumulation, though at too low levels to be detected. 

Specifically the “convergent elongation model” for the formation of filopodia is 

suggesting that bundling through Fascin of the constantly elongated actin filaments 

in the cell cortex leads to the protrusive force for to push the membrane outwards 

(Vignjevic, Kojima et al. 2006). Since upon loss of singed the formation of spiked 

protrusions is impaired, it is very likely that Singed is required for the initial 

bundling of actin filaments, probably at low levels which could not be detected at 

this stage with the implemented imaging technique.  
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4.3 Molecular regulation of Singed 

 

4.3.1 Regulation through phosphorylation of the conserved Serine52 

Fascin activity can be regulated by phosphorylation at Ser39, which leads to a 

lower binding affinity of fascin-1 to actin in vitro and to reduced formation of 

fascin protrusions in matrix-adherent cells (Yamakita, Ono et al. 1996; Ono, 

Yamakita et al. 1997; Adams, Clelland et al. 1999). Expression of a fascin Ser39 

phosphomimetic mutant in B16F1 cells yielded reduced formation of filopodia. 

Moreover, in N2a cells the association of fascin specifically to filopodial actin 

bundles was promoted by dephosphorylation (Vignjevic, Kojima et al. 2006; 

Aratyn, Schaus et al. 2007). Although phosphorylation of the conserved Serine 

seems to plays an important role in cell culture systems, the regulation of fascin 

activity seems to be more complex in vivo. In Drosophila it was shown that 

regulation through phosphorylation of Serine 52 is not required for blood migration 

or oogenesis, but for the bristle formation. The authors of this study argue, that 

regulation through phosphorylation is mainly required for a long and stable 

association of actin with fascin (Zanet, Stramer et al. 2009).  

Also in the md-da neurons phosphorylation of Serine 52 does not represent the 

main regulatory switch for Singed function. In class III and also class IV neurons 

both phosphovariants can fulfil nearly the same functions as the wild type protein. 

However, the minor differences between the constructs show that regulation 

through phosphorylation takes part in the formation of spiked protrusions. 

Possibly, the partial effect of Serine 52 phosphorylation reflects the dynamics of 

class III neuron branchlets that perhaps do not need prolonged association of fascin 

with actin bundles (Vignjevic, Kojima et al. 2006). 

 

 

4.3.2 Regulation by small GTPases 

Other candidates for Singed regulation are the small GTPases. In cell culture 

systems the formation of fascin-containing microspikes was shown to be 

dependent on Rac1 and Cdc42. Moreover, overexpressin of Rac1 in the md-da 

neurons results in the formation of numerous short filopodia that reminded of class 
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III spiked protrusions in all classes (Andersen, Li et al. 2005). To test if the Rac1 

induced filopodia are dependent on singed, our collaborators Caroline Delandre 

and Adrian Moore (RIKEN Brain Science Institute, Japan) compared Rac1 

overexpression in the wild type and singed mutant background of class III neurons. 

Strikingly, they did not observe any difference in filopodia formation between 

mutant and wild type background, showing that Rac1 can induce filopodia without 

Singed. Of course, this data does not rule out that in the wild type class III neurons, 

spiked protrusion formation is Rac1 independent. To investigate this further, rac1 

loss of function analysis is needed. rac1 mutant class IV neurons were shown to 

have reduced branching, but so far no data for class III neurons is available that 

could support the Rac1 overexpression data, which is suggesting that Rac1 is also 

required for spiked protrusion formation (Lee, Li et al. 2003). To test for a genetic 

interaction between rac1 and singed, one could investigate if the loss of function 

phenotype of rac1 or singed is successfully rescued by overexpression of the other 

protein. In further studies also Cdc42 should be investigated for its role in class III 

spiked protrusion formation.  
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4.4 Singed and the transcription factor Cut 

 

4.4.1 Cut is acting through Singed in the formation of spiked protrusions 

The transcription factor Cut is an important part of the transcriptional codex 

defining the class specific dendritic morphology of the md-da neurons. Particular 

high levels of Cut can be detected in the class III neurons and loss of cut leads to 

the complete loss of the spiked protrusions and to a defect in dendrite outgrowth in 

this class of neurons (Grueber, Jan et al. 2003).  

Implementing the Cut-negative class I neurons as a model system, I could clearly 

show that the ectopic formation of spiked protrusions induced by Cut expression is 

dependent on Singed (Fig. 3.18). However, to reveal that Singed is a downstream 

effector of Cut in the formation of class III spiked protrusions, it would necessary 

to show that overexpression of Singed can rescue the class III cut mutant 

phenotype. Though, this experiment might be challenging because cut mutant class 

III neurons have in addition to the loss of spiked protrusions severe defects in 

general dendrite outgrowth (Grueber, Jan et al. 2003). It might well be that in the 

absence of the transcription factor Cut, more of the environment than only Singed 

or its activation is missing that is required for the formation of spiked protrusions. 

In the simplest scenario, the lack of properly formed main branches would also 

impede the formation of spiked protrusions. If so, cut loss of function could be not 

rescued by Singed overexpression, even though it was a real downstream effector 

of cut in class III neurons. Interestingly, even strong overexpression of Singed in 

class I neurons that do not express Cut is not able to induce the formation of spiked 

protrusions (data not shown). In class IV neurons in contrast, cut is expressed at 

intermediate levels and high levels of Singed can lead to the formation of spiked 

protrusions, suggesting that Singed needs Cut expression to form the spiked 

protrusions (Fig. 3.15).  

Taken together, it is well possible that Cut even though it acts through Singed in 

the formation of spiked protrusions, additionally generates an environment that 

allows Singed to act in this pathway by switching on or off other essential factors. 

One possibility to solve this problem experimentally would be instead of using a 
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cut loss of function mutant, implementing cut RNAi to reduce Cut levels and try to 

rescue a possibly intermediate phenotype with Singed overexpression. 

 

 

4.4.2 Possible regulation of Singed by Cut 

As discussed in the last section, the transcription factor cut is acting through 

Singed in the formation of short, actin-rich dendritic protrusions. However, the 

question remains if singed is also directly regulated by cut. Cut belongs to the 

CDP/Cut/Cux protein family of homeodomain transcription factors. Different 

members of the family were reported to be able to repress and most probably also 

activate the expression of target genes. DNA binding of these molecules can occur 

through different domains, three Cut repeats and one Cut-type homeodomain that 

can either act independently or cooperative (reviewed in (Nepveu 2001). 

Interestingly, a consensus sequence that can be bound by Cut repeats is also 

present in the first large intron of the singed gene locus. Therefore, it might be 

possible that singed is directly upregulated by cut. High levels of Cut in class III 

neurons could lead to high levels of Singed in class III neurons and finally to the 

formation of spiked protrusions. Arguing against this hypothesis, is the fact that 

Singed is expressed in all cell bodies of the md-da neurons at similar levels, 

independent of cut expression levels (Grueber, Jan et al. 2003)(Fig. 3.1). 

Nevertheless, the information obtained by immunohistochemistry might not be 

solid enough to rule out the possibility of a direct upregulation of Singed through 

Cut. An easy possibility to test this hypothesis is the analysis of the correlation of 

Singed protein levels with ectopic overexpression of Cut. However, overexpression 

of Cut with a panneural driver line and subsequent western blot analysis of single 

larval lysates did not show any alteration of the Singed protein levels, as shown by 

Anastasia Tartanikova (PhD student in the lab of Gaia Tavosanis, MPI of 

Neurobiology). A drawback of this approach is that Cut might not regulate Singed 

expresssion in all neuronal cells, but rather only affects Singed levels in the md-da 

neurons. Upregulation of Singed, just in this small subset of cells, would be 

masked by the general expression of Singed in the larva. For a final conclusion if 

Singed levels are regulated by Cut, investigation of only the md-da neurons would 



Discussion  77 

be necessary. With md-da neuron specific driver lines it is possible to FACS sort 

GFP positive cells from homogenized embryos and therefore enrich neuronal cells 

of the PNS (Jinushi-Nakao, Arvind et al. 2007). Subsequent western blot analysis 

of wild type and Cut overexpressing sorted cells could possibly help to detect 

changes in the levels of Singed in the md-da neurons.  
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4.5 What is the difference in class IV neurons? 

 

4.5.1 Distinct and similar properties of class III and class IV dendrites 

Class III and class IV neurons exhibit the most complex dendritic trees among the 

md-da neurons. Nevertheless their branching patterns are quite distinct, including 

the dendritic field size, branching order and number of dendritic termini (Grueber, 

Jan et al. 2002). Moreover the terminal branchlets of these two classes show very 

distinctive characteristics. Class IV terminal branchlets are longer and more 

bended than class III terminal branchlets (Fig. 3.7). Also during development the 

dynamic behavior of these distinct types of terminal branchlets is qualitatively 

different. Yun Zhang did detailed analysis of class IV terminal branchlet dynamics 

and most strikingly they seem to probe the environment to grow out suddenly into 

their preferred direction. This is in clear contrast to class III terminal branchlets 

that constantly grow and retract on a linear slope.  

Still, class III and class IV neurons also share similar properties. Both neuronal 

classes have terminal branchlets that are enriched in actin and both of them express 

the transcription factor cut, though at different levels (Grueber, Jan et al. 

2003)(Fig. 3.5). Most strikingly, they both express Singed, which can be detected 

at the cell bodies at comparable levels (Fig. 3.1). However, only class III neurons 

and not class IV neurons need Singed for the formation of their terminal branchlets 

(Fig. 3.14). Singed is only localized to class III terminal branchlets, but upon 

strong Singed overexpression in class IV neurons it can be also detected at class IV 

terminal branchlets, which are at the same time transformed to a class III spiked 

protrusion morphology, showing that in principle Singed can fulfill similar 

functions in class IV as in class III neurons (Fig. 3.15).  

 

 

4.5.2 Singed in class IV neurons 

As discussed above, class IV neurons express Singed, but do not need it for the 

elaboration of their specific dendritic branching pattern. However, strong 

overexpression of Singed can induce spiked protrusions also in class IV neurons. 

Likely, in wild type class IV neurons Singed is not activated or localized properly 
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to induce spiked protrusions. My experiments showed that this activation does not 

depend on the phosphorylation state of the conserved Serine 52, because 

phosphomimetic and non-phosphorylatable versions of Singed both can induce the 

formation of spiked protrusions upon strong overexpression just as wild type 

Singed.  

A promising candidate, that could be responsible for the specific localization of 

Singed to class III spiked protrusions, is Rab35. It has been shown that Rab35 can 

recruit fascin and that fascin acts as an effector of Rab35 in filopodia induction. 

Interestingly, a dominant negative version of Rab35 affects Drosophila bristle 

morphology and results into loosely bundled actin filaments during bristle 

development just as in mutants of singed (Cant, Knowles et al. 1994; Zhang, 

Fonovic et al. 2009). It would be interesting to test if Rab35 is also involved in 

class III spiked protrusion formation.  

 

 

4.5.3 Possible mechanisms for terminal branchlet formation in class IV 

neurons 

In class IV neuron dendritic development, growth cone splitting as well as 

interstitial branching can be observed (Sugimura, Yamamoto et al. 2003; 

Dimitrova, Reissaus et al. 2008). Both are processes, which are thought to require 

filopodia formation. Interestingly, the major actin crosslinking protein of filopodia, 

fascin/Singed is not required class IV dendritic branching. Still, class IV neurons 

have actin-enriched, dynamic terminal branches, suggesting that other actin 

bundling molecules might play a role in their terminal branchlet formation. 

In Drosophila, there are numerous actin-bundling or crosslinking proteins 

including espin/Forked, filamin/Cheerio, fimbrin, α actinin and of course 

fascin/Singed. In bristle formation, oogenesis and spermatid individualization, it 

has been shown that several, and not only one, actin-bundling molecules are 

involved (Tilney, Connelly et al. 2000; Hudson and Cooley 2002; Noguchi, 

Lenartowska et al. 2008). For example, forked mutant flies have also defects in the 

tight actin-bundling required for bristle formation and oogenesis. In bristle 

formation, forked is required to form the initial actin-bundles that are later on 
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bundled by Singed (Tilney, Connelly et al. 2000). Different dendritic morphologies 

might be also established by diverse actin regulating molecules. Therefore, 

investigation of actin-bundling molecules other than Singed would give important 

information about how the actin-enriched terminal branchlets of class IV neurons 

are formed.  
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4.6 Singed as a molecular switch between class III and class IV 

dendritic branching pattern 

 

4.6.1 Singed defines class III characteristic morphology  

One distinctive characteristic of class III and class IV neurons is the morphology of 

their terminal branchlets. Class III typical spiked protrusions are short and straight, 

whereas class IV terminal branchlets are longer and more bended (Fig. 3.7). 

Interestingly, the morphological changes in class III neurons, observed by singed 

loss of function, gave rise to a dendritic branching pattern that was shifted to the 

morphology of a class IV dendritic tree: the class III typical spiked protrusions 

were dramatically reduced and the remaining ones were longer and showed a 

higher curvature (Fig. 3.8 and 3.9). Moreover, the main branching pattern of the 

singed mutant class III neurons got more complex, representing another 

morphological trait resembling class IV neurons (Fig. 3.10). By gain of function 

analysis I could show that Singed can also induce class III characteristics in class 

IV neurons: high levels of Singed lead to terminal branchlets that resemble spiked 

protrusions in that they are short, straight and localize Singed (Fig. 3.15).  

Singed seems to act as a molecular switch defining part of the morphological 

distinction of class III and class IV neurons, especially the terminal branchlets of 

these neurons. So far, the feature as a molecular switch between class specific 

morphologies was only assigned to transcription factors, the more surprising it is 

that a regulator of the actin cytoskeleton can fulfill this function. 

 

 

4.6.2 Singed does not facilitate a complete transformation between the two 

classes 

Singed acts as a molecular switch between class III and class IV dendritic 

morphology. However, it is not able to fulfill a complete transformation between 

the two classes. There are still differences in the terminal branchlets formed upon 

loss of singed in the class III neurons compared to class IV neurons. First, the 

values describing the curvature of the branchlets lie in between the ones obtained 

from control class III and class IV neurons. Moreover, singed mutant spiked 
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protrusions grow out longer, but they do not reach the diversity of different lengths 

observed in class IV neurons. Therefore, class III singed mutant spiked protrusions 

are only shifted to a class IV typical morphology. Second, even though singed 

spiked protrusions resemble morphologically class IV terminal branchlets, they 

show in contrast to class IV terminals drastically reduced dynamics. It seems that 

an additional factor is missing that could provide complete transformation from 

class III to class IV terminal branchlets. A possible candidate for this missing 

factor is the transcription factor Knot, which is part of the transcriptional code that 

defines class IV morphology. Interestingly, overexpression of Knot in class III 

neurons results in increased dendrite length and a reduction of the number of 

spiked protrusions (Jinushi-Nakao, Arvind et al. 2007). It would be interesting to 

investigate the class III terminal branchlets in the singed mutant while 

overexpressing Knot, to see if a complete transformation to class IV terminal 

branchlets could be achieved.  

Also overexpression of Singed in class IV neurons only partially converts terminal 

branchlets to spiked protrusion morphology. Just a fraction of the terminal 

branchlets become short and straight upon Singed overexpression. Lots of terminal 

branchlets still resemble the ones of wildtype class IV neurons. Consequently, also 

the curvature values of the terminal branchlets are lying in between the ones of 

class III and class IV neurons. Time-lapse analysis of the morphologically 

transformed class IV branchlets could show if the morphologically transformed 

terminal branchlets are also acting in a class III typical manner, namely a rapid 

extension and retraction on a linear slope.  

Again, one could imagine that additional factors are missing, allowing for a 

complete transformation. The transcription factor cut is responsible for the 

formation of spiked protrusions in class III neurons. It is also expressed in class IV 

neurons, but at lower levels. Strikingly, overexpression of cut in class IV neurons 

also leads to a morphological shift resembling class III neurons (Grueber, Jan et al. 

2003). Maybe a complete transformation could be achieved if Cut and Singed are 

both co-overexpressed. 
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4.7 Specific versus general mechanisms in dendritic branch 

formation 

 
Dendrites show a huge variety of different morphologies, they can be simple 

mono-ciliated processes like dendrites of type I Drosophila PNS neurons, or very 

complex and repeatedly branched like  pyramidal neurons and Drosophila class IV 

neurons. Studies of the Drosophila md-da neurons showed that specific dendritic 

morphologies can be determined by different combinations of transcription factors, 

suggesting that certain types of branches could be also made by distinct molecular 

mechanisms (reviewed in (Jan and Jan 2010). However, from the analysis of 

different cytoskeletal regulating molecules in this system, it seems that most 

regulators of the cytoskeleton fulfill similar functions in all classes of neurons. 

Most probably, the elaboration of distinct dendritic morphologies is based on 

general mechanisms of branching or extension of branches, combined with cell 

specific activities. For example, mutants of ena, which allows prolonged 

elongation of actin-bundles in filopodia formation, show reduced dendritic 

branching in all classes of md-da neurons (Li, Li et al. 2005). Also tropomyosin 

seems to have a conserved function in the morphologically very distinct class I and 

class IV neurons. Mutants of tropomyosin fail to restrict the dendritic field size in 

these two classes (Li and Gao 2003). Cytoskeletal molecules that regulate dendritic 

branching only in specific classes are largely unknown. However, I could show 

that mutations of singed are specifically affecting the class III spiked protrusions 

and not the branching pattern of other classes.  

Future studies in the Drosophila md-da neurons could provide more information 

about general and specific mechanisms in dendritic branch formation. One 

promising way could be the analysis of targets of the transcription factors defining 

the class specific branching patterns. Another possibility would be to screen for 

regulators of the cytoskeleton to find molecules that can that either affect all 

classes in the same way, or only distinct neuronal types.  
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4.8 A model for Singed function in dendrite formation 

 

Here, I have characterized for the first time the role of fascin/Singed in dendrite 

development. My data show that Singed is implementing part of the distinction 

between class III and class IV dendritic morphology. So far, class specific 

dendritic branching patterns were only linked to transcription factors, not to 

effector molecules acting directly on the cytoskeleton. Indeed, Singed is acting 

downstream to the previously described transcription factor Cut.  

Singed is localized to the class III spiked protrusions and required for their 

formation and typical morphology. Upon loss of singed, less spiked protrusions are 

formed and the remaining ones grow out longer and become more bended. 

Moreover, the intrinsic dynamic behavior of the spiked protrusions is lost. In class 

IV neurons, instead, singed is not required for the dendritic branching pattern. 

Interestingly, strong overexpression of Singed leads to the transformation of the 

long and bended terminal branchlets to a shorter and straight appearance, similar to 

the one of class III spiked protrusions (Fig. 4.1). Nevertheless, the mechanisms 

why Singed is not localized or activated in wild type class IV neurons remain to be 

elucidated. 

Regarding the wide expression of fascin in neural tissue of several species, it is 

likely that fascin is also responsible for dendritic morphologies, other than 

Drosophila md-da class III neurons. Further studies on fascin in dendrite 

development could help to understand the general and specific mechanisms 

underlying the formation of dendritic branches. 
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Figure 4.1: Model for Singed in dendrite formation 

(A) In class III wild type neurons, Singed is localized to the short and straight spiked protrusions. Upon loss of singed, 

the spiked protrusions grow out longer and become more bent. On top, they lose their dynamics. (B) In class IV wild 

type neurons, Singed is not localized to terminal branchlets. Upon Singed overexpression, class IV terminal branchlets 

become short, straight and do localize Singed. 
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5 Materials and Methods 

 

5.1 Materials 

 

5.1.1 Chemicals 

Table 5.1: Chemicals used in this study 

Chemical Supplier 

Acetic Acid  MERCK 

Agarose, high electroendosmosis Biomol 

Ampicillin Roche 

dNTP set Roche 

EDTA GIBCO  

Ethanol Riedel - de Haën 

Ethidium Bromide Roth 

Fetal Calf Serum (FCS) Perbio 

Formaldehyde (Methanol free) 10% Polysciences 

Glycerine MERCK 

Glycerine for fluorescence microscopy VWR international  

Halocarbon oil Volatef S3 Lehmann & Voss & Co 

Hydrochloric acid (HCL, 1M) VWR international 

p Hydroxybenzoic acid Sigma 

Methanol VWR international 

Methyl paraben Sigma 

Phosphoric acid VWR international 

Potassium dihydrogen phosphate MERCK 

Potassium chloride (KCl) MERCK 

Propionic acid VWR international  

Sodium dihydrogen phosphate MERCK 

Sodium chloride (NaCl) MERCK 

Tris BioRad 

Triton-X100 Roth 

 



Materials and Methods  87 

5.1.2 Buffers and Solutions 

Blocking Solution 

5% FCS was diluted in 0.3% PBT. 

 

Fly water 

8 ml propionic acid was filled up to 1L with H2O. 

 

Formaldehyde (FA) 4% for fixation 

For 50 ml final solution 20 ml 10% FA were mixed with 25 ml distilled water and 

5 ml 10xPBS. 

 

Phosphate buffered saline (PBS) 

NaCl (137 mM) 

KCl (2.7 mM) 

Na2HPO4 (8 mM) 

KH2PO4 (1.5 mM)   

For 1L 8g NaCl, 0.2g KCl, 1.15g Na2HPO4 and 0.24g KH2PO4 were dissolved in 

800 ml distilled water. The pH was adjusted with HCl to 7.4 and the volume with 

distilled water to 1L. The final solution was sterilized by autoclaving and stored at 

room temperature. For 10xPBS 10-fold amounts of salts were solved in 1L distilled 

H2O. 

 

Squishing Buffer 

Tris-Cl, pH 8.2 (10 mM) 

EDTA (1 mM) 

NaCl (25 mM) 

Poteinase K was freshly added to a final concentration of 200 µg/ml. 

 

PBT (0.3%) 

0.3% Triton-X100 was dissolved in PBS.  
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TAE (50x) 

Tris base 242g  

Glacial acetic acid 57.1 ml  

EDTA (0.5 M, pH 8.0) 100 ml  

All ingredients were disolved in distilled H2O to obtain a final volume of 1L. For 

1xTAE 20 ml of 50xTAE were mixed with 980 ml distilled H2O. 

 

5.1.3 Media 

Table 5.2: Media 

Medium Supplier 

Instant blue Drosophila medium Fisher Scientific 

Instant dry yeast Fermipan Inc. 

 

 

Apple agar plates 

To prepare apple agar 40 g agarose were slowly added to a boiling mixture of 500 

ml commercially available apple juice and 480 ml of distilled water. After cooling 

down to 60°, 10.5 ml of 95% ethanol and 10 ml of 100% acetic acid were added. 

The pH was adjusted to 4.2 and the apple agar was poured into plates. 
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Fly Food 

To obtain a final volume of 50 L, 585 g agar (Probio GmbH) were dissolved in 30 

L of 93°C hot water. Meanwhile, 5 kg maize flour (Prima Vera), 925 g yeast 

(Probio GmbH) and 500 g soy flour (Hofbräuhaus-Kunstmühle GmbH & Co. KG) 

were mixed with cold water to obtain a homogeneous broth. 2 kg sugar beet 

molasses (Grafschafter Krautfabrik) and 2 kg Diamalt (BIB Bake Mark 

Deutschland GmbH) were mixed in warm water. Finally, the yaest-flour broth and 

the molasses-Diamalt solution were mixed.  

As soon as the agar was dissolved, temperature was reduced to 90 °C and all 

prepared ingredients were added. The volume was adjusted to 50 L with water, and 

the solution was cooked for 2 h under constant mixing. 

When the temperature cooled down to 50 °C, 125 g Methyl paraben solved in 11 

ml 20% Ethanol and 500 ml 10% Phosphoric acid were added. 

 

LB (Luria-Bertani) medium and plates 

1% (w/v) Bacto-Trypton 

0.5% (w/v) Yeast extract 

0.5% (w/v) NaCl 

 

Distilled H2O was added to obtain the final volume. If necessary the pH was 

adjusted to 7.5. Finally, the solution was sterilized by autoclaving and stored at 

room temperature. LB plates were supplemented with 1.5% Bacto-Agar before 

autoclaving. To allow for selection of Ampicillin resistant bacteria Ampicillin was 

added to LB media and plates in a 1:1000 dilution of a 100 mg/ml stock solution.  

 

Yeast  

Instant dry yeast was mixed with Instant blue Drosophila medium and fly water to 

obtain a paste of the consistency of peanut butter.  
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5.1.4 Enzymes and DNA standards 

Table 5.3: Enzymes and DNA standards 

Enzyme/Standard Supplier 

Pfu DNA Polymerase Promega 

Proteinase K Sigma 

Restriction Endonucleases NEB  

T4 DNA Ligase Roche 

Taq Polymerase NEB  

1 kb ladder NEB  

100 bp ladder NEB  

 

 

5.1.5 Plasmids and DNA library 

Table 5.4: Plasmids and DNA library 

Vector/Library Supplier/Donor 

Drosophila cDNA clone LD16477 BioCat 

pP{UAST}  Juh Nung Jan 

pP{UAST} attB Johannes Bischof 

pRmHa3-GFP-actin Hiroki Oda 

pmKO1-MN1 MBL 
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5.1.6 Primer 

Table 5.5: Primer 

primer sequence 5’ – 3’  use 

GT684 ATAAGAATGCGGCCGCGGAAACGGC
CAGGGCTGCGAGC 

singed for N-terminal 
KO tag (forward)   

GT685 GCTCTAGATTAGAACTCCCACTGTGT
GGCC 

singed for N-terminal 
KO tag (reverse)   

GT681 CGGAATTCGACCATGGTGAGTGTGAT
TAAACCAGAGATG 

KO N-terminal tag 
(forward)   

GT682 ATAGTTTAGCGGCCGCCGGAATGAGC
TACTGCATCTTCTACC 

KO N-terminal tag 
(reverse)   

GT765 ACCTTTCATCCTACATAAATAGAC FRT19A (forward) 

GT766 ACATTATGAAGAGCAGCATATTAC FRT19A (reverse) 

GT827 GCTCAACGCCAATGGCGCCGCCCTGA
AGAAGAAGCAACTGTGG 

Site directed 
mutagenesis        Ser52 
→ Ala (forward)   

GT828 CCACAGTTGCTTCTTCTTCAGGGCGG
CGCCATTGGCGTTGAGC 

Site directed 
mutagenesis        Ser52 
→ Ala (reverse)   

GT829 GCTCAACGCCAATGGCGCCGACCTGA
AGAAGAAGCAACTGTGG 

Site directed 
mutagenesis        Ser52 
→ Asp (forward)   

GT830 
CCACAGTTGCTTCTTCTTCAGGTCGGC
GCCATTGGCGTTGAGC 

Site directed 
mutagenesis        Ser52 
→ Asp (reverse)   

 

All primers were synthesized by Eurofins MWG Operon. The primers GT827-

GT830 were additionally HPLC (high performance liquid chromatography) 

purified.  
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5.1.7 Antibodies 

Table 5.6: Antibodies 

Antibody Supplier 

mouse anti-Singed 7C DSHB 

mouse anti-22C10 DSHB 

donkey anti-mouse-Cy3 Jackson Laboratories 

donkey anti-rabbit-Cy2 Jackson Laboratories 

rabbit anti-GFP Living Colors 

 

 

5.1.8 Commercial kits 

Table 5.7: Commercial kits 

Commercial Kits Supplier 

QIAquick Gel Extraction Kit Qiagen 

QIAprep Spin Miniprep Kit Qiagen 

QIAGEN Plasmid Midi Kit Qiagen 

Quick Change II XL Site directed mutagenesis Kit Stratagene 

 

 

5.1.9 Equipment 

Table 5.8: Microscope systems 

Microscope Supplier 

Coolsnap HQ2 camera Photometrics 

CSU Real-Time Confocal System Visitron 

Leica MZ16 Flourescent Dissectoscope Leica GmbH 

Leica SP2 Confocal Microscope Leica GmbH 

Schott KL 1500 LCD Light Source Schott 

Zeiss Observer 1 Microscope Zeiss GmbH 

Zeiss Stemi 2000-C Dissectoscope Zeiss GmbH 
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Table 5.9: Consumables 

Consumables Supplier 

Electrocompetent cells TOP10 Invitrogen 

Electroporation cell BioRad 

Doppelband Fotostrip (double sided tape) Tesa AG 

Foreceps DuMont Nr. 5 FST 

Immersion oil Leica GmbH 

Insect pins  FST 

Microscope cover glasses 24 mm x 40 mm Menzel Gläser 

Microscope sildes 76 mm x 26 mm Menzel Gläser 

Sylgard 184 Silicone Elastomere  SASCO GmbH 

Small petri dishes Mat Tek Corporation 

Vectashield mounting medium Vector Laboratories 
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5.2 Drosophila stocks 

 

5.2.1 Fly stocks 

Table 5.10: Fly stocks 

Stock Donor/Source 

2-21Gal4                         (Ye, Petritsch et al. 2004) Juh Nung Jan  

80G2                            (Gao, Brenman et al. 1999) Juh Nung Jan 

c161Gal4                     (Shepherd and Smith 1996) Wesley Grueber 

477Gal4                          (Grueber, Jan et al. 2003) 
Bloomington Stock 
Center 

109(2)80Gal4               (Gao, Brenman et al. 1999) Juh Nung Jan 

OregonR 
Bloomintgton Stock 
Center 

actinGal4 
Bloomington Stock 
Center 

UASmCD8::cherry Takashi Suzuki 

UAScutEHK                      (Grueber, Jan et al. 2003) Adrian Moore 

FRT19A 
Bloomington Stock 
Center 

tubGal80 hsFLP FRT19A; 109(2)80Gal4 
UASmCD8GFP 

Wesley Grueber 

UAS-Act5C.T::GFP 
Bloomington Stock 
Center 

UAS-GFP S65C tub84B  
                             (Grieder, de Cuevas et al. 2000) 

Nicole Gieser 

w1118 
Bloomington Stock 
Center 

sn3                              (Paterson and O'Hare 1991) 
Bloomington Stock 
Center 

sn36                             (Paterson and O'Hare 1991) 
Bloomington Stock 
Center 

UASmCD8::GFP 
Bloomington Stock 
Center 
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5.2.2 Genotypes analysed 

Table 5.11: Genotypes analyzed in this study 

Genotype 

80G2/+ 

sn36a; 80G2/+ 

+/Y or sn3/Y or sn36a/Y; UASmCD8GFP/+; c161Gal4/+ 

sn36a/Y; UASmCD8GFP/UAS-mKO::sn; c161Gal4/+ 

UAS-GFP::sn/+; c161Gal4 UASmCD8cherry/+ 

+/Y or sn36a/Y; 477Gal4 UASmCD8GFP 

attPUAS::mKOsn/477Gal4 UASmCD8GFP 

attPUAS::mKOsnS52A/477Gal4 UASmCD8GFP  

attPUAS::mKOsnS52D/477Gal4 UASmCD8GFP 

 sn36a/Y; attPUAS::mKOsn/UASmCD8GFP; c161Gal4/+  

sn36a/Y; attPUAS::mKOsnS52A/UASmCD8GFP; c161Gal4/+ 

sn36a/Y; attPUAS::mKOsnS52D/UASmCD8GFP; c161Gal4/+ 

+/Y; UAS-cutEHK/+; 2-21 UASmCD8GFP/+ 

sn36a/Y; UAS-cutEHK/+; 2-21 UASmCD8GFP/+ 

sn36a/Y; 2-21 UASmCD8GFP/+ 

109(2)80Gal4/UAS-actinGFP; UASmCD8cherry/+ 

109(2)80Gal4/UAS-tubulinGFP; UASmCD8cherry/+ 

UAS-mKO::sn/ 80G2 

UAS-mKO::sn/UASmCD8GFP; c161Gal4/+ 

UAS-mKO::sn/+; 477Gal4 UASmCD8GFP/ +  

sn36a FRT19A; 109(2)80Gal4 UASmCD8::GFP/+ 

FRT19A; 109(2)80Gal4 UASmCD8::GFP/+ 
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5.3 Methods 

 

5.3.1 Molecular procedures 

Fluorescently tagged Singed constructs 

For the fluorescently tagged versions of Singed, mKO (GFP) and Singed were 

cloned in two steps into the pP{UAST} vector. The sites for restriction 

endonucleases and other additional nucleotides were introduced by appropriate 

primer design. For mKO (GFP) the restriction sites EcoRI and NotI were added 

and the STOP codon was eliminated. An additional guanosine nucleotide upstream 

of the NotI restriction site was necessary to maintain the open reading frame. For 

Singed the restriction sites NotI and XbaI were added and the first AUG was 

eliminated. GGA, coding for Glycine, was introduced downstream the NotI site 

and should provide flexibility between the mKO (GFP) and the Singed part of the 

protein.  

For each construct at least 3 independent lines were generated by Best Gene. 

 

 

 

Polymerase Chain Reaction (PCR) 

PCR was used to amplify the DNA fragments of interest. The template for the PCR 

amplification of singed was the Drosophila cDNA clone LD16477. For the 

amplification of mKO the pmKO1-MN1 plasmid was used and for the 

amplification of GFP the pRmHa3-GFP-actin plasmid. The GFP tagged Singed 

was cloned by Jana Lindner using the same cloning strategy as described for the 

mKO tagged Singed.  

 

Figure 5.1: Cloning strategy for mKO tagged Singed 
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PCR singed 

 

1 μl cDNA clone LD16477 (0,1 µg/µl) 

2 μl Primer GT684 (10 pmol/µl)  

2 μl Primer GT685 (10 pmol/µl) 

5 μl dNTPs (5 mM) 

0.5 μl Pfu DNA Polymerase (3000 U/ml)  

5 μl Pfu Buffer 

_______      

ad 50 μl dH2O  

 

Cycling conditions 

 

95 ºC                2 min 

95 ºC                30 sec 

62 ºC                45 sec                                     34 cycles     

72 ºC                2 min 

72 ºC                10 min 

10 ºC                ∞ 

 

 

 

PCR KO 

 

1 μl pmKO1-MN1 (0,143 µg/µl) 

2 μl Primer GT681 (10 pmol/µl) 

2 μl Primer GT682 (10 pmol/µl) 

5 μl dNTPs (5 mM) 

1 μl Taq Polymerase (5000 U/ml) 

5 μl 10x ThermoPol Reaction Buffer 

_______ 

ad 50 μl dH2O  
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Cycling conditions 

 

95 ºC                2 min 

95 ºC                30 sec 

62 ºC                45 sec                                     34 cycles     

72 ºC                45 sec 

72 ºC                10 min 

10 ºC                ∞ 

 

 

Site directed mutagenesis 

For the generation of the Singed phosphovariants, mKO tagged Singed was 

subcloned into the pP{UAST} attB vector (Bischof, Maeda et al. 2007).  

To exchange the conserved Serine at position 52 with Alanine or Arspatic Acid I 

performed site directed mutagenesis by PCR using the Stratagene Quick Change II 

XL Site directed mutagenesis Kit as described in the manual. To achieve 

comparable levels of expression all constructs were inserted into the 51D attP 

landing site (Bischof, Maeda et al. 2007). At least 3 independent lines were 

generated by Best Gene. 

 

PCR for site directed mutagenesis 

 

10 ng dsDNA template (attPUASmKO::sn) 

5 µl 10x Reaction Buffer 

1 µl Primer GT827 or GT829 (100pmol/µl) 

1 µl Primer GT828 or GT830 (100pmol/µl) 

1 µ dNTP Mix  

3 µl Quick Solution Reagent 

1 µl Ultra Pfu 

_______ 

ad 50 µl dH2O 
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Cycling conditions 

 

95 ºC                1 min 

95 ºC                50 sec 

60 ºC                50 sec                                     18 cycles 

68 ºC                13 min 

68 ºC                 7 min 

4 ºC                   ∞ 

 

 

Gelelectrophoresis 

Depending on the size of the DNA fragments of interest 0,8 %-1,2 % agarose in 

TAE buffer was used for the gels. Before pouring the gel, 0,5 µg/ml ethidium 

bromide were added to the hand-hot agarose to visualize the DNA under UV light. 

TAE Buffer was used as running Buffer. The gel was run for 30-60 min at 200V. 

For documentation a picture of the gel was taken under UV light. 

 

 

 

Gel extraction of DNA 

To purify the specific PCR DNA fragments, the DNA was separated on a agarose 

gel. The fragment of interest was cut out of the gel under UV-light with a sterile 

razor blade and purified with QIAquick Gel Extraction Kit following the 

manufacturer’s manual. DNA was eluted with 30 µl dH2O instead of elution 

buffer. 

 

Restriction Digests of DNA 

Restriction digests with endonucleases were performed in a 20-45 µl reaction 

volume using buffer conditions and incubation temperatures according to the 

manufacturer’s manual. Digests were incubated 1-4 h. Enzymes were heat 

inactivated if necessary according to the manufacturer’s manual. 
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Estimation of DNA concentration on a agarose gel 

The concentration of DNA can be estimated on an agarose gel. Therefore DNA 

was loaded on a gel together with a standard curve of DNA of a known 

concentration. The intensities of their bands were compared and the concentration 

of the sample DNA estimated. As reference DNA 1 kb DNA ladder at a 

concentration of 0,1 µg/µl was used. Its 1,6 kb band corresponds to 10% of the 

total DNA. 

 

Ligation 

Ligations were carried out in a 10 µl reaction volume, containing 1 µl T4 DNA 

Ligase, 1 µl 10x T4 DNA Ligase Buffer, vector and fragment. Vector and fragment 

(“insert”) concentrations were estimated on an agarose gel and used in an 

approximate ratio of 1:5 in the reaction, their molecular weight taken to account. 

The reaction was incubated at 16° C overnight. 

 

Electroporation 

After thawing 50 µl electrocompetent bacteria (TOP10, Intritrogen) from a frozen 

stock (-80° C) for 15 min on ice, 50-150 ng DNA were added. The mixture was 

transferred to a chilled electroporation cell, avoiding formation of air bubbles. 

Electroporation was conducted at 2,5V, 25 µF capacity and 200Ω resistance. 

Directly after electroporation 250-350 µl LB-medium was added and the bacteria 

were transferred to a 1,5 ml reaction tube and incubated at 37°C for 60 min to 

allow expression of resistance genes in transformed cells. Afterwards the bacteria 

were plated on selective LB plates and incubated at 37°C overnight. 

 

DNA Miniprep 

The DNA of a 4 ml bacterial overnight culture in selective LB medium was 

extracted using the QIAprep Spin Miniprep Kit as described in the manual. DNA 

was eluted with 30 µl dH2O. DNA purification was verified on an agarose gel. 
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DNA Midiprep 

The DNA of a 50 ml bacterial overnight culture in selective LB medium was 

extracted using the QIAGEN Plasmid Midi Kit as described in the manual. The 

DNA pellet was dissolved in 100 µl dH2O. DNA concentration was determined 

with a UV spectrometer. 

 

Determination of DNA concentration  

The final concentration of Plasmid DNA was measured using a UV spectrometer. 

The extinction of 1 at a wavelength of 260 nm corresponds to a concentration of 50 

ng/µl. 

(dsDNA: OD x 50 x dilution factor = X ng/µl) The quotient of optical density from 

260 nm and 280 nm depends on the quality of the DNA. Pure DNA results in 

values between 1,8 and 2,0 

 

Culture and conservation of E. coli strains 

Bacteria were either cultured in LB-Medium containing selective antibiotics in a 

shaking incubator at 37° C or on LB-agar plates containing selective antibiotics in 

an incubator at 37° C. For short time periods bacteria were stored at 4° C, for 

longer periods they were stored in 45 % Glycerol at -80° C. 

 

Sequencing 

The all cloned vectors were verified by sequencing in house or were sent to 

Eurofins MWG operon.  

 

 

5.3.2 Gal4 UAS system 

With the Gal4 UAS system it is possible to restrict the expression of genes 

spatially and temporally (Brand and Perrimon 1993). Therefore I implemented this 

system to visualize different subsets of md-da neurons in the living animal. Gal4 

enhancer trap lines combined with UAS coupled fluorophores like mCD8::GFP or 

mCD8::cherry allowed for labeling of the membrane in the neurons of interest. 

Moreover, I used the Gal4 UAS system to express UAS coupled genes ectopically.  
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5.3.3 MARCM 

The MARCM (mosaic analysis with a repressible cell marker) system is used to 

create genetic mosaics with unlabeled and labeled cells. Initially all cells in the 

MARCM system have the potential for the expression of a UAS coupled marker 

gene: they carry the UAS coupled marker gene and express Gal4, however they are 

unlabeled because of the existence of a Gal80 repressor. Upon mitotic 

recombination the repressor can be lost in one daughter cell, allowing for labeling 

of this cell (Lee and Luo 1999). The mitotic recombination is mediated by the FLP 

recombinase, which catalyses the recombination at specific FRT sites (Golic and 

Lindquist 1989). Mutations of interest that were located in trans to the Gal80 

repressor on the same chromosome arm, and distal to the homozygous insertions of 

FRTs, should become homozygous in the uniquely labeled cells after the 

recombination event (Lee and Luo 1999).  

For singed loss-of-function analysis by MARCM, sn36a was recombined with 

FRT19A. Single male recombinants were checked for the singed mutant bristle 

phenotype to verify the existence of the sn36a p-element insertion. The FRT19A 

insertion was verified by PCR. Therefore single males were frozen at -20°C for 3 

h. To extract the genomic DNA frozen single males were squished in 50 µl 

squishing buffer in PCR tubes. Followed by incubation in the PCR heating block: 

 

 

 

Figure 5.2: Gal4 UAS system 

The Gal4 protein is expressed under the control of a tissue specific genomic enhancer. It can bind to upstream 

activation sequences (UAS) and activate the expression of genes downstream of UAS.  
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37°C                30 min 

95°C                2 min 

10°C                ∞ 

 

1 µl of the extracted DNA was used for the PCR. 

 

PCR FRT19A 

 

1 µl extracted DNA 

1 µl Primer GT765 (100 pmol/µl) 

1 µl Primer GT766 (100 pmol/µl) 

10 µl dNTPs (5mM) 

2 µl Taq Polymerase (5000 U/ml) 

10 µl 10x ThermoPol Reaction Buffer 

________ 

ad 100 µl dH2O 

 

Cycling conditions 

 

95 ºC                5 min 

95 ºC                30 sec 

57 ºC                30 sec                                     39 cycles     

72 ºC                1 min 

72 ºC                10 min 

10 ºC                ∞ 

 

The existence of the 500 bp PCR product was checked by gelelectrophoresis. 

 

tub-Gal80, hsFLP, FRT19A; 109(2)80Gal4 UASmCD8GFP/CyO virgins were 

crossed to sn36a FRT19A/Y and FRT19A/Y males. Out of this cross an egg 

collection on apple agar plates was done for two hours at 25°C, followed by a 3 h 

incubation time at 25°C. Heat shock was performed in a 38°C water bath for 45 
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min followed by a 30 min incubation time at RT and a final heat shock at 38°C for 

30 min (Grueber, Jan et al. 2002). Third instar larvae were directly examined for 

clones under the confocal microscope (Leica SP2). 

 

 

5.3.4 Immunohistochemistry 

For antibody staining wandering third instar larvae were pinned down on sylgard 

dishes at their anterior and posterior ends with insect pins. The larvae were then 

covered with PBS and cut ventral along their long body axis with dissection 

scissors. The larval body wall, consisting of epidermis and muscles was opened 

and pinned down to obtain a flat open book preparation. The interior of the larvae, 

including trachea, CNS and digestive system, was removed (Grueber, Jan et al. 

2002).  

For Singed antibody staining, filleted third instar larvae were fixed for 1 h at RT in 

4% formaldehyde, incubated for 45 min in 1% PBT afterwards incubated in 

blocking solution for 30 min and probed with the following primary antibodies: 

mouse anti-Singed 7C (1:20) and rabbit anti-GFP (1:1000); followed by the 

secondary antibodies: Cy3-conjugated donkey anti-mouse (1:200) and Cy2-

congugated anti-rabbit (1:200).  

For Futsch antibody staining filleted third instar larvae were fixed for 5 min in -

20°C Methanol, followed by three rehydration steps in 75%, 50% and 25% 

Methanol at RT for 5 min each. Afterwards they were incubated in blocking 

solution for 30 min and probed with the following primary antibodies: mouse anti-

22C10 (1:20) and rabbit anti-GFP (1:1000); followed by the secondary antibodies: 

Cy3-conjugated donkey anti-mouse (1:200) and Cy2-congugated anti-rabbit 

(1:200).  

The larva filets were mounted in Vectashield and analyzed by confocal microscopy 

(Leica SP2) using a 40x objective. 
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5.3.5 Confocal imaging 

To image the da neurons in abdominal segments A3-A6, wandering third instar 

larvae were immerged in 90% glycerol and pressed between glass slide and cover 

slip using double sided tape as spacer. Confocal images were obtained (Leica TCS 

SP2) using a 20x objective for class I and class III neurons, and a 40x objective for 

class IV neurons. Maximum projections of the confocal stacks were further 

processed with Photoshop (Adobe). 

For time-lapse imaging UAS-GFP-sn/+; C161Gal4 UAS-mCD8-cherry/+ second 

instar larvae (~ 48 h AEL) were mounted in S3 Voltalef halocarbon oil and 

immobilized with an air-permeable sieve as described before (Dimitrova, Reissaus 

et al. 2008). For imaging a spinning disc confocal (CSU10 Real-Time Confocal 

System by Visitron Systems, mounted on a Zeiss Observer 1 microscope) with a 

Photometrics Coolsnap HQ2 camera was used. Confocal stacks of the same region 

of the neuron were taken every 3 min over a period of 15 min with a 63x objective. 

Laser power was set to 80%, exposure time to 900 ms for 561nm laser and 1200 

ms for 488nm laser and every stack consists of 10 slices (distance 1μm).  

To avoid movement of the larvae they were anesthetized in ether as described 

before (Zito, Parnas et al. 1999) and immediately imaged. Thereafter each larva 

was checked for vitality. Maximum projections of the individual time-points were 

further processed with Photoshop (Adobe). Single time-points were deleted if the 

larval movement interfered with proper confocal imaging. 

 

 

5.3.6 Image analysis and statistics 

Images were analyzed with ImageJ software (National Institutes of Health, 

Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/), using the NeuronJ Plug-in 

(Meijering, Jacob et al. 2004) to trace the dendritic branches. In class III neurons, 

spiked protrusions were counted as unbranched terminal processes that are no 

longer than 30 μm. If there was a branch point that gave rise to two terminal 

branches, the shorter one of these branches was counted as a spiked protrusion, the 

longer one was considered to be part of the main dendritic tree. To analyze the 

branch distribution in class IV neurons I used Sholl-Analysis (ImageJ, NeuronJ 
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plug-in Sholl-Analysis). Neuron J tracings were measured to quantify dendrite 

length, spiked protrusion and terminal branch number and length and spiked 

protrusion density. At least 5 different animals per genotype were used for 

quantification. Statistical analysis was done using Student’s t-test for comparing 

two groups. When more than two groups were compared we did One Way Anova 

and a Bonferroni’s Multiple Comparison Test for normally distributed samples and 

Dunn’s Multiple Comparison Test for non-normally distributed samples. 

To calculate the convex hulls defining the curvature of terminal branchlets, 

NeuronJ reconstructions were exported to tiff images and imported to Matlab. To 

make the reconstructions accessible to graph theoretical calculations, cells were 

automatically reconstructed to vectorized directed binary tree structures using the 

TREES toolbox (Cuntz, Forstner et al. 2010). Terminal branchlets were defined 

from the terminal tip to the closest branch point along the path to the soma of a 

cell. Convex hulls enclosing the complete terminal branchlets were computed 

individually for each terminal using built-in Matlab functions. The polygon area 

was calculated and normalized by the specific terminal path length. 
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