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Abstract

This thesis presents work on several aspects of 3D shapegsiag. We develop
a learning based surface reconstruction algorithm thathsst to typical input
artifacts and alleviates the restrictions imposed by pevisuch methods. Using
the human shape perception motivated paradigm of repiegeat3D shape by
its 2D views obtained from its view sphere, we compute th@sisdbest views”,
extend these views to obtain the more dynamic “best fly” ofshape and also
compute shape complexity which is used to compare the shiipetlvers so as to
obtain an ordering. Our example based method to “correotigtient a 2D shape
in an image is also presented as well as a strategy to appaitxshape descriptor
values on the view sphere using just a few samples. This aliowypass the often
time consuming requirement of evaluating the descriptoa odense sampling of
the view sphere to obtain an accurate representation. Wepagsent our work
on accelerating shape similarity retrieval by using teghas from text retrieval.
Lastly, we present some of the guiding principles behindrtfaentenance and
development of a large scale, publicly accessible shapmsiteypy.

Kurzfassung

Diese Arbeit pasentiert verschiedene Aspekte der Bearbeitung von 3D ©Objek
ten. Wir entwickeln einen Lern-basierten “Surface Recarsiton”-Algorithmus,
der robust gegeiberiblichen Messartefakten ist und die Einsafikung solcher
Methoden verbessert. Aufgrundlage der menschlichen Véainnang von 3D Ob-
jekten als 2D Sichten aus verschiedenen Perspektiven des Spheres” berech-
nen wir den “Best View”. Wir erweitern die Best Views zu einenméynischen
“Best Fly” um das Objekt herum. Weiterhin bestimmen wir dienglexitat eines
Objekts und verwenden dies um Objekte mit anderen zu vetgai Daraus
gewinnen wir eine Sortierung der Objekte anhand ihrer Kextit. Ebenso
stellen wir eine Exemplar-basierte Methode zur “richtig@rientierung eines
2D Obijekts in einem Bild vor, sowie eine Strategie um die Dipsér-Werte der
View Sphere durch wenige Samples zu approximieren. Sonmnhdwo wir die
oft langsame Auswertung der Deskriptoramr £ine feine Abtastung der View
Sphere umgehen um eine genaue Darstellung des Objekts aliearh Wir
stellen weiterhin unsere Arbeit zur Beschleunigung zur Agprahnlicher Ob-
jekte unter Verwendung von Retrieval-Techniken vor. S@&ieh legen wir einige
Grundprinzipien der Entwicklung und Wartung einer umfaighen,offentlich-
zuganglichen Objekt-Sammlung dar.






Summary

Corresponding to the increase in use and popularity of digideshape models in

a variety of applications, methods to acquire, store antyaedahese shapes are
becoming more important. We start off by showing how thesthods fit into a
digital shape pipelin@and then present our work in various stages of this pipeline.

A common way to digitize a real world object is to capture p®ion the shape’s
surface using a laser scanner. The resulting point cloudrsuirom usual mea-
surement artefacts like noise and outliers. Further, it hmaye holes or missing
data. For subsequent processing, a cleaner, more convegpeasentation is re-
quired. We present a novel, learning based method thattlglprecesses such a
point cloud to output a triangle mesh, which is the de facemaard for surface
representation in computer graphics.

While shapes exist as three dimensional objects in the reddiaod, digitally, in
the computer, they are ultimately presented on 2D media,reapitor or paper.
Presenting a 3D shape on 2D requires a projection givingtoiseview of the
shape. As infinitely many 2D views of a 3D shape are possibteare can
typically present just a few views, a strategy to rank viewd aelect the “best”
ones becomes necessary. We present our work on seléetstgiewof 2D and
3D shapes. We also extend the problem of finding best viewatioathcomputing
best fly-a dynamic representation of the shape—and show how ourutemhpest
views can easily be extended to solve the best fly problem.

The view finding methods above make use ofthev spheref a shape, specifi-

cally of computing certain descriptor values at discreta@as on the surface of
the view sphere. The denser the view sphere is sampled, the acourate are
the results obtained. This introduces a tradeoff betweearacy and efficiency.

We show how it is possible to obtain an accurate, continuepsesentation of

descriptor values by sampling the view sphere only at a feerdte samples and
thus maintaining efficiency.

Our techniques mentioned till now mostly work with and amelya single 3D
shape inisolation. The increase in popularity and easeaofiadoility of 3D shapes
gives rise to the need for a new kind of methods that can realsont shapes in
context of a larger collection. It is desirable to know hovwhase relates to others
in a collection. Does the collection contain similar sh&p@se the other shapes
more or less complex than my current shape? Are there shajles collection
that were acquired under identical conditions? The listsgoe. We have ad-
dressed the first two issues in our work. We present an ingexiechanism to
significantly accelerate current shape similarity methaktsving us to rapidly



Vi

search through a large collection for shapes similar to aygsieape. Second,
we leverage insights from human vision research to obtaieasnre of the com-
plexity of a shape and use it to sort a collection of shapesrdoty to shape
complexity.

Nearing the end, we present how many of the ideas presente® @an be and
are showcased in a publicly accessible, voluminous cadledaif shapes, whose
upkeep, development and maintenance consumed a significetian of the re-
search time allotted for this thesis and in turn inspired ro=®s.
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Zusamenfassung

Aufgrund gibl3er werdender Bedeutung von 3D Modelle werden Werkzeuge zum
Erzeugen, Verteilen und Analysieren zunehmend wichtigedieser Arbeit wird
zuerst gezeigt, wie diese Methoden in eldigitale Shape Pipelin&inein passen.
Anschliel3end zeigen wir wie sich diese Arbeit in die versdenen Teile der
Pipeline einfigt.

Der ubliche Weg reale Objekten zu digitalisieren erfalfpter das Abtasten der
Oberflche mittels eines Laser-Scanners. Die so gewonnene Ralk&tleinhal-
tet Messfehler aufgrund von Rauschen und Ausreil3ern. Weitkann die Punkt-
wolke unvollstndig erfasst worden seintiFdie anschlie3enden Schritte lbéigt
man eine saubere und einfach zu verwendendene DarstelWirgstellen eine
neue Lern-basierte Methode vor, die eine robuste Umwagdien Punktwolken
in Triangle Mesh erraglicht. Das Triangle Mesh ist der de facto Standairddie
Darstellung von Obetdichen in der Computergrafik.

Obwohl drei dimensionale Objekte nur in der Redliind digital im Computer
vorhanden sind, werden sie doch meist in 2D dargestellt zi1Bdam Monitor
oder auf Papier. Die Darstellung von 3D Objekten in 2D edore@ine Projek-
tion und damit eineSichtweiseauf das Objekt. Da es unendlich vielégtiche
2D Sichten eines 3D Objekts gibt und man normalerweise nuigeedarstellen
kann, ist es notwendig die Sichten zu ordnen und die “BestsZw@ahlen. Wir
prasentieren unsere Arbeiten zum aatVen der besten Sicht auf ein 3D Objekt.
Wir erweitern dabei das “Best View”-Problem zum “Best Fly'eBlem, wobei
wir eine dynamische Darstellung des Objekts berechnen eiDadigen wir wie
mit unserer Berechnung des Best Views einfach das Best FlyidPnajebst wer-
den kann.

Ublicherweise verwenden die Methodeir flas Finden bester Sichten dieew
Sphereeines 3D Objekts, im Speziellen berechnen sie werte beséndeskrip-
toren auf diskreten Punkten der Obacthe des View Sphere. Je feiner die View
Sphere abgetastet wird, desto besser ist der Best View. Bdibeeinen Tradeoff
zwischen Qualat und Effizienz. Wir zeigen wie esaglich ist eine genaue und
kontinuierliche Darstellung des Deskriptors zu erhaltetem nur wenige Punkte
verwendet werden und so die Effizienz erhalten bleibt.

Die bisher en@hnten Techniken bearbeiten und analysieren einzelne 3D Ob
jekte meist unabdingig von einander. Die zunehmende Bedeutung und ein-
fache Verfigbarkeit von 3D Objektenihrt zu eimem Bedarf neuerer Metho-
den die mit Objekten im Kontext gro3er Sammlungen umgeltemé&n. Es ist
winschenswert zu wissen, wie ein Objekt im \&this zu anderen Objekten einer
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Sammlung steht. En#iit die Sammlungihnliche Objekte? Sind andere Objekte
weniger komplex als ein gegebenes? Gibt es Objekte in demBarg, die unter
ahnlichen Bedingungen digitalisiert wurden? Die Listedisich fortfihren. Wir
behandeln in dieser Arbeit die ersten zwei Fragen. Wasentieren dazu eine
Indizierung, die die gegeriimtigen Methoden zur Bestimmung d&hnlichkeit
von Objekten beschleunigt und die es erlaubt sehr schnedirm Anfrage-
Objekt aehnliche Objekte in grofien Sammlungen zu idergigzni. Beaglich der
zweiten Frage, verwenden wir Einsichtgher die menschliche Wahrnehmung
um ein Mal3iir die Komplexitt eines Objekts zu entwickeln und benutzen es um
Objekte anhand ihrer Komple#it zu sortieren.

Schliel3lich zeigen wir wie viele der vorgestellten Ideengesetzt werden
konnten und exemplarisch in einer umfangreichen gfidntlich-zuganglichen

Sammlung von Objekten umgesetzt sind. Die Sammluingdéren Entwicklung
und Wartung ein grof3er Teil der Forschungszeit dieser Ashdgewendet wurde,
inspirierte neue ldeen.
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Chapter 1

Introduction

After text, images and video, the next wave of digital mediaxpected to com-
prise 3D shape content. Indeed, an increasing number otslepsitories are
being established either online or as in house catalogss dreiates a need for
tools to analyze and manage contained shapes.

This thesis presents such techniques. While each of theitpesican be used
outside the context of a shape library, almost all of them lmarshowcased in
a repository and would contribute towards automation of m@m management
tasks. Here, we provide a brief overview of each of our tegives and mention
how they can be incorporated in a shape library.

There are several ways to create 3D content — it can be deks(fpoen scratch)
using specialist tools and softwares, synthesized fromr2Bges, obtained by
editing existing content, or acquired from real world olgecOnce created, the
content can be cataloged for later reference, placed inatidr augmented envi-
ronments, animated, shared, re-edited and/or analyzed.

This gives rise to the notion ofdigital shape pipeline An object, whether real,

3. Processing

1. Acquisition/ 2. Reconstruction/

Obiect Modeling Export 4. Analysis

ject ! o .
h R D | Sh Model h hi t

(Real world/imaginary) Shape Representation igital Shape Mode Shape Characteristics

Figure 1.1: The digital shape pipeline

existing as a part specification or in an artist’s imaginatis first given a digital
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representation. This could be the internal representafitimee modeling software
being used, orange dataobtained from a 3D scanner. In this intial form, the
shape is not useful for general use and needs to be converéestdandard format
(e.g. VRML) or representation (e.g. triangle mesh). Theltegudigital shape
model might still not be ready for dissemination or analyiss requiring further
processing like remeshing, simplification or smoothing tiA$ point, the digital
shape can be used for any desired application.

Digital geometry processing refers to tools spanning thieeepipeline. Shape ac-
quisition is the process of acquiring a digital represeomadf a real world object.
Depending on how accurately the digital shape should reptets real counter-
part, different methods can be used for this step. The masirate representa-
tions are obtained using contact scanners or range scannbeesformer move
a mounted arm over the surface of the object and obtain auate of surface
points using the position of the arm in relation to a fixed poifihis method is
unsuitable for shapes that are sensitive to touch or hamrekichrphysically. Laser
scanners obtain point coordinates by projecting a lasemlmwathe surface and
catching the reflected beam at a sensor. As projection arsbseositions and
angles are known, surface points can be computed by triatigal To maximize
coverage of the shape, it has to be scanned multiple times $everal direc-
tions. The obtained data is referred torasge dataand hence laser scanners are
also called range scanners. Due to relatively low pricesifie scanners, range
scanning is the method of choice for accurate 3D shape zhigjidin.

Range data is subject to common measurement errors like awodseutliers, and
shape specific properties like holes. Holes occur in thetpdoud when the
corresponding region of the shape’s surface was not scaaitlkedr due to incom-
plete coverage by the scanner or, as is more common, due lissmecwhereby
some portion of the shape is hidden from the scanner’s vieanwgher portion.
Surface Reconstructiadechniques that reconstruct a surface representation from
point data therefore have to be robust to such artifacts.

Direct reconstructions of range data are highly dense atailel@, leading also to
large file sizes. This is especially prohibitive in conteksbape repositories that
have to store many shapes and be able to provide them to weeismmetwork con-
nection. Such fine detail is also not important to most useshape repositories
and they would readily trade representation detail witle.shape simplification
or fairing methods obtain a simplified representation of a given shaperding
to some criteria, e.g. preservation of curvature. The ss/g@rocess, i.e. ob-
taining a denser representation of a given shape, is achteveughsubdivision
techniques.

Once a shape has been obtained at a desired level of detah ibe placed in



a virtual environment or in a simulation, it can be interdctéth, animated or
deformed, it can be cataloged for later look up, inspecteckteal interesting
properties of the real shape it represents or showcaseduaMmuseum applica-
tions. The shape can be used in simulations to observe its/lmelunder different
conditions before it is sent to manufacture. For advegigarposes, a shape can
be rendered with appealing visual effects. A shape can asasbd to retrieve
other shapes from a collection that are similar to it, or lddbe decomposed
into parts and assembled into a new shape with parts from shiag@es. Recently,
printers have been introduced that even make it possiblano3D shapes. The
power and flexibility afforded by having a digital repressin opens the doors
to limitless possibilities to interact with the shape.

However, in order to guide a user to a desired shape in a tepgsiisual cues to
the shape have to be presented in the form of shape thumbBaite thumbnail
shows the shape from a particular view and together, setharaibnails provide
the user with a good idea of the shape without their havingntioaded it. Best

view methods aim to compute the viewpoints most suitable forioiotg such

views of a shape. Depending on the targeted applicationobjgct recognition
and maximizing visible area, the goodness of a particulewvnay vary and a
view that is deemed good for one application might not be sarfiother.

In maintaining a large shape repository, it also becomesitapt to present users
with different ways to browse contained shapes. Basic categmns of shapes
can be with respect to

representation type, e.g. mesh, implicit surface, boyndgresentation,

represented object, e.g. cultural artifact, furniturenlan, or

applicable terms, e.g. unrestricted use, share alikéyaityn, or even

user who uploaded the shape.

Ranking shapes based on their properties can provide amo#aars to efficiently
guide users to desired shapes. These properties could beavbbtypes, i.e.

e directly accessible from shape data, e.g. number of geawimitives,
file size,

e relative to the repository, e.g. time of addition to the r@pwry, popularity
among downloaded shapes, or

e derived from the shape’s geometry, e.g. topology, shapelenaity.

The quality of a shape repository is measured in terms of dhgeut provides to
its users. In addition to obvious steps like populating #y@ository with a large
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variety of shapes, keeping the collection up to date by ooatly adding new
shapes and minimizing the search effort between a user aiddisired shape,
there are other factors that go towards making the repgsiteeful. In order to
provide the user a variety of sortings of shapes as discuds®e, the repository
needs to store a large amount of information on each shaperiig this data
manually is cumbersome for a user. Thus, it is helpful to lawematic tools in
the repository to extract maximum information from a shape thus reduce user
load. Digital shapes can easily take up hundreds of megsibyfée size. Adding
multi-resolution shape viewers to the repository allowsrago inspect a shape
satisfactorily before downloading it. Similarly, inte¢ireg simplification tools
allows users to download simplified versions of highly dethistored shapes,
if desired. For publicly accessible repositories, sugadtcess policies need to
be put into place. Dissemination of shapes also needs toiteolled through
licensing options.

1.1 Contributions and Outline

Most of the work presented in this thesis deals with Stepsd24aaf the digital
shape pipeline shown in Figudel In particular, we make contributions in the
following areas of digital shape processing. For each afeheve mention related
work in Chapte2. For brevity, existing tools and methods that we commonéy us
in our techniques below are outlined in Chaf@emMost of the work has already
been published or is currently under review for publicatidowards the end of
this section, we also mention some of our work that we beldeserves further
attention.

1.1.1 Learning based Surface Reconstruction

As range data is typically noisy and incomplete, stochastthods are natural
candidates to process them. Such methods are increasmgiyg to model nat-
ural phenomena better than strictly logical methddsiinford99. In particular,
statistical learningHlastie0] is hoped to provide a key to the nature of human
intelligence Poggio03.

In Chapterd, we present our work oneural meshelvrissimtzis03 Jeong03B a

learning based surface reconstruction algorithm thataisesiral network to learn
shape and topology from an unorganized point set. Earliehoals restrict the
topology of the shape to be reconstructed and in trainingtinece, apply global
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changes to it when, in fact, they mean to increase repragamtiensity in only

specific “active” regions of the surface. In contrast, outhod is able to learn
the topology of the target shape thus freeing it of resbmion the input point
set. Also, by associating an “activity counter” to each eeih the reconstructed
triangle mesh, changes are localized to intended regiolys Guir reconstructed
surface can be adapted to different shape properties ancmerttrate recon-
structions sensitive to points density in the range datastwaghe curvature. As
expected, our method exhibits robustness to input arsifathis work has been
published previously agdgro05 Saleem04SaleemQ7jgafter which very similar

work appeared indo RegoO7do Rego0%

Surface reconstruction methods are interesting in coatesthape repositories in
that raw range data can be made available to the researchuwatgrthrough a

repository. Different researchers can try out their reBpea@lgorithms and add
their reconstructed surfaces back to the repository.

1.1.2 Computing best view

3D shapes are typically represented by one or more thunshnaeivs of the shape
from different viewpoints. Selecting these viewpointscanétically is known as
the “best view” problem and is of interest in various congext.g. shape recog-
nition and visualization. Depending on the desired appboathe goodness of a
viewpoint may vary and a view that is good for one applicatizay not be so for
another.

We note that visualization methods which intend to compeseilts for a human
audience fail to incorporate the existing, rich body of workhuman shape per-
ception Blanz99 Tarr01, Todd04 (see also references therein). In our opinion,
this omission is a fundamental oversight and hence our apfrto the problem,
presented in Sectiob.1is based exactly on the principles suggested in these ig-
nored works—we represent a shape by its silhouettes frofiereiift viewpoints,

we use similarities between these silhouettes to competstiape’s best views
as those that are both stabl&dinshall9T and salient [ee03. Note that while
some earlier methods happen to use some of these steps asamellof them is
perceptually motivated and thus none uses all steps tagethe

This work was published asrgmauchiO and since then has been cited as a
standard reference on best view in papers on multi-view ousthin robotics
[Welke07 Welke0§, view selection Feixas09 Mortara09, shape retrieval
[Laga01, shape orientatiorHu0g and saliency application£&.ju07, Kim08].

Most, if not all, shape repositories require users to mdyaald thumbnails when
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adding a shape to the repository. This is added burden onsireamd, as such
thumbnails can be computed automatically, also unnegessacorporating a
best view method like ours to compute thumbnails of shapéiseysare added to
the repository can make the user’s task of adding a shapesteepository less
cumbersome.

1.1.3 Computing “best fly”

Best view methods vyield static views of the shape. In the cdsevmore than
one view is computed, information on how these views relatedch other is
absent. This calls for a dynamic representation of the shapiee form of an
animation recorded by a camera flying around and pointingtds/the shape.

In Section5.3, we formally state and compile the restrictions imposedrieyipus
work on the camera path in order to compute it. When preseptiegous work,
we show how none of them meets all requirements. Our dynarewe method
builds on our perception based best view method and we shawit meeets all of
the said requirements. We are the first to consider altepegd and zoom of the
camera along its path around the shape to better meet thgpsecraents. Also,
we coin the term “best fly” for the dynamic view selection desh. This work
was published asSaleem07h

Just like static views, dynamic views of a shape can be maaitable on a shape
repository web page in popular animation formats, e.g. H-@sanimated GIF.

It can be argued that a dynamic view provides better valué takes the screen
space of a single static view while delivering more inforimato the viewer.

1.1.4 2D Shape Orientation

Just as itis important to present a 3D shape from a good viedypiis important
to orient a 2D shape to its natural orientation. Humans hasledefined notions
of correct orientations for most shapes, e.g. given twapsst of a horse from the
same viewpoint but rotated such that its feet are at the ilmoittcone picture and
its head in the other, we would immediately pick the first oadaing correctly
oriented. This is relevant in 3D contexts as well becausevievs are eventually
also 2D shapes and almost all view selection methods argamao rotation, i.e.
they are equally likely to output either one of the two meméid horse images as
they cannot distinguish between them.
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A method to reorient a 2D shape in an image is therefore nedtédrned out
that this problem had simply not been addressed before. Welfsome work on
image orientation which we show in Chapgto be a different problem. In Sec-
tion 5.2, we present our example based solution to 2D shape orientdfe show
an existing, generic dataset can be pruned semi-autorhatmeathe purpose and
how a query shape is matched against it and reoriented. Astien of “correct”
orientation depends on human interaction with objects aff $hape, it cannot be
computed automatically and hence, we need a human userrtofydeorrectly
oriented shapes when setting up our database.

Our method was published aSdleemO7cand was extended the next year by
[FuO§ to 3D shapes where user input on correctly oriented 3D shiegesed to
train a classifier which then assigns a class to unseen ghapes and reorients
them accordingly.

1.1.5 Computing Complexity of 3D Shapes

Like correct orientation, complexity of a shape is also a anmependent notion.
More so, it is possible that people disagree on which shapleeisnore com-

plex among two given shapes. Previous work on automatic atetipn of shape

complexity has taken cues from the shape’s geometry. Tloatever, makes it
sensitive to small, commonly occurring irregularitieslgurface noise.

We draw inspiration once again from human shape percepKorriderink79
Cutzu97 and present a method that achieves robustness to commuoa atidacts
by representing shapes by their view silhouette and mesgtireir complexity in
terms of the similarities among their views. This is illadd in side by side
comparisons of rankings of a small set of shapes using ounadesand some
previous methods. The method and obtained results arenpeelsin Chaptei?
and have been published earlier ¥ajhg08aWang08h.

As large unordered collections tend to get confusing, marsagf shape reposi-
tories like to impose some ordering on contained shapesssaigiers can browse
them according to different criteria and depending on theeds at the time, gain
access to their desired shape(s) in the least amount of 8ivagpe complexity is a
natural candidate for such a criterion as users often wany taut their algorithms
on shapes of increasing complexity.
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1.1.6 Efficient Shape Retrieval

The Internet provides access to millions of documents baingitgiven time, a
user only wants to see a few specific ones. That is what makeshsengines in-
dispensable. Though shapes have not yet reached compaoabiges, the same
argument applies to shape retrieval.

Almost all previous work on shape retrieval has focused emthality of retrieved
results with little regard to efficiency. In Chap®&rwe present our shape retrieval
technique inspired from text/document retrieval. Usingalosampling, we use a
“bag of words” approach to convert a shape into a text doctinémus, all shapes
in a collection are added to an inverted index structure wban then be queried
efficiently. We simulate a large collection of shapes by wipgl parametrized
deformations to shapes in a small base collection. Our ndathable to perform
gueries on the resulting collection of one million shapesrnder a second.

We believe one of the factors of the usefulness of a shapssiteppis the ease
with which desired shapes can be found. While general brajwiteria quickly
present a class of desired shapes to the user, making theitrpsearchable
makes it easier for the user to get to specific shapes. Thidomagneficial if the
desired shapes span several criteria and thus would nobbeepl together when
stored shapes are sorted according to general shape pespémtieed, many on-
line shape repositories offer keyword based searchesri@fa shape similarity
based retrieval provides a more geometric means to find sieedeshape.

1.1.7 Design and Maintenance of a Shape Repository

Many of our ideas presented so far have either been impledémbr inspired by
the AIM@SHAPE Shape Repository which we developed and maedaover
the course of the research time allotted for this thesis. répesitory manages
and provides a seamless interface to over one thousandsshpetting them in
a knowledge management framework. New shapes of many wgu@esenting a
broad range of real world objects are routinely added togpesitory. To enhance
user experience, various means to search and browse arelggaiong with
online viewing and simplification tools and automatic metadextraction tools.
To give users control over use of the shapes they add to thositepy, legally
binding licences are incorporated that can be specified $trape at the time of
upload. Since its inception almost five years ago, the rémyshas been visited
more than two million times and shapes have been downloadedif almost a
hundred thousand times. These shapes have so far featuaidmajor digital
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geometry research conferences. We present some of thegidinciples behind
the Shape Repository in Chapter

Technical documents on the repository have been submigtgdraous in-project
reports available through the websitdM@ SHAPE] of the EU Project FP6 IST
NoE 506766 AIM@SHAPE and we also contributed to the techsighmission
[Danovaro0Y describing the multi-resolution mesh viewer incorpodate the

repository. Note that the repository is the outcome of ¢faf many project
partners from the AIM@ SHAPE project.

1.1.8 Minor Contributions

Continuously approximating descriptor values on a view sph ere.
Digital shape processing techniques that either outpws/ief a shape or use
shape views in an intermediate step to compute some othpenyplike com-
plexity, make use of “view descriptor” values on a shape&swsphere. These
values are evaluated at discrete points on the view spherararthus dependent
on the discretization. We investigated how these discraleeg can be used to
construct a continuous function that can then be evaluateshyapoint on the
view sphere independent of its discretization. The appnakion along with error
values is presented in Chap&iWe also demonstrate the use of our approximated
values in performing common shape operations like comgutsrepresentative
and equivalent views, and computing view likelihood.

The View Transfer operation. We introduce in Chapte a new shape op-
eration called “view transfer” whereby a chosen view of apghia transferred to
another, similar shape, and show how descriptor valueslsanmom our contin-

uous representation can be used to perform this operatiba.pfemise of view
transfer is that similar shapes have similar best view patars. Using this op-
eration, computed best views of a stored shape can be treetsfe other similar
shapes in the repository without having to explicitly congphest views of the
latter shapes.

In the same chapter, we also present our derivation of amaptiadius for a
shape’s view sphere. While view spheres are commonly usetk #xisted no
formal conditions relating their size to that of the viewdthge and while the
center of the view sphere is fixed at the shape’s center,dtagsavas heuristically
chosen to be some multiple of the shape’s bounding box degénpreliminary

version of this chapter has been publishedSed¢emO0B
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Chapter 2

Previous Work

This thesis consists of work on various areas in digital sh@apcessing. We give
a short introduction to and present related work on each egelareas in this
chapter.

2.1 Neural Network based Surface
Reconstruction

The goal of Surface Reconstruction is to reconstruct theesheypresented by a
set of points, opoint cloud sampled on its surface, typically obtained through
laser scanning of the shape. Depending on the scanningdiegyneach point
may also be equipped with information about the surface abahthat point.

In the latter case, the points are said todoganizedand points without normal
information are termednorganized In this thesis, we focus on the more general
case of unorganized points.

The first general purpose method for surface reconstrudtamn unorganized
points appeared inrHoppe92. Since then, there has been considerable activity
in the field and methods drawing from various backgrounde lagpeared in the
literature, from differential geometry and level set methido implicit functions.

A short survey is presented is¢hall0g. Our focus is on surface reconstruc-
tion methods based on statistical methods. Except for af fmmnkeO6Patare0q,

the vast majority of these methods rely on training a Neurindrk [Bishop93.
Roughly speaking, a neural network consists of intercomukenbdes that carry
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some associated information. Connections between nodealswlgave some in-
formation associated with them. After some initializatitime information in the
neural network is made to adapt to inputs and, optionallgresponding desired
outputs that are progressively introduced to it. This is hbe neural network
“learns” from the input. “Training” the neural network casts of presenting it
with inputs in order to make it learn. It stops when the nenetvork meets some
desired condition, e.g. computed outputs fall below anré¢meshold.

In [Gu95 Mostafa99 Yang0(Q, neural networks have been trained to reconstruct
parametric and freeform surfaces representing the inpuat ptoud. The neural
network learns a functiorf(z, y) such that|| f(x;,y;) — z;)|| < e for all points
(x:,y4, z;) in the point cloud and for some acceptable error leveNeural net-
works have been extended fianctional networksn [Iglesias04 to reconstruct
the point cloud with B-spline and Bezier surfaces (see alsyeates therein).

The above methods fall under tiseipervised learningategory, i.e. they as-
sume a relationship among the input varialilesy;, z;) and train the neural net-
work to learn this relationshipUnsupervised learningnethods make no such
assumption. Instead, they train the neural network to I@asurface. Nodes
of the neural network represent points in 3D space and thexertawards the
learned surface as the neural network learns. When learnaps,sthe posi-
tion and connectivity of the nodes form the learned surfadeich either di-
rectly or indirectly represents the desired surface. Théhaus described in
[BarhakOlaBarhakOlbHoffmann98 Varady99 train a neural network to learn
control grids for reconstruction of the surface or pararoejrids for subsequent
parameterization of the surface. Krjopf04, Yu99], the neural network is trained
to interpolate or approximate the point cloud itself, thurectly learning the de-
sired surface.

In the unsupervised learning methods described aboveyploéogy of the learned
surface and its number of vertices remain unchanged sincdization. As they
initialize the neural network as a 2D grid, they can acclyatepresent the de-
sired surface only if it represents a surface patch. AlseJé¢arned surface may
under-represent detailed features of the desired surfeca.solution to the latter
problem, subdivision is suggested ¥uP9]. In [Barhak01bhVarady99, where
the surface has the topology of a quad grid, the authors stirgeking the activ-
ity of each vertex with an associated counter, which in@sasch time the vertex
participates in learning. They can then spot active vestimetheir high counter
values, and add entire rows/columns of vertices in theigh@srhoods. Both
these solutions are global in nature and end up adding newe®in unwanted
regions of the surface as well.

The unsupervised learning method we present in Chdeapts its node distri-
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bution and topology according to the input point cloud. Tdlkiws it to learn fine
features as well as complex topologies.

2.2 View Selection

Digital shapes represent and contain 3D information. Henehese shapes are
ultimately presented on 2D media — paper, monitor etc. Taessitates a pro-
jection from the 3D space of the shape to the 2D space of thagisnedium.
Having chosen a projection method, a given 3D shape can héwgely many
2D projections corresponding to infinitely many projectatirections. Each pro-
jection is aviewof the shape.

Views of a digital shape convey a preliminary idea of the ghaphis is useful
in many scenarios. Complex, highly detailed shapes tygitake up hundreds
of megabytes or more in file sizes, leading to lengthy dowshlbaes. Some
repositories even require payment for accessing storegeshedels. In such
cases, the user would like to have an idea of the shape bedanenitting to a
download. For digital museum applications, it might be ddde to show some
views of a digitized cultural heritage object without gigithe user access to the
full 3D model. Managers of a digital shape repository miglainevto display a
few “catalog views” of some showcase models to promote ttegiository. For
machine vision applications, certain views of a shape ajeired to recognize it
and retrieve similar shapes.

This necessitates a strategy to choose from the potentrdlhyite views of a
shape, a few “interesting” or informative ones. This is dtsown as the “best
view” problem. As a single view cannot convey informationtbe full shape,
some methods find instead thebest views, possibly with a ranking.

The static views found by the kinds of methods discussedeabau still be am-
biguous as they do not convey information on how the viewatego each other.
Another class of methods therefore aims to compute a canatha pavelling
along which a virtual camera pointing at the center of thgpeh@aptures an ani-
mation of the shape. This animation then provides a dynaraie gf the shape.

The predominant approach in view selection is to define a ureaw view de-

scriptor that assigns some goodness value to each view. Represeistiage by
its views, the view that maximizes the value of a chosen viescdptor is chosen
as the shape’s best view. In general, methods differ in tbe descriptor they
maximize.
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2.2.1 Static View Selection

An early methodKamada88characterizes a view by the angle between the view-
ing direction and normals of visible faces of the shape. Adyaew is one that
views most faces directly, i.e. the viewing direction anceEfaormals are parallel.

An angle of90° corresponds to a degeneracy. Another angle based appmach i
given in [PodolakO§which computes a shape’s symmetry planes and then assigns
a score to a view based on the angle between the viewing idineztd the plane
normals. Here, the best view is the one that contains thedgasmetries, i.e. the
viewing direction is parallel to most plane normals.

The method given inQolin88 subdivides the shape into an octree and character-
izes a view based on the number of visible octree cells. Rerdiscriptor, the
more the number of visible cells, the better the view. Thedpr proposed in
[Plemenos9bevaluates views based on the number of visible trianglesthe
visible projected surface area. This is enhance&okplov0j to additionally in-
clude curvature information at visible vertices, and gefized in Vazquez03a

to viewpoint entropya probability measure that measures the information obnte
of a view. The best view is then the one with the maximum infation content.

A similar approach is proposed iBdrdoloi05 TakahashiOp

Another curvature based measure is proposeldea(3. Each vertex of the shape
is assigned a saliency value based on its multi-scale aue/giroperties.View
saliencyis then the sum of saliency values of visible vertices. Tiseiagption here
is that a shape’s best view is the one which contains its nadists features, where
salient features are those that are distinctly differesrnftheir neighborhood. The
view selection techniques irumhold02 ShackedQOJLalso maximize a custom
view descriptor. A comparative study of several view dgxors is presented in
[PolonskyO%.

In the computer vision and pattern recognition communiigefew object views
are selected for later recognitio®¢nton04, reconstruction lLlee04 or sim-
ilarity retrieval [Mokhtarian0Q of the object. Views most similar to other
views up to a threshold are taken as representative viewhefobject in
[Lee04 Mokhtarian0Q. Similar approaches are presentedAnel99, Hall05].

The best view problem is also studied in robot motion andlydrpwing. A good
survey of techniques from these areas can be found in Chapt¢¥2azquez03p



2.2 View Selection 15

2.2.2 Dynamic View Selection

There has been surprisingly little work on finding dynamipresentations of
shapes. Some online repositori®@emand Repositoryéa offer 3D viewers for
interactive exploration of stored shapes, but this apgrdemxomes impractical
when the shape model is large, as large file transfers aredgeired to explore
the full shape. This problem could be circumvented by dfigia simplified ver-
sion of the shape for exploration but that defeats the caiginrpose of exploring
shape details. An interesting solution is proposediarjovaroOYwhereby a sim-
plified version of the shape is first displayed for explonati@nd the user can then
choose regions of the shape for which they want to view motalde

Few methods$okolovO6aSokolov06lhcompute an animation of the shape as we
proposed earlier. While best view methods sample all passibivs of the shape
from its viewsphere to choose the best among them, taking ancapproach
to the best fly problem is not feasible as the size of the sespabe increases
exponentially with the number of viewpoints to be visitedte fly. To guide
the computation of the fly, some heuristics have previousnbused which we
formalize below.

1. Brevity— the animation should not be long,
2. Information— the animation must be maximally informative,

3. Exploration— the camera path should avoid fast returns to already disite
viewpoints

4. Smoothness the path should be smooth.

Depending on how the path computation is performed, shaplertion meth-
ods are classified as eitheffline or online Offline methods analyse the object
once and compute the fly in advance. Online methods computharpreal time
each time they visit the object. Another classification isddman the nature of
exploration conductedGlobal methods aim to give a general understanding of
the shape model. The camera stays outside the shape matiatiee to its view-
sphere. Inocal methods, the camera enters the model and becomes part afit. O
method presented in SectidiBis a global, offline method that satisfies the above
heuristics.

Previous methods either fail the Smoothness conditBwkplov06h or deal with
it artificially by putting in a damping factor where sharprisioccur SokolovO6d
The path is often computed incrementalBokolov06# at each viewpoint in the
path, the next viewpoint is selected after considering eacididate viewpoint's
view goodness, distance from the starting point of the pathtie fraction of the
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model uncovered from that viewpoint. Such methods suffemfthe drawback
that they cannot guarantee that the computed path will passdh a given set of
points, without violating any of the heuristics or comptiog the computation.

2.3 View Sphere Model

In Chapter6, we present our work on approximating view descriptors dmegpe’s
view sphere. This is in contrast to the traditional apprazcvaluating descriptor
values at discrete samples on the view sphere.

The little work we came across on approximating view desergpcomes from
the best view literature, where the goal is to find the viewpthat maximizes
the value of a chosen descriptor. Pi¢menos9 the view sphere is divided into
eight spherical triangles corresponding to the three aXes. view descriptor is
evaluated at the triangle vertices, and a “best” trianglehissen. This triangle is
then recursively subdivided, choosing the best among tvdnmengles each time.
A similar strategy is employed infazquez03k

Our approximation in Chaptes differs from these in that we are interested not
in evaluating the descriptor at one “best” viewpoint, butaay given point on
the view sphere. We therefore build a continuous functiat tan be trivially
evaluated at any 3D point.

2.4 Shape Orientation

View selection methods, like the ones discussed abovegtsle best view of
a shape by identifying a best viewpoint on the shape’s viehesp However,
this alone is not sufficient to select a view uniquely as itddoet address another
degree of freedom, the up vector. Views of a shape from the saewvpoint but
with different up vectors are rotations of each other, ile $hape is oriented
differently in each of the views. As no strategy is employ@&x an up vector for
a given shape, automatic view selection methods often wdddrarily oriented
views which are later fixed by hand.

Humans have well defined notions of the “correct” orientatib a shape. Given,
for example, two side views of a horse with the horse standimdgs feet in one
and on its tail in the other, we will immediately pick the fanview as the cor-
rectly oriented one. Incorrectly oriented views seem imgilale and unrealistic,
even if they have been determined to be the best accordirante descriptor. It
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is therefore important to fix a strategy to choose a correctagbor for a given
shape when acquiring its views, or to reorient the shape iava @nce it has been
acquired. We take the latter approach in Sectidh

We could not find previous work on automatic shape orienatibhere has re-
cently been some work amageorientation (cf. Luo05 Vailaya0Q Wang04),
whereby the correct orientation of a natural image 00°, 180° or 270°) is de-
cided by performing statistical analyses of image featutéswever, the shape
orientation problem is different. Given a view of a shape,want to automati-
cally determine the correct orientation of the shape foviber.

2.5 Shape Repository

Digital shapes are of interest in several communities aptiGgiion areas — com-
puter games, digital museums, virtual environments, nspwrd digital geometry
research. While it is possible to design shapes from scriditelprocess is often te-
dious and cumbersome. lItis therefore desirable to haveromei® ready sources
of shapes that can meet the needs of the above communitiese Bxist in the

form of shape repositories that can be accessed via the#tter

To assist users in quickly finding a shape model of their ahdicese reposito-
ries typically annotate some information to the stored ned&imost all repos-
itories assign each model a suggestive name and present onere views of
it as accompanying thumbnails. In addition, models aresdliadg according to
the types of object they represent (animal, plane e@8nfhmark Cacheforce
DatabaseaDatabasebFlash Fire DesignsModelsa modelsh, by the type of
data (static, animated or motion capturBemand, or by their origin (how they
were acquired)Databasepb Along with origin information, it is also common
to show with each model some meta-information like geomenhy texture de-
scription fat Georgia TechBrowser Flash Fire Designdviodelsa Repositorybh
Turbo Squid, ownership, notes on applicable toolBdtabaseaRepositoryh
and file formats Database]y references to research papers containing the model
[at Georgia Tech and/or similar shapes in the repositoBdtabasea

In Chapter9, we present an information theoretic approach to a Shapedrepo
tory that automatically subsumes all the above classifinatriteria and provides
users a rich set of features to interact with a chosen shdpesbemmitting to
download it.



18

Chapter 2: Previous Work

2.6 Word Based Approaches to Shape
Retrieval

The larger a collection, the more difficult it becomes to fihdhgs in it. This
applies to collections of shapes as well. In this thesis, redrderested in shape
retrieval based on similarity of fetched shapes to a queaypsh Unsurprisingly,
shape retrieval generates interest from many communitesnputer vision, pat-
tern recognition, computer-aided design, engineeringpsimodeling, computer
graphics, virtual reality, multi-media, databases, anehewachine learning and
human-computer interaction. A good survey is presentedandgelderOff The
general approach is to use a shape descriptor to quantigdsémd query shapes
into feature vectors. Query execution entails matchinggtery feature vector
with stored ones.

In Chapter8, we aim to improve upon the above “query-against-all” maaelt
is inefficient for large shape collections. We employ for thepose first a “bag
of words” approach to convert shapes into textual words aedred an inverted
index, popularized in document retrieval, for efficientghaetrieval.

Lately, considerable attentiorFfaundorferO7 Nister0g§ Philbin07, Philbin08
SchindlerOT has been given to “bag of features” techniques for imageeretl
and to their optimization. The basic idea is to treat exaddeatures, whatever
they may be, as an unordered collection or a bag. Objectgesim this case,
match when their bags contain one or more identical featmdghe goodness of
the match is determined by the extent of overlap. Bag of wardssipecialization
of bag of features in that features are expressed as words.

We found two methods similar to our approach. The fiBssyvasOT uses a bag
of words approach for 3D shape retrieval but does not useaéxeéval methods
for efficient retrieval like us. All shapes in the collectiane sampled, multiple
pairs of samples from each shape are selected and analyaeudot features, the
features are quantized and then binned. A query shape isiledgh the same
process and its matches are determined based on the bieatitises fall into.

The other, Video GoogleSivic03 Sivic0g], uses text retrieval techniques to find
those key frames in a video sequence that contain a shapeigraimage. SIFT
features Lowe99 are extracted from key frames and the query image, and quan-
tized intovisual words Using a technique similar to the one we use and explain
in Chapter8, an inverted index of visual words and key frames is built key
frames are then ranked by the normalized inner product af Weerd frequency
vector and the word frequency vector computed for the quaage.
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2.7 Shape Complexity

Humans can easily judge a given shape to be complex or siaupie given a set
of shapes, perform a sorting of the shapes based on theireggormomplexity.
Automatically estimating shape complexity, however, heseived surprisingly
little attention.

In [RossignacOp an attempt has been made to formalize the notion of shape
complexity by defining a few measures that could lead to tisnesion.

e Algebraic complexitys the degree of the polynomial used to represent the
shape.

e Morphological complexitys an estimate of the amount of fine details in
the shape, and is computed as the largest valuefaf which the shape is
r-smoothor r-regular.

o Combinatorial complexitys the number of vertices used in the shape rep-
resentation.

¢ Representational complexity a qualitative measure of the amount of re-
dundancy in the shape representation.

e Topological complexitys also a qualitative measure comprising of the
genus of and non-manifold elements in the shape.

While these measures may capture some aspects of how humages gjaape
complexity, they are limited in terms of how they can be agblior automatic
complexity estimation. The first two measures are resttitbespecialist shape
representations and all three quantitative measures diseriminate — shapes of
varying complexities can easily end up having the same gdréhese measures.

More discriminative approaches have involved the use ofétion theory. Page
and colleaguesHage03SukumarOpnote that the canonical simplest shape, the
sphere, has the same curvature throughout its surfaceefoherthey compute a
shape’s complexity as the entropy of its curvatures vievgea probability distri-
bution. The method proposed iRigau03 builds upon the observation that inside
the sphere, each surface point is visible from every othdase point. A shape’s
inner complexityis then measured in terms of timeutual informationbetween
regions of the shape that are mutually visible to each ottvaugh the shape’s
interior. Anouter shape complexiig also proposed that considers visibility be-
tween regions of the shape and a bounding sphere.

Our method, presented in Chapférbuilds upon evidence from human vision
[Cutzu9T and psychology Koenderink79 research which claims that humans
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perceive 3D shapes as arrangements of 2D view images.



Chapter 3

Preliminaries

Throughout this thesis, we use certain tools and conceg®omore times. To
simplify exposition later and to avoid repetition, we déserthem in detail in this
chapter. The methods presented here are not our contnisutiove use them as
black boxes in our algorithms and cite relevant sources. \Wemwake explicit
when we modify a certain method from the original for our use.

When analyzing a 3D shape, it is easier to work with views ofsthepe, which

are 2D images. Many of our methods require these views to impaced to each
other according to similarity, and most shape similaritght@ques rely on the
boundary contour of the shape in the view image. These mettypically yield

a similarity distancebetween a pair of shapes, which is zero if the shapes are
identical, and increases with dissimilarity between thapgs. For this reason,
this distance is sometimes also referred to as the “dissiityildistance”.

In Chapter7, we use Similarity Structure Analysis (SSA) to analyze tinalari-
ties between views of a shape in order to compute the shepeiplexity

3.1 Obtaining Shape Views

A view of a shape is simply a snapshot from a (virtual) camétheshape against
a background. To keep the view simple, the background is&jlyiplain. Keep-
ing shape texture and background constant, the necessamgiars for a view
are

e distance of the camera from the shape
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e viewing direction of the camera
e viewing frustum of the camera
e up-vector of the camera

As shape views are often taken to represent the 3D shape m@amext, a single
view is usually not enough. Then, thember of viewandposition of the camera
for these views also become important considerations.

The usual solution is to placevaew spherearound the shape. This is a sphere
whose center lies at the geometric center of the shape, ansexadius is some
multiple of the length of the diagonal of the bounding boxha shape. Cameras
are placed on the surface of the view sphere and pointed devitae center of the
sphere. This links the position of a camera to its viewingdion. The distance
of the camera from the shape is simply the radius of the vidvesgp A small
radius corresponds to a zoom in of the shape, and a largesramiai zoom out.
At one extreme, only part of the shape is visible in the cquoesling view and
at the other, the view consists almost entirely of just thekgeound. A suitable
value for the view sphere radius is generally chosen héealst In Chapters,
we present a derivation for an “optimal” radius, which werfdumissing in the
literature.

Covering the entire surface of the sphere with cameras velthall views (up to a
zoom factor) that look directly at the shape. However, théglk to infinitely many
camera positions and is thus computationally impossiblelo&e approximation
would lead to an infeasibly large number of views. Insteasyfficient number
of camera positions that are uniformly distributed overdhdace are considered.
For this reason, the view sphere is typically modeled by #opla solid — either
by a dodecahedron or its dual, an icosahedron — with the santercand radius.
Cameras are then placed at the vertices of the polyhedrohtloe barycenters of
its faces. In the latter case, the camera positions areqteci¢o the surface of the
sphere being approximated. As explained so far, the numbéews obtained
by this approach is limited to 12 (icosahedron) or 20 (dobedeon). If more
views are required, camera positions are computed in the sam for the poly-
hedron after application of a few subdivision steps to itrolighout this thesis,
we initially approximate the view sphere by an icosahedwh@ace cameras at
its vertices. We prefer the icosahedron as its triangle rs@sicture easily lends
itself to common subdivision methods. After each subdaisstep, all newly
added vertices are projected back to the surface of the \péers. Figure3.1
shows view spheres at different levels of subdivision far sliapes.

Most mesh viewing softwares model cameras with a defawtivig frustum of
45° in thex andy directions. The software used for the experiments in tresith
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(a) A model and its view sphere. (b) Views from a view sphere.

Figure 3.1: Note that the model, radius of the view sphegtiua to the bounding

box of the model, and the number of subdivision steps appdidkde view sphere
differ in each sub-figure.

follows the same convention. Unless mentioned otherwise dw not specify
any up vector for our cameras, thus using our system'’s defi@uector which
corresponds to the positive direction. This can lead to faulty orientation of
the shape in obtained views. However, this is a typical mobin view-based
methods, as computing the “correct” up vector for a 3D shaeproblem that
has just recently received attentidfuDg. In Section5.2, we propose a method to
correct orientation of shapes in their view images. In ttexditure up to the time
of writing this thesis, shape orientation in views is geftgifiixed manually. The
fact that we end up with arbitrarily oriented views does noter our methods
as subsequent steps applied to the views are rotation amiarie. given views

which are identical in all parameters except the up vectbesmethods treat them
identically.

3.2 Obtaining Shape Contours

To obtain the boundary of a 2D shape in an image as a closedwomie first
scan the image for boundary pixels and then employ the pogiriast method
[Amenta99, illustrated in Figure3.2 Given a set of points sampled closely
enough on a line, the Crust method uses Delaunay trianguladiconstuct the
points’ Crust, which is a reconstruction of the original leea polyline with the
input points as vertices. As our boundary points are jusixel @part in image
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The Crust of a point setAimenta9§. A shape and its boundary.

Figure 3.2: We use the Crust method to extract the boundaripeonf a 2D
shape.

space, they satisfy the closeness condition required bgthst method.

The above strategy works well in general cases, i.e. we degt@lextract shape
boundary as a closed, connected contour. However, it fduieswhe shape bound-
ary contains noise or fine features. In such cases, the ceshpontour contains
a large number of disconnected edges. Luckily, detectidhisfcase is easy (it-
eration over all obtained edges). When this occurs, we remoige from the
original shape by iteratively applying blurring and morfdgical opening to the
original image. At each iteration, we compute the resulshgpe’s Crust and
check if it is a closed contour. Iteration stops when a clasedour is obtained.
While this admittedly modifies the shape, shape featuresrdsis way are too
fine for subsequent methods to work with in the fist place. ®Esalting Crust
still preserves the overall shape.

3.3 Computing 2D Shape Similarity

2D shape similarity methods analyze the shape to extrisatare vectofrom it.
The similarity distance between two shapes is defined asabehing cost of their
feature vectors. Itis desired of feature vectors to be soatiation and translation
invariant. Different methods accomplish this by eithegpoeessing the shape, or
by incorporating these requirements in the computatiorcangparison of feature
vectors.

There are two classes of shape 2D similarity methods to ehérosn. Meth-
ods from one class operate on the boundary contour of theeshaihe image,
while those from the other utilize pixel information of thatee shape. Dur-
ing the course of our research, we used a pixel method bas&emike mo-
ments, and two boundary contour methods based on Curvatale Sjgace (CSS)
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Method BEP reported BEP reimp
Shape context 76.51 41
Image edge orientation histogram 41
Hausdorff region 56
Hausdorff contour 53
Grid descriptor 61
Distance set correspondence 78.38

Fourier descriptor 46
Delaunay triangulation angles 47
Deformation effort 78.18

Curvature scale space (CSS) 84.12 52
Convex parts correspondence 76.45
Contour-to-centroid triangulation (CCT) 84.33 79
Contour edge orientation histogram 41
Chaincode nonlinear elastic matching 56
Angular radial transform 70.22 53

Table 3.1: Accuracy of similarity measures in Bull's Eye Rertage (BEP). All
methods were reimplemented and BEP figures from the reimpitens (right)
are shown alongside figures claimed by the methods’ autherg€r), reproduced
from [Veltkamp0§. We use the CSS and CCT methods in this thesis.
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[Mokhtarian03 and contour to centroid triangulation (CCTAtfalla05. Bound-

ary methods generally outperform pixel methotatgcki0Q. The CSS method
has in fact been incorporated into the MPEG-7 standard bstlatar outper-
formed by the CCT methodVEltkampOg, see also Tablg.1 Performance

is judged in terms of retrieval accuracy from the MPEG-7 Ibemark database
[LateckiOQ VeltkampO@. Below, we present each of the three methods we used.

3.3.1 Zernike Moments

Zernike momentsf a functionf(x, y) are projections of on to a set of complex
Zernike polynomialsy,,,,(z, y), that form an orthogonal basis over the unit circle.

Vnm(xa y) - Vnm(p, 0) = an(p)eime,

where
m, (n —|ml) even,|m| <n

n=|m|

an — 2 s, — (”—S)T!L_m . n7237
(p) = 22s=b (Y=Y, P

wheren andm are integers andp, 0) are the polar coordinates ¢f,y). For
a discrete image/(z, y), the Zernike moments ajrder n andrepetition mare
defined as

n+1 .
Anm = DY fEyViaey), P4y <,
Ty

e

whereV* (x,y) is the complex conjugate 6f,,,,(x, ).

When using Zernike moments as image featur€hophg03 Khotanzad9p
Mukundan98 the image is required to be square and the restrictidn, v < 1,
is fulfilled by normalizing pixel locations. The feature vecsimply consists of
the image’s Zernike moments, and matching cost is the L2nltst between fea-
ture vectors.

As the method employs frequency analysis in polar coords)yatomputed mo-
ments are automatically rotation invariant. Scale invar@is achieved by nor-
malizing all moments with respect to the second order mosntat represent
area of the viewed shape. To achieve translation invarjateeshape is first
translated such that its centroid lies on the center of ttegyam
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3.3.2 Curvature Scale Space (CSS)

The CSS methodMokhtarian03 is based on the observation that repeatedly
smoothing any closed contour eventually leads to a contairig fully convex.
More specifically, the number @urvature zero crossings the contour tends to
zero with smoothing. The boundary contour for any non-tighape is a closed
loop with an equal number of alternating curvature miniméi@axima. Between
each such pair of curvature extrema is a curvature zeroinoghS. a point on
the boundary contour where the curvature is zero. As theesisagmoothed, the
extrema vanish and the zero crossings merge with each attienane remain.

A shape’sCSS imagés a plot of number of smoothing iterations against the posi-
tions of curvature zero crossings on the boundary contche.dSS feature vector
of the shape then consists simply of the positions and heaftthe maxima in the
CSS image. Figur8.3 contains an illustration of the process. When comparing
two feature vectors, one of them is shifted such that thedsgmaxima in both
are aligned. Matching cost is then defined in terms of diffees in correspond-
ing maxima heights starting with the highest in each feat@aor. Additional
maxima in one of the feature vectors along with differencegasition if corre-
sponding maxima in both feature vectors are penalized.
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Figure 3.3: A shape (left), its smoothed versions (right)hwhighlighed zero
crossings (red) and its CSS image (right), frddokhtarian96. The festure vec-
tor is simply the positions and heights of maxima in the CSSjena

As the method relies on positions on the boundary contodrnahon positions in
the image, it is intrinsically translation invariant. Seahvariance is achieved by
initially normalizing each boundary contours to a totalgénof one. Alignment
of highest maxima when comparing feature vectors leadst#dion invariance.

In Section5.2.2 when a rotation sensitive method is required, we assigrdan a
ditional matching cost to the initial alignment of maximahig penalizes shapes
whose CSS images require large amounts of shifting for maailgament.
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3.3.3 Contour to Centroid Triangulation (CCT)

The CCT methodAttalla0g connects the boundary contour to the center of the
shape, dividing the contour inte equal length arcs. The spokes radiating from
the centroid to the contour are ordered in clockwise dioecivith the longest one
being first. Neighboring spokes define a triangle consisifraychord correspond-
ing to the arc of the shape. The feature vector stores for gaake, its length, the
angle it forms with its chord, and the ratio of chord to araign Each component

is normalized to be between zero and one. Comparison cose islildistance
between components of feature vectors. As the method w@ili¢gise shape’s cen-
troid and spokes from the centroid to the contour, it is im#ically rotation and
translation invariant. Normalizing feature vectors alsakes it scale invariant.

3.4 Similarity Structure Analysis (SSA)

SSA, or Multidimensional Scaling (MDSPBprg05 Borg87 is a dimensionality
reduction tool that projects high dimensional points towdodimension such
that pairwise distances are preserved. We use SSA in Chapteobtain a 2D
plot from anN x N similarity matrix, S, where each entry; ; is the similarity

distance between imagésnd; and . Note that by constructioB,is symmetric

ands;,; = 0.

N points,Py = {pioli € {1,...,N}}, are chosen at random in the Cartesian
plane correspoding to th&¥ compared images. The distance matiiKP,,), of
the setP,,, m > 0, is computed such thal ; is the Cartesian distance between
Pi.m andp; ,,. It follows thatd, ; = 0 for all <.

In order to compute the SSA plot, tharting configurations set asC, = D(Py).

An iterative process then starts whereby, in each iterdtjon> 1, the configu-
ration matrix,C;_1, is checked to be th8SA solutiorof S. If the solution has
been reached then iteration stops. Otherwise, the positibthe points inP;,_;

in the SSA plot are updated #,, the new configuration matrix is computed as
Cr = D(Py,) and iteration continues.

3.4.1 Checking for an SSA Solution

To check whether a give€’,,,, m > 0 is an SSA solution of, we need to con-
struct theranking number matribof C, and ofS. For a matrix,A, to construct
its ranking number matrix2(A), all entriesa; ; are sorted in descending order
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and given consecutive ranks. Thus, the largest entry getskeof one, the second
largest a rank of two, and so on. Equal entries are assignmeskcaotive ranks. If
the entries inA are then replaced by their ranks, we obt&ifA ).

C,, is an SSA solution o8 when the condition(C,,) = R(S), is satisfied.

3.4.2 Updating Point Positions

Positions of points i®,,, m > 0, are updated according to trenk image matrix
of C,, with respect td5. We denote the rank image matrix of a matri, with
respect to another matriB, as Rg(A). It contains the entries oA permuted
such that the ranking number matricest(A ) andB match, i.e.R(Rg(A)) =
R(B).

For a givenC,,,, Rs(C,,) denotes théntendedpoint configuration, i.e. it is de-
sired that the Cartesian distances between the poiiitg, ifollow a similar pattern
as the similarity distances i8, and that their distance matrix, which will be the
next configuration matrix, be an SSA solutionSoTo achieve this, &orrection
factoris computed for each point pai; ,.,, p; » as

Cl L — Cf; s
N _ {3,7},m {i.itm
Fagrm 2rom

wherec’{iy itm andcy; ;3. are entries inkg(C,,) andC,, respectively. The cor-

rection factor for a point pair can be thought of as the foregveen them; the

2 in the denominator denotes how the points exert equal famoe=ach other. A
positive value off{; ; ., indicates that the current distance between the point pair
is an underestimate and should be increased, whereas davaegdtie implies a
shortening of the distance.

The displacement g, ,,, with respect to; ,,, is then given as
disjym = Figym - (Pim = Pim)-
The total displacement fqs; ,,, with respect to all other points is then given as
. 1 N
dim=5—7 > djm
j=1,j#i

The averaging above prevents displaced points from ovetstgp Finally, the
new point position is given by

Pim+1 = Pim + dim.
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3.4.3 Stopping Condition

Ideally, iteration stops when the current configurationriraC,,, m > 0, is an
SSA solution ofS. Indeed the update of point positions explained above asms t
achieve just that. However, as each point is acted upon bytladir points, the
distance matrix of the new point positions is typically Istibt a solution toS.
Thus, the points are moved again and again until a stoppinditton is reached.
With each iteration, the distance matrix of the point posisi comes closer to the
SSA solution ofS. This is reflected by progressively smaller values fQf ;, .|

and]&i,m]. Note that when the solution is reachgd,;, ., and consequentlgi@m

will both be zero. In fact, after a certain number of iteraip|d; .| becomes
negligible. Therefore, iteration is stopped when the valakall | f; j;,..| fall
below a certain threshold. The point positions when iterasitops form the final
configuration of the SSA plot.

3.5 View Descriptors

Many of our methods rely on views of shapes, such as thoseneltan Sec-
tion 3.1 A shape view is typically quantified usingvéew descriptor Zernike
moments presented in SectiBr8.1are one such view descriptor. Two other de-
scriptors we use are viewpoint entropy and view saliencyctvis based on mesh
saliency.

3.5.1 Viewpoint Entropy

Viewpoint entropyfVazquezOJLof a scene estimates the amount of information
contained in the scene as the minimum number of bits reqtoregpresent it. It
is computed as

Ny

_Zégo A
24, A,

whereN; is the number of faces in the sceng, is the projected area of face
over the view sphere4, is the projected area of the background over the view
sphere, andi; is the total area of the sphere. This expression is maxinvizezh

all projected areas are equal.
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Figure 3.4: Saliency values for the Lion vase and Armadilladeds, increasing
from cold (blue) to warm (red) colurs.

3.5.2 Mesh Saliency

Mesh saliency lLlee0] predicts the amount of attention a user would pay to
parts of a shape when viewing it. It is based on an older imatiersy tech-
nique [Itti98] that computes visual importance of image regions to a huatan
server. Higher saliency values are assigned to more aitegtabbing parts. The
motivation is that high curvature areas that “stand out’hieirt neighborhood are
more salient than low curvature areas or periodically repgaatterns.

The saliencyS(v), of each vertexy, in a triangle mesh is computed as an aggre-
gate of its saliency values;(v), at different scales, = 1...n. Saliency ofv at
each scale is defined in terms of its mean curvatufe), as

Si(v) = [|G(C(v),0:) = G(C(v),203)],

whereG(C(v), o) is the Gaussian weighted average of mean curvatures of ver-
tices within a distanco of v. Thus,G/(C(v), o) represents a smoothing of mean
curvatures around and.S;(v), computed at progressively larger scales, measures
the change when smoothing over increasing radii arauidhigh saliency value

at a low scale indicates that the vertex belongs to a smallesfeature, and a high
value at a higher scale indicates a large feature.
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S(v) is computed as a weighted averagesgf)s where the weight for each level
depends on the saliency maxima at that level and is meanfpjaresss spurious
maxima at that level. Figur8.4 shows our computed mesh saliencies of two
shapes. For a given viewiew saliencys simply the sum of saliencies of visible
vertices.

3.6 Shape Descriptor: Shape Distributions

Just like view descriptors quantify a view of a shape, shasemptors quantify

a whole shape. In Chapt8r we illustrate our efficient shape retrieval approach
using theD2 shape descriptoas an example. The D2 shape descriptor is one
of severalshape distribution§OsadaOR Using the D2 distribution, the authors
obtained more accurate results on a shape similarity beadghthan they did
using other distributions.

The descriptor is computed by sampling the surface of thpeshad repeatedly
picking random pairs of samples and noting the distance detvihe points in
the pair. The distribution of these distances forms theufeatector which, for
convenience, is binned into a histogram.
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Learning the Shape of a Point
Cloud

Stochastic methods and concepts are increasingly beingdfta model natu-
ral phenomena better than the hitherto used strictly ldgiegthods, and a “sea
change in our perspective” is envisioned when stochastiboads eventually over-
shadow traditional methods in use and applicatidluinford99. Parallels be-
tween statistical learningHastie0] and the workings of the human brain lead
mathematicians to believe that such methods could one dayuseunderstand
the nature of intelligence itselPjpggio03.

The promise and efficacy of statistical learning methodsafss been harnessed
for Surface Reconstruction methods, and a review of some sw®thods was
presented in SectioB.1 Although such methods are usually slower than their
traditional astochastic counterparts, their superiodhiag of noisy, incomplete
and uncertain data makes them especially attractive fda&eiReconstruction,
where the input point cloud typically contains such artefac

In this chapter, we presemeural MesheglvrissimtzisO3 JeongO8 work on
which we earlier published inggro05 Saleem04Saleem07ja A neural network

is initialized as a triangle mesb\1, representing a tetrahedron. Vertices/of
correspond to nodes and edges to connections of the netnadrke For the rest

of this chapter, no distinction is made betweeh which we call the neural mesh,
and the neural networkM is trained to learn the shape of an input point cloud,
P = {pi(zi,yi,2z) : @ = 1,..., N}, using an unsupervised learning scheme
similar to Growing Cell StructuresFfitzke93. Inspired by topology learning
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Figure 4.1: The neural mest, rapidly learns the general shape represented
by P. From left to right are the base mesh with 4 vertices followgdvarious
learning stages at 100, 250 and 500 vertices.

methods Fritzke94 Martinetz94 and in contrast to other learning based methods
from Section2.1, M can also learn topologically complex shapes frfBm

During training, some vertices learn more than others. hiegractivity of all ver-
tices is tracked and “active” vertices are rewarded in tmmfof addition of extra
vertices in their neighborhood. This is different froBarhak01bh Varady99
where entire rows/columns of new vertices are introducée Mmethod inYu99
also grows the mesh by adding new vertices, but it does sodiyatyy subdi-
viding the entire mesh, without regard to relative learr@ugjvities of vertices.
By adding new vertices only in local neighborhoods of actigdiges, we ensure
added vertex population in only those regions\dfthat correspond to currently
under-represented areas of the target shape. Thus, finks détde target shape
are represented more accurately by a larger number of esttih@n coarser areas
of the shape.

Once M has been initialized, learning proceeds by iterating ovéva steps,
namely the Geometry Learning, Node Addition, Node Removal &opology
Learning steps. The Geometry Learning step is the core dtépeaalgorithm
and is responsible for steeringy! to the shape represented By However, as
M is initialized as a tetrahedron, i.e. it initially has onbuf vertices, it cannot
adequately learn any meaningfully complex shape. The Nattétian step is in
charge of increasing vertex population adaptively. Neviietes are added in those
regions of M that under represent their corresponding areas of thettsingpe.
Vertices in M that contribute to over representation of the target shajleer
due to incorrect node addition, or those that are stuck iallagnima (Figure
4.3) degrade mesh quality. These are removed frbtmin the Node Removal
step. The Topology Learning step analyzes the current efatel to possibly
make topological changes in it, namely removal of triangteform boundaries,
or merging of boundaries to form handles.

To perform these operations, activity information for eaeltex,v, needs to be



4.1 Geometry Learning 35

S

----------------- P P
""""""""""" U - ﬂAVA
Viy M %kv %EV
(a) Geometry Learning (b) Vertex addition/removal

Figure 4.2: (a) Positions of the winner and its neighborsug@ated for each
training sample. (b) Vertices are added/removed using tamgntary vertex split
(left to right) and half-edge collapse (right to left) optoas.

maintained. Each is equipped with amctivity countey 7(v), that indicates the
amount of learning is performing, and ainning sample numbef,,(v), which
remembers the last timelearnt from”. At initialization, both these quantities
for all vertices are set to zero.

One of the most frequent operations in the above steps isddHavertex inM
that is closest to a given sample point. To optimize this oatialjion, vertices of
M are copied to an octre&fibramanian92 This octree is updated each time
vertices are repositioned, added or removed.

As Geometry Learning is the most important step, it is ingbkeevery iteration.
Node Addition, Node Removal and Topology Learning are indoké&h decreas-
ing frequencies respectively.

The basic Neural Mesh algorithm yields triangle mesh reitaosons of the tar-
get shape whose vertex density mimics that of the input mbarid. With a small
alteration, it is possible to obtain reconstructions whhkesvertex population fol-
lows curvature of the target shape instead. 3alfemO}# we also showed how
the algorithm lends itself to a more efficient implementatioat reduces its com-
plexity from O(N?) to O(N log N) with little change in reconstruction quality,
whereN is the number of vertices iM.

4.1 Geometry Learning

A sample,s, is obtained uniformly at random frofR, and the vertex in that

is closest tos is selected. The selected vertex is termedthmer, v,,. M learns
from s by movingwv,, towardss and applying smoothing to the 1-ring neighbors
of v,,. Smoothing the neighborhood of, helps avoid foldovers and local min-
ima in M. lllustrations for the 1D case are given in Figurke& and4.3. The
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(a) Foldover (b) Local minimum

Figure 4.3: Unwanted artifacts degrade mesh quality. &estirepresented by
unfilled circles will never be selected as winners.

information contained im,, is then updated.

4.1.1 Moving v,

The new position of,, is given as
T = T + Q- F(d),

whered = 7o anday, is a parameter between 0 and E(cf) is a variant of
Hubber’s filter Black99 that filters out the effects of outliers iR. A moving
averagey.y, and standard deviation,, of |cf| over the past 1000 training samples
are maintained. An outlier threshold is then calculated as

€4 = [td + g0y,

-

using an input tolerance,, andF'(d) is then defined as

F<cf>={

4.1.2 Smoothing neighbors

k=
&
AVARVAN

€d
€q '

if |
if |

==

For each vertexy;, in the 1-ring ofv,,, its Laplacian Taubin99 is calculated,

E(w) = s D (6= 7).

followed by the displacement,

L(v;) = L(v;) — (L(v;) - ;)i



4.2 Node Addition

wheren(v;) is v;’s valenceu;s its 1-ring neighbors and; its approximated nor-
mal. v;’s position is then updated as

-

772‘ < 171 + asLs(vi)a

wherea, is a smoothing parameter between 0 and 1.

4.1.3 Updating Activity Information

Each time a new is chosen fronPP, acurrent sample numbe§,, is incremented.
So, whenP is sampled for the first timeS.. is set to one, at the second sample
S. = 2, and so on.S, is used to update the stored activity information of the
currenty,, as follows.

First, the number of samples since thes last “win” are computed,
=5, — Su(vy) — L.

Recall, that when\ is initialized, S,,(v) = 0 for all verticesv in M. The activity
counter is then updated as

7(Vw) < ar(afT(vy) + 1),

wherec is calculated as., = (%)ﬁ, N is the current number of vertices it
and\ is an input parameter such that a vertex loses half its cowatae if it is
not the winner for\ NV samples. Finallyy,,’s winning sample number is set to the

current sample number,
S (V) < Se.

4.2 Node Addition

As intended, “active” vertices, i.e. vertices that papate actively in learning,
are identified by their high counter values. The presencefeavertices in a
region of M indicates under representation of the target shape ine¢gain. To
remedy this, new vertices are added in the region.

First, activity information for all vertices is updated. @iy the vertex with the
highest activity counter is selected and a new vertex is@ddes neighborhood.
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4.2.1 Updating Activity Information

For each vertexy;, in M, the number of previous non-winning samples is calcu-
lated,
€r = SC — Sw(UZ'),

and its activity counter is updated,

T(v;) < o, 7(v;),

ctr

along with its winning sample number,

Sw(Uz') < SC.

4.2.2 Adding a Vertex

The vertex,v,, with the highest value for the activity counter is selecteda
vertex split operation. The longest edgg,incident on it is chosen and the edge-
star ofv, is traversed in both clockwise and anti-clockwise diratdito find two
edgese; ande, that divide the edge star in half. The vertex split operaisathen
performed oy, alonge; ande, with the new vertexy,,, added at the midpoint of
es. Thisis illustrated in Figurd.2b where A corresponds tg, AC and AD toe;
ande,; and B tov,,.

In order to decide activity counter values faranduv,, their restricted Voronoi
cells (RVCs) are considered. A vertex’s RVC is the intersectionhef vertex’s
Voronoi cell with the surface of the target shape. The agtigounter ofv, is
distributed among itself and, in the ratio of the areas of their RVCs. In keeping
with [Fritzke93, the RVC area of a vertex, is approximated by the aref,, of

a square as

where

1
I — _
Y walence(v) Z o = ol

vi€l—ring(v)

4.3 Node Removal

Vertices that are not participating in learning are eitlyand in areas ofM that
over represent the target shape, or are stuck in local minimfaldovers (Figure
4.3). These are “lazy” vertices and need to be removed fram
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(@) (b) ()

Figure 4.4: Preserving manifoldness (boundaries are shhowiack). Collapsing
edge AB (a,b) or removing triangle ABC (c) results in a non-ifedcd mesh. The
half-edge collapses (a,b) are not performed, and the teaegioval is corrected
by removing neighboring triangles.

Once again, the activity counter helps identify such vegicAfter performing a
counter update as in Sectidr2, the vertex with the lowest activity counter and
other vertices whose counter values are below a thresheldrersen for removal
through a half-edge collapse operation (Figdi2o).

The half-edge collapse operation, in addition to removingerex, changes the
valences of three other vertices, as shown in FigL®e, where B is the node to be
removed, and A, C and D are the affected vertices. For thabreavhen an edge
around a vertex is to be collapsed, the algorithm selects tie vertex's edge
star that edge whose collapse will cause the affected nodescbme as close to
regular (valence 6) as possible. Such an edge has thadgasdrity error, £, of
all the edges in the edge star, whéfés given by

E:%¢m+b—1m%+@—m2+w—7y

anda, b, c andd are the valences of A, B, C and D respectively in Figdi2b.

For boundary edgedy is computed differently. If, in Figurd.2b, we imagine
a boundary running from left to right through the edge AB stlclt the part of
M containing the vertex D does not exist, the regularity efoorAB would be
computed as

E:%¢m+b—ﬂ%+@—nz

Apart from accommodating for boundary edges, the validitg oandidate half-
edge collapse is also checked. As illustrated in Figluda,b, some collapses can
lead to topological anomalies iv. Such cases are easy to detect — endpoints
of the edge to be collapsed lie on different boundaries, tlgeeeo be collapsed

is part of a boundary with only three edges. Invalid collapdes these are not
carried out.
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Figure 4.5: Learning topology. The hole is learnt (left) agyé self-intersecting
triangles, which are removed to form boundaries (centefijh \dbntinued train-
ing, the boundaries grow close to each other and are mergedntothe handle

(right).
4.4 Topology Learning

Topology Learning consists of two sub-steps, removingdangngles fromM\ to
create boundaries, and merging boundaries close to eaehtothreate handles.
The motivation is that regions iM corresponding to holes in the target shape
will contain very few vertices, as vertices in this regiorlwyipically be lazy and
removed by the Node Removal step. This will lead to large ¢fiesiin such areas.
Thus, large triangles iV are indicative of holes in the target shape. Following
this strategy, a handle in the target shape will be learntMbyas two separate
boundaries, that will grow close to each other during tragni Therefore, when
two boundaries in\ get too close, they are merged to form a handle.

4.4.1 Triangle Removal

The average triangle area, in M is computed and a triangle removal threshold,
T,, is computed as
T = a,Z,

where«,. IS an input parameter. All triangles M that have an area greater
thanT, are selected for removal. However, removing some triancgescause
M to become non-manifold. This is shown in Figut&lc. For such triangles,
neighboring triangles are also removed to preserve mainésls ofM.

The average triangle aread, in M is used to calculate a triangle removal and a
boundary merging threshold. Triangles with area greatar the triangle removal
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threshold are removed, and boundaries whose Hausdoidihdisto each other is
less than the boundary merging threshold are merged. Ietneval of a triangle
causesM to no longer be manifold, neighboring triangles are remdea@store
manifoldness (Figurd.4c). Figure4.5shows the effect of these steps.

4.4.2 Boundary Merging

A boundary merging threshold;,, is computed in terms of as

T, = am\/j,

whereq,, is an input parameter. Boundaries are merged when the Hdldider
tance between them falls beldiy,. The Hausdorff distance between the bound-
aries is estimated as the Hausdorff distance between thefsatrtices represent-
ing them. The merging procedure is as follows. Starting fitbm two closest
nodes, one from each boundary, both boundaries are traviertiege same orien-
tation checking for possible triangles with the next verfeixe candidate which is
closest to equilateral is selected and added to the mesver§ed followed by tri-
angle addition continues until the two boundaries are cetapt connected with

a set of triangles.

4.5 Feature Sensitive Reconstructions

Sharp features in a surface are characterized by high cuevadlues. Vertices
in regions of M corresponding to such features in a target shape exhil lar
changes in their normals during training. Thus, trackingrnges in normals of
vertices gives hints about curvature of the target shapeerefbre, rewarding,
through Node Addition, those vertices that exhibit largeiatéons in normals
leads to feature sensitive reconstructions.

This is achieved by replacing the activity counterpy anormal counterr. In
the Basic Step, a change in the winner’s normal is measured as

5’!1} =1 _rﬁm,7

wheren, andn,’ are the (normalized) normals estimated atbefore and after
its movement respectively,, is then normalized as

Ow

n5:M7
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Neural Mesh reconstructions of the cube (topl) Bimba (bottom)

Figure 4.6

to sampling density Bf(left) and surface curvature (right).

ing

models accord

Reconstructions of the same size are compared.
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where M5 is the mean value of,,’'s over the lastCs iterations and”; is a user
defined constant, e.g. 1000. Again, the number of sampleg ¢hev,’s last
“win” are computed,

r=25,—Su(vy) — 1,

and finallyn(v,,) is updated as

N(vw) < O‘n(afm(vw) + ns).

Note that whenM is trained using the normal counter instead of the activity
counter, it is not possible to apply the Topology Learnirgpsas large triangles in
M no longer correspond to holes in the target shape. Insteayglnow correspond
to flat regions in the target shape. Some reconstructiorts®o&ort are shown in
Figure4.6.

4.6 A Priority Queue Implementation

One core part of the Neural Mesh algorithm is the tracking extax activities
using counters. These counters then need to be scanned dode Addition
and Node Removal steps to identify vertices with highesekiwalues of the
counters. This is a®(/N) operation wheréV is the number of vertices iM.

As the absolute values of the counters are not importanhfatgorithm, rather
the relative values for different vertices, the counter lbardone away with alto-
gether by copying the vertices to a priority queue data &iracwhere the relative
counter value of a vertex is modeled by the priority of theresponding element
in the queue. Changes in counter values can then be modelathply £hang-
ing the priorities of the elements in the queue, or by “jungpithhe corresponding
elements ahead or behind in the queue by a certain amounttigkddf vertices
to M with a particular counter value then corresponds to addibiba new ele-
ment in the queue at a particular position. Vertex removaksponds to element
removal. The advantage offered by this approach is thaicesrtvith high/low
counter values can be spotted trivially at the head/taihefqueue.

Implementing the queue as a self-balancing AVL traddl’'son-Vel'skii62Z al-
lows changes in queue positions to rurQN log V) time and selection of ver-
tices to be split/removed i®(1) time. A full treatment of this implementation
is outside the scope of this thesis and we refer the read&ate¢mOfifor more
details, where we also show that this implementation bradaygn the complexity
of the algorithm fromO(N?) to O(N log N).
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4.7 Discussion

Neural Meshes effectively solve the problems unaddresgegardvious surface

learning methods. They can represent entire surfacesusiopatches. Learning
is adaptive; it starts with a small, simple initial surfaoenthich vertices are added
only where needed, i.e. in the 1-ring neighborhood of acieeices. Vertices

that become misplaced during training and over repreBeaute removed. Also,

neural meshes possess the ability to learn topology.

Notice that the only step of the algorithm whépds required is in picking train-
ing samples, thus making the running time independent obire of P. This
is in direct contrast to methods that need to process alltippints in order to
output a surface. Independence from the input point closml @lows out-of-core
processing of large data sets.

Like most learning algorithms, Neural Meshes suffer from tieed for user pa-
rameters. While a default set of values can be set, best sesiliitbe obtained
by tuning the parameters in accordance to the input set. cthikl be seen as an
advantage for the expert user. For an extensive treatmehtsoissue, we refer
the reader to$aleemOj

Despite the speedup offered by the priority queue impleatsmt, the method
is slow and non-competitive with contemporary geometrgelobSurface Recon-
struction methodsjchall0g. The majority of the running time is spent in Geome-
try Learning. We expect that a shrink-wrapping approachilar to [Kobbelt99,
with the Neural Mesh initialized as an inflated bounding spheith number of
vertices close to the final number could offer a solution te poblem.



Chapter 5

Static and Dynamic Shape Views

3D views are ultimately displayed on 2D media, invoking ggcton from three
dimensional shape space to two dimensional display spasenfiitely many
projections are possible and display space is limited, @obees important to
choose a few good projections wiews Our interest in representative views is
mainly in context of shape repositories, where a catalogenfy of stored shapes
is presented to the user for browsing. Possible applicatidrine methods pre-
sented in this chapter are to automatically compute suatsvier and to support
view based similarity retrieval of shapes stored in the ségpoy. However, the
methods are general enough to be used in other contexts las wel

What distinguishes a good view from a bad one in the eyes of aahuob-
server relies on the nature of 3D shape perception which idive re-
search topic in psychology, neuroscience, psychophysiod, computer sci-
ence Blanz99 Tarr0l1 Todd04 (see also references therein). As mentioned in
Section2.2.1, view selection, or théest view problemreceives attention from
diverse areas. Broadly, we can distinguish between themmpuwter vision mo-
tivated techniquesirbel99 Denton04 Hall05, Lee04 Mokhtarian0(Q that define
representative 2D views for later recognition and repregem, and computer
graphics approache8¢rdoloi05 Gumhold02 Lee05 Podolak06 ShackedOl
TakahashiO5Vazquez03athat aim to effectively and economically present a
shape to an observer. The former analyze similarity andilisyabelation-
ships [Cutzu94 Cutzu96 Weinshall9T between different views while the lat-
ter maximize defined view descriptors. A comparison of vagibest view ap-
proaches in Polonsky0% concludes that while each of the descriptors covered
in the paper is reasonably good, it inevitably fails to prcglgatisfactory results
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for certain types of shapes. In Sectibrl, we suggest a method that combines
similarity and goodness/saliency approaches to inhegitstrengths of each ap-
proach while compensating for their individual disadvageta This work was
earlier published asyamauchiOé.

None of the above methods, including ours, consider shapatation during
view selection. In fact, as we mentioned in Sectibd in selecting views these
methods employ rotation invariant techniques that canmitnguish between
views in which the shape is oriented differently. Therefdhe resulting views
contain the shape in arbitrary orientation. This is a knowabfem and shape ori-
entation in selected views is often corrected by hdwgnsky05 TakahashiOp
An automatic heuristic we proposed and present in Se&iaril turned out to
work only in a few cases. We then tackled the problem of ctirrg¢he orienta-
tion of a shape in its view, in a systematic manner resultingur example based
method previously published aSdleem0Q7cand presented here in Sectidr2
To the best of our knowledge, ours is the first attempt to aatmally solve the
problem of fixing shape orientation in views.

Static views limit exposition of the shape to just the showntg This problem
is further exacerbated in methods that choose only a single and thus convey
no information on the rest of the shape. A dynamic view, ondtier hand,
presents a smooth animation of different parts of the shape.surveyed the
little existing work in this direction in Sectio8.2.2where we summarized the
conditions that should be fulfilled as the camera recordiegview travels (flies)
along a computed path. In tradition of the best view problemterm the problem
of finding good dynamic views of a shape as the “best fly” probl&Ve present
our work on extending best views to compute a best fly in Sed&i8, earlier
published as$aleem07} whereby the speed and zoom of the camera along the
computed path vary in accordance with viewed shape featAssfar as we know,
we are the first to alter the speed and zoom parameters of therado provide a
more informative fly.

5.1 Stable and Salient Shape Views

Like the computer vision methods mentioned above, our begt method is also
based on similarities between shape views. We simplifylanity computation
by considering only the binary silhouette of the shape iwigsvs. The obtained
similarity values are then used to guide a clustering prottest partitions the view
sphere intastable view regiongvhere viewpoints in such a region share a similar
view of the shape which is different from views from otheriogg. Using the
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view sphere parti-
(c)tioned into stable
view regions

similarity weighted

(@)aviewsphere  (B) (o rical graph

(d) mesh saliency (e) view saliency (f) computed views
Figure 5.1: Overview of our stable and salient view selectitethod. Top row:
Partitioning the view sphere into stable view regions. (@wsphere and ob-
served object. (b) similarity weighted spherical graph) d@lored stable view
regions. Bottom row: using view saliency to select the fingws. (d) mesh
saliency. (e) visualization of view saliency. (f) selectedresentative views.

perceptually motivated view saliency measured09, we pick a representative
from each of these regions and the most salient of these suggrested best view
of the shape. An overview of the method is presented in FigLite

We obtain 162 views of the shape as described in Se8tibcorresponding to the
vertices of our view sphere approximated by a doubly Lodpdsuded icosahe-
dron. The view sphere itself formsspherical graphn which an edge connects
neighboring viewsWe discard all color information to consider only the siiho
ette of the shape in each view, as shown in Fighu2 and then perform pair
wise image similarity comparison between all neighborirgws using Zernike
moments analysis, as described in SecB8dhl We use moments up to order
15. The similarity value between neighboring views is assthas a weight to the
corresponding edge in the spherical graph. Figbréis and5.3 show the spher-
ical graph with edges colored by similarity weights. A blulge represents high
similarity between its incident views while red edges repré dissimilar views.
Rotation invariance of our view similarity method is illusted in Figures.3a,
where edges between views that are rotated version of tihezsdeave received
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Ssd ed

Figure 5.2: Sample of binary (silhouette) views.
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Figure 5.3: Similarity weighted spherical graph of a cyénd
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low weights.

In our similarity weighted view sphere, a stable vialdinshall9T will be identi-
fiable as a viewpoint with high similarity weights on all ideint edges. An area of
the view sphere that groups several such stable views tegietims astable view
region To find stable view regions, we partition the similarity gleied spherical
graph based on its edge weights. One possible way to actisvestto find an
edge cut that segments the graph into the requested numipartgfons while
minimizing the total weights of edges in the cut. This way wevent regions
with high stability to be partitioned into two disjoint part MeTiS Karypis9§
is a graph partitioning application that partitions a gragb the requested num-
ber of sub-graphs. Given a graph with weighted edges, Memi$ fan edge cut
which minimizes total weights and generates sub-graphs matanced number
of vertices. Although our application does not require tlaéabcing property,
our experiments show that it does not create any bias. FEdceshows an ex-
ample of this partition method (each partition has a diffiéreolor). The par-
titioning quality is also influenced by the sampling densifythe view sphere.
Sparse sampling will result in a small graph which will befidiflt to partition.
In the field of object recognition, around 50 uniform distiiédd samples are
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@voe

(a) each stable view region is represented by one of its views

SFee

(b) unstable views lie at the intersection of stable viewaes.

Figure 5.4: Stable view regions.

used Beibert92 Mokhtarian0Q. In our implementation, 162 samples are used,
same as inTakahashiOp and from our experience this number is sufficient.

We pick a single view from each region as its representafies view is com-
puted as the saliency weighted average of all viewpointsemrégion. That is, the
representative viewpoinR,, of a partition,P;, is given by

> jer 5 Pj
ZjePi Sj ,
wherep; is the position of a view sphere vertex ands its corresponding view

saliency. The representative views are then ranked acuptditheir view salien-
cies.

R, =

5.1.1 A Suggestion for Model Orientation

One of the major challenges in view selection is to find thepproorientation
of the 3D model. For example, when viewing a model of a foggtd animal,
we expect the view-selection method to orient the view shelthe animal will
be on its feet and not on any other body-part. At the time oflipation of this
work, this problem was yet to be addressed successfully asadwl solution was
outside the scope of the work, we suggested and tried thefiolfy heuristic.
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W W A s o b

Stable view, high saliency— — Stable view, low saliency

Figure 5.5: Selection of stable and salient views usingrgi(silhouette) views.
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Best 2nd 3rd Best 2nd 3rd Best 2nd 3rd

Figure 5.6: Best three views generated by our approach.

We claim that for an object to be properly oriented, its leéagtortant part should
be facing down. The justification is that usually the lowertpd an object is
hidden from the viewer and the viewer would thus choose thstlenportant
part to be the lower one. Figuke7 shows several examples of model orientation
selection based this our hypothesis. For all other viewcsele results in this
chapter, the up vector was set(th 1,0). View orientation in the figures has not
been adjusted in any other way.

As we see in Figur®.7, our suggestion led to correct orientation for only 3 out
of the 12 models that we tested. Our later work in this digetis presented
in Section5.2 where we obtain better results. After the publication of two
works, a classification based methdelpg was proposed to compute upright
orientations of man made objects. We revisit the topic opsharientation in 2D
views in detail in Sectios.2
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Figure 5.7: Best views generated by our approach togethérawit suggestion
for model orientation.

Figure 5.9: Top 8 most salient viewpoints. (Blue points) Tiewsphere’s edge
color reflects saliency value of the incident viewpoints.tib®the back of view

sphere is culled for visualization.

Figure 5.10: Top 3 salient view examples of Fig6r8.




52

Chapter 5: Static and Dynamic Shape Views

5.1.2 Results and Discussion

Figure 5.4 shows some results obtained by partitioning the similasigighted
spherical graph using MeTiS. Figubeda shows a representative stable view for
each model while Figur&.4b shows an unstable view. Note, that the unstable
view lies at the intersection of several stable view regidiie see that the stable
regions for the dragon and horse models are stretched iphezess longitudinal
direction. This implies that a movement of the viewpointrgja longitudinal
line will result in minimal change in view compared to moverhm a latitudinal
direction.

We fixed the number of partitions (also the number of final @ete 8. From our
experiments, this number usually proved sufficient to calemteresting parts
of the model. A larger number of partitions may not reveal aew information,
while a smaller number might not suffice.

Figure®.5and5.6 show several results of our experiments using our automatic
multi-view selection method. We also examined illuminafgeyscale) images
using the Gouraud shading model besides silhouette (Diivagges. However,
the shaded images are sensitive to environmental consglitsaich as lighting, and
hence tend to bias the results. Due to this, we concludedhkatse of binary
images is more appropriate for our purposes.

Figure 5.9 shows a multi-view selection that is based on saliency aldhes
easy to see that all high saliency viewpoints are conceatriata small region on
the view sphere. This is because small deviations in viemin not affect the
saliency value much. By taking into account the stabilityhaf view, we force the
views to be spread all over the view sphere, resulting in gebdistribution.

Figure 5.8 shows the best views selected by the mesh saliency metlead§.
Comparing Figuré.8 with Figures5.5 and5.6, we can say that our results are
comparable or, in some cases, better. For example, thetoftthe dragon model
is the most salient (Figurg 8). However, when stability is taken into account, the
best view changes to the side of the dragon, which is a mudkrbmiggestion
(Figureb.6), although this is not the most salient view.

Similarly, the neck of David’s head is also salient due tdhitgh and consistent
curvature. However, this view is unstable (Fig&rd). Therefore, our method
avoids the uninteresting view of the neck and recommendsrbaéws that cover
the front and top of the head (Figuses). Note that our method does not ignore
the saliency recommendation in the neck region, but conshitneith a stable
view. These examples show the benefits of our method achleyedmbining
two human perception elements, stability and saliency.
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Figure 5.11: Two views each with different orientations wbtshapes. Given
the left image of each shape, our method automatically coesghe right image,
which has a more natural orientation for the shape.

No optimization was done throughout the implementation. @atation time of
constructing the similarity weighted spherical graph isw&h40 minutes. This
does not depend on the shape since view similarity is cordputethe rendered
views whose number is fixed (number of vertices of the vienesph View res-
olution is set t256 x 256. The bottleneck here is the Zernike moment computa-
tion which is known to be slow. Adopting one of several opsiations suggested
in [Chong03 will dramatically reduce the time needed for this step. ghraarti-
tioning by MeTiS takes less than 10ms. Mesh saliency contipatimes depend
on the number of vertices in the shapes and agree with thabe iariginal pa-
per [Lee0Y. The view saliency computation takes less than a minuteeniding
on the rendering time of the model. All timings were measwada 2.8GHz
Pentium 4 PC with an ATI Radeon R300.

5.2 Example Based Shape Orientation

Humans know the correct orientation(s) of a shape througlersance with ob-
jects of that shape. It is through previous interaction tiatknow, for example,
that the correct orientation for a car is one in which the vidvaee down, instead

of up. Such information is difficult, if not impossible, toropute from the shape
alone Blanz99. As view-finding techniques are insensitive to rotatidieyt can-

not distinguish between the views in each row of Figbel. However, a human
observer would clearly prefer the views in the right colunverathose in the left
column. In Sectiorb.1l, we proposed a heuristic to automatically correct shape
orientation in chosen views but the results, shown in Figureturned out to be
unsatisfactory.

In this section, we suggest a two step example based appvdasieby a query
shape is matched with exemplars in a database of classifieskctly oriented
shapes. Correct orientation of database shapes is determasually before-
hand. In the first step, classification, the query shape ismedtup with a candi-
date class from the database and a target shape from thela@ndiass is chosen.
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In the subsequent alignment step, the query shape is netedi@ccording to the
target shape’s orientation.

5.2.1 Setting up the Database

To set up our database, we choose the MPEG-7 datasstetckiOQ Veltkamp04,
which contains 1400 binary images organised into 70 clas#®s20 members
per class, where each image contains a single shape. Astdsetlaas compiled
to test shape similarity techniques, members of the sanss differ from each
other in shape features. With regards to orientation, afl@dundancy and false
information had to be filtered out.

We found several classes nbn-orientableshapes. These are artificial shapes
for which no notion of correct orientation exists. Thesess&s were removed. In
some of the remaining classes, we found images with incooreantations. These
images mostly contain natural objects in orientations Wwhitluman observer can
easily specify to be incorrect. Such images were also redyaved later used as
gueries for our method.

Next, we filter outredundant imagefrom the dataset. These are class members
that differ from each other only in fine shape features ancheogessarily in ori-
entation. We removed redundancies automatically by itiendgj groups of very
similar images within a class, and retaining one image frachegroup. This is
done by choosing a class member initially at random as a qoege and com-
paring it with all other class members. Member images thatt@o similar to

the query, i.e. their similarity distance is below a thrddhare removed from the
dataset. Note that the similarity measure used is rotagosigve and is described

in Section3.3.2 The query image is flagged so that it can no longer be removed
from the dataset. Next, the image which is the most dissintwlahe query im-
age, i.e. has the maximum similarity distance, is taken agjtrery image and
the process is repeated. Repetition stops when the classisespnly of flagged
images. Figur®.12shows examples of the kinds of images that are removed from
the database.

After the above filtering steps, the original dataset is ceduto 237 images in
56 classes. The smallest and largest class membershipaate1¥ respectively
with a median of 4. The choice of ‘similar’ images is very mutgpendent on the
shape similarity method used. We talk more about this iniGeé&.2.4 Within
the database, we represent each shape by its boundary cadalescribed in
Section3.2 From the 237 images in our database, 20 images requirednigjur
iterations, with only 4 images requiring 3 or more iterason
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Figure 5.12: From the original dataset, we manually remagerrectly oriented
images (top row) and images containing non-orientableeshépiddle row). Re-
dundantly oriented images (bottom row) within a class carebeoved automati-
cally.

5.2.2 Example based Shape Orientation

As mentioned earlier, our method proceeds in two steps -saifitzation followed
by an alignment step. We use nearest neighbour classificatising the CSS
shape similarity methodMokhtarian03, explained in SectioB.3.2 we retrieve a
list of database images sorted according to their simyldigtance from the query
image. The candidate class is then chosen as the classringttie best match,
i.e. the image least distant from the query.

From the candidate class, we choose the shape most similae tuery shape.
This is thetarget shape Recall that database shapes are correctly oriented, and
that all shapes are represented by their boundary contdwrsalign the query
shape to the target shape, we rotate the query shape sucthelatections of its
Principal Components (PCs) match those of the target shape.

To remove bias because of point density, shape contoursn#mraly sampled
before PCA calculation. An artefact of PCA alignment is thah@4$’Cs, a shape
cannot be distinguished from it80° rotation. Thus, during alignment, the query
image could end up getting mis-aligned b§0°. To avoid this, once the query
shape has been rotated as described above, we match it whtthiedarget shape
and al80° rotation of the target shape. If tH&0° rotated target shape gives a
better match, we rotate our final image 130°.
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5.2.3 Results

We query our method with the incorrectly oriented shapesket from the orig-
inal MPEG-7 dataset, with user input images, and with conlynased shapes
from Computer Graphics literature. We used images of comynoséd mod-
els that were presented as best-view results in SebtibnResults are shown in
Figures5.13to 5.15 (some artefacts may be visible because of image resizing).
The columns show query images, corresponding target stdqosen from the
database and our final results. Recall that database sha&passamed to be cor-
rectly oriented. The correctness of a result is evaluatedgly, and is taken to be
correct if the resulting image is similarly oriented as aaftase image of the same
class, or if it agrees with the human notion of correct oaéon for the contained
shape.
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Figure 5.13: Results for incorrectly oriented shapes.

We have the most success when using incorrectly orientgeeshareviously re-
moved from the dataset, Figuel3 as they have similar class members still in
the database. The tree-3 case shows the efficacy of the PCQfonotarrection
mentioned at the end of the last section. Even though theyqumel target images
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Query Best match  Alignment

SR/

bone bone-17 bone aligned

tree-1 car allgned

fork fork 20 fork aligned
heart heart 8 heart aligned

Figure 5.14: Results for user drawn queries.

have the same PCs, our method is able to detect and misaligam&notates the
qguery by180° for better alignment. The chicken-7 case illustrates timgtditions
of a shape’s PCs in estimating its orientation. While the tasgape is very sim-
ilar to the query shape, its PCs and those of the query do nahmiius ending
up in an incorrectly oriented result. The apple-1 casetifuss our use of object
boundaries for similarity computation. In terms of shaperxaries, the apple
and pocket watch are hardly distinguishable.

Results for user sketches, Figwel4 are fairly good when the sketch matches
an existing database shape closely. Limitation of oriemagstimation by PCs

is again illustrated in the heart case, and the car case sti@wvdeficiency of
our method when queried with a shape different from datakaselplars (our
database contains a persapal class whose members are differently shaped than
this query).

Major deficiencies of the method are fully exposed in FigaukEs Our database
already contained a horse exemplar very similar to the goerge, thus yielding
a good result. We expected the camel to match the horse gdweils curvature
properties caused our similarity method to deem it morelamto the frog, re-
sulting in an incorrect output orientation. (Notice thag tamel’s front and hind
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Figure 5.15: Results for common Computer Graphics models.
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legs are not apart in the boundary image). Finally, our degatsimply does not
contain suitable exemplars for many of the other modelsheadsults are more
or less arbitrary. Santa and rocker-arm are examples obnentable shapes. No
orientation can be regarded as correct for these shapedaet shapes chosen
are irrelevant, as any orientation imposed on these shaifi@ow

5.2.4 Discussion

Typical running times to orient a query shape are about a teinli the query
shape is complex (the boundary has many concave/conves),pair method can
take up to two minutes. The bulk of the running time is takerbyphe similarity
retrieval in the classification step. This can be optimisggérforming an ini-
tial one-time probabilistic analysis of the databaSegder04 and/or approximate
nearest neighbor searche&3epastiand2 Also, more efficient search strategies
[Keogh0g can be employed. The search can further be optimised thrimapx-
ing. Instead of matching a query image with the entire da@bae could extract
a ‘prototype’ for each class and match the query with thegtypees to find the
candidate class. The target shape could then be found byhimgthe query with
all members of the candidate class.

Many aspects of our method are dependent on the shape giymiteathod used.
The most important of these is the retrieval of the simyesidrted list mentioned
above. As seen in Secti@n2.3 accuracy of this listis crucial to our method. Arte-
facts in the similarity method lead to questionable sogiogusing our method to
yield implausible results. Throughout this chapter, weehased the CSS method,
which had been reported earlidrdteckiOq to perform well and has in fact been
included in the MPEG-7 standard. However, recent resu#tlamp0§ and our
experience with the method indicate that the method cdrbstdubstantially im-
proved.

Perhaps the most important ingredient of our method is tkebdae used. It cur-
rently contains only 56 classes, extracted from an alreadypded dataset. The
limitations arising from this are visible in Figueel5 While the need for extend-
ing the dataset is obvious, it is not entirely clear how to devghout manual in-
teraction. One solution could be to crawl the Internet foag®s. As these images
are (mostly) posted by human users, we can assume them torbetyooriented.
However, automatically sorting through these images taekthe ones contain-
ing single objects against a plain background is non-ttivieurthermore, each
extracted image will need to be either classified into ondefexisting classes in
the database, or added as an example of a new class. Thisbedizhe using a
similarity threshold.
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Also, as highlighted in SectioB.2.3and in [PodolakO® Principal Components
are not robust estimators of shape orientation. The aligmistep could instead
make use of other methods like Iterative Closest Point (ICPyarmetry axes
[PodolakO#.

One drawback our method suffers from is the absence of arsgitemeans of
evaluation. The correctness of our result can be judgedmniyisual inspection
by a human user, or by similarity to stored instances of timeeselass. But we
believe that this flaw is intrinsic in our problem descripti@nd will be resolved
once we have a representative enough reference dataset.

A natural extension of our method is to work directly with 3@dels. On closer
inspection, this problem amounts to choosing a correctagter in 3D for the
given shape. An example based approach as the one we prebasteecently
been proposed irHu0g, where the authors form a feature vector composed of a
few basic geometric properties of the 3D shape. They thémaralassifier using
345 test models. The trained classifier was able to corresttyrient 819 models
with a success rate of about 90%.

We believe that the problem we tackle is a hard one, as wentegsence, to mimic
the human notion of correct orientation, which is a compleéx rasulting mostly
from user experience and partly from the object’s shape.h Sunotion is not
entirely computationally replicable from the shape’s getmalone Blanz99.
However, as has been shown Fupg, statistical methods that can to some extent
learn this notion go a long way towards solving this problem.

5.3 Dynamic View Representation of a Shape

Figure 5.16: Left to right are scenes extracted in sequewoe dur animation of
the Lion vase model. Speed (top right) and zoom (bottom Yighthe camera
vary along its path.

While static views limit shape exposition, interactive shagewers, as offered by
some repositories, require the entire shape to be streantbéd tiser’s machine,
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which is inefficient for large, detailed shapes. We presenefficient, hybrid
solution based on our best view method form Secldn We compute a camera
path,P, on the view sphere as an interpolation between the shapstsviews,
V), e.g. Figures.17. Our premise is that the shape is sufficiently described’ by
and what remains is to inform the user on the relation (ttemi between these
views. At each point along the path, corresponding to the withe shape visible
to the camera, the speefl, and zoom,Z, of the camera are modified. The path
is computed such that it fulfils the conditions listed eariire Section2.2.2and
reproduced below

1. Brevity— the animation should not be long,
2. Information— the animation must be maximally informative,

3. Exploration— the camera path should avoid fast returns to already disite
viewpoints

4. Smoothness the path should be smooth.

An animation recorded by a camera traveling BnobservingS and Z can
be made available on a shape repository’s web page in a popala format,
e.g. animated GIF or Flash. A tunable parameter can allowea toscontrol
the length of the animation. Most of the images in this sectoe stills from
our results video which better illstrates our computed pathd is available at
http://www.mpii.de/ wsaleem/SCCGO?7.

5.3.1 Computing the path

Given the set), of representative viewpoints, we want the computed patho
interpolate its members on the view sphere. Also, we requireanimation to
run continuously on a shape repository web page without @silgle breaks. We
formulate these requirements #has follows:

e Interpolation—the camera path should interpolate a given set of viewpoint
e Looping- the camera path should be a cycle.

In [SokolovO6, the interpolation order is determined by first defining staince

function that favors viewpoints with higher view goodnesatues, computing all
pairwise shortest paths between the viewpoints and thelyingm TSP solver.

This restricts the computed path to edges of the tesseNatadsphere, and fails
the Smoothness condition from Sectii2.2
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Figure 5.17: Stable view regions (colored) for the Armadithodel and their
representative viewpoints (green dots). We compute 12mnsgiand each of the
four views above is taken from the representative viewpaimine of the regions
in the center of the image.



5.3 Dynamic View Representation of a Shape 63

Looping is satisfied trivially by repeating the first pointia¢ end when computing
the ordering. As the path is a cycle, the choice of first pararbitrary. Once
the ordering is determined, we interpolate the points onsfiteere using cubic
spherical splines (Chapter 15 iNVatt91)). A few computed paths are shown
in Figure5.20 Our computation of viewpoint ordering is described belov.
discussion on how well the resulting path satisfies the ¢mmdi listed in Section
2.2.2is given in Sectiorb.3.6

For every 3 consecutive points in a potential orderivig,V;, Vi, € V, consider
the quantity

O = [d(Vi, V) + d(Vj, Vi) = d(Vi, Vi),

whered(A, B) is the spherical distance between poidtsind B. ©,;;, gives a
measure of the turn af;. ForV;, V}, V;, lying on the same great circl®,;, = 0.
The computed ordering is the one which minimiE@j Oiji-

5.3.2 Up-vector consistency

Special consideration is given to the up-vectors of bothvineial camera and
the models used. We use a default value for models’ up-ue(&;,g)r: (0,1,0),
which is consistent with most scanning systems. Howeves,ishot robust and
we manually fixed/,, for one of the five models used in this chapter.

For proper orientation of the model in the animation, we l@gphe up-vector of
the camera, consistent with,,. At all times,U. is chosen as the vector perpen-
dicular to the viewing direction that is coplanar with,. This gives two possible
orientations for the up-vector. Indeed, there is a ‘flip’ imeatation at singular
points, i.e. viewpoints with view direction parallel &,,. The flip in U, is nec-
essary to maintain correct orientation of the model, otlewonce the camera
passes through the singular point, the model appears todieeugown.

5.3.3 Computing camera speed

Camera speedy, determines the distance alo®gfrom the current viewpoint to
the next one. The motivation is that the camera should quitkby uninteresting
views. Formally, we pose the following condition on the spee

e Saliency respecting the camera should slow down when passing over vi-
sually important regions of the shape, and speed up forenmgsting views.
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Figure 5.18: a) Minimum (top) and maximum (bottom) posifidn the speed
clock of the Armadillo animation. The 3 0’ clock position repretetie starting
and ending point of the animation, during which the pointeves clockwise. The
length of the pointer represents the magnitude of the speetthe dots represent
the interpolated viewpoints. b) and c) show the views c@ading to the min
and max positions respectively.

We use the perception based measure of view sali@ASy,to compute visual

importance. The above formulation suggests an inverséiaeship, S o« <

VS
Taking the view that the purpose of our animation is to aid Anmnderstanding
of the shape, we use the Two-Thirds Power Law @& Sperati9fand references
therein) from locomotion which relates tangential velpdit, of free-hand move-

ments to the radius of curvatur®, of the trajectory as follows:

B Rit) \'7
V(t)=K - (HQ—R@) a>0, K>0, (5.1)

whereK is a velocity gain constang, is negligible if the trajectory does not have
inflection points, andg’ is close to§ for adults. Putting in these values, we get

wl=

V(t) = K-(R(t))

)

wherex(t) is the curvature of the path. In our case, we want the speeelpend
not on the curvature, but onS. Therefore we set

1
3

S(#) = K, <W) | (5.2)
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where~ is a constant offset to compensate for the 1 normalization of)S.
Puttingy = 1 makesS vary betweenk, and 13\55 ~ 0.79K,. A high value of
K is thus needed for changes in speed to be discernible. Natetin use of
cubic splines for interpolation technically invalidatég tchoicen = 0 in Equa-
tion 5.1 However, we find that as a first approximation, the obtairsdlts are
guite satisfactory.

Equation5.2is in agreement with the inverse relation suggested eailiee ex-

ponent dampens the effect of any irregularitie¥®. In Figure5.18 we show an
example of the computed speed function. As the static imaglgpoorly convey
the dynamic nature of the result, we urge the reader to vienatitompanying
video for a better understanding.

5.3.4 Computing camera zoom

Figure 5.19: a) Minimum (top) and maximum (bottom) posisan thezoom
clock of the Armadillo animation, where the zoom clock represeoiam in the
same way as the speed clock in Figbr&8represents speed. b) and c) show the
views corresponding to the min and max positions respdygtive

The motivation behind a variable camera zodjs the following.

e Appropriate viewing scale the shape should be viewed at a scale that is in
accordance with the size of the features being viewed.

In photography, zooming is achieved by changing the focajtle of the camera
lens. With the perspective projection of OpenGL that we Useughout this

chapter, this is equivalent to varying the distance betwbencamera and the
object, i.e. placing the camera in the corresponding mositin a view sphere
with a different radius; smaller radius for zooming in andy&x for zoom out.

Therefore, we comput& by computing the corresponding radi@,
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Recall that saliency is computed in a multi-scale way (Sacd®.2, where a
higher value at a small scale implies a small scale featorexhich the camera
should zoom in (small viewing radius). Correspondingly,ghhsaliency value at
a high scale implies a large scale feature, which requiresge lviewing radius
for proper inspection. We thus define, for each s¢akecorresponding viewing
radiusr; < ko;, wherek is a constant and; is the size of the vertex neighborhood
considered for saliency computation at scalé'he appropriate viewing radius,
R, for a vertexp, can then be computed as:

R(U) o Zz Sak(”)”

- 2Sak(v)

where Sglv) is the saliency ob at scalei. For a view,V/, an average viewing
radius is computed as
ZUEV R(U)

R(t) = eV (5.3)

After normalizingR to [0, 1], we use EquatioB.1to computeRr as
R(t) = K.(R(t)5 + 1),

whereK, corresponds to the minimum value Bf

Results for the Armadillo model are shown in Figd&9

5.3.5 Results

We tested our method on several models and the results axva $h&iguress.16
and5.20 and more comprehensibly, in the video mentioned earliesudmary
of computation times is given in Tabfel

In Section5.1, the computation time for obtaining the similarity weigthteew
sphere was around 40 minutes, with the bottleneck beingribgtimized simi-
larity computations between views of resolution 25%6. We reduce the simi-
larity computation time to a couple of seconds by comparwigime binary views

but their extracted boundaries at a resolution of 4800. We also replace the
area normalization step of the original method with the $&mpne proposed

in [Kamila0g. Note that as the images are compared using Zernike moments
[Khotanzad9Pwhich operate on the pixels of the image, we do not have to em-
ploy the full contour extraction method from Secti8r2 Just identifying pixels
lying at shape boundaries and toggling the remaining shieésgio background
pixels is sufficient.
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Most of the time in our current computation is spent on themsadiency calcu-
lation, which depends on the size of the mesh. For large rmpdaj. the Buddha
and Lion vase, this can be quite large. However, this is atone-preprocessing
step whose results are saved. This time also includes thewation of R(v)
from Section5.3.4 The other preprocessing step — extractihng- uses image
similarity and depends on the resolution of the views bemmgpgared. As we use
the same resolution for all models, all of them take the samauat of time.

Time taken for viewpoint ordering depends on the number efvpbints being
considered, and for constant number of viewpoints (12 ircase) is independent
of model size. View saliency computation requires ideintifyvisible mesh ver-
tices from each viewpoint. We interpolate 12 viewpointsgsi2 spherical cubic
splines, and sample 50 points on each spline. We thus hawampute visible
vertices for 600 viewpoints. The times for view saliency ganation also include
computation time foik from Section5.3.4

Vertices Me_sh Extracting \ﬁewpomt \ﬁe\_/v
Saliency | vy ordering Saliency
Armadillo | 172,974| 761.42s | 2s 15s 116.54s
Buddha | 543,652| <1h 2s 15s 256.3s
Bunny 34,834 | 20.23s | 2s 15s 41.0s
Elephant | 20,007 | 12.73s | 2s 15s 28.3s
Lion vase | 800,002| <1.5h 2s 15s 576.5s

Table 5.1: Summary of computation times for a few models.

When the desired length of the animation is varied throughuhable parameter
mentioned earlier, the pre-computed saliency and sirtyilaalues should be used.
Extraction of stable view regions from the weighted viewesghKarypis9g and
computation of) then takes milliseconds. Viewpoint ordering and view sadije
would have to be totally recomputed. The time for the formegehds only on the
chosen size o¥. In our experience, 12 viewpoints provide sufficient cogeraf
the object. View saliency computation, which also depemdsodel size, would
also change markedly as varying the sizé/ofaries the number of splines and
hence the number of viewpoints fA. Though this can be time consuming, we
suffice with this solution as we do not aim to provide a re@etisolution.

5.3.6 Discussion

We discuss how our method fares with respect to the four tiondi mentioned
earlier in Sectior2.2.2and reproduced below for convenience.
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Figure 5.20: Scenes extracted in clockwise order from tmeprded animations
of the (a) Armadillo, (b) bunny, (c) Livingstone elephantgi) Happy Buddha
models. The blue line on the view sphere denotes the compatid?, and the
dots correspond to the interpolated viewpoints. In eackh,dae four images are
extracted from the animation in clockwise order.
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1. Brevity— the animation should not be long,
2. Information— the animation must be maximally informative,

3. Exploration— the camera path should avoid fast returns to already disite
viewpoints

4. Smoothness the path should be smooth.

Regarding Brevity, the length of the animation is tunable, iasu$sed in ear-
lier sections. Once the points to be interpolated have bedgred, the shortest
path consists of straight lines or geodesics. To ensureathv®moothness, we
interpolate using cubic splines. The extra length addedhlkysmooth splines
is compensated by speeding up the camera over low salieewysviFulfilling
the Smoothness condition and covering the view sphere ircicqyath invari-
ably lead to a self-intersecting. This seemingly violates the Exploration con-
dition, but we claim that by interpolating points represgne of different, non-
overlapping regions of the view sphere, we have alreadylladfthe condition.
Lastly, we believe that by including the representativevgief the shape, the path
already conveys sufficient Information on the shape. Gugidithrough interme-
diate ‘good’ views, as is traditionally done, will serve pnb violate one of the
other conditions. In addition, by allotting inspection émand viewing scales ac-
cording to the visual importance of the shape features, Weveewe are able to
convey a lot more information about covered parts than ptesvmethods that fly
by the shape at fixed speeds and zooms.

Our objective, namely to generate a short but informativarftund a given shape
model, has a long history in the movie industry. It seems By to study
the techniques used in that area. However, caution will havee exercised as
movies often have a story which serves as the context andredietermination
of camera parameters. In a shape repository frameworle #rerno such helping
factors.

One of the biggest problems we faced while developing thdatkwvas lack of
feedback. In the absence of any formal measures to judgeitiieypf our output,
it was difficult for us to ascertain whether we were on the trigaick. While, in
principle, we can always ask a human observer to compare ifferent flies
of a shape, the human visual system is quite lenient and seemgomatically
compensate for any missing information. Indeed, the fewlgeio our lab whom
we did ask to compare such flies were unable to give a confideswexr, and
showing more flies served only to confuse and disorient. ¢h f&cent research
[Henderson(Q7even puts into doubt the role of computational models ofiais
saliency in determining a human observer’s attention. iggmt advances in the
fields of human cognition and psychology are required (whay just go on
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to verify the heuristics proposed by the graphics commiitigfore a ‘provably
correct’ best fly of a given shape model can be computed. thsih, the only
barometer computer graphics practitioners have towaedgtial is how well they
fulfil their heuristics derived through observation, commsanse and application
requirements.



Chapter 6
View Sphere Model

View based algorithms are quickly emerging as key tools fape understand-
ing and manipulation. While the most prominent applicati®riocusing users’
attentions on important shape pam®fdoloi05 Lee05 PodolakO§Polonsky0%
TakahashiO5Vazquez0], such algorithms have also been used for shape match-
ing [Abbasi0q, bas relief generatior§ong0T and optimal camera path computa-
tion [Arbel99 Barral0Q. The motivation behind these methods are longstanding
results from human psychologB{liithoff95, Koenderink79which claim that hu-
mans perceive shapes as a set of 2D images from differenpuiats.

So far, the focus of such methods has been on defining goodiaseviptors (Sec-
tion 2.2.1) with little attention paid to the construction and samglof the view
sphere. As mentioned in Secti8ril, a platonic solid, usually an icosahedron, fa-
vored for its triangle mesh structure, is taken as a baseoajppation of the view
sphere, and is successively subdivided to obtain finetyfamiform samplings.
The hope is that with a sufficiently large number of samples,abtained views
capture all necessary features of the shape.

In this chapter, we first present a derivation of the “optimaéw sphere of a
shape, and then present a scheme to construct a smooth iapguior of descrip-
tor values over the view sphere using only a handful of sasaplehe samples
chosen for the approximation depend on both the viewed shagdhe chosen
descriptor. In addition, we define a new shape based opeyai@w transfer and
demonstrate how our framework can be used to perform viewstea and other
common view based shape operations.

For descriptors whose computation is known to be expensige, Zernike mo-
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Figure 6.1: (a) A virtual camera & with frustumé, viewing the centerC, of
a bounding box diagonal of lengthfrom a distancel. (b) A model in its view
sphere.

ments Khotanzad9{) computation for a few adaptively sampled viewpoints is
far more efficient than for a dense sampling of the view sphémecontrast to
the traditional, discrete sampling, the continuous apipnaxon we build from
the adaptively sampled values can be trivially queried &sadiptor values at any
given point on the view sphere. The approximation can alsodeel for typical
(representative views) and novel (view transfer) view daggerations.

Our scheme is general and applies to any view descriptor. dBoronstration
purposes, we test our scheme on three descriptors, nameijk&@emoments
[Khotanzad9{) viewpoint entropy YazquezOlLand view saliencyllee0]. All
three have been presented earlier in Chagiter

6.1 Notation

A view descriptor,D, for a shape model\M, describes a functioryp : S? — R,
from the view sphere§?, to R. S? is represented by surface samplésy= {s;},
and the representation ¢#1 w.r.t. D is the set of value$ fp(s;)}. S typically
represents a dense samplingséf e.g. four subdivisions of an icosahedron (2562
view points) followed by re-projection t8°.

We iteratively approximaté¢p by building up a set aihterpolation centersC, and

a corresponding interpolation functiofi, In each iteratiork, £ > 1, we compute
C* and f* which are used to updatkand f at the end of the iteration. Note that
the superscript indicates iteration number and not exgoatem.
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For a given vectorp, we indicate by||p||,, the n-th norm ofp, i.e. ||p|, =
> pi”)% wherep; is thei-th component op. For a setS, ||S|| denotes its size
and for a complex numbet, || z|| or || denotes the magnitude.

6.2 Optimal View Sphere

The size ofS? relative toM determines the shape to background ratio in obtained
views. Clearly, we want to maximize this ratio while still wilng the entire shape.
Typically, the radiusy, of S? is taken to be some factafF,, of the length/, of the
bounding box diagonal oM, » = Fl. In the best view literature we reviewed,
no mention is made of the choice éf leading us to believe that it is chosen
heuristically. We present here a formal derivation for ahroal value of F' that
meets the above constraints.

Shape views are captured by cameras placed on the surf&enfl pointing at
the centerC, of the bounding box of\1. (C is also the center df2.) Thus, in
order to fully view M, the distance of the camera frothshould be no smaller
thand such that at distancé and with a viewing frustum of ¢, the camera just
fully views the bounding box diagonal. This is illustrated Figure6.1. We
thus obtaind = %cot %f Most mesh viewing softwares, including the one used
throughout this thesis, model cameras with a default valdg e-= 7/4. Thus,

d= ; ~ 1.211.

2(vV2-1)

Settingr = d, i.e. FF = 1.21 causes extremities oM to lie at view image
boundaries. Therefore, for our experiments, wefset 1.3 for all shapes.

6.3 Approximating fpon S?

As mentioned in SectioB.1, one of the key components of our approximation
schemeis asef, = {c;} C S, of interpolation centersThese have the property
that our final approximationy, interpolatesfp at them, i.e. at all times

flei) = fo(c), ci €C. (6.1)
Furthermore, at all othex; € S, f approximatesp up to an error, i.e.

E(Si)<77, SiGS,Si¢C
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k< 0;C<+ 0:D <+ 0
fFe1
C* <« vertices of icosahedron d#t
DF < {fp (c;) | ¢; € C¥} Il actual descriptor computation
5:C« CUCF; D+ DJD"
repeat
kE—k+1,CFr—0;D" 0
f* < build _function (C, D) // interpolate at current centers
S" < 8§ — C — nghbr (C*1) /I S* samples minus current centers, old
neighbors
10:  while (([|C*|| < N,) A (]|S’]] > 0)) do
s « sample inS’ with highest error
CF < CkJ{s} /I new center
S" + 8" —nghbrs(s) — {s} // discard center and neighbors
end while
15:  EF « errors (C*, f*, f*=1) Il errors for candidate centers
D* < {fp (c;) | ¢; € C*} Il actual descriptor computation
C«+Ccyck D+ DUYD"
until (—stop_condition (C, S, EF))
C < C —C* Ilremove last, unused batch of new centers

Figure 6.2: Computé, set of interpolation centers.

whereE(s;) is a measure of error af.

Both C and f are updated iteratively. In each iteratiagnk > 1, the pairs
(ci, fp(c;)) for the currentC are used to construct an approximatigit, The

error, E(s;), at eachs; is measured in terms of the variation betweéfs;) and

f¥=1(s;). Thes; with the highest error are added to the §ét,of new centers. At
the end of the iteratior¢ and f are updated a8 < C|JC*, f + f*. Iteration

stops when a stopping condition is met. Centers added in shetéaation have
not yet been used for interpolation, and are therefore reghéromC. For initial-

ization,C is set to the vertices of an icosahedron (12 centers) cehéeceind the
shape and with radius as discussed in Sedi@andf < f° < 1. Figure6.2

presents the pseudo-code for the entire procedure.

Note that in our framework, the views correspondingctoc C form the final
representation afM with respect toD. This is different from other approaches
that also representt with a few views. These methods select their views based
on visibility of faces JaubertOpRoberts98or similarity among viewsAbbasiOQ
YamauchiO§of M, whereas the views chosen in our approach are determined by
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the approximation ofp by f.

Constructing f* Given pairs,(c;, fo(c;)), f* is calculated using implicit in-
terpolation as follows. Using the Gaussian kerp@l) := exp(—t),t € R, fFis
defined asfPoggio9()

fAp) = akei(p), pi=(2,y,2), (6.2)

c;eC

that is, a linear combination of the radial basis functign®) := ¢(||p — cil|2),
centered at; € C. Then, the coefficients in Equatidh2 that uniquely satisfy
Equation6.1 are the solutions of the x r square linear system*a = b, where
the entries of the matriv* area; := ¢(|lc; — ¢j2), @ = (of)i_,, and the
constant term i := [fp(cy),. .., fD(CT)]T. Here,r indicates the size af”.

The function used ing.1) involves the Euclidean distance between point§%f
an alternative is to replace it with the geodesic distaneehik case, it is enough
to substitute|n — m||, with (n, m), n, m € S%

Measuring Error  The approximation error at a sampig,€ S, in iterationk
is measured as
PR ) i ] |
1"l

This leads to two artefacts. Firstly, samples chosen agrir the previous
iteration and their neighbors exhibit large errors in therent iteration. These
errors do not signify approximation inaccuracies, ratherdorrection offat these
samples. The second artefact arises from the fact that ppabon errors are
usually clustered, i.e. samples with high error valuesolieclose to each other.
Choosing any one of these samples as an interpolation certtesiiteration will
bring down the error in this neighborhood in the next itenati To deal with
these artefacts, two sets of vertices are barred from smbe@$ new centers. The
first set, corresponding to the first artefact, consists w@rpolation centers from
the previous iteration and their neighbors, and the seconthms neighbors of
current centers. In each iteration, we choose at mMostew centers, wherd,, is
previously specified, i.6|C*|| < N, for all k. This is also indicated in Figu@2
Theiteration error in iterationk is then measured as

E, = |E*(c)]w, € C.
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entropy
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fp atS, ||S|| = 2562 el = 12 fo. el =72 f2)c] =144
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Figure 6.3: Descriptor approximation for the model fromu¥gg. 1b) for increas-
ing k (left to right) and different descriptors.

Stopping Condition The algorithm terminates at the iteratibn= £’ when,

for the first time, the iteration error for two consecutiver#tions falls below a
thresholdy), i.e. Eix < nandEy_; < n. The final error for each sample is then
set to its error in the last iteratioR,(s;) = E* (s;) for all s;. As our approximation

is smooth, it cannot approximate well descriptors whoseespondingfp are
non-smooth oveB?. In such cases, if the error threshold is too low, iteration
does not terminate quickly. Therefore, we add a second ttondhamely that we
terminate iteration also ifC|| > @ + N,. The additionalV, term is to account
for C*', the last batch of candidate centers that will not be useéhferpolation
and are therefore discarded.

Results for an experiment are shown in Figéra We sety = 1% and N, =
12. The leftmost view spheres represent greund truthvalues at a quadruply
subdivided icosahedron. The remaining view spheres ineachre shaded using
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Figure 6.4: Approximation errors at sample points.

values approximated froid up to that iteration. Figuré.4 shows approximation
errors against iterations for the experiment. Absolutereis measured as the
difference between ground truth and approximated valuede Mhat the ground
truth is shown here only for purposes of exposition. Our algm does not rely

on its computation.

6.4 Equivalent Views and View Likelihood

Views of M from viewpoints {py,...,pn} € S? are said to besquivalent
[Bordoloi05 Weinshall9T w.r.t. a givenD if their values fpdiffer by less than
some threshold;, i.e.

’fp(pi) —fp(pj)\ < € Z,j € 17...,71,2' 7&]

The likelihood of a given view is then measured in terms of the probability of
existence of other views that are equivalent t&ejnshall9T.

Using our approximationf, we are able to compute equivalent views and view
likelihood by constructing iso-lines of. For the given viewpointp, all view-
points lying on the iso-lingf = f(p) yield views equivalent to the one from
The likelihood of the view is given by the length of the isodi

To construct the iso-line, we collect all edggs= (s;, sk) in S, such that either

f(s5)=f(p),  or
f(sx) = f(p), or , and add necessary points to a sgt,
(f(s5) = f(p)) = (f(si) = f(p)) <O
of viewpoints. In the first (resp. second) casg(resp.sy) is added tdZ. In the
third case, a linearly interpolated point,one; is added tdZ, i.e.

=S+ o= ey e )
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OnceZ is populated, points that lie on the same triangl&iare connected by
an edge. The set of all such edges forms the iso-line. TheHesfghe iso-line
can be taken as the sum of the great circle or Euclidean dssdmetween points
connected by edges. For convenience, the number of eddas et may also be
used. The cost of this operation is linear in the number oésdgsS.

6.5 Representative views

The three dimensional shape of an object is conveyed thritsigho dimensional
views, whether on paper, screen or the retina. To this effecte views are better
than others, leading to the conceptbestandworstviews. Views of a shape from
neighboring viewpoints are typically similar. However, shaontrivial shapes
have overall distinctly different viewsUnstableviews represent the transition
from one view of the shape to another. Together, the beststveord unstable
views of the shape constitute its representative views.

Our framework can be used to compute representative viewkd ofith respect
to a givenD by exploiting the critical points of. Similar approaches are typi-
cally employed by best view techniqudsp05 VazquezOLL The critical points
of fare first approximated according to the valuesfoh the neighborhoods of
sphere samples; € S. More precisely, letV(s;) := {s; : (si,s;) edgg be the
1-star of the sampls;, i.e. the set of vertices incident & in the meshing of
S?. Then, the view frons; is thelocal best(resp. worsf) viewif f(s;) > f(s;)
(resp. f(si) < f(sj)),sj € N(s;). Indicating withN*(s;) the anticlockwise (or
clockwise) reordering oV (s;), the view froms; is unstableif the number of sign
changes(f(s;j) — f(si)), s; € N*(si), is2 + 2m, m > 1. In this casem closed
iso-curves off intersect at;.

Note that computing these views takes linear time in the sfz8and does not
require setting thresholds or other parameters. The glustl(resp. worst) view
is given as the maximum (resp. minimum) of the local besip(regorst) views.
Once the representative views have been approximated tiginglues offon S,
we refine them by computing the critical pointsfofthus making the computation
of representative views independent of the samplingfof

If we are interested solely in the best (resp. worst) view,nwed only find the
maxima (resp. minima) of. Choosing an approximated extremusy, we use
the Nelder-Mead simplex searchrB7 Nelder9Q with starting pointsy. The

algorithm performs a direct search method and does notneqtadients or other
derivative information. At each step of the search, a nemtpioi or near the
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Figure 6.5: left) View sphere with viewpoint entropy values and iso-linegght)
From top to bottom, some of the best, worst and unstable views

current simplex is generated. The function value at the newtps compared
with the function values at the vertices of the simplex and ohthe vertices is
replaced by the new point, giving a new simplex. This steseated until the
diameter of the simplex is less than a specified tolerance.

For the general case, we note that the gradient= (0..f, 9, f, 0. f) of f is given
by
{ Duf () = = X0y, iz exp([n — ny)2),

n:=(x,y,2), n; := (nf,n,n?);

whered, f andd, f are achieved from the previous expression by replaciwih

y andz. Then, we compute the critical points ¢fby imposing thatV f = 0.
Choosing a representative viaw, which is an approximation of a minium, max-
imum, or saddle off, we solve the implicit equatioW f = 0 in a neighborhood
of ng by using an iterative method with starting point

Our tests show that if is sufficiently dense, the locations of approximated and
actual viewpoints oi$? corresponding to the representative views are almost co-
incident. This is due to the fact that the approximatjors continuous and its
discrete critical points converge to the continuous onembneasing the number

of samples or$?.

6.6 View Transfer

Given two similar shape models, say a bicycle and a motoylaikd a particular
view of one of them, e.g. front view of the bicycle, we woulkito impose the
same view on the motorbike, i.e. we would like to automalycadmpute a front
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¥

Figure 6.6: View transfer from referendeft) to three targetr{ght ) models using
viewpoint entropy, view saliency and Zernike moments uprtteo 10 as descrip-
tors.

view of the motorbike. In doing so, we say that the view of tieytle model has
beentransferredto the motorbike model. Moreover, in this example, we refer t
the front view of the bicycle as threference vievand to the bicycle and motorbike
models as resp. theferenceandtargetmodels.

A single reference view;,ef, may correspond to more than one transferred views.
We notice however that, as the referengd,ss, and target,Miar, models are
similar, descriptor values for,of and the transferred views must be alike. With
this observation, the problem of transferring views becosimilar to the one of
finding equivalent views in Sectioi4, i.e. we want to find those views g5y

for which fp is equal to some given value. In this case, the value fhathould
equal isfp(vief). We therefore go about this problem in the same manner.

As a single descriptor captures only some aspects of theeshamore accurate
view transfer is achieved when several view descriptorscarsbined. Such a
transfer ensures that a greater number of shape featureggpin the transferred
view match those oM gt in viet.

Single Descriptor  For a given descriptorD, and reference viewy e, We
compute the descriptor valugp (vyef), @and construct an approximatiofy, w.r.t.

D for the target modelMtar. We then construct iso-lines on the view sphere of
Mtar corresponding tof = fp(vief) as described in Sectigh4. Views corre-
sponding to the points on the iso-line are then the trareflerrews.

Multiple Descriptors Using several descriptor®;,i = 1...n, for perform-
ing the transfer, for eac®;, we build the corresponding approximatiofi, for
Myiar and then construct the iso-lings = fp(vyef) On the view sphere afMtay.
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Each iso-line represents transferred views w.r.t. to alsidgscriptor. The trans-
ferred view w.r.t. all descriptors thus lies at the point vehall iso-lines inter-
sect. In practice though, there is rarely a single point wladiriso-lines intersect.
Therefore, we assign to each poipt, on the view sphere aMigr a quantity
computed as

9(p) = Z |fi(PP) — fp, (Vref)| .

The transferred view then corresponds to the point on the sghere that mini-
mizesg. Finding the minimizer is similar to the problem of findingetivorst view
in Section6.5, so we adopt the same approach as in that section.

A few examples of transferred views are given in Fig6té where we use
three descriptors for the transfer. We notice that with tBscdptors used, the
method chooses the correct view of a left hand even when feeeree model is
aright hand. However, it can not distinguish between diif¢orientations —in its
transferred view, the cow is facing the other way as the hartdee reference view.
This can be attributed to the descriptors used. The animdémaised are roughly
symmetric on either side, and two of the descriptors useypoint entropy and
view saliency, are insensitive to reflection. Thus they camlstinguish between
reflected views. Results for the chair models are progrdgsiverse, especially
the last chair. This is because this chair model is quitefit from the reference
model. It has long thin and curvy legs with only 2 beams in ssksupport.
Less discriminative descriptors would have given more piatde results for the
model.

6.7 Discussion and future work

In this chapter, we have presented a technique to build ancants approxima-

tion of a given view descriptor, and have shown how this axipration can be

exploited to answer typical view based queries, in paricuio transfer views

between similar shapes. Unlike traditional view findingesties, we sample the
view sphere adaptively based on both the model and the gdesciThis allows us

to avoid descriptor computation in “uninteresting” parfshe view sphere, and
leads to an economical view-based representation of theesimamely our final

set of interpolation centers.
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6.7.1 Shape Comparison

One important view based shape operation that we have yeldi@ss is shape
comparison. Using our model, we envision the following agyeh to the problem
of finding a matching cost between two shape models.

After rescaling the modelsM; and M,, to be compared, their view spheres,
S?(M;) andS?*(Ms,), are aligned and a correspondencés established between
a set,S;, of points onS?(M;) and another set$,, of points onS?(M,). Two
points pairs are sufficient to describe a unique alignmehenT for a given de-
scriptor,D, we construct the approximationg,and f,, for both shapes. The cost
of the alignment can then be described as

> IA®) = fale®@).

PEST

A naive approach would be to try many alignments and thensfhas the match-
ing cost of the two models the smallest cost of the two aligmse.e.

cos{ M, M>) = min cost A;),

where eachd; is an alignment. This is obviously quite expensive. A soloiti
is to initially find a suitable alignment of the view spheré&is could be done
by the aligning the PCA or symmetry axddddolakO§ of the two shapes, or by
pre-computation of a canonical orientation of the vieweapss Fu0§.
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As even small amounts of noise can significantly perturb timeature distribution
of a shape, previous curvature based approaches to shamezdyn[Page03
SukumarOpturn out to be sensitive to noise—small amounts of noise simepe’s
surface will increase computed complexity even though Haps itself will not
have changed much.

Our approach to computing shape complexity is based on esgdFom human
perception Koenderink79 that humans construct internal representations of 3D
shapes as 2D images in certain relation to each other. Weltnosthat a complex
shape is one with distinct, dissimilar views, while a simpleape has smaller
variation in its views. In fact, the canonical simplest shape sphere, has exactly
the same view, up to scale, from all viewpoin®ufzu97.

We compute the complexity of a shape as follows. We ohtawiews of it (Sec-
tion 3.1), extract their boundary contours (Secti8r2) and obtain all pairwise
similarity distances using the contour-to-centroid meiti@®ection3.3.3. This
gives aN x N similarity matrix,S, to which we apply SSA (Sectiod.4) to ob-
tain a 2D plot with/N points. Each of the points represents a view and pairwise
distances between points in the plot correspond to theasiityildistance between
the views. Thus, a simple shape will result in a tightly cdust! SSA plot whereas
the plot for a complex shape will contain highly disperseth{go We measure
the complexity of the shape as the amount of dispersion aftpan its SSA plot
obtained in the above manner. Figutd gives a pictorial overview of the ap-
proach. As our methods considers shape views, it is insemtstsmall variations
in shape.
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(a) shape to be analyzed (b) shape with view sphere

(c) shape views obtained from its view sphere

(d) extracted boundary silhouettes from the views

0 0.130 0.246 0.236

0.130 0  0.222 0.220

S=1 0246 0222 0 0.123
0.234 0.220 0.123 0

(e) similarity distance matrix of boundary silhouettes
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(f) 2D SSA plot corresponding 18

Figure 7.1: A pictorial overview of our shape complexity hnad. a) shows the
original 3D shape. b) shows the shape with its view sphererara. c) shows
several sampled views taken from the view sphere. d) shogvextracted sil-
houettes from above views. e) shows the symmetric matrixnofegity distances
between the silhouettes. f) is the SSA plot calculated frbenabove similarity
distance matrix.
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Figure 7.2: Starting configuration of points in the SSA plot.
7.1 Applying SSA to the Similarity Matrix

The original SSA method places no requirements on thelipibiat configuration
in the SSA plot. However, the choice of starting points @fewr final complexity
result. A random selection of points may lead to slightlywag complexity val-
ues for the same shape each time it is computed. Thereforfes the initial point

configuration as follows. We consider a sinusoidal functiath » andy rescaled
to the interval0, 1] and sample théV initial points,{p.),7 € {1,..., N}}, uni-

formly on it along ther axis, i.e. the coordinates @f (, are given by

1—1
N -1

1
x; = Y = 5(1 — sin 27x;)

As we take the same number of views for each shape, the ipitiak configu-
ration in the SSA plots for all shapes is the same, shown inrEig.2 As per
the SSA method, movement of points in subsequent iterat®gsided by the
relative magnitudes of entries in the shape’s similarityrmaThus, it is not pos-
sible to distinguish between the plots obtained for two skaphose similarity
matrices differ only in scale. Therefore, when iteratioopst we rescale each
plot according to its similarity matrixS, to obtainQ = {q;}, the final set of
points. Assuming the algorithm stopped afidriterations, we consider the last
configuration matrixC,, = D(P,,), and obtain a rescaling factor

_largest entry inS
 largest entry irCy;

The centroid of the points IR, is computedg¢,, = % >; Pi,u, and the positions



86

Chapter 7: Shape Complexity

of the rescaled points are computed,

Qi =cu+F-(piv—cu).

7.2 Computing Shape Complexity

Once the points), in the SSA plot are obtained, we aim to measure complexity
of the analyzed shape in terms of their dispersion. The ratbir is that a simple
shape will yield only a few distinct views, leading to a handff tight, distinct
clusters in the SSA plot, whereas a complex shape will hagebhvarying views
which will lead to loose and overlapping clusters.

We use two measures to obtain a complexity value from thetpdily obtained
in the previous section. The first method measures complasithe dispersion
of the points in ther andy directions,

Co = /02 + 02,

wheres, ando, are standard deviations of theandy coordinates resp. of thg.
The second measure relies on the convex hull of the poir@swinich is a subset,
H = {h;|j € {1,...,h}}, of Q. Shape complexity is then measured as

hlac hly
h2:c h2y

[N

hhm hhy
hlm hly
[(hi hoy + Do hsy, + ... 4+ hyhyy) —
(hlthaE + h2yh3:1: +...+ hhyhlx)] )

DN | —

whereh;, andh;, are ther andy coordinates resp. df;.

7.3 Results

We tested our approach on a set of shapes we obtained fromténeét. In Figure
7.3, we show each of these shapes alongside their correspo8&iAglots, and
the obtained values for our two complexity measufgs,andC,. As the shown
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Shape Cu Relative C, Relative
Bumpy sphere 1.4028 1 6.0435 1
Star 1.4091 1.0 9.8827 1.6
Schwarz’s Cylinder, 3.1565 2.3 11.0770, 1.8
Ellipsoid 3.2412 2.3 12.7204| 2.1
Genus 7.3383 5.2 11.0868| 1.8
Cone 7.5897 54 25.0723| 4.1
Bunny iH 8.0565 5.7 11.9106| 2.0
Torus 8.2006 5.8 19.7177| 3.3
Camel 13.2013| 9.4 159134, 2.6
Dinosaur 13.3709| 9.5 14.9445| 25
Homer 15.8560| 11.3 | 15.8468| 2.6
Armadillo 15.9370, 11.4 | 18.4462| 3.1
Bones 19.5370| 13.9 | 25.5131 4.2

Table 7.1: Result sorted iy,

values indicate, the shapes are sorted according to vdidésmom top to bottom
and left to right, so the Bumpy Sphere is the simplest shaperdicg to this
measure, the Star is more complex and so on till the Bunny iHetothe next
more complex model with respect €@ is the Torus and then the Camel up to
the Bones model. In the SSA plots shown, for better visuatimathe points have
been rescaled to fit inside the intervaly € (0,1). We useN = 42, i.e. we take

42 views of each shape. These results are summarized in Tdblehere the
shapes are again sorted by, and we also show the relative complexities of the
shapes, e.g. according €, the Camel is 2.6 times as complex as the Bumpy
sphere.

C'y andC, do not give mutually consistent results. This can also be seigure
7.4where we compare our results with those obtained using golermentations
of previous curvature based metho®afe03 SukumarOh We see especially
that relatively simple shapes like the Cone and Torus areedhgkite high with
C,. The reason for this is that points in the SSA plots for thdsgpses (Figure
7.3 lie in tight, distinct clusters. A€, relies on deviation in one dimension
only (along ther andy axes separately), the final value comes out to be large.
This is corrected when we consider two dimensional inforomaby computing
the area of the convex hull to calculatg;. In Figure7.4, the Cone and Torus
models obtain much lower ranks accordinglg. As expected, the curvature
based methods oPage03SukumarOpare unable to deal with noise, the most
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prominent example of which is that they rank the Bumpy spheme of the most
complex shapes, whereas our view based method ignores igeara ranks the
Bumpy sphere as the simplest.

7.4 Discussion

Our literature review on automatic computation of comgileri 3D shapes, pre-
sented in SectioR.7, yielded few other works. The ones among these that we
tested are vulnerable to noise and slight irregularitiethenshape. In contrast,
our method which is motivated by results from human visiseegch Cutzu9]

is able to ignore these artefacts and produce a ranking g@ieshihat is more in
agreement with human notions of shape complexity.

However, our method still has deficiencies, e.g. in the fivstcolumns in Figure
7.4, the Bunny is ranked quite low compared to other, simpler atédige Torus.
We believe this is because of inadequate representatidmeahformation con-
tained in our SSA plots. A deeper understanding of the SSArpltected in a
sophisticated measures to compute complexity from the ik, in our opinion,
relieve our method of the above problems.

The key to our complexity results is the SSA plot we obtaingach shape, which
in turn depends on the shape similarity method used. A goageskimilarity
method, i.e. one that can compute similarities betweeneshaphumans perceive
them, is thus crucial for the success of our approach.

As large numbers of 3D shape content become common, orggrizem in a
meaningful manner becomes important. Our approach candzkefas this pur-
pose to sort shapes in a 3D shape repository according tatraplexities. Given
a query shape, the repository can also be searched for stoapés that are more,
less or similarly complex.

One straightforward application of our SSA plots can be tmgote shape sym-
metries PodolakO6Mitra06]. Symmetries in a shape are a measure of the shape’s
self-similarities. A shape that has many symmetries wallgitight clusters of
points in the SSA plot, e.g. the Star in Figut&. This is because clusters corre-
spond to views that are similar to each other. If views froffedent parts of the
shape end up in the same cluster, that is indicative of asgaifarity within the
shape between those parts. We could see each point in ar@dsste'vote” for a
view. Different parts of a shape voting for the same view Wdlsignificant indi-
cators of symmetry. Similar voting schemes have also begroged in previous
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works on symmetryRPodolak06 Mitra06]. A significantly large number of votes
for a view could also be used as a cue for the best view of thectbj
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Chapter 8
Shapes as Bags of Words

The aim of shape retrieval is to retrieve, given a collecbbshapes and a query
shape, a list of shapes from the collection ranked by siityléy the query shape.
In general, a search query to a shape collection can comm@sg things in-
cluding key words, images and sketches. Each of these guaad&es sense in
different applications. In this chapter, we consider onledes that are shapes
themselves.

When talking of searching and retrieval, we have to specifatwie consider a
successful search. In other words, we need to adopt notiopieoisionandre-
call for shape retrieval. These notions depend on measures pé Sailarity,
which themselves heavily depend on the application at hafedy often shape
(dis)similarity measures are categorized as either semsit oblivious to articu-
lated motions, see FiguB1for an example of an articulated motion. This means
either the similarity measure depends on how the shape fagdits surface) is
embedded into Euclidean space, or it depends only on irdrpreperties of the
surface that do not (or only slightly) depend on the embegidimthe first case we
have a measure that is sensitive to articulated motionsiretid second case an
oblivious measure. Note that it depends on the particulalicgiion if articulation
invariant (dis)similarity makes sense or not.

As mentioned in Sectio.6, many communities work on 3D shape retrieval.
There even exists an annual shape retrieval con&@$REJ. The focus in these
works and the contests has been mostly on search qualitypbon its efficiency.
Our aim and purpose in this chapter is to scale 3D shape vaittie large col-
lections of shapes. Though publicly available shape cidies at the moment
contain only a few hundred shapes we are convinced that witteslelay we will
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Figure 8.1: Articulated motion of the Armadillo model.

see them grow/explode like other multi-media collectiomgeat, audio or images.

Here we make the following contributions to scale shapeenetf to large shape
collections:

1. We show how to derive, from each shape, a multi(bag) diasi (feature)
words with the two key properties that (1) there are onlytieddy few dis-
tinct words per shape, and (2) similar shapes have a rdiatarge number
of words in common, whereas dissimilar shapes do not. Thegedies al-
low us to use standard top-k indexing and retrieval tectesgwhich scale
well to a large number of objects. Many different geometeiatéires that
have been discussed in the shape retrieval literature casdukto derive the
(feature) words. In that sense the derivation of (feature)ds is generic.
We discuss two examples: shape distributigdsgdaOPfor articulated mo-

tion sensitive shape retrieval, and spin imagkshhson9J/for articulated
motion invariant retrieval.

2. We show how to construct an arbitrarily large databasealistic shapes
by variation of a given small number of base shapes with tspehe fol-
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lowing: thickness, scale, stretch, and local deformatidns, we construct
1,000,000 shapes from the small SHREC collect®HREQ( that contains
only 400 shapes.

3. We show how indexing and retrieval based on the artificiatds easily
scales to our artificially created 1,000,000 shape databdmsze we achieve
an average query time of 27 milliseconds.

4. We show how text retrieval based on our artificial wordsgivesults of
the same quality as those obtained using the most succes$sifig original
shape-distribution descriptor®fadaOpR

5. We show how to use ideas from the spin-images descriptdmson9J’to
derive an alternative bag of words for each document thamparticulated
motion invariant shape retrieval, as called for by certgiplizations

Our approach can be characterizedaslizeandquantize The same philoso-
phy is being increasingly employed in the image retrievahdm (Sectior.6),
and has been employed once for shafgswas07, though in 2D. To test our
approach, we generated a large collection of shapes (D@@Ofrom a base set
of only 400 shapes.

8.1 Scaling Shape Retrieval

In a nutshell our approach can be characterizebbealize (geometric features)
and quantize(the localized features). We observe that many geometaiufe
based shape descriptors—also global ones—can be locatizéa: following
sense: first the shape is sampled, i.e. the boundary tha&tseqts it, and then the
features are computed at each sample point. The localiz¢grés can be treated
like words in a document—turning shape retrieval into a textieval problem.
But localization alone is not enough to provide an efficieabust and relevant
3D shape search engine. While localization essentiallyvallfor efficient top-
k search by enabling efficient indexing of the local featuhesrtquantization is
needed for robustness (recall), accuracy (precision) sadedficiency. With al-
most no quantization a shape query might not provide anyuattd small shape
variations, noise or even just numerical inaccuracies redagequantizing too ag-
gressively can render many hits irrelevant and makes itendaodrank them prop-
erly. The two extremes—almost no hits when not quantizingy @most every
shape in the collection being a hit—illustrate the virtuegafntization, namely
trading-off accuracy and robustness. Note that samplirgady introduces some
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sort of quantization, but this is not enough to ensure rofasst (a high recall
value). To achieve the latter, the computed words also rebd tuantized.

Our genericapproach follows the following pipeline to build an index:
1. Sample the shape which is given by a boundary description.
2. Compute features localized at the sample points.

3. Quantize the localized features, providing a (featu@irequency vector
representation.

4. Build a weighted inverted index on the (feature) words.

This pipeline is generic as it allows many different geomsdeatures to be used
in its second step. For our experiments we used a localizesioveof the D2
shape distribution@sadaORwhich we described in Sectio®.6. The D2 shape
distribution is a global feature in the sense that it takés atcount the relation
of the sample point at which the feature is localized to dtlleotsample points
spread out over the entire surface of the shape. In that semaee dealing in our
experiments with a localized global feature that is notiiarg under articulated
motions of the shape. We are also discussing an example oakzed local fea-
ture, namely spin-imaged¢hnson9Jl So far we have not conducted experiments
using our pipeline and spin-images, but we expect them tloparmuch better
for articulated motion invariant shape search.

The rest of the pipeline is standard. We used a standard teggbcheme in
our index, namely “term-frequency-inverse document feggry” (tf-idf) with is

defined as follows: let! be the frequency of wordin shape, letn; = Zj n! be

the total number of words for shapgin our implementation this is a constant),
let m’ be the number of shapes in the collection having warand letm be
the number of shapes in the collection. The weighted frequef word j in
document is given as

— log —,
n; m;

=J _
n; =

i.e., as the product of the word frequency within the docw&émnd the inverse
document frequencﬁ% (scaled logarithmically).

A query shape is processed exactly the same way as the shapescollection,
i.e. a weighted (feature) word frequency vector is compiwedhe query shape.
Shapess in the collection are ranked with respect to the query shapg the
normalized inner product of the weighted word frequencytamexcfor s andg, i.e.

by >, 7l - 7).
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8.1.1 Example: alocalized global descriptor

Localization = We assume that we are given a boundary representation of a 3D
shape that is normalized to fit into the unit cube. Our loealishape descriptor

for each point on the boundary is the distribution of disesnto other points on

the boundary. Globally the shape is described by the fundiiat maps each point

on the boundary to its associated distribution of distankiege that this function

is very similar to the D2 shape function studied by Osada.¢CaadaOp

Quantization  Obviously our localized descriptor cannot be used or evem co
puted in practice. To discretize it, we sample 5000 poirasnfthe shape uni-
formly (with respect to surface area) at random. For eaclptapoint we com-
pute the distance to another 100 sample points (sampledromyf at random
from the 4999 remaining sample points). The distributiorth&fse distances is
our discretized version of the localized shape descrip@lobally the shape is
now represented by the distributions at all the sample point

Sampling the shape and the distance computations is alr@aglyite aggres-
sive quantization. Quantization is not only necessary sxréiize our shape
descriptor—as we argued before quantization is also needgdde-off robust-
ness (recall) and accuracy (precision). We quantize fufgeerificing accuracy
for robustness) as follows: the distances at each sampi¢ @@ binned into five
bins each of widthl /20 of the length of the diagonal of the unit cube, i¢3.
Then the number of elements in each bin is multipliedlpy giving number in
the intervall0, 25]. This number is rounded to the next integer providing a numbe
in {0,...,25} that can be represented by a lette{if, ..., Z}. Hence the final
quantized, localized descriptor is a five letter word i . .., Z}°.

8.1.2 Example: a localized local descriptor

Localization  Again we assume that we are given boundary representation of
a 3D shape that is normalized to fit into the unit cube. Furttoee we assume
that we have access to the surface normal at each point. Calized local shape
descriptor is for each point on the boundary a distributib(vo 3)-pairs that are
defined as follows: fix a radius > 0 for any pointp of the boundary and let,

be the unit surface normal at For any point; on the boundary with distance less
thane top, i.e.,||p — q|| < &, letg:= ¢ — p and define

(a2, B7) = (ww ~ (@), <ﬁp,a/|\m|>) .
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Our localized shape descriptor (also known as spin-imdgér{son9Jj is the
distribution of the(a?, 37) for the pointsq in the e-neighborhood ofy on the
surface.

Quantization  Spin-images cannot be computed in practice, but they can be
discretized easily by sampling the shape: takektimearest sample points of the
sample point at which the spin-image needs to be discresimddgust compute the
histogram of spin-image values for these neighbors.

8.1.3 Difference to feature hashing

At first glance our general approach looks very similar to fésture hashing
approach fromBiswasOT—note that at this level we do not care about the par-
ticularities of the chosen features, but there are somerdifices that affect the
efficiency as well as the search quality:

1. Both approaches sample the shapes: i the number of sample points
per shape (called landmarks iBifwas07), then with feature hashing one
generates? words per shape (the hash table bins exactly correspond to ou
words), whereas we generate omlywords per shape. Note that the sam-
pling requirements for feature hashing and our word geimgratechanism
are roughly the same since they are basically determinetdjotal ge-
ometries of the shapes. Hence, there is a factor difference in the total
number of words to be indexed for the two approaches.

2. Feature hashing uses a very different distance metriaccdfoparing shapes
s, ands, with (normalized) frequencies] andn’, of the j’th word, feature
hashing use$ " (n] — nj)?/(n] + n}), whereas our approach uses (with a
distinctly different normalizatiom?) 3°. n] - n}. The first measure is a dis-
similarity measure for shapes, whereas the second meakerssnilarity
between shapes, i.e., a large value means very similar shajpe advan-
tage of our measure is that it is monotone in the word fregesnwhich is
an essential prerequisite for doing top-k retrieval, whiatturn, is the key
to scale search to very large data sets.
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Figure 8.2: An example of our shape deformation pipelinernFeft to right:
original shape from the SHREC collection, thinned, thickkrend locally de-
formed for two different parameter settings.

8.2 Experiments

8.2.1 Datasets

We used the SHRECSHREQ collection of the AIM@SHAPE consortium as
our main source of 3D shapes, see FigBek 8.2, 8.3 and 8.4 for examples
of shapes in this collection. Currently this collection @ns about 400 shapes
represented as polygonal surface meshes. A collectionlpf4@® shapes is not
enough to test the scalability of our (or any) shape retlisgheme to the size
of collections that we expect in the not too distant futurenke we created our
own large scale shape collection from the shapes in the SHREE:Gon. The
goal when creating the large collection was to model sonmlenreidd variety. We
considered global variations like thickening and thinniag well as local, small
scale variations (which can also be seen as noise).

Creating a large shape collection

We took the shapes from the SHREC collection as base shapesppahed the
following transformations (we arrived at our choice of treggmeter values after
some experimentation, e.g., we wanted to make sure thaetbended shapes are
not self intersecting):
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1. Rotation about the x,y and z-axes with three angles chosgormly at
random from[0, 27) for each axis, then

2. scaling along the x,y and z-axes with three scaling vadaes chosen uni-
formly at random from the intervad.5, 1.50], and finally

3. one of

(a) thickening or thinning by moving the vertices of the ma#bng the
surface normals at these vertices. The offset value is chivem an
exponential distribution with mean vale)2. We cut off the values
at0.01 and0.03, thus taking only values from the interjalo1, 0.03].

(b) local deformations at seed vertices from the polygoredm We pick
1/k seed vertices uniformly at random from the set of all vegioé
the mesh. The valukitself is chosen from an exponential distribution
with mean valu0. The offset values at the seed vertices is then cho-
sen uniformly at random from an intenvakhin, omax, Where—omi, and
omax @re chosen from exponential distributions with with mealuea
0.02. Again these values are cut off@d1 and0.04. The off-set val-
ues are propagated with decreasing weight to the neighbtrs seed
vertices. The neighborhood is taken as the direct neighdozaisheir
neighbors, i.e., the one- and two ring in the mesh. If neightods of
seed vertices overlap, then maximum of the magnitudes offadlets
is chosen. Finally, vertices are moved along their unit radsrby the
offset amount. A negative off-set means moving the verttoethe
interior of the shapes.

8.2.2 Quality

We compared the quality of the localized D2 shape distriloutiescriptor and of
our implementation of the original D2 descriptor as desdilm Sectior8.6). For

the comparison we used the labelled SHREC shape collectitm4®D shapes,
and computed standard relevance measures (mean averaggoprémap) and
precision att (pr. atk)). Our results show that relevance does not degrade when
localizing the D2 shape descriptor, see also Figudgor visual results. At this
point we should remark that neither the D2 descriptor ndoitalization are par-
ticularly well suited for the SHREC collection. We expect mumetter results

for articulated motion invariant descriptors. We summamr findings in the
following table.
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| map| pr. at5| pr. at 10] pr. at 20

Orig. D2 0.40| 0.66
Our method|| 0.41| 0.66

0.49
0.52

0.36
0.38

8.2.3 Symmetries

A benefit of our localization scheme is that it allows for syatrg detection in
shapes. As expected, we observe that the same word occarsglespoints that
reflect some shape symmetry, see Figi&@ Note that this is a feature of the
localization, since one cannot hope to detect symmetrids te corresponding

global descriptor—in our case the D2 shape distribution.

Figure 8.3: The localization scheme respects symmetriggishape. Shown are
the sample points at which a single, frequent word is locati word is not the

same for the two figures.
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8.3 Conclusions and Future Work

We have presented a generic scheme to scale feature bapedstigeval to large
collections of 3D shapes. To demonstrate our generic appra@ have imple-
mented a localized version of the so called D2 shape disiibalescriptor and
tested it on two collections. The first one is a standard ctda that has 400
shapes, and the second contains 1,000,000 shapes that evgdrearated for the
purpose of testing our method.

To exploit the genericity of our approach more shape featsh®uld be local-
ized and integrated into our framework. Especially, it Wi interesting to study
the different behavior of local and global features—one egpect a significant
difference with respect to invariance under articulatedioms. We also want to
gain a better understanding of how well we can detect shapengyries with our
approach and if this can be used for partial shape matching.

Also the generic set-up can be extended. So far we do not tgkspatial coher-
ence into account when ranking the retrieved shapes. Ittislmoous that taking
spatial coherence into account will improve the searchityualuch though since
by the nature of our approach similar words should be locatedighboring sam-
ple points on a shape. Nevertheless, it is an interestingtiquef the ranking can
be improved by considering particularities of the sampépgroach.
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Figure 8.4: Query results on the original SHREC collectiorown are three

gueries (the query shape is always shown as the left moseyhap the top six

results (the top result always was the query shape itselesdomot show it here).
For each query the first row shows the results retrieved aalileed version of

the D2 shape distribution descriptor and the second row stiogresults for the
D2 shape distribution descriptor itself. Note also thatdearch quality does not
degrade by localization (also note that a articulated matensitive descriptor as
D2—Ilocalized or not— is not well suited for some of the qusyie

* —human-389 in the dataset is a scaled version of the hurianegiel.
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Chapter 9
Managing a Shape Repository

A significant portion of the research effort for this thesiasnspent in con-
tributing to the development, maintenance and upkeep oSttepe Repository
[Repositoryaof the EU IST NoE project, AIM@SHAPEAIM@SHAPE]. The
repository is a result of efforts of the entire project, natoalone. However,
we feel that the underlying principles can be applied to daps repository and
thus, an overall exposition of the ideas behind the repagswal be beneficial to
the digital shape research community. The following idemagelpreviously been
outlined in project internal reports available through is1@SHAPE web por-

tal [AIM@SHAPE]. All of the figures in this chapter are screen captures from
the repository websiteRepositoryh Readers are encouraged to visit the website
themselves to further explore the repository.

9.1 Knowledge Management of Shapes

The first and foremost concern in maintaining a sizable ctbite of digital shapes
is their organization. Although, the most common form offgheepresentation is
the triangle mesh, other representations like parametriases, volume represen-
tations, point set surfaces and implicit representatidss @ound. Furthermore,
if we slightly relax our definition oshapebeyond surface models, we have to
additionally deal with representations in the form of rask&ta, animations, con-
tours and structural descriptors. Moreover, shapes vaongraach other in terms
of their size, complexity, topology, origin, means of creatand a multitude of
other characteristics. In this context, to meaningfullggant stored shapes and
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Figure 9.1: The AIM@SHAPE Shape Repository is accessiblenenat
http://shapes.aimatshape.net.
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« hasUploadPerson :INRIA

« hasUploadDate :2005-06-28 23:26:29

* hasLastModifiedDate :20100109185525 =l

+ Downloaded : 710 times FRAY

* IsGrouped : No € ~y
&
U 3

Common Metadata :

+ hasName : Filigree click to view all thumbnails 3
« hasDescription : A beautiful piece of jewelry

» hasAvailabilityLevel : everyone

» hasUploadPerson : INRIA

+ hasCreator : SENSABLE

» hasOwner : SENSABLE

+ hasContactPerson : SensAble

= hasUploadDate : 2005-06-28 23:26:29

» hasLastModifiedDate : 20100109185525

+ hasSynthesisDescription : Freeform modeling

» hasCopyright : SensAble

« hasLicense : See http://www sensable.com/company/copyright.asp
+ hasKeyword : jewel

» hasOrigin : Generate by freeform modeling from SensAble

« hasQuality : 5

ManifoldSurfaceMesh Metadata :

« hasGenus : 65
* hashumberOfBoundaries : 0

* hashumberOfisclatedvertices : 0
+ isOrientable : true

* isOriented : true

+ isRegular : false

« isSelfintersecting : true )
* hashumberOfConnectedComponents : 1
* hashumberOfEdges : 1543284

* hashumberOfFaces : 1028856

* hashumberOfvertices : 514300

« hacType : triangular

* hasScaleOfOriginal : 1

N

Figure 9.2: Shapes in the repository are considered inssasfontology concepts
and have associated metadata fields which have to be entéed adding the
shape to the repository and are subsequently displayedheétshape.

to allow a user to browse through them in some organizeddashia non-trivial
task.

In the AIM@SHAPE Shape Repository, this problem is solvedgisiknowledge
management approach. A Common Shape Ontology has beenpkyé¢hat de-
fines a hierarchical classification of different shape regnéations. Each node
in the hierarchy representscanceptin the ontology and has a list of associated
attributes, ometadata fieldsin addition to the metadata it inherits from higher
level concepts. Specific shape types are concepts resitlihg éowest level of
the hierarchy, and only these concepts are allowed to inat@nces For a shape
type concept, an instance is a shape of that type. Thus,adeshare added to the
repository as instances of some concept. As each concepbhasrelated meta-
data, an instance has to have values for each of the metaelais firherefore,
when instances are added to the repository, the associatediata has also to be
entered. This metadata is stored in the repository alorfytivé shapes. Different
instances of the same concept are distinguished based iondtieidual meta-
data values. Figur@.2shows an example “view page” of a shape which shows its
thumbnail(s) along with stored metadata.
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Figure 9.3: Shapes in the repository are organized using an@@onthape Ontol-
ogy developed within the project. Considering only the buottevel concepts of
the ontology results in a Shape Category Tree.

A condensed version of the ontology showing only the loweelleoncepts that
correspond to concrete shape types is presented on thatoepogebsite as a
clickable “Shape Category Tree” shown in Fig@@&. Clicking on a shape type
in the tree allows users to “browse by category” by displgyaf stored shapes on
that type.

Storing metadata simply as database fields allows us taltyivsort shapes ac-
cording to several criteria (shape quality, number of tidewnloaded, identity
of uploader etc.) by issuing single SQL queries to the dambdhe quality of
the repository depends on the presence and quality of thadaiat provided for
the instances. Two steps are taken to uphold these requitentérstly, addition
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800 Aim@Shape Project - Shape Repository (o]
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[\j )~ > L. @ hutp://shapes.aimatshape.net/viewmodels.php Wyl

Red spherical

Category: Manitziosurtacavesh
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———— ]
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Figure 9.4: The repository has been populated with shapeseptations acquired
from a large variety of objects.

of instances to the repository is restricted to a handfulrojget internal and ex-
ternal partners who have agreed to uphold the metadataeaggmt when adding
instances. Secondly, for common shape types, tools haveibeerporated into
the repository that automatically extract values for dartaetadata fields from
shapes that are being added. This eases the burden on thie estar a long list
of metadata values.

9.2 Populating the Repository

Of course, the primary requisite of a truly useful and genptapose Shape
Repository is to provide a large number of shapes ranginggin #ittributes: size,
complexity, topology, representation format, etc. Thepgisamust have known
properties and should be aesthetically pleasing. Prdfertéie shapes should be
unique to the repository, at least at the time of addition.réimain current, the
repository must be updated periodically with new shapedelof special use to
the scientific community, current trends in digital shapsesgch should be mon-
itored, and an effort should be made to provide data suitallexperimentation
and validation of algorithms in these fields.
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800 Aim@Shape Project - Shape Repository —
y S W W al N N "
l\f_ 19 €D €9 €. @ | hip:/{shapes.aimatshape.ner/viewgroup.php?id=366 *ad

Newst | Aim@SHAPE Shape Repository ~ View group page

‘Welcome ta the fourth

version of the Shape

Repository i . . Lt _ .
Group id : 270 Group name : kitten - watertight Shape Repositary .
‘March 2007 |
[shape Reposttory | Group description : Stone kitten scanned with a Roland LPX-250 laser range scanner.  news page
Shape Repasitory The group level model is the full resolution shape (0.4 millions faces) that was created o browse by |
+ AIM@SHAPE project using Meshalign and MeshMerge. category |
* Browse models Kitten - watertight * uploed models |
+ Semantic search Category: MarifoldSurfaceMesh * Fags |
- n Format: PLY * links |
« statistics
+ Search by keywords u contact us |
* Shape Ontology tutorial Uploader: U + contribute |
Up.date: 2005-11-08 13:38:35
Downleaded: 414 |
since Oct 16, 2007 |
|
]
view download |
]
]
|
"/
Group level : 1
Level description : Below are the laser range scans that were used to create the kittin
on top of the page. These range scans were obtained by scanning a stone Kitten with
the Roland LPX-250 laser range scanner. The kitten was scanned given three different
poses and for every 45 degrees of rotation.
Kitien - merged iitten - Filend LPX250
Category: ManlfolgSurfaceMesh | | 14587 [20g¢ 55375 Category: RasterDatazh
‘ Format: PLY Format:
t Size: 2.2M5 Size: 5.2M5
( Creator: UU Creater: Frank_ter_Haar
Uploader: U Uploader: Ul
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Figure 9.5: “Groups” in the repository link related shapeeg, this group contains
a reconstruction at the topmost level followed by range datawer levels.

For the purposes of the AIM@SHAPE Shape Repository, the aissues have
been dealt with in a variety of ways. As the repository is pém larger project
involving researchers working on different aspects oftdigihape processing for
diverse applications, collecting an initial set of shapegrious formats and sizes
was straightforward. Participating researchers cortgithshapes they typically
use for experiments and benchmarking, and shapes theyageders results of
their research. Properties of shapes are supposed to bmdotad through ac-
companying metadata. As it is unfeasible to manually maderetadata for all
shapes, the burden of entering correct metadata valuesdpes has to be left on
the users adding the shapes to the repository. This is soat@hléviated for some
fields of some shape types by the automatic metadata egingonls mentioned
in Section9.1, but the problem of totally freeing the user from enteringadata
is far from solved. It should however also be noted that somedata fields, like
origin of the digital shape, cannot be automatically corapgwtnd user interaction
will always be needed for such values.

Great effort has been put into populating the repositoryrwitique and interest-
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Figure 9.6: Accurate scans of a few canonical shapes havedssed to allow
benchmarking of algorithms.

ing shapes. To this effect, exclusive scanning sessions ibesn held regularly
to acquire shapes ranging from toys to furniture items ttucal artifacts. Some
of these shapes are shown in Fig@ré. Both raw and processed data from these
sessions is made available through the repository, witatttempanying meta-
data providing details about the scanners used for acipmisaind origin of the
shapes. Figur8.5shows one such group. In an effort to provide shapes egth
tified properties, original CAD models of some machine parts, aleitly scans

of the manufactured part are also provided. This is also dona few simple,
canonical shapes, shown in Fig@®, which were later custom-manufactured for
the repository.

Scans from a new (at the time of writing) type of 3D scannet tis&s a scan-
ner mounted on an articulated arm and thus eliminates the ioeesubsequent
scan alignment and registration, were acquired exclysiiggl and made avail-
able through the repository. To provide highly detailedpgsa alginate moulds
of hands were prepared and subsequently scanned. Fglshows a combined
thumbnail of one such model. The resulting scans providg free details, in
some cases up to the resolution of individual dermal ridg8aper resolution
reconstructionis a recent (as of writing) line of research whereby an obgct
scanned many times from the same position. Noise inhergheimeasuring de-
vice, namely the 3D scanner, causes all scans to vary slifiotin each other.
This is exploited to reconstruct the scanned object at dugso much higher



112 Chapter 9: Managing a Shape Repository

Figure 9.7: Scans of highly detailed alginate moulds of lsdral’e been added to
the repository. The figure shows the scanned model.

than that of any of