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1 Department of Computing Science, University of Oldenburg, Germany
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
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Abstract. The focus of this paper is on reducing the complexity in
verification by exploiting modularity at various levels: in specification,
in verification, and structurally. For specifications, we use the modular
language CSP-OZ-DC, which allows us to decouple verification tasks con-
cerning data from those concerning durations. At the verification level,
we exploit modularity in theorem proving for rich data structures and use
this for invariant checking. At the structural level, we analyze possibili-
ties for modular verification of systems consisting of various components
which interact. We illustrate these ideas by automatically verifying safety
properties of a case study from the European Train Control System stan-
dard, which extends previous examples by comprising a complex track
topology with lists of track segments and trains with different routes.

1 Introduction

Parametric real-time systems arise in a natural way in a wide range of applica-
tions, including controllers for systems of cars, trains, and planes. Since many
such systems are safety-critical, there is great interest in methods for ensuring
that they are safe. In order to verify such systems, one needs (i) suitable formal-
izations and (ii) efficient verification techniques. In this paper we analyze both
aspects. Our main focus throughout the paper will be on reducing complexity
by exploiting modularity at various levels: in the specification, in verification,
and also structurally. The main contributions of the paper are:

(1) We exploit modularity at the specification level. In Section 2, we use the
modular language CSP-OZ-DC (COD), which allows us to separately spec-
ify processes (as Communicating Sequential Processes, CSP), data (using
Object-Z, OZ) and time (using the Duration Calculus, DC).

(2) We exploit modularity in verification (Sections 3 and 4).

• First, we consider transition constraint systems (TCSs) that can be auto-
matically obtained from the COD specification, and address verification
tasks such as invariant checking. We show that for pointer data struc-
tures, we can obtain decision procedures for these verification tasks.

⋆ This paper is an extended version of [8].
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• Then we apply these methods to a detailed case study, additionally an-
alyzing situations in which the use of COD specifications allows us to
decouple verification tasks concerning data (OZ) from verification tasks
concerning durations (DC). For systems with a parametric number of
components, this allows us to impose (and verify) conditions on the sin-
gle components which guarantee safety of the overall complex system.

(3) We also use modularity at a structural level. In Section 5, we use results from
[24] to obtain possibilities for modular verification of systems with complex
topologies by decomposing them into subsystems with simpler topologies.

(4) We describe a tool chain which translates a graphical UML version of the
CSP-OZ-DC specification into TCSs, and automatically verifies the specifi-
cation using our prover H-PILoT and other existing tools (Section 6).

(5) We illustrate the ideas on a running example taken from the European Train
Control System standard (a system with a complex topology and a para-
metric number of components—modeled using pointer data structures and
parametric constraints), and present a way of fully automatizing verification
(for given safety invariants) using our tool chain.

The results were first presented in [8]. This paper extends [8] with a detailed
description of the case study and full proofs.

Related work. Model-based development and verification of railway control
systems with a complex track topology are analyzed in [10]. The systems are
described in a domain-specific language and translated into SystemC code that
is verified using bounded model checking. Neither verification of systems with a
parametric number of components nor pointer structures are examined there.

In existing work on the verification of parametric systems often only few
aspects of parametricity are studied together. [21] addresses the verification of
temporal properties for hybrid systems (in particular also fragments of the ETCS
as case study) but only supports parametricity in the data domain. [2] presents
a method for the verification of a parametric number of timed automata with
real-valued clocks, while in [5] only finite-state processes are considered. In [3],
regular model checking for a parametric number of homogeneous linear processes
and systems operating on queues or stacks is presented. There is also work on the
analysis of safety properties for parametrized systems with an arbitrary number
of processes operating on unbounded integer variables [1,7,16]. In contrast to
ours, these methods sacrifice completeness by using either an over-approximation
of the transition relation or abstractions of the state space. We, on the other
hand, offer complete methods (based on decision procedures for data structures)
for problems such as invariant checking and bounded model checking.

Motivating example. Consider a system of trains on a complex track topology
as depicted in Fig. 1, and a radio block center (RBC) that has information about
track segments and trains, like e.g. length, occupying train and allowed maxi-
mal speed for segments, and current position, segment and speed for trains. We
identify situations in which safety of the system with complex track topology is
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Fig. 1. Complex Track Topology
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Fig. 2. Linear Track Topology

a consequence of safety of systems with linear track topology. Such modular ver-
ification possibilities allow us to consider the verification of a simplified version
of this example, consisting of a linear track (representing a concrete route in the
track topology), on which trains are allowed to enter or leave at given points. We
model a general RBC controller for an area with a linear track topology and an
arbitrary number of trains. For this, we use a theory of pointers with sorts t (for
trains; nextt returns the next train on the track) and s (for segments; with nexts ,
prevs describing the next/previous segment on the linear track). The link be-
tween trains and segments is described by appropriate functions train and segm
(cf. Fig. 2). In addition, we integrate a simple timed train controller Train into
the model. This allows us to certify that certain preconditions for the verification
of the RBC are met by every train which satisfies the specification of Train, by
reasoning on the timed and the untimed part of the system independently.

2 Modular specifications: CSP-OZ-DC

We start by presenting the specification language CSP-OZ-DC (COD) [12,11]
which allows us to present in a modular way the control flow, data changes,
and timing aspects of the systems we want to verify. We use Communicating
Sequential Processes (CSP) to specify the control flow of a system using pro-
cesses over events; Object-Z (OZ) for describing the state space and its change,
and the Duration Calculus (DC) for modeling (dense) real-time constraints over
durations of events. The operational semantics of COD is defined in [11] in terms
of a timed automata model. For details on CSP-OZ-DC and its semantics, we
refer to [12,11,9]. Our benefits from using COD are twofold:

– COD is compositional in the sense that it suffices to prove safety properties
for the separate components to prove safety of the entire system [11]. This
makes it possible to use different verification techniques for different parts
of the specification, e.g. for control structure and timing properties.

– We benefit from high-level tool support given by Syspect1, a UML editor for
a dedicated UML profile [20] proposed to formally model real-time systems.
It has a semantics in terms of COD. Thus, Syspect serves as an easy-to-use
front-end to formal real-time specifications, with a graphical user interface.

2.1 Example: Systems of trains on linear tracks

To illustrate the ideas, we present some aspects of the case study mentioned in
Section 1. We exploit the benefits of COD in (i) the specification of a complex

1 http://csd.informatik.uni-oldenburg.de/~syspect/

http://csd.informatik.uni-oldenburg.de/~syspect/
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RBC

method enter : [s1? : Segment ; t0? : Train; t1? : Train; t2? : Train]
method leave : [ls? : Segment ; lt? : Train]
local chan alloc, req , updPos, updSpd

main
c
= ((enter → main)
2 (leave → main)
2 (updSpd → State1))

State1
c
= ((enter → State1)
2 (leave → State1)
2 (req → State2))

State2
c
= ((alloc → State3)
2 (enter → State2)
2 (leave → State2))

State3
c
= ((enter → State3)
2 (leave → State3)
2 (updPos → main))

SegmentData

train : Segment → Train [Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z [Allocated by train]

TrainData

segm : Train → Segment [Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

sd : SegmentData

td : TrainData

∀ t : Train • tid(t) > 0
∀ t1, t2 : Train | t1 6= t2 • tid(t1) 6= tid(t2)
∀ s : Segment • prevs(nexts(s)) = s

∀ s : Segment • nexts(prevs(s)) = s

∀ s : Segment • sid(s) > 0
∀ s : Segment • sid(nexts(s)) > sid(s)
∀ s1, s2 : Segment | s1 6= s2 • sid(s1) 6= sid(s2)
∀ s : Segment | s 6= snil • length(s) > d + gmax ·∆t

∀ s : Segment | s 6= snil • 0 < lmax(s) ∧ lmax(s) ≤ gmax

∀ s : Segment • lmax(s) ≥ lmax(prevs(s)) − decmax ·∆t

∀ s1, s2 : Segment • tid(incoming(s1)) 6= tid(train(s2))

Init

∀ t : Train • train(segm(t)) = t

∀ t : Train • next(prev(t)) = t

∀ t : Train • prev(next(t)) = t

∀ t : Train • 0 ≤ pos(t) ≤ length(segm(t))
∀ t : Train • 0 ≤ spd(t) ≤ lmax(segm(t))
∀ t : Train • alloc(segm(t)) = tid(t)
∀ t : Train • alloc(nexts(segm(t))) = tid(t)
∨ length(segm(t)) − bd(spd(t)) > pos(t)

∀ s : Segment • segm(train(s)) = s

effect updSpd

∆(spd)

∀ t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax ·∆t > 0
• max{0, spd(t) − decmax ·∆t} ≤ spd ′(t) ≤ lmax(segm(t))

∀ t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)
• max{0, spd(t) − decmax ·∆t} ≤ spd ′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

∀ t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)
• spd ′(t) = max{0, spd(t)− decmax ·∆t}

...

Fig. 3. Excerpt of the RBC controller as COD specification. The full specifica-
tion can be found in the Appendix.

RBC controller; (ii) the specification of a controller for individual trains; and (iii)
composing such specifications. Even though space does not allow us to present all
the details, we present aspects of the example which cannot be considered with
other formalisms, and show how to cope in a natural way with parametricity.
More details of the case study are presented in Section 4.1 and the full case
study model is given in the Appendices A and B. Figure 3 gives an exemplary
overview of a COD specification and we explain its several parts in the following.

CSP part. The processes and their interdependency are specified using the CSP
specification language. The RBC system passes repeatedly through four phases,
modeled by events with corresponding COD schemata updSpd (speed update),
req (request update), alloc (allocation update), and updPos (position update).
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CSP:

main
c
= ((enter → main)

2 (leave → main)

2 (updSpd → State1))

State1
c
= ((enter → State1)

2 (leave → State1)

2 (req → State2))

State2
c
= ((alloc → State3)

2 (enter → State2)

2 (leave → State2))

State3
c
= ((enter → State3)

2 (leave → State3)

2 (updPos → main))

The speed update models the fact that every train chooses its speed according
to its knowledge about itself and its track segment as well as the next track
segment. The request update models how trains send a request for permission
to enter the next segment when they come close to the end of their current
segment. The allocation update models how the RBC may either grant these
requests by allocating track segments to trains that have made a request, or
allocate segments to trains that are not currently on the route and want to
enter. The position update models how all trains report their current positions
to the RBC, which in turn de-allocates segments that have been left and gives
movement authorities to the trains. Between any of these four updates, we can
have trains leaving or entering the track at specific segments using the events
leave and enter . The effects of these updates are defined in the OZ part.

OZ part. The OZ part of the specification consists of data classes, axioms, the
Init schema, and update rules.

Data classes. The data classes declare function symbols that can change their
values during runs of the system, and are used in the OZ part of the specification.

SegmentData
train : Segment → Train [Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z [Allocated by train]

TrainData
segm : Train → Segment [Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

Axioms. The axiomatic part defines properties of the data structures and
system parameters which do not change during an execution of the system:
gmax : R (the global maximum speed), decmax : R (the maximum deceleration
of trains), d : R (a safety distance between trains), and bd : R → R (mapping
the speed of a train to a safe approximation of the corresponding braking dis-
tance). We specify properties of those parameters, among which an important
one is d ≥ bd(gmax ) + gmax ·∆t stating that the safety distance d to the end
of the segment is greater than the braking distance of a train at maximal speed
gmax plus a further safety margin (distance for driving ∆t time units at speed
gmax ). Furthermore, unique, non-negative ids for trains (sort Train) and track
segments (sort Segment) are defined. The route is modeled as a doubly-linked
list2 of track segments, where every segment has additional properties specified
by the constraints in the state schema.

E.g., sid is increasing along the nexts pointer, the length of a segment is
bounded from below in terms of d and gmax , and the difference between local
maximal speeds on neighboring segments is bounded by decmax . Finally, we have
a function incoming; its value incoming(s) for a track segment s is either a train

2 Note that we use relatively loose axiomatizations of the list structures for both trains
and segments, also allowing for disjoint families of linear, possibly infinite lists.
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∀ t : Train • tid(t) > 0

∀ t1, t2 : Train | t1 6= t2 • tid(t1) 6= tid(t2)
∀ s : Segment • prevs(nexts(s)) = s
∀ s : Segment • nexts(prevs(s)) = s
∀ s : Segment • sid(s) > 0
∀ s : Segment • sid(nexts(s)) > sid(s)
∀ s1, s2 : Segment | s1 6= s2 • sid(s1) 6= sid(s2)
∀ s : Segment | s 6= snil • length(s) > d + gmax ·∆t
∀ s : Segment | s 6= snil • 0 < lmax (s) ∧ lmax (s) ≤ gmax
∀ s : Segment • lmax (s) ≥ lmax (prevs(s)) − decmax ·∆t
∀ s1, s2 : Segment • tid(incoming(s1)) 6= tid(train(s2)) (*)

which wants to enter the segment s
from outside the current route, or tnil
if there is no such train. Although the
values of incoming can change dur-
ing an execution, we consider the con-
straint (*) (the last of the axioms on
the right) as a property of our en-
vironment that always holds. Apart
from that, incoming may change ar-
bitrarily and is not explicitly updated. Note that Train and Segment are pointer
sorts with a special null element (tnil and snil , respectively), and all constraints
implicitly only hold for non-null elements. So, constraint (*) actually means

∀ s1, s2 : Segment | s1 6= snil 6= s2 ∧ incoming(s1) 6= tnil ∧ train(s2) 6= tnil

• tid(incoming(s1)) 6= tid(train(s2))

Init

∀ t : Train • train(segm(t)) = t
∀ t : Train • next(prev(t)) = t
∀ t : Train • prev(next(t)) = t
∀ t : Train • 0 ≤ pos(t) ≤ length(segm(t))
∀ t : Train • 0 ≤ spd(t) ≤ lmax (segm(t))
∀ t : Train • alloc(segm(t)) = tid(t)
∀ t : Train • alloc(nexts(segm(t))) = tid(t)

∨ length(segm(t)) − bd(spd(t)) > pos(t)
∀ s : Segment • segm(train(s)) = s

Init schema. The Init schema de-
scribes the initial state of the system.
It essentially states that trains are ar-
ranged in a doubly-linked list, that all
trains are initially placed correctly on
the track segments and that all trains
respect their speed limits.

Update rules. Updates of the state space, that are executed when the cor-
responding event from the CSP part is performed, are specified with effect
schemata. The schema for updSpd , for instance, consists of three rules, distin-
guishing (i) trains whose distance to the end of the segment is greater than the
safety distance d (the first two lines of the constraint), (ii) trains that are beyond
the safety distance near the end of the segment, and for which the next segment
is allocated, and (iii) trains that are near the end of the segment without an al-
location. In case (i), the train can choose an arbitrary speed below the maximal
speed of the current segment. In case (ii), the train needs to brake if the speed
limit of the next segment is below the current limit. In case (iii), the train needs
to brake so that it safely stops before reaching the end of the segment.

effect updSpd

∆(spd)

∀ t : Train | pos(t) < length(segm(t))− d ∧ spd(t) − decmax · ∆t > 0
• max{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))

∀ t : Train | pos(t) ≥ length(segm(t))− d ∧ alloc(nexts(segm(t))) = tid(t)
• max{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

∀ t : Train | pos(t) ≥ length(segm(t))− d ∧ ¬ alloc(nexts(segm(t))) = tid(t)
• spd′(t) = max{0, spd(t) − decmax · ∆t}

Timed train controller. In the DC part of a specification, real-time constraints
are specified: A second, timed controller Train (for one train only) interacts with
the RBC controller, which is presented in the overview of the case study in
Figure 4. The train controller Train consists of three timed components running
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Fig. 4. Structural overview

in parallel. The first updates the train’s position. This component contains e.g.
the DC formula

¬(true a l updPos a (ℓ < ∆t) a l updPos a true),

that specifies a lower time bound ∆t on updPos events. The second component
checks periodically whether the train is beyond the safety distance to the end
of the segment. Then, it starts braking within a short reaction time. The third
component requests an extension of the movement authority from the RBC,
which may be granted or rejected. The train controller is explained in more
detail in Section 4.2.

3 Modular verification

In this section, we introduce an invariant checking approach for the verification
of safety properties of COD specifications, and present decidability results for
local theory extensions that imply decidability of the invariant checking problem
for a large class of parameterized systems.

Formally, our approach works on a transition constraint system (TCS) ob-
tained from the COD specification by an automatic translation (see [9]) which
is guaranteed to capture the defined semantics of COD (as defined in [11]).

Definition 1. The tuple T = (V , Σ, (Init), (Update)) is a transition constraint
system, which specifies: the variables (V ) and function symbols (Σ) whose values
may change over time; a formula (Init) specifying the properties of initial states;
and a formula (Update) which specifies the transition relation in terms of the
values of variables x ∈ V and function symbols f ∈ Σ before a transition and
their values (denoted x ′, f ′) after the transition.

In addition to the TCS, we obtain a background theory T from the specification,
describing properties of the used data structures and system parameters that do
not change over time. Typically, T consists of a family of standard theories (like
the theory of real numbers), axiomatizations for data structures, and constraints
on system parameters. In what follows φ|=T ψ denotes logical entailment and
means that every model of the theory T which is a model of φ is also a model
for ψ. We denote false by ⊥, so φ|=T ⊥ means that φ is unsatisfiable w.r.t. T .
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3.1 Verification problems

We consider the problem of invariant checking of safety properties.3 To show
that a safety property, represented as a formula (Safe), is an invariant of a TCS
T (for a given background theory T ), we need to identify an inductive invariant
(Inv) which strengthens (Safe), i.e., we need to prove that

(1) (Inv) |=T (Safe),
(2) (Init) |=T (Inv), and
(3) (Inv) ∧ (Update) |=T (Inv′), where (Inv′) results from (Inv) by replacing each

x ∈ V by x ′ and each f ∈ Σ by f ′.

Lemma 2. If (Safe), (Inv), (Init) and (Update) belong to a class of formulae for
which the entailment problems w.r.t. T above are decidable then the problem of
checking that (Inv) is an invariant of T which strengthens (Safe) is decidable.

We use this result in a verification-design loop as follows: We start from a spec-
ification written in COD. We use a translation to TCS and check whether a
certain formula (Inv) (usually a safety property) is an inductive invariant.
(i) If invariance can be proved, safety of the system is guaranteed.
(ii) If invariance cannot be proved, we have the following possibilities:

1. Use a specialized prover to construct a counterexample (model in which the
property (Inv) is not an invariant) which can be used to find errors in the
specification and/or to strengthen the invariant4.

2. Using results in [25] we can often derive additional (weakest) constraints on
the parameters which guarantee that Inv is an invariant.

Of course, the decidability results for the theories used in the description of a
system can be also used for checking consistency of the specification.

If a TCS models a system with a parametric number of components, the for-
mulae in problems (1)–(3) may contain universal quantifiers (to describe proper-
ties of all components), hence standard SMT methods – which are only complete
for ground formulae – do not yield decision procedures. In particular, in cases
(ii)(1–2) and for consistency checks we need possibilities of reliably detecting
satisfiability of sets of universally quantified formulae for which standard SMT
solvers cannot be used. We now present situations in which this is possible.

3.2 Modularity in automated reasoning: Decision procedures

We identify classes of theories for which invariant checking (and bounded model
checking) is decidable. Let T0 be a theory with signature Π = (S0, Σ0,Pred),
where S0 is a set of sorts, and Σ0 and Pred are sets of function resp. predicate
symbols. We consider extensions of T0 with new function symbols in a set Σ,
whose properties are axiomatized by a set K of clauses.

3 We can address bounded model checking problems in a similar way, cf. [15,9,13].
4 This last step is the only part which is not fully automated. For future work we plan
to investigate possibilities of automated invariant generation or strengthening.
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Local theory extensions. We are interested in theory extensions in which for
every set G of ground clauses we can effectively determine a finite (preferably
small) set of instances of the axioms K sufficient for checking satisfiability of
G without loss of completeness. If G is a set of Πc-clauses (where Πc is the
extension of Π with constants in a set Σc), we denote by st(K,G) the set of
ground terms starting with a Σ-function symbol occurring in K or G, and by
K[G] the set of instances of K in which the terms starting with Σ-functions are
in st(K,G). T0∪K is a local extension of T0 [23] if the following condition holds:

(Loc) For every set G of ground clauses, G |=T0∪K⊥ iff K[G] ∪G |=T Σ

0

⊥

where T Σ
0 is the extension of T0 with the free functions in Σ. We can define

stable locality (SLoc) in which we use the set K[G] of instances of K in which
the variables below Σ-functions are instantiated with terms in st(K,G). In local
theory extensions, sound and complete hierarchical reasoning is possible.

Theorem 3 ([23]). With the notations introduced above, if T0 ⊆ T0∪K satisfies
condition ((S)Loc) then the following are equivalent to G |=T0∪K⊥:

(1) K∗[G]∪G |=T Σ

0

⊥ (K∗[G] is K[G] for local; K[G] for stably local extensions).

(2) K0∪G0∪D |=T Σ

0

⊥, where K0∪G0 ∪ D is obtained from K∗[G]∪G by intro-

ducing (bottom-up) new constants ct for subterms t = f (g1, . . . , gn) with
f ∈ Σ, gi ground Σ0 ∪Σc-terms; replacing the terms with the corresponding
constants; and adding the definitions ct ≈ t to the set D.

(3) K0∪G0∪N0 |=T0
⊥, where

N0 = {
n∧

i=1

ci ≈ di → c = d | f (c1, . . . , cn) ≈ c, f (d1, . . . , dn) ≈ d ∈ D}.

The hierarchical reduction method is implemented in the system H-PILoT [14].

Corollary 4 ([23]). If the theory extension T0 ⊆ T1 = T0∪K satisfies ((S)Loc).
then satisfiability of sets of ground clauses G w.r.t. T1 is decidable if K∗[G] is
finite and K0∪G0∪N0 belongs to a decidable fragment F of T0. Since the size of
K0∪G0∪N0 is polynomial in the size of G (for a given K), locality allows us to
express the complexity of the ground satisfiability problem w.r.t. T1 as a function
of the complexity of the satisfiability of F-formulae w.r.t. T0.

3.3 Examples of local theory extensions

We are interested in reasoning efficiently about data structures and about up-
dates of data structures. We here give examples of such theories.

Update axioms. In [13] we show that for any TCS with background theory
T with signature Π = (S0, Σ0 ∪ Σ,Pred) (possibly also containing axiomatiza-
tions of the properties of the functions in Σ), all update rules Update(Σ,Σ′)
which describe how the values of the Σ-functions change, depending on a set
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{φi | i ∈ I } of mutually exclusive conditions, i.e. update rules described by con-
junctions of formulae with mutually exclusive guards

∧
f ′∈Σ′ Deff ′ define local

theory extensions – where Deff ′ is the conjunction of formulae of the form:

φ1(x) → s1(x ) ≤ f ′(x ) ≤ t1(x)
. . .

φn(x ) → sn(x) ≤ f ′(x ) ≤ tn(x )

with si , ti are Σ0 ∪ Σ-terms, and φi are Π-formulae with the property that
φi ∧ φj |=T ⊥ for i 6= j and φi |=T si ≤ ti .

This locality property follows as a consequence of the following result:

Theorem 5 ([13]). Let T0 be a base theory with signature Π0 = (S0, Σ0,Pred).
Assume that:

(i) {φi | i ∈ I } are formulae over the base signature Π0 such that φi(x ) ∧
φj (x ) |=T0

⊥ for i 6=j , and
(ii) si , ti are (possibly equal) Σ0-terms such that T0 |= ∀ x(φi (x )→si(x)≤ti(x))

for all i ∈ I .

Let Σ′ be a family of function symbols which is disjoint from Σ0. Then the
extension of T0 with axioms of the form

∧
f∈Σ′ Deff is local, where:

Deff
∧

i∈I (∀ x (φi(x ) → si(x ) ≤ f (x ) ≤ ti(x ))).

Data structures. Numerous locality results for data structures exist, e.g. for
fragments of the theories of arrays [6,13], and pointers [18,13]. As an illustration
– since the model we used in the running example involves a theory of linked
data structures – we now present a slight extension of the fragment of the theory
of pointers studied in [18,13], which is useful for modeling the track topologies
and successions of trains on these tracks. We consider a set of pointer sorts
P = {p1, . . . , pn} and a scalar sort s.5 Let (Σs ,Preds) be a scalar signature, and
let ΣP be a set of function symbols with arguments of pointer sort consisting
of sets Σp→s (the family of functions of arity p→s), and Σp→p (the family of
functions of arity p→pi). (Here p is a tuple pi1 . . . pik with k ≥ 0.) We assume
that for every pointer sort p ∈ P, ΣP contains a constant nullp of sort p.

Example 6. The fact that we also allow scalar fields with more than one argu-
ment is very useful because it allows, for instance, to model certain relationships
between different nodes. Examples of such scalar fields could be:

– distance(p, q) associates with non-null p, q of pointer type a real number;
– reachable(p, q) associates with non-null p, q of pointer type a boolean value

(true (1) if q is reachable from p using the next functions, false (0) otherwise).

Let Σ = ΣP ∪Σs . In addition to allowing several pointer types and functions of
arbitrary arity, we loosen some of the restrictions imposed in [18,13].

5 We assume that we only have one scalar sort for simplicity of presentation; the scalar
theory can itself be an extension or combination of theories.
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Definition 7. An extended pointer clause is a formula of form ∀ p̄. (E ∨ϕ)(p̄),
where p̄ is a set of pointer variables including all free variables of E and ϕ, and:

(1) E consists of disjunctions of pointer equalities, and has the property that for
every term t = f (t1, . . . , tk ) with f ∈ ΣP occurring in E ∨ ϕ, E contains an
atom of the form t ′ = nullp for every proper subterm (of sort p) t ′ of t ;

(2) ϕ is an arbitrary formula of sort s.

E and ϕ may additionally contain free scalar and pointer constants, and ϕ may
contain additional quantified variables of sort s.

Theorem 8. Let Σ = ΣP ∪ Σs be a signature as defined before. Let Ts be a
theory of scalars with signature Σs . Let Φ be a set of Σ-extended pointer clauses.
Then, for every set G of ground clauses over an extension Σc of Σ with constants
in a countable set c the following are equivalent:

(1) G is unsatisfiable w.r.t. Φ ∪ Ts ;
(2) Φ[G]∪G is an unsatisfiable set of clauses in the disjoint combination Ts∪EQP

of Ts and EQP , the many-sorted theory of pure equality over pointer sorts,

where Φ[G] consists of all instances of Φ in which the universally quantified vari-
ables of pointer type occurring in Φ are replaced by ground terms of pointer type
in the set st(Φ,G) of all ground terms of sort p occurring in Φ or in G.

The proof is similar to that in [13]. H-PILoT can be used as a decision procedure
for this theory of pointers – if the theory of scalars is decidable – and for any
extension of this theory with function updates in the fragment in Theorem 5.

Example 9. Let P = {s(egment), t(rain)}, and let nextt, prevt : t → t, nexts, prevs :
s → s, and train : s → t, segm : t → s, and functions of scalar sort as listed at
the beginning of Section 2.1. All axioms describing the background theory and
the initial state in Section 2.1 are expressed by extended pointer clauses.

The following formula expressing a property of reachability of trains can be
expressed as a pointer clause:

∀ p, q(p 6= nullt∧q 6= nullt∧nextt (q) 6= nullt → (reachable(p, q) → reachable(p, nextt (q))).

Decidability for verification. A direct consequence of Theorem 3 and Corol-
lary 4 is the following decidability result for invariant checking:

Corollary 10 ([25]). Let T be the transition constraint system and T be the
background theory associated with a specification. If the update rules Update and
the invariant property Inv can be expressed as sets of clauses which define a chain

of local theory extensions T ⊆ T ∪ Inv(x , f ) ⊆ T ∪ Inv(x , f ) ∪ Update(x , x ′, f , f
′
)

then checking whether a formula is an invariant is decidable.

In this case we can use H-PILoT as a decision procedure (and also to construct
a model in which the property Inv is not an invariant). We can also use results
from [25] to derive additional (weakest) constraints on the parameters which
guarantee that Inv is an invariant.
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4 Verification of the case study

Now, we introduce in more detail the example from Section 1, which is a more
complex version of the RBC verification case study than those presented in pre-
vious work [15,9]. We demonstrate how it can be verified by using a combination
of the invariant checking approach presented in Section 3.1 for the RBC specifi-
cation and a model-checking approach for timing properties (introduced in [19])
for the COD specification for a single train Train. This combination is necessary
because we want to prove safety of discrete updates with a parametric number
of trains for the RBC component, and real-time safety properties for the train
controller Train. Among other things, the specification of the RBC assumes that
the train controllers always react in time to make the train brake before reaching
a critical position.

Using the modularity of COD, we can separately use the invariant checking
approach to verify the RBC for a parametric number of trains, and the approach
for model-checking DC formulae to verify that every train satisfies the timing
assumptions made in the RBC specification.

Moreover, in the new case study we model a complex track topology, con-
sisting of an arbitrary number of interconnected track segments (see Figure 1),
which can be occupied by trains. In this Section, we prove safety for an arbitrary
route in such a topology, including the possibility of trains leaving or entering
the route. In Section 5 we show that every complex track topology without cycles
and with the property that at every crossing point only two paths come together
can be decomposed into a family of linear track systems such that the safety of
the whole system follows from the safety of the linear track systems.

4.1 Verification of the RBC

In the following we describe in detail the example from Section 1, and show how
we can verify safety properties of the system.

Background theory. We model the route as a doubly-linked list of track seg-
ments (sort s), and trains on this route as a doubly-linked list of train objects
(sort t). Both sorts contain a special null element (nulls and nullt, respectively).
The following constant and function symbols are used to model properties of
track segments and trains which do not change during an execution of the sys-
tem:

– gmax : R (the global maximum speed),
– maxDecl : R (the maximum deceleration of trains),
– ∆t : R (the time between position updates),
– d : R (a safety distance between trains),
– nexts : s → s (pointer to the next segment),
– prevs : s → s (pointer to the previous segment),
– ids : s → N (a unique identifier, increasing along nexts),
– max : s → R (the maximum allowed speed on the segment),
– length : s → R (the length of the segment),
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– idt : t → N (a unique identifier for each train),
– prio : N → N (mapping train ids to unique priorities),
– and bd : R → R (mapping the speed of a train to a safe approximation of

the corresponding braking distance).

On these symbols, we impose the following axioms:

(Defnexts) := ∀ s : s 6= nulls ∧ prevs(s) 6= nulls → nexts(prevs(s)) = s

(Defprevs) := ∀ s : s 6= nulls ∧ nexts(s) 6= nulls → prevs(nexts(s)) = s

(Defids) := ∀ s : s 6= nulls ∧ nexts(s) 6= nulls → ids(s) < ids(nexts(s))

ids(nulls) = 0

(Defmax) := ∀ s : s 6= nulls ∧ 0 < max(s) ≤ gmax

∀ s : s 6= nulls ∧ nexts(s) 6= nulls
→ max(nexts(s)) ≥ max(s)−maxDecl

(Deflength) := ∀ s : s 6= nulls ∧ length(s) > d + gmax ·∆t

(Defidt) := ∀ t1, t2 : t1 6= nullt 6= t2 ∧ t1 6= t2 → idt(t1) 6= idt(t2)

idt(nullt) = 0

(Defprio) := ∀ x1, x2 : x1 6= x2 → prio(x1) 6= prio(x2)

(Defbd) := ∀ x : bd(x) = x2/(2 ·maxDecl)

(Defd) := d > bd(gmax) + gmax ·∆t

Additionally, we have a function incoming : s → t, the value of which is either
a train which wants to enter the given segment from outside the current route,
or nullt if there is no such train. Although the valuation of incoming can change
during an execution, we consider it as a property of our environment and will
not explicitly update it. Instead, we assume that the following always holds:

(Defincoming) := ∀ s1, s2 : s1 6= nulls 6= s2 ∧ incoming(s1) 6= nullt ∧ train(s2) 6= nullt
→ idt(incoming(s1)) 6= idt(train(s2)).

Our background theory T then consists of R and N, extended with the constant
and function symbols above, as well as the given axioms.

System variables and function symbols. The set of system variables V
consists only of pc : N, a program counter that is introduced in the translation
process from COD to TCS (it takes values between 1 and 4, corresponding to
Figure 5. The set Σ of function symbols which may change their valuation over
time consists of:

– train : s → t (pointer to the train which occupies the track segment; nullt if
segment is not occupied)

– alloc : s → N (either 0 or the idt of a train which is allowed to occupy the
segment),

– req : s → N (either 0 or the idt of a train on the previous segment which has
requested to enter this segment),
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– incoming : s → s (either nullt or a train which wants to enter this track
segment from outside the current route)

– nextt : t → t (pointer to the next train, nullt if there is no next),

– prevt : t → t (pointer to the previous train, nullt if there is no previous),

– segm : t → s (pointer to the track segment of the train, nulls if train is not
on current route),

– pos : t → R (position of the train relative to its track segment), and

– spd : t → R (current speed of the train).

System behavior. As shown in Figure 5, the RBC system passes repeatedly
through four phases, modeled by the sets of update rules (Speed), (Request),
(Alloc) and (Position). The speed update models the fact that every train chooses
its speed according to its knowledge about itself and its track segment as well
as the next track segment. The request update models how trains send a request
for permission to enter the next segment when they come close to the end of
their current segment. The allocation update models how the RBC may either

(Request)

(Allocation)

(Speed)

(Enter)
(Leave)

(Enter)
(Leave)

(Enter)
(Leave)

2

34

1

(Enter)
(Leave)

(Position)

Fig. 5. Transition Constraint
System for the RBC Case Study

grant these requests by allocating track seg-
ments to trains that have made a request, or
allocate segments to trains that are not cur-
rently on the route and want to enter. The po-
sition update models how (after∆t time units)
all trains report their current positions to the
RBC, which in turn de-allocates segments that
have been left and gives movement authorities
to the trains.

Between any of these four updates, we can
have trains leaving or entering the track at
specific segments. This is modeled in the sets
of update rules (Enter) and (Leave).

In the following, we give the initial state
and a part of the update rules of the system.

Initial state. Axioms describing the initial state (and later on, the invariants)
are extended pointer clauses (cf. Section 3.3, Definition 7) and implicitly contain
the required definedness constraints t ′ = nullp. We define (Init) as the conjunction
of these constraints:

(Initpc) := pc = 1 (Initsegm) := ∀ s : segm(train(s)) = s

(Initnextt) := ∀ t : nextt(prevt(t)) = t (Inittrain) := ∀ t : train(segm(t)) = t

(Initprevt) := ∀ t : prevt(nextt(t)) = t (Initpos) := ∀ t : 0 ≤ pos(t) ≤ length(segm(t))

(Initalloc) := ∀ t : alloc(segm(t)) = idt(t) (Initspd) := ∀ t : 0 ≤ spd(t) ≤ max(segm(t))

(Initbd) := ∀ t : pc = 1 ∧ alloc(nexts(segm(t))) 6= idt(t)
→ length(segm(t))− bd(spd(t)) > pos(t)

System updates. We define the transition relation of the system as

(Update) = (Speed) ∨ (Request) ∨ (Alloc) ∨ (Position) ∨ (Enter) ∨ (Leave),
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pc = 1 ∧ pc′ = 2

∀ t : pos(t) < length(segm(t))− d

→ max{0, spd(t)−maxDecl ·∆t} ≤ spd′(t) ≤ max(segm(t))

∀ t : pos(t) ≥ length(segm(t))− d ∧ alloc(nexts(segm(t))) = idt(t)
→ max{0, spd(t)−maxDecl ·∆t} ≤ spd′(t)

∧ spd′(t) ≤ min{max(segm(t)),max(nexts(segm(t)))}

∀ t : pos(t) ≥ length(segm(t))− d ∧ alloc(nexts(segm(t))) 6= idt(t)
→ spd′(t) = max{0, spd(t)−maxDecl ·∆t}

Fig. 6. (Speed) Update

where each of the disjuncts models one of the updates mentioned above. We give
in detail the (Speed) and (Enter) updates in Figures 6 and 7, respectively. The
full system specification can be found in Appendix A. Variables and function
symbols which are not mentioned in the update rules remain unchanged. In
(Enter), t0, t1, t2 and s1 are fresh constants (t1 enters segment s1, t0 and t2 are
either nullt or represent the previous and next trains of t1 after the update).

Verification. The verification problems for the RBC are satisfiability problems
containing universally quantified formulae, hence cannot be decided by standard
methods of reasoning in combinations of theories. Instead, we use the hierarchical
reasoning approach from Section 3.2. To this end, we partition our axioms into
different extension levels:
– Axiom (Defprio) together with an approximation D ′ of (Defbd) by a step-

function6 define a local extension R ∪ N ∪ {(Defprio),D ′} of the combined
theory of R and N.

– This theory is then extended again, by all the remaining axioms in the back-
ground theory (resulting in the theory T ) and either an invariant (Inv) or
the axioms (Init) for the initial state. This is a local pointer extension (The-
orem 8).

– Finally, we can extend the resulting theory again by the update rules (Update).
This is another local extension (by Theorem 5).

We can decide satisfiability of any set of ground clauses G modulo the resulting
theories by repeatedly using the reduction from Section 3.3, using the proper
instantiation K ∗ [G] of the axioms in the current extension level.

Safety properties. As safety property for the RBC we want to prove that we
never have two trains on the same segment:

(Safe) := ∀ t1, t2 : Train. t1 6= t2 → ids (segm(t1)) 6= ids (segm(t2)).

To this end, we need to find a formula (Inv) such that we can prove

6 This approximation is necessary to accommodate for the lack of SMT solvers that
can handle non-linear arithmetic constraints. Similarly, for our tests we needed to
fix ∆t = 1 to avoid non-linear constraints.
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s1 6= nulls ∧ t1 6= nullt ∧ nextt(t1) = nullt ∧ prevt(t1) = nullt
incoming(s1) = t1 ∧ alloc(s1) = idt(t1)

segm(t0) = nulls → t0 = nullt
t0 6= nullt → ids(segm(t0)) < ids(s1)

∀ t . t 6= t0 ∧ ids(segm(t)) < ids(s1) → ids(segm(t)) < ids(segm(t0))
t0 6= nullt → nextt(t0) = t2

segm(t2) = nulls → t2 = nullt
t2 6= nullt → ids(segm(t2)) > ids(s1)

∀ t . t 6= t2 ∧ ids(segm(t)) > ids(s1) → ids(segm(t)) > ids(segm(t2))
t2 6= nullt → prevt(t2) = t0

pc1′ = pc1

∀ t . t0 = t2 ∧ t 6= t1 → prevt
′(t) = prevt(t) ∧ nextt

′(t) = nextt(t)
∧ prevt

′(t1) = nullt ∧ nextt
′(t1) = nullt

∀ t . t0 6= t2 ∧ t 6= t0 ∧ t 6= t1 ∧ t 6= t2
→ nextt

′(t) = nextt(t) ∧ prevt
′(t) = prevt(t)

t0 6= t2 ∧ t0 6= nullt → nextt
′(t0) = t1

t0 6= t2 → prevt
′(t0) = prevt(t0) ∧ nextt

′(t1) = t2
∧ prevt

′(t1) = t0 ∧ nextt
′(t2) = nextt(t2)

t0 6= t2 ∧ t2 6= nullt → prevt
′(t2) = t1

∀ t . t 6= t1 → segm′(t) = segm(t) ∧ segm′(t1) = s1
∀ t . t 6= t1 → spd ′(t) = spd(t) ∧ 0 ≤ spd ′(t1) ≤ lmax(s1)
∀ t . t 6= t1 → pos ′(t) = pos(t) ∧ pos ′(t1) = 0
∀ s. s 6= s1 → train ′(s) = train(s) ∧ train ′(s1) = t1
∀ s. alloc′(s) = alloc(s)
∀ s. req ′(s) = req(s)

Fig. 7. (Enter) Update

(1) (Inv) ∪ ¬(Safe) |=T ⊥,
(2) (Init) ∪ ¬(Inv) |=T ⊥, and
(3) (Inv) ∪ (Update) ∪ ¬(Inv′) |=T ⊥,

where (Update) is the update formula associated with the transition relation
obtained by translating the COD specification into TCS [11,9], and (Init) consists
of the constraints in the Init schema. The background theory T is obtained
from the state schema of the OZ part of the specification: it is the combination
of the theories of real numbers and integers, together with function and constant
symbols satisfying the constraints given in the state schema.

Calling H-PILoT on problem (3) with (Inv) = (Safe) shows us that (Safe)
is not inductive over all transitions. Since we expect the updates to preserve
the well-formedness properties in (Init), we tried to use this as our invariant,
but with the same result. However, inspection of counterexamples provided by
H-PILoT allowed us to identify the following additional constraints needed to
make the invariant inductive:

(Ind1) := ∀ t : Train. pc 6= 1 ∧ alloc(nexts(segm(t))) 6= tid(t)

→ length(segm(t)) − bd(spd(t)) > pos(t) + spd(t) ·∆t
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(Ind2) := ∀ t : Train. pc 6= 1 ∧ pos(t) ≥ length(segm(t)) − d

→ spd(t) ≤ lmax(nexts(segm(t)))

Thus, define (Inv) as the conjunction (Init) ∧ (Ind1) ∧ (Ind2). Now, all of the
verification tasks above can automatically be proved using Syspect and H-PILoT,
in case (3) after splitting the problem into a number of sub-problems. To ensure
that our system is not trivially safe because of inconsistent assumptions, we
also check for consistency of T , (Inv) and (Update). Since by Theorem 5 all the
update rules in the RBC specification define local theory extensions, and the
axioms specifying properties of the data types are extended pointer clauses, by
Corollary 10 we obtain the following decidability result.

Corollary 11. Checking properties (1)–(3) is decidable for all formulae Inv ex-
pressed as sets of extended pointer clauses with the property that the scalar part
belongs to a decidable fragment of the theory of scalars.

Topological invariants. We also considered certain topological invariants of the
system – e.g. that if a train t is inserted between trains t1, and t2, the next and
prev links are adjusted properly, and if a train leaves a track then its nextt and
prevt links become null. We also checked that if certain reachability conditions –
modeled using a binary transitive function reachable with Boolean output which
is updated when trains enter or leave the line track – are satisfied before an
insertion/removal of trains then they are satisfied also after. We cannot include
these examples in detail here; they will be presented in a separate paper.

4.2 Verification of the timed train controller

As pictured in Figure 4, the RBC component described in the previous section
is not considered in isolation but in combination with an arbitrary number of
trains that are controlled by the RBC. In this section. we detail the basic ideas
of the COD component describing the timed controller for the trains.

COD model of the timed train controller. A train is modeled with a class
Train. The control structure of a train is, as usual for COD, specified with a
CSP process:

main
c
= REQUEST‖|CHECK‖|DRIVE

REQUEST
c
= req →

((grant → REQUEST ) 2 (reject → REQUEST ))

CHECK
c
= check → ((brake → CHECK ) 2 (release → CHECK ))

DRIVE
c
= updSpd →

((enterNewSegm → DRIVE ) 2 (updPos → DRIVE ))

This process is also illustrated in Figure 8 as an equivalent state machine and
it consists of three sub-processes REQUEST , CHECK , and DRIVE running in
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Fig. 8. Control structure of the train controller as state machine

parallel. The first requests extensions of movement authorities, i.e., if the train
approaches a new segment it may send such a request to the RBC. The RBC
grants or rejects an extension according to the alloc attribute from the RBC
controller, the data structure that is used to store assignments from segments to
trains. The CHECK process periodically checks if the train is already beyond
a certain danger position dp (corresponding to the value of d in the RBC con-
troller) indicating that the train has to apply the brakes in order to stop safely
before the end of the segment. The brakes are applied or released according to
the result of this check. Finally, the process DRIVE updates the speed and po-
sition values of the trains. Usually, every event updSpd is directly followed by an
updPos event. But if a new segment is entered the position update is performed
by the event enterNewSegm because then the position—which is relative to the
segment—is reset. In our case study, we made the simplifying assumption that
the computed speed and position values are immediately propagated to the RBC
controller and used for its calculations (cf. Figure 4).

The timing constraints for the train component are given in the DC part of
the specification:

¬(true a (⊟ check ∧ ℓ > 0.5∆t) a true) (1)

¬(true a l updPos a (ℓ < ∆t) a l updPos a true) (2)

¬(true a l updSpd a
⊟ updPos a l brake a true) (3)

The DC formulae are given in terms of interval-based counterexample trace
formulae [11], a DC dialect that can be translated into a timed automata model.
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DC formula (1) specifies that there is no interval (the a-operator divides traces
into intervals) with a length greater than 0.5∆t (ℓ always refers to the length of
the interval) where no check event occurs (⊟ specifies non-occurrence of events).
Formulated positively: at most 0.5∆t time passes between two check events.

Formula (2) states that at least∆t time passes between two position updates,
which corresponds to the time between position updates in the RBC controller.
The last formula (3), that is not a real-time formula, demands that a speed and
position update cycle is not interfered by a brake event.7 For the safety of the
system it is important that the checks whether to apply the brakes or not are
executed often enough. This is ensured by the time constraints (1) and (2).

The data part of the train controller basically reflects the speed and position
updates of the RBC controller, but restricted to one train whereas the RBC
controller needs to maintain a list of speed and position values. Moreover, while
the RBC considers all possible behaviors of trains, the behavior of the single
train controller is divided into control decisions and updates according to its
control structure described above. For instance, the speed update of the train is
given by the schema

effect updateSpeed

∆(curSpd)

(brakesApplied ≤ 0 ∧ allowedSpd ≤ curSpd + incmax) ⇒ curSpd′ = allowedSpd

(brakesApplied ≤ 0 ∧ allowedSpd > curSpd + incmax) ⇒ curSpd′ = curSpd + incmax · ∆t

(brakesApplied ≥ 1 ∧ curSpd − decmax > 0) ⇒ curSpd′ = curSpd − decmax · ∆t

(brakesApplied ≥ 1 ∧ curSpd − decmax ≤ 0) ⇒ curSpd′ = 0

This schema sets the speed value corresponding to the speed updates of the
RBC controller in Section 2.1 on page 6 except that the decision whether the
brakes are applied are made in the CHECK cycle which sets the brakesApplied
variable to the correct value.8 In addition, when increasing the speed, instead of
setting the speed value to an arbitrary value below the maximum speed, the train
controller takes the maximal acceleration incmax into account. Analogously,
the position update corresponds to the position update of the RBC controller
reduced to a single train but we use an additional event enterNewSegment for
the case that the segment is to be changed. The full train controller can be found
in Appendix B.

Verification. Using the model-checking approach from [19] (see Section 6),
we can automatically prove real-time properties of COD specifications. In this
case, we use the approach only on the train controller part Train. We show
that the safety distance d and the braking distance bd postulated in the RBC
controller model can actually be achieved by trains that comply with the train

7 By this, the brake event is delayed to the next cycle such that updPos always refers
correctly to the values computed for the current cycle.

8 The min and max operators were resolved because the used model checker does not
support them.
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specification, i.e., trains that update the current speed values and apply their
brakes according to the parallel cycles CHECK and DRIVE from the previous
section. That is, we prove that (for an arbitrary train) the train position curPos
is never beyond its movement authority ma:

(SafeT) := ¬3(curPos > ma).

This formula does not contain real-time constraints but depends on the timing
properties specified in the train component.

4.3 Safety of the overall system

The safety property for trains (SafeT) implies that train controllers satisfying
the specification also satisfy the timing assumptions made implicitly in the RBC
controller. Compositionality of COD guarantees [11] that it is sufficient to verify
these components separately. Thus, by additionally proving that (Inv) is a safety
invariant of the RBC, we have shown that the system consisting of a combination
of the RBC controller and arbitrarily many train controllers is safe.

5 Modular verification for complex track topologies

We now consider a complex track as described in Figure 1. Assume that the track
can be modeled as a directed graph G = (V ,E ) with the following properties:

(i) The graph G is acyclic (the rail track does not contain cycles);
(ii) The in-degree of every node is at most 2 (at every point at which two lines

meet, at most two linear tracks are merged).

Every directed acyclic graph G = (V ,E ) can be written as the union of the
family of all its connected linear subgraphs {Gi = (Vi ,Ei) | i ∈ I }.

Lemma 12. Let k be an arbitrary (but fixed) stricly positive integer constant.
A finite directed graph G = (V ,E ) is acyclic iff there exists a map v : V → Z

with the property that for every (x1, x2) ∈ E, v(x1) ≤ v(x2)− k.

Proof: Let w be a weight function that assigns the weight −k to each edge
of G. Clearly, G is acyclic iff there exists no cycle of negative weight in the
weighted graph (G,w). Let (G ′,w ′) = (V ∪ {x},E ∪ E ′,w ′) be a new weighted
graph obtained from G by adding a new vertex x 6∈ V , and for every vertex
y ∈ V , a new edge (y, x ) with weigth 0. The new weighted graph has no cycles
of negative weight iff G is acyclic. Let S = {xi ≤ xj − k | (xi , xj ) ∈ E} be a
system of inequations in the variables V . The following are equivalent:

(1) G (and hence also G ′) has no cycle.
(2) (G,w) (and hence also (G ′,w ′)) has no cycle of negative weight.
(3) The system S of inequations has a solution v : V → Z.
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The equivalence of (1) and (2) was discussed before. We prove that (2) implies
(3). Assume that (G,w) (and hence also (G ′,w ′)) has no cycle of negative weight.
Then there exists a shortest path between any two nodes, and a solution for S
is v(xi) = δ(xi , x ), where δ(xi , x ) is the length of the shortest path from xi to x
in G ′. Indeed, let (x1, x2) ∈ E . Then the weight of the shortest path from x1 to
x is possibly smaller than the sum of the weights of edge (x1, x2) and the weight
of the shortest path from x2 to x . Thus,

v(x1) = δ(x1, x )

≤ w(x1, x2) + δ(x2, x )

= −k + δ(x2, x )

= v(x2)− k ,

so v is a solution of S. To prove that (3) implies (1), assume that S has a
solution and there exists a cycle (x1, x2, . . . , xn) with (xi , xi+1) ∈ E and xn = x1
in G. Then for all 1 ≤ i ≤ n, v(xi) ≤ v(xi+1) − k . Thus, 0 = v(x1) − v(x1) =∑n

i=1(v(xi)− v(xi+1)) ≤ −n ∗ k . Absurd. 2

Theorem 13. For every track topology satisfying conditions (i) and (ii) above
we can find a decomposition L = {ltracki | i ∈ I } into linear tracks such that
if (x , y) ∈ E then y = nextltrackis (x ) for some i ∈ I and for every ltrack ∈ L
identifiers are increasing w.r.t. nextltracks .

Proof: Consider a track topology satisfying conditions (i) and (ii). Let V be the
set of all segments on the track topology and let G = (V ,E ) be the directed
graph modeling the immediate successor relationships between segments on the
track. With G we associate the following system of inequalities S = {xi ≤ xj−k |
(xi , xj ) ∈ E}, where k is an arbitrary, strictly positive constant. By Lemma 12,
G = (V ,E ) is acyclic iff S has a solution v : V → Z. We can use this solution for
labeling the nodes. Then for every linear track, the labeling is strictly monotone
w.r.t. the next field (for ensuring this it is sufficient to take k = 1; we can ensure
the injectivity of the labelling by choosing k to be the total number of segments
on the complex track system). 2

Our goal is now to prove that we can guaranteeing the safety of the whole
system if we can prove that all controllers for the linear tracks are safe. This
result is a consequence of results on modular verification of complex systems
presented in [24]. A direct, informal argument for this result can be given as
follows. Assume that we start from a safe state with an admissible change and
the resulting state is not safe. Then there exists a linear track ltrack for which
one of the conditions in the invariant Inv does not hold in the new state after the
transition. We can analyze all possibilities using a case distinction depending on
the type of update which takes place on the linear track ltrack:

– The position, speed and request updates are not problematic: they refer to
one track only (and are the same on subtracks) so the safety of such update
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rules for the individual tracks implies safety in the complex system and vice-
versa. If the new state after the update is not safe, then an unsafe state is
reached after the update on one linear track. Contradiction.

– The allocation updates are uniform: if a train wants to enter the track and
another train has requested the segment the requested track is always al-
located to the train with higher priority. (incomingltrack(s) can be regarded
as a “disjunction” of all requestltrack

′

(s) over all tracks ltrack′ 6= ltrack; there
can be at most one such ltrack′ because of condition (ii)). If the new state
after the update is not safe, then the outcome of an allocation update on
one of the linear tracks is not safe, which contradicts the fact that allocation
updates on all linear tracks preserve the safety property.

– We now consider enter and leave updates, which involve two tracks. Since
for every train/segment we have corresponding nextltrackt /nextltracks fields for
every linear track ltrack, the safety of the updates rules for individual tracks
implies that “global” satefy is guaranteed as well.

Thus in all cases – since (when seen from the perspective of a single track ltrack)
the initial safe state of the whole system restricts to a safe state of track ltrack and
the transition restricts to a (possibly empty) transition on ltrack – it would follow
that the specification of the controller of at least one linear track ltrack does not
satisfy the corresponding safety property. But this contradicts our assumption.

We now present the sketch of a more formal proof which uses the ideas in [24].

5.1 Definition of the composition of the linear track controllers

Let L = {ltracki | i ∈ I } be a family of linear tracks with the property that for
every ltrack ∈ L identifiers are increasing w.r.t. nextltracks .

We assume that for each linear track ltrack ∈ L we have one controller
RBC ltrack which uses the control protocol described in Section 2.1, where we
label the functions describing the train and segment succession using indices (e.g.
we use nextltrackt , prevltrackt for the successor/predecessor of a train on ltrack, and
nextltracks , prevltracks for the successor/predecessor of a segment on ltrack. Assume
that these controllers are compatible on their common parts, i.e.

(1) if two tracks track1, track2 have a common subtrack track3 then the corre-
sponding fields agree, i.e. whenever s , nexttrackis (s) are on track3, next

track1
s (s) =

nexttrack2s (s) = nexttrack3s (s) (and the same for prevs , and also for nextt , prevt
on the corresponding tracks);

(2) the update rules are compatible for trains jointly controlled. 9

We will show that under these conditions, proving safety for the complex track
can be reduced to checking safety of linear train tracks with incoming and out-
going trains.

9 We also assume that all priorities of the trains on the complex track are different.
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5.2 States

A state s of the system obtained by the interconnection of the linear controllers
in L is a structure:

(Pt,Ps,R,Z, {nextltrackt , prevltrackt , nextltracks , prevltracks }track∈L∪{segm, train, pos, ...})

satisfying the axioms Def in Section 4.1 (seen as a family of copies of these
axioms with the respective functions indexed by the tracks in L), and with the
additional condition that if a train/segment is not on a track ltrack then the
nextltrackt , prevltrackt , resp. nextltracks , prevltracks fields are null.

Compatibility of states. We now establish links between “local” states, refer-
ring to one track only, and “global” states, referring to the whole track system.

Restriction. If considering only functions and variables which refer to one linear
track ltrack ∈ L in the complex track topology, every structure s representing
a state of the system of trains on the complex track topology restricts to a
structure:

sltrack = (Pt,Ps,R,Z, {nextltrackt , prevltrackt , nextltracks , prevltracks , segm, train, pos, ...})

Glueing. Any family {sltracki | i ∈ I } of states on the component tracks which
agree on the common sub-tracks can be “glued together” to a structure s by
putting together all the functions corresponding to the single tracks. The fact
that the new structure is well defined follows from the compatibility of the family
{sltracki | i ∈ I } of states on the common sub-tracks.

Lemma 14. A state s of the system is a model (Pt,Ps,R,Z, {nextltrackt , prevltrackt ,

nextltracks , prevltracks }track∈L ∪ {segm, train, pos, ...}) the axioms Def in Section 4.1,
where all the functions relativized to tracks are compatible on common subtracks.
The following hold:

(a) Every state s of the system of trains on the complex track restricts to a state
sltrack of the system of trains on its component linear track.

(b) Any family {sltracki | i ∈ I } of states on the component tracks which agree on
the common sub-tracks can be “glued together” to a state s of the system of
trains on the complex track topology.

Proof: (a) follows from the way the restriction of a state of the whole track
systems to one track is defined. Clearly, if s satisfies the axioms Def in Sect. 4.1
(seen as a family of copies of these axioms with the respective functions indexed
by the tracks in L), then also sltrack satisfies the specific instances of the axioms
Def referring to the track ltrack.

(b) From any family {sltracki | i ∈ I } of states on the component tracks which
agree on the common sub-tracks we can construct, as explained above, a struc-
ture s in which all the operations for the component tracks are considered to-
gether. As sltracki , i ∈ I satisfy the axioms Def referring to the track ltracki , it
immediately follows that s satisfies the axioms Def in Sect. 4.1 seen as a family
of copies of these axioms with the functions indexed by the tracks in L.
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Initial states and safe states. Both properties (a) and (b) above hold if we
only consider initial states (i.e. states satisfying the initial conditions) and safe
states (i.e. states satisfying the safety conditions in the invariant Inv). This can
be seen by simply analyzing the formulae in (Init) and (Inv).

Similar properties hold for parallel actions and for transitions.

5.3 Parallel events

The events in the complex system are sets of independent events in the compo-
nent systems with a linear track. Here we assume, for the sake of simplicity, that
on every linear track only one event can take place at a time. We also assume
that if two linear tracks have a common part, and in each of them an event of the
same type etracki (position update, speed update, allocation update, ...) changes
the state of the common part, then the events are synchronized, and the changes
on the common track segment coincide. 10

Compatibility of parallel events. By definition and by the requirement that
in the global system only one event can take place at a time, the restriction of
an event to the variables known on a linear component of the system is a (single)
event for that linear track. 11 Due to the assumption that similar events on tracks
which overlap synchronize, it follows that if we have a family of compatible events
for the linear tracks they “glue together” to an event for the complex track.

5.4 Transitions

Assume that we are in a state s , and a transition t (parallel composition of var-
ious independent transitions on the component tracks) takes place in this state
in the complex track system. Let sltrack be the part of state s noticed on track
ltrack, and tltrack the changes in the transition which refer to changes on track
ltrack. Seen from the perspective of the track ltrack, transition ltrack changes the
state sltrack to a state s ′ltrack. Since we assumed that the controllers synchronize on
the common tracks (in the sense that the events produce compatible changes),
we can show that the new states {s ′ltrack | ltrack ∈ F} have the property that
their reducts on subtracks agree, and they can be “glued together” to a state of
the whole system. We can see this by analyzing the various types of transitions.

(i) The position, speed and request updates are not problematic, since they
are fully synchronized on any connected component of the track topology.

10 It follows therefore that on all segments on a connected component of the complex
topology the events “position update”, “speed update”, “request”, and “allocation”
take place at the same time. These events can take place independently for any two
disjoint connected components.

11 We can extend the formalization by allowing parallel events on linear tracks, but for
the sake of simplicity we do not do so now.
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(The formulae which define speed updates are expressed as upper and lower
bounds for the new speed; the position update depends on speed. This en-
sures compatibility.)

(ii) The allocation updates are uniform: if a train wants to enter the track on
segment s and another train has requested the segment s , s is allocated
to the train with higher priority. (As pointed out when giving the intuitive
justification, inltrack(s) can be regarded as a “disjunction” of all reqltrack

′

(s)
over all tracks ltrack′ 6= ltrack and by assumption that the in-degree of every
node is at most 2 made at the beginning of this section, it can be at most
one such ltrack′). Therefore their effects are compatible.

(iii) The enter and leave updates involve two tracks only, which share at least
the segment on which entering/leaving takes place. By analyzing the special
form of these updates we show that compatibility of the resulting states is
guaranteed.

This compatibility of changes is used for defining transitions of (parallel) events.

5.5 Modular verification

We now prove that safety can be checked modularly. Assume that the individual
controllers for the linear tracks are safe.

Safety of initial states. By the remarks above, any initial state s of the com-
plex system is obtained by glueing together certain initial states {stracki | i ∈ I }
of the linear track subsystems. These states are all safe if and only if the global
state s is safe.

Invariant checking. Assume now that we are in a safe state s . Let e be an
event in the complex system, and let s ′ be the resulting state. We know therefore
that for every ltrack ∈ F , s ′ltrack is a safe state. We proved that safe states “glue
together” to a safe state. Thus, s ′ is safe.

Theorem 15. Consider a complex track topology satisfying conditions (i)–(ii)
above. Let L = {ltracki | i ∈ I } be its decomposition into a finite family of finite
linear tracks such that for all ltrack1, ltrack2 ∈ L, L contains all their common
maximal linear subtracks. Assume that the tracks ltracki ∈ L (with increasing
segment identifiers w.r.t. nextltracks ) are controlled by controllers RBC ltracki using
the protocols in Section 2.1 which synchronize on common subtracks. Then we
can guarantee safety of the control protocol for the controller of the complex track
obtained by interconnecting all linear track controllers {RBC ltracki | i ∈ I }.

6 From specification to verification

For the practical application of verification techniques tool support is essential.
For this reason, we introduce a full tool chain in this section for automatically
checking the invariance of safety properties starting from a given specification
and give some experimental results for our RBC case study.
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UML CSP-OZ-DC PEA toolkit H-PILoT

ARMC

Prover

Syspect

PEA

TCS

TCS

Fig. 9. Tool chain

Tool chain. The tool chain is sketched in Fig. 9. In order to capture the systems
we want to verify, we use the COD front-end Syspect (cf. Section 2). [11] defines
the semantics of COD in terms of a timed automata model called Phase Event
Automata (PEA). A translation from PEA into TCS is given in [11], which is
implemented in the PEA toolkit12 and used by Syspect.

Given an invariance property, a Syspect model can directly be exported into a
TCS in the syntax of H-PILoT. If the specification’s background theory consists
of chains of local theory extensions, the user needs to specify via input dialog
(i) that the pointer extension of H-PILoT is to be used; (ii) which level of exten-
sion is used for each function symbol of the specification. With this information,
our tool chain can verify the invariance of a safety condition fully automatically
by checking its invariance for each transition update (cf. Section 3.1). Therefore,
for each update, Syspect exports a file that is handed over to H-PILoT. The
invariance of a safety condition is proven if H-PILoT detects the unsatisfiability
of each verification task. Otherwise, H-PILoT generates a model violating the
invariance of the desired property, which may be used to fix the problems in the
specification.

In addition, the PEA toolkit also supports output of TCS into the input
language of the abstraction refinement model checker ARMC [22], which we
used to verify correctness of the timed train controller from our example.

Table 1. Results
(sys) (hpi) (yic)

(Inv) unsat
Part 1 11s 72s 52s
Part 2 11s 124s 131s
speed update 11s 8s 45s
(Safe) sat 9s 8s t.o.
Consistency 13s 3s (U) 2s

(obtained on: AMD64, dual-core
2 GHz, 4 GB RAM)

Experimental results. Table 1 gives experimental
results for checking the RBC controller13. The ta-
ble lists execution times for the involved tools: (sys)
contains the times needed by Syspect and the PEA
toolkit to write the TCS, (hpi) the time of H-PILoT
to compute the reduction and to check satisfiabil-
ity with Yices as back-end, (yic) the time of Yices
to check the proof tasks without reductions by H-
PILoT. Due to some semantics-preserving transformations during the translation
process the resulting TCS consists of 46 transitions. Since our invariant (Inv) is
too complex to be handled by the clausifier of H-PILoT, we check the invariant
for every transition in two parts yielding 92 proof obligations. In addition, results
for the most extensive proof obligation are stated: one part of the speed update.
Further, we performed consistency tests to ensure that the system is not blocked
by a false precondition.

12 http://csd.informatik.uni-oldenburg.de/projects/epea.html
13 Note that even though our proof methods fully support parametric specifications,

we instantiated some of the parameters for the experiments because the underlying
provers Yices and ARMC do not support non-linear constraints.

http://csd.informatik.uni-oldenburg.de/projects/epea.html
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The table shows that the time to compute the TCS is insignificant and that
the overall time to verify all transition updates with Yices and H-PILoT does
not differ much. On the speed update H-PILoT was 5 times faster than Yices
alone. During the development of the case study H-PILoT helped us finding
the correct transition invariants by providing models for satisfiable transitions.
The table lists our tests with the verification of condition (Safe), which is not
inductive over all transitions (cf. Section 3): here, H-PILoT was able to provide a
model after 8s whereas Yices detected unsatisfiability for 17 problems, returned
“unknown” for 28, and timed out once (listed as (t.o) in the table). For the
consistency check H-PILoT was able to provide a model after 3s, whereas Yices
answered “unknown” (listed as (U)).

In addition, we used ARMC to verify the property (SafeT) of the timed train
controller. The full TCS for this proof tasks comprises 8 parallel components,
more than 3300 transitions, and 28 real-valued variables and clocks (so it is
an infinite state system). For this reason, the verification took 26 hours (on a
standard desktop computer).

7 Conclusion

We augmented existing techniques for the verification of real-time systems to
cope with rich data structures like pointers. We identified a decidable fragment
of the theory of pointers, and used it to model systems of trains on linear tracks
with incoming and outgoing trains. We then proved that certain types of complex
track systems can be decomposed into linear tracks, and that proving safety of
train controllers for such complex systems can be reduced to proving safety
of controllers for linear tracks. We implemented our approach in a new tool
chain taking high-level specifications in terms of COD as input. To uniformly
specify processes, data and time, [17,4,26] use similar combined specification
formalisms. We preferred COD due to its strict separation of control, data, and
time, and its compositionality (cf. Section 2), which is essential for automatic
verification. There is also sophisticated tool support given by Syspect and the
PEA toolkit. Using this tool chain we automatically verified safety properties of
a complex case study, closing the gap between a formal high-level language and
the proposed verification method for TCS. We plan to extend the case study
to consider emergency messages (like in [9]), possibly coupled with updates in
the track topology, or updates of priorities. Concerning the track topology, we
are experimenting with more complex axiomatizations (e.g. for connectedness
properties) that are not in the pointer fragment presented in Section 3.3; we
already proved various locality results. We also plan to study possibilities of
automated invariant generation in such parametric systems.

Acknowledgments.Many thanks toWerner Damm and Ernst-Rüdiger Olderog
for their helpful comments.
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A Update rules of the case study

Speed Update. (Speed) is given by the following axioms:
pc = 1 ∧ pc′ = 2

∀ t : pos(t) < length(segm(t))− d

→ max{0, spd(t) −maxDecl ·∆t} ≤ spd′(t) ≤ max(segm(t))

∀ t : pos(t) ≥ length(segm(t))− d ∧ alloc(nexts(segm(t))) = idt(t)
→ max{0, spd(t) −maxDecl ·∆t}

≤ spd′(t) ≤ min{max(segm(t)),max(nexts(segm(t)))}

∀ t : pos(t) ≥ length(segm(t))− d ∧ alloc(nexts(segm(t))) 6= idt(t)
→ spd′(t) = max{0, spd(t) −maxDecl ·∆t}

Request Update. (Request) is given by the following axioms:
pc = 2 ∧ pc′ = 3

∀ s : train(prevs(s)) = null → req′(s) = null

∀ s : train(prevs(s)) 6= null ∧ length(prevs(s)) − pos(train(prevs(s))) ≤ d

→ req′(s) = train(prevs(s))

∀ s : train(prevs(s)) 6= null ∧ length(prevs(s)) − pos(train(prevs(s))) > d

→ req′(s) = null

Leave Update. The following axioms model the (Leave) update, where train t1 from
segment s1 wants to leave the route given by our list of track segments:

s1 6= null1 ∧ t1 6= null2 ∧ train(s1) = t1 ∧ pc′ = pc

∀ t : t 6= t1 ∧ nextt(t) = t1 → nextt
′(t) = nextt(t1)

∀ t : t 6= t1 ∧ nextt(t) 6= t1 → nextt
′(t) = nextt(t)

∀ t : t 6= t1 ∧ prevt(t) = t1 → prevt
′(t) = prevt(t1)

∀ t : t 6= t1 ∧ prevt(t) 6= t1 → prevt
′(t) = prevt(t)

∀ t : t = t1 → nextt
′(t) = nullt

∀ t : t = t1 → prevt
′(t) = nullt

∀ t : t 6= t1 → segm′(t) = segm(t)

∀ t : t = t1 → segm′(t) = null1

∀ s : s 6= s1 → train′(s) = train(s)

∀ s : s = s1 → train′(s) = null2

∀ s : s 6= s1 → alloc′(s) = alloc(s)

∀ s : s = s1 → alloc′(s) = 0
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Allocation Update. (Allocation) is given by the following axioms:
pc = 3 ∧ pc′ = 4

∀ s : alloc(s) 6= 0 → alloc′(s) = alloc(s)

∀ s : alloc(s) = 0 ∧ incoming(s) = null → alloc′(s) = alloc(s)

∀ s : alloc(s) = 0 ∧ incoming(s) 6= null ∧ req(s) = 0 → alloc′(s) = idt(incoming(s))

∀ s : alloc(s) = 0 ∧ incoming(s) 6= null ∧ req(s) 6= 0
∧ prio(idt(incoming(s))) < prio(req(s)) → alloc′(s) = req(s)

∀ s : alloc(s) = 0 ∧ incoming(s) 6= null ∧ req(s) 6= 0
∧ prio(idt(incoming(s))) ≥ prio(req(s)) → alloc′(s) = idt(incoming(s))

Position Update. (Position) is given by the following axioms:
pc = 2 ∧ pc′ = 1

∀ t : pos(t) + spd(t) ·∆t ≤ length(segm(t)) → pos′(t) = pos(t) + spd(t) ·∆t

∀ t : pos(t) + spd(t) ·∆t > length(segm(t))
→ pos′(t) = (pos(t) + spd(t) ·∆t)− length(segm(t))

∀ t : segm(t) = null1 → segm′(t) = null1

∀ t : segm(t) 6= null1 ∧ pos(t) + spd(t) ·∆t ≤ length(segm(t))
→ segm′(t) = segm(t)

∀ t : segm(t) 6= null1 ∧ pos(t) + spd(t) ·∆t > length(segm(t))
→ segm′(t) = nexts(segm(t))

∀ s : train(s) = null2 ∧ prevs(s) = null1 → train′(s) = null2

∀ s : train(s) = null2 ∧ prevs(s) 6= null1 ∧ train(prevs(s)) = null2
→ train′(s) = null2

∀ s : train(s) = null2 ∧ prevs(s) 6= null1 ∧ train(prevs(s)) 6= null2
∧ pos(train(prevs(s))) + spd(train(prevs(s))) ·∆t > length(prevs(s))
→ train′(s) = train(prevs(s))

∀ s : train(s) = null2 ∧ prevs(s) 6= null1 ∧ train(prevs(s)) 6= null2
∧ pos(train(prevs(s))) + spd(train(prevs(s))) ·∆t ≤ length(prevs(s))
→ train′(s) = null2

∀ s : train(s) 6= null2 ∧ pos(train(s)) + spd(train(s)) ·∆t > length(s)
→ train′(s) = null2

∀ s : train(s) 6= null2 ∧ pos(train(s)) + spd(train(s)) ·∆t ≤ length(s)
→ train′(s) = train(s)

∀ s : train(s) = null2 → alloc′(s) = alloc(s)

∀ s : train(s) 6= null2 ∧ pos(train(s)) + spd(train(s)) ·∆t ≤ length(s)
→ alloc′(s) = alloc(s)

∀ s : train(s) 6= null2 ∧ pos(train(s)) + spd(train(s)) ·∆t > length(s)
→ alloc′(s) = 0
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Enter Update. The following axioms model the (Enter) update. Train t1 wants to
enter at track segment s1. t0 is the closest train on a segment smaller than s1, t2 is the
closest train on a segment larger than s1 (if such trains exist, otherwise nullt):

s1 6= nulls ∧ t1 6= nullt ∧ nextt(t1) = nullt ∧ prevt(t1) = nullt
incoming(s1) = t1 ∧ alloc(s1) = idt(t1)

segm(t0) = nulls → t0 = nullt
t0 6= nullt → ids(segm(t0)) < ids(s1)

∀ t . t 6= t0 ∧ ids(segm(t)) < ids(s1) → ids(segm(t)) < ids(segm(t0))
t0 6= nullt → nextt(t0) = t2

segm(t2) = nulls → t2 = nullt
t2 6= nullt → ids(segm(t2)) > ids(s1)

∀ t . t 6= t2 ∧ ids(segm(t)) > ids(s1) → ids(segm(t)) > ids(segm(t2))
t2 6= nullt → prevt(t2) = t0

pc1′ = pc1

∀ t . t0 = t2 ∧ t 6= t1 → prevt
′(t) = prevt(t) ∧ nextt

′(t) = nextt(t)
∧ prevt

′(t1) = nullt ∧ nextt
′(t1) = nullt

∀ t . t0 6= t2 ∧ t 6= t0 ∧ t 6= t1 ∧ t 6= t2
→ nextt

′(t) = nextt(t) ∧ prevt
′(t) = prevt(t)

t0 6= t2 ∧ t0 6= nullt → nextt
′(t0) = t1

t0 6= t2 → prevt
′(t0) = prevt(t0) ∧ nextt

′(t1) = t2
∧ prevt

′(t1) = t0 ∧ nextt
′(t2) = nextt(t2)

t0 6= t2 ∧ t2 6= nullt → prevt
′(t2) = t1

∀ t . t 6= t1 → segm′(t) = segm(t) ∧ segm′(t1) = s1
∀ t . t 6= t1 → spd ′(t) = spd(t) ∧ 0 ≤ spd ′(t1) ≤ lmax(s1)
∀ t . t 6= t1 → pos ′(t) = pos(t) ∧ pos ′(t1) = 0
∀ s. s 6= s1 → train ′(s) = train(s) ∧ train ′(s1) = t1
∀ s. alloc′(s) = alloc(s)
∀ s. req ′(s) = req(s)
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B CSP-OZ-DC specification of the case study

In this section, we present the entire CSP-OZ-DC model of our case study as
it is generated by Syspect (we adjusted some of the line breaks to increase
readability). Figure 4 gives a structural overview of the components of the case
study, which are listed as COD specifications in the following (starting with
some axiomatic definitions, followed by the RBC controller, and finally the train
controller is listed).

In addition to the components of Fig. 4, there is a further component RBC −
Com, representing a communication interface between Train component and
RBC. It is basically used to simplify presentation and verification of the RBC
controller because it encapsulates the communication of data that otherwise
would have to be considered within the RBC controller. In particular, we make
the simplifying assumption that the getData event of the RBC−Com component
is only possible if the alloc variable assigns the next segment to the current
train. Then getData returns the length and allowed maximal speed for the next
segment. The operation getData does not change any value of the RBC.

Note that even though our proof methods fully support parametric specifica-
tions, it were necessary to instantiate some of the parameters for the experiments
because the underlying provers yices and ARMC do not support non-linear con-
straints.

B.1 Axiomatic definitions

[Train,Segment]

d, decmax ,gmax ,∆t : R

decmax = 2
gmax ≤ 30
d ≥ bd(gmax) + gmax

tnil : Train

snil : Segment

prio : Z → Z

∀ i, j : Z | prio(i) = prio(j) • i = j

nexts,prevs : Segment → Segment

∀ s : Segment • nexts(prevs(s)) = s

∀ s : Segment • prevs(nexts(s)) = s

length, lmax : Segment → R

∀ s : Segment • length(s) > d + gmax · ∆t
∀ s : Segment

• 0 < lmax(s) ∧ lmax(s) ≤ gmax
∀ s : Segment

• lmax(s) ≥ lmax(prevs(s))− decmax

sid : Segment → Z

∀ s1, s2 : Segment | s1 6= s2
• sid(s1) 6= sid(s2)

∀ s : Segment • sid(s) > 0
sid(snil) = 0
∀ s : Segment • sid(nexts(s)) > sid(s)

tid : Train → Z

∀ t1, t2 : Train | t1 6= t2 • tid(t1) 6= tid(t2)
∀ t : Train • tid(t) > 0
tid(tnil) = 0

incoming : Segment → Train
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bd : R → R

∀ r : R | r ≤ 2 • bd(r) = 1
∀ r : R | r ≤ 4 ∧ r > 2 • bd(r) = 4
∀ r : R | r ≤ 6 ∧ r > 4 • bd(r) = 9
∀ r : R | r ≤ 8 ∧ r > 6 • bd(r) = 16
∀ r : R | r ≤ 10 ∧ r > 8 • bd(r) = 25
∀ r : R | r ≤ 12 ∧ r > 10 • bd(r) = 36
∀ r : R | r ≤ 14 ∧ r > 12 • bd(r) = 49
∀ r : R | r ≤ 16 ∧ r > 14 • bd(r) = 64
∀ r : R | r ≤ 18 ∧ r > 16 • bd(r) = 81
∀ r : R | r ≤ 20 ∧ r > 18 • bd(r) = 100
∀ r : R | r ≤ 22 ∧ r > 20 • bd(r) = 121
∀ r : R | r ≤ 24 ∧ r > 22 • bd(r) = 144
∀ r : R | r ≤ 26 ∧ r > 24 • bd(r) = 169
∀ r : R | r ≤ 28 ∧ r > 26 • bd(r) = 196
∀ r : R | r ≤ 30 ∧ r > 28 • bd(r) = 225

SegmentData

train : Segment → Train
req : Segment → Z

alloc : Segment → Z

TrainData

segm : Train → Segment
next : Train → Train

spd : Train → R

pos : Train → R

prev : Train → Train

B.2 RBC controller

RBC − OZ

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]
method leave : [ls? : Segment; lt? : Train]
local chan allocation
local chan request
local chan updatePosition

local chan updateSpeed

InitState
c
= ((enter → InitState)
2 (leave → InitState)
2 (updateSpeed → State1))

State1
c
= ((enter → State1)
2 (leave → State1)
2 (request → State2))

State2
c
= ((allocation → State3)
2 (enter → State2)
2 (leave → State2))

State3
c
= ((enter → State3)
2 (leave → State3)
2 (updatePosition → InitState))

main
c
= InitState

sd : SegmentData
td : TrainData

Init

∀ t : Train • alloc(nexts(segm(t))) = tid(t)
∨ length(segm(t))− bd(spd(t)) > pos(t)

∀ s : Segment • segm(train(s)) = s
∀ t : Train • train(segm(t)) = t

∀ t : Train • next(prev(t)) = t
∀ t : Train • prev(next(t)) = t

∀ t : Train • 0 ≤ pos(t)
∀ t : Train • pos(t) ≤ length(segm(t))
∀ t : Train • 0 ≤ spd(t)
∀ t : Train • spd(t) ≤ lmax(segm(t))
∀ t : Train • alloc(segm(t)) = tid(t)
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effect updateSpeed
∆(spd)

∀ t : Train | pos(t) < length(segm(t))− d ∧ spd(t) − decmax · ∆t > 0
• max{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))

∀ t : Train | pos(t) ≥ length(segm(t))− d ∧ alloc(nexts(segm(t))) = tid(t)
• max{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

∀ t : Train | pos(t) ≥ length(segm(t))− d ∧ ¬ alloc(nexts(segm(t))) = tid(t)
• spd′(t) = max{0, spd(t) − decmax · ∆t}

effect leave
∆(segm,next, train, prev , alloc)
ls? : Segment; lt? : Train

ls? 6= snil

lt? 6= tnil
train(ls?) = lt?
∀ t : Train | t 6= lt? ∧ next(t) 6= lt? • next′(t) = next(t)
∀ t : Train | t 6= lt? ∧ next(t) = lt? • next′(t) = next(lt?)
∀ t : Train | t 6= lt? ∧ prev(t) 6= lt? • prev ′(t) = prev(t)
∀ t : Train | t 6= lt? ∧ prev(t) = lt? • prev ′(t) = prev(lt?)
next′(lt?) = tnil

prev ′(lt?) = tnil

∀ t : Train | t 6= lt? • segm ′(t) = segm(t)
segm ′(lt?) = snil

∀ s : Segment | s 6= ls? • train′(s) = train(s)
∀ s : Segment | s 6= ls? • alloc′(s) = alloc(s)
train′(ls?) = tnil

alloc′(ls?) = 0

effect request

∆(req)

∀ s : Segment | train(prevs(s)) = tnil • req′(s) = 0
∀ s : Segment | length(prevs(s))− pos(train(prevs(s))) ≤ d

∧ train(prevs(s)) 6= tnil • req′(s) = tid(train(prevs(s)))
∀ s : Segment | length(prevs(s))− pos(train(prevs(s))) > d

∧ train(prevs(s)) 6= tnil • req′(s) = 0

effect allocation

∆(alloc)

∀ s : Segment | alloc(s) 6= 0 • alloc′(s) = alloc(s)
∀ s : Segment | alloc(s) = 0 ∧ incoming(s) = tnil • alloc′(s) = req(s)
∀ s : Segment | alloc(s) = 0 ∧ req(s) = 0 ∧ incoming(s) 6= tnil

• alloc′(s) = tid(incoming(s))
∀ s : Segment | alloc(s) = 0 ∧ prio(tid(incoming(s))) < prio(req(s))

∧ incoming(s) 6= tnil ∧ req(s) 6= 0 • alloc′(s) = req(s)
∀ s : Segment | alloc(s) = 0 ∧ prio(tid(incoming(s))) ≥ prio(req(s))

∧ incoming(s) 6= tnil ∧ req(s) 6= 0 • alloc′(s) = tid(incoming(s))
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effect updatePosition
∆(segm, train, pos, alloc)

∀ t : Train | pos(t) + spd(t) · ∆t ≤ length(segm(t)) • pos′(t) = pos(t) + spd(t) · ∆t

∀ t : Train | pos(t) + spd(t) · ∆t > length(segm(t))
• pos′(t) = (pos(t) + spd(t) · ∆t) − length(segm(t))

∀ t : Train | pos(t) + spd(t) · ∆t ≤ length(segm(t)) ∧ segm(t) 6= snil

• segm ′(t) = segm(t)
∀ t : Train | pos(t) + spd(t) · ∆t > length(segm(t)) ∧ segm(t) 6= snil

• segm ′(t) = nexts(segm(t))
∀ t : Train | segm(t) = snil • segm ′(t) = snil

∀ s : Segment | train(s) = tnil ∧ prevs(s) = snil • train′(s) = tnil
∀ s : Segment | train(s) = tnil ∧ prevs(s) 6= snil ∧ train(prevs(s)) = tnil

• train′(s) = tnil

∀ s : Segment | train(s) = tnil ∧ prevs(s) 6= snil ∧ train(prevs(s)) 6= tnil
∧ pos(train(prevs(s))) + spd(train(prevs(s))) · ∆t > length(prevs(s))
• train′(s) = train(prevs(s))

∀ s : Segment | train(s) = tnil ∧ prevs(s) 6= snil ∧ train(prevs(s)) 6= tnil
∧ pos(train(prevs(s))) + spd(train(prevs(s))) · ∆t ≤ length(prevs(s))
• train′(s) = tnil

∀ s : Segment | train(s) 6= tnil ∧ pos(train(s)) + spd(train(s)) · ∆t > length(s)
• train′(s) = tnil

∀ s : Segment | train(s) 6= tnil ∧ pos(train(s)) + spd(train(s)) · ∆t ≤ length(s)
• train′(s) = train(s)

∀ s : Segment | train(s) 6= tnil ∧ pos(train(s)) + spd(train(s)) · ∆t > length(s)
• alloc′(s) = 0

∀ s : Segment | train(s) 6= tnil ∧ pos(train(s)) + spd(train(s)) · ∆t ≤ length(s)
• alloc′(s) = alloc(s)

∀ s : Segment | train(s) = tnil • alloc′(s) = alloc(s)

effect enter

∆(segm,next, train, spd, pos,prev)
s1? : Segment; t0? : Train; t1? : Train; t2? : Train

∀ s1, s2 : Segment • tid(incoming(s1)) 6= tid(train(s2))
s1? 6= snil

t1? 6= tnil
next(t1?) = tnil
prev(t1?) = tnil

incoming(s1?) = t1?
alloc(s1?) = tid(t1?)
segm(t0?) = snil ⇒ t0? = tnil
t0? 6= tnil ⇒ sid(segm(t0?)) < sid(s1?)
∀ t : Train | t 6= t0? ∧ sid(segm(t)) < sid(s1?) • sid(segm(t)) < sid(segm(t0?))
segm(t2?) = snil ⇒ t2? = tnil
t2? 6= tnil ⇒ sid(segm(t2?)) > sid(s1?)
∀ t : Train | t 6= t2? ∧ sid(segm(t)) > sid(s1?) • sid(segm(t)) > sid(segm(t2?))
t0? 6= tnil ⇒ next(t0?) = t2?
t2? 6= tnil ⇒ prev(t2?) = t0?
t0? = t2? ⇒ next′(t1?) = tnil

t0? = t2? ⇒ prev ′(t1?) = tnil

∀ t : Train | t 6= t1? ∧ t0? = t2? • next′(t) = next(t)
∀ t : Train | t 6= t1? ∧ t0? = t2? • prev ′(t) = prev(t)
t0? 6= tnil ∧ t0? 6= t2? ⇒ next′(t0?) = t1?
t0? 6= t2? ⇒ prev ′(t0?) = prev(t0?)
t0? 6= t2? ⇒ next′(t1?) = t2?
t0? 6= t2? ⇒ prev ′(t1?) = t0?
t0? 6= t2? ⇒ next′(t2?) = next(t2?)
t0? 6= t2? ∧ t2? 6= tnil ⇒ prev ′(t2?) = t1?
∀ t : Train | t0? 6= t2? ∧ t 6= t0? ∧ t 6= t1? ∧ t 6= t2? • next′(t) = next(t)
∀ t : Train | t0? 6= t2? ∧ t 6= t0? ∧ t 6= t1? ∧ t 6= t2? • prev ′(t) = prev(t)
∀ t : Train | t 6= t1? • segm ′(t) = segm(t)
∀ t : Train | t 6= t1? • spd′(t) = spd(t)
∀ t : Train | t 6= t1? • pos′(t) = pos(t)
segm ′(t1?) = s1?
0 ≤ spd′(t1?)
spd′(t1?) ≤ lmax(s1?)
pos′(t1?) = 0
∀ s : Segment | s 6= s1? • train′(s) = train(s)
train′(s1?) = t1?
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B.3 Train controller and communication interface

RBC − Com

chan grantMA : [ma2! : R; rid2! : Z; spd2! : R]
chan reject : [rid1! : Z]
chan requestMA : [rid? : Z; spd? : R]
local chan getData : [ma3? : R; rid3! : Z; spd3? : R]

State10
c
= ((getData → State11)
2 (reject → main))

State11
c
= (grantMA → main)

main
c
= (requestMA → State10)

old spd param : R
new spd, new ma : R
rid : Z

enable reject

rid1! : Z

effect reject
∆(rid)
rid1! : Z

rid1! = rid

rid′ = 0

enable getData
ma3? : R; rid3! : Z; spd3? : R

effect getData
∆(new spd,new ma)
ma3? : R; rid3! : Z; spd3? : R

new ma′ = ma3?
new spd′ = spd3?
rid3! = rid

new ma′ > bdmax + gmax + gmax

0 < new spd′ ≤ gmax

new spd′ ≥ old spd param − decmax

enable grantMA
ma2! : R; rid2! : Z; spd2! : R

effect grantMA

∆(rid)
ma2! : R; rid2! : Z; spd2! : R

rid2! = rid

rid′ = 0
ma2! = new ma

spd2! = new spd

enable requestMA

rid? : Z; spd? : R

effect requestMA
∆(old spd param, rid)
rid? : Z; spd? : R

rid′ = rid?
old spd param ′ = spd?
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Train

method updateSpeed
method updatePosition

method grantMA : [ma2? : R; rid2? : Z; spd2? : R]
method reject : [rid1? : Z]
method requestMA : [rid! : Z; spd! : R]
local chan brake
local chan check

local chan enterNewSegm
local chan release

InitialState1
c
= (check → State4)

InitialState2
c
= (updateSpeed → State6)

InitialState3
c
= (requestMA → State8)

State4
c
= ((brake → InitialState1)
2 (release → InitialState1))

State6
c
= ((enterNewSegm → InitialState2)
2 (getPos → InitialState2))

State8
c
= ((grantMA → InitialState3)
2 (reject → InitialState3))

main
c
= ((InitialState1
‖| InitialState2
‖| InitialState3) o

9 Stop)

nextAllowedSpd : R
curPos : R
nextMa : R
allowedSpd : R
applyBrakes : R
decmax : R
bdmax : R
ma : R
brakesApplied : R
curSpd : R
gmax : R
dp : R
incmax : R
selfid : Z

decmax = 2
0 < incmax < decmax

0 < allowedSpd ≤ gmax ≤ 30
bdmax ≥ 225
selfid > 0

Init

dp > curPos

curPos > 0
0 ≤ curSpd ≤ allowedSpd
applyBrakes = 0
brakesApplied = 0
ma − dp ≥ bdmax + gmax

nextAllowedSpd = 0
nextMa = ma

enable reject
rid1? : Z

selfid = rid1?

effect reject
rid1? : Z
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effect check
∆(applyBrakes)

(curPos ≥ dp ∧ allowedSpd > nextAllowedSpd) ⇒ applyBrakes′ = 1
(curPos ≥ dp ∧ allowedSpd ≤ nextAllowedSpd) ⇒ applyBrakes′ = 0
curPos < dp ⇒ applyBrakes′ = 0

enable enterNewSegm

curPos + curSpd ≥ ma ∧ nextAllowedSpd > 0

effect enterNewSegm
∆(nextAllowedSpd,ma, curPos, allowedSpd, dp)

curPos′ = curPos + curSpd − ma

ma′ = nextMa

dp′ = ma′ − bdmax − gmax

allowedSpd′ = nextAllowedSpd

nextAllowedSpd′ = 0

enable grantMA
ma2? : R; rid2? : Z; spd2? : R

rid2? = selfid

effect grantMA

∆(nextAllowedSpd, nextMa)
ma2? : R; rid2? : Z; spd2? : R

nextAllowedSpd′ = spd2?
nextMa′ = ma2?

enable requestMA
rid! : Z; spd! : R

effect requestMA
rid! : Z; spd! : R

rid! = selfid
spd! = allowedSpd

enable updatePosition

curPos + curSpd < ma ∨ nextAllowedSpd ≤ 0

effect updatePosition

∆(curPos)

curPos′ = curPos + curSpd

enable release

applyBrakes ≤ 0

effect release

∆(brakesApplied)

brakesApplied′ = 0

enable brake

applyBrakes ≥ 1



40

effect brake
∆(brakesApplied)

brakesApplied′ = 1

effect updateSpeed
∆(curSpd)

(brakesApplied ≤ 0 ∧ allowedSpd ≤ curSpd + incmax) ⇒ curSpd′ = allowedSpd

(brakesApplied ≤ 0 ∧ allowedSpd > curSpd + incmax) ⇒ curSpd′ = curSpd + incmax

(brakesApplied ≥ 1 ∧ curSpd − decmax > 0) ⇒ curSpd′ = curSpd − decmax

(brakesApplied ≥ 1 ∧ curSpd − decmax ≤ 0) ⇒ curSpd′ = 0

¬(true a (⊟ check ∧ (ℓ > 0.5)) a true)

¬(true a lupdateSpeed a (⊟ updatePosition ∧ true) a l brake a true)

¬(true a lupdatePosition a (ℓ < 1) a lupdatePosition a true)


