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Abstract. This system description provides an overview of H-PILoT
(Hierarchical Proving by Instantiation in Local Theory extensions), a
program for hierarchical reasoning in extensions of logical theories. H-
PILoT reduces deduction problems in the theory extension to deduc-
tion problems in the base theory. Specialized provers and standard SMT
solvers can be used for testing the satisfiability of the formulae obtained
after the reduction. For a certain type of theory extension (namely for
local theory extensions) this hierarchical reduction is sound and complete
and – if the formulae obtained this way belong to a fragment decidable
in the base theory – H-PILoT provides a decision procedure for testing
satisfiability of ground formulae, and can also be used for model gener-
ation.
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1 Introduction

H-PILoT (Hierarchical Proving by Instantiation in Local Theory extensions) is
an implementation of the method for hierarchical reasoning in local theory exten-
sions presented in [GSW04,GSW06,Sof05,Sof07]: it reduces the task of checking
the satisfiability of a (ground) formula over the extension of a theory with addi-
tional function symbols subject to certain axioms (a set of clauses) to the task
of checking the satisfiability of a formula over the base theory. The idea is to
replace the set of clauses which axiomatize the properties of the extension func-
tions by a finite set of instances thereof. This reduction is polynomial in the size
of the initial set of clauses and is always sound. It is complete in the case of
so-called local extensions [Sof05]; in this case, it provides a decision procedure
for validity for the universal fragment of the theory extension (or alternatively
for satisfiability of ground clauses w.r.t. the theory extension) if the clauses ob-
tained by the hierarchical reduction belong to a fragment for which satisfiability
is decidable in the base theory. The satisfiability of the reduced set of clauses is
then checked with a specialized prover for the base theory.

State of the art SMT provers such as CVC3 [BT07], Yices [DdM06a,DdM06b]
and Z3 [dMB08,BdM09] are very efficient for testing the satisfiability of ground
formulae over standard theories, but use heuristics in the presence of universally
quantified formulae, hence cannot detect satisfiability of such formulae. H-PILoT
recognizes a class of local axiomatizations, performs the instantiation and hands
in a ground problem to the SMT provers or other specialized provers, for which
they are know to terminate with a yes/no answer, so it can be used as a tool for
steering standard SMT provers, in order to provide decision procedures in the
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case of local theory extensions. H-PILoT can also be used for generating mod-
els of satisfiable formulae; and even more, it can be coupled to programs with
graphic facilities to provide graphical representations of these models. Being a
decision procedure for many theories important in verification, H-PILoT is ex-
tremely helpful for deciding truth or satisfiability in a large variety of verification
problems.

This is an extended version of the description of H-PILoT presented at CADE
22 [ISS09].

2 Theoretical background

Many problems in mathematics and computer science can be reduced to proving
the satisfiability of conjunctions of literals in a background theory (which can be
the extension of a base theory with additional functions – e.g., free, monotone, or
recursively defined – or a combination of theories). Considerable work has been
dedicated to the task of identifying situations where reasoning in extensions
and combinations of theories can be done efficiently and accurately. The most
important issues which need to be addressed in this context are:

(i) finding possibilities of reducing the search space without losing completeness,
and

(ii) making modular or hierarchical reasoning possible.

In [GM92,McA93,GM02], Givan and McAllester introduced and studied the so-
called “local inference systems”, for which validity of ground Horn clauses can
be checked in polynomial time. A link between this proof theoretic notion of
locality and algebraic arguments used for identifying classes of algebras with
a word problem decidable in PTIME [Bur95] was established in [Gan01]. In
[GSW04,GSW06,Sof05] these results were further extended to so-called local
extensions of theories. Locality phenomena were also studied in the verification
literature, mainly motivated by the necessity of devising methods for efficient
reasoning in theories of pointer structures [MN05] and arrays [BMS06].

In [IJSS08] we showed that these results are instances of a general concept of
locality of a theory extension – parameterized by a closure operator on ground
terms. The main idea of locality and local extensions is to limit the search space
for counterexamples (hence the name).

2.1 Local theory extensions

We consider the following setup. Let T0 be a theory in some signature Σ0. We
consider extensions T1 = T0∪K of T0 with function symbols in a setΣ1 (extension
functions) whose properties are axiomatized by a set K of (universally closed)
Σ0 ∪Σ1-clauses. Let Σc be an additional set of constants.

Task. Let G be a set of ground Σ0∪Σ1∪Σc-clauses. We want to check whether
or not G is satisfiable w.r.t. T0 ∪ K.
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Method. Let K[G] be the set of those instances of K in which every subterm
starting with an extension function is a ground subterm already appearing in
K or G. If G is unsatisfiable w.r.t. T0 ∪ K[G] then it is also unsatisfiable w.r.t.
T0 ∪ K. The converse is not necessarily true.

Definition 1. We say that the extension T0 ∪K of T0 is local if it satisfies the
following condition1:

(Loc) For every set G of ground Σ0 ∪Σ1 ∪Σc-clauses it holds that
T0 ∪ K ∪G |= ⊥ if and only if T0 ∪ K[G] ∪G |= ⊥.

Thus, the method is sound and complete for local theory extensions.

Theorem 1 ([Sof05]). Assume that the extension T0 ⊆ T1 = T0∪K is local and
let G be a set of ground clauses. Let K0 ∪G0 ∪D be the purified form of K ∪G
obtained by introducing fresh constants for the Σ1-terms, adding their definitions
d ≈ f(t) to D, and replacing f(t) in G and K[G] by d. (Then Σ1-functions occur
only in D in unit clauses of the form d ≈ f(t).) The following are equivalent.

1. T0 ∪ K ∪G has a (total) model.
2. T0 ∪ K[G] ∪ G has a partial model where all subterms of K and G and all

Σ0-functions are defined.
3. T0 ∪ K0 ∪G0 ∪ Con0 has a total model, where

Con0 := {
∧n

i=1
ci ≈ di → c ≈ d | f(c1, ..., cn) ≈ c, f(d1, ..., dn) ≈ d ∈ D}.

A variant of this notion, namely Ψ -locality, was also studied, where the set of
instances to be taken into account is K[Ψ(G)], where Ψ is a closure operator
which may add a (finite) number of new terms to the subterms of G. We also
analyzed a generalized version of locality, in which the clauses in K and the set
G of ground clauses are allowed to contain first-order Σ0-formulae.

2.2 Examples of local theory extensions

Among the theory extensions which we proved to be local or Ψ -local in previous
work are:

– a fragment of the theory of pointers with stored scalar information in the
nodes introduced in [MN05], further analyzed in [IJSS08,FIJS10];

– a fragment of the theory of arrays with integer indices, and elements in a
given theory introduced in [BMS06], further analyzed in [IJSS08];

– theories of functions over an ordered domain or over a numerical domain
satisfying monotonicity or boundedness conditions [Sof05,Sof06a,SI07a];

– various combinations of such extensions [Sof07,IJSS08].

We can also consider successive extensions of theories: T0 ⊆ T0 ∪ K1 ⊆ · · · ⊆
T0 ∪K1 ∪ · · · ∪Kn. If every variable in Ki occurs below a function symbol in Σi,
this reduction process can be iterated [IJSS08].

For local theory extensions, Theorem 1 allows us to reduce the original prob-
lem to a satisfiability problem over the base theory T0.

1 It is easy to check that the formulation we give here and that in [Sof05] are equivalent.
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3 Implementation

The software system H-PILoT (Hierarchical Proving by Instantiation in Local
Theory extensions) for hierarchical reasoning in local theory extensions is imple-
mented as follows: A given proof task (set of ground clauses), over the extension
of a theory with functions axiomatized by a set of clauses, is reduced to an equi-
satisfiable ground problem over the base theory in the manner of Theorem 1.
After H-PILoT has carried out this reduction, it hands over the transformed
problem to a dedicated prover for the base theory. This reduction is always
sound. For local theory extensions the hierarchical reduction is sound and com-
plete. If the formulas obtained in this way belong to a fragment decidable in
the base theory, H-PILoT provides a decision procedure for testing satisfiabil-
ity of ground formulas. If the reduced formulas are satisfiable (modulo the base
theory), H-PILoT can be used for model generation, which is of great help in
detecting and localizing errors.

3.1 Generalities

H-PILoT is implemented in Ocaml2. The system, together with a manual and ex-
amples, can be downloaded from www.mpi-inf.mpg.de/~ihlemann/software/.
There is both a 32-bit and a 64-bit Linux version available.

To improve user-friendliness, a clausifier has also been integrated into H-PILoT
(Sect. 12). H-PILoT recognizes a class of local axiomatizations; it has advanced
abilities to handle the common data structures of arrays (Sect. 11.1) and point-
ers (Sect. 11.2)3. H-PILoT performs the instantiation and hands in a ground
problem to the SMT provers or other specialized provers, for which they are
known to terminate with a yes/no answer, so it can be used as a tool for steering
standard SMT provers, in order to provide decision procedures in the case of
local extensions. The provers integrated with H-PILoT are the general-purpose
prover SPASS ([WDF+09]); the SMT-solvers Yices ([DdM06a,DdM06b]), CVC3
([BT07]) and Z3 ([dMB08]); and the prover Redlog ([DS97]) for non-linear real
problems. State-of-the-art SMT provers, such as the ones above, are very effi-
cient for testing the satisfiability of ground formulas over standard theories, such
as linear arithmetic (real, rational or integer), but use heuristics in the presence
of universally quantified formulas, hence, cannot reliably detect satisfiability of
such formulas. However, if SMT solvers are used for finding software bugs, be-
ing able to detect the actual satisfiability of satisfiable sets of formulas is crucial
(cf. [dM09,dMB08,GdM09,BdM09]). For local theory extensions, H-PILoT offers
the possibility of detecting satisfiability and of constructing models for satisfiable
sets of clauses. On request, H-PILoT provides an extensive step-by-step trace of
the reduction process, making its results verifiable (Sect. 15.2).

H-PILoT has been used in large case studies, where its ability (1) to handle
chains of extensions, (2) to detect unsatisfiability and satisfiability, and (3) to
construct models of satisfiable sets of clauses has been crucial.

2 http://caml.inria.fr/ocaml/index.en.html
3 H-PILoT automatically detects whether a given specification falls within the local
fragment of these theories.
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3.2 Structure of the program

The main algorithm which hierarchically reduces a decision problem in a the-
ory extension to a decision problem in the base theory can be divided into a
preprocessing part, the main loop and a post-processing part; see Figure 1.

extension
level > 0

ext.
clauses
ground?

update K, G
linearize

quit

prover

clausify

parse

no

yes

yes

local?

all
extensions

local := false
no

local := falsegive to

compute
instances

separate/
reduce

returnreturn
local

build
model

return
"unknown"

Main Loop

Postprocess

yes
local := true

no

flatten/
linearize

CNF?

yes

no

input Preprocess

"satisfiable" "unsatisfiable"
satisfiable

not local

no

noyes

yes

Fig. 1. H-PILoT Structure

Preprocessing. The input is read and
parsed. If it is detected to be in SMT for-
mat, we set the options to “use arithmetic”
(e.g., +, −,... are predefined). If the input is
not in clause normal form (CNF), it is trans-
lated to CNF, then the input is flattened and
linearized. The program then checks if the
clauses in the axiomatization given are lo-
cal extensions and sets the flag -local to
true/false. This ends the preprocessing phase.

Main algorithm. The main loop proceeds as
follows: We consider chains of extensions T0 ⊆
T1 ⊆ · · · ⊆ Tn, where Ti = T0 ∪

⋃i

j=1
Kj of T0

with function symbols in a set Σi (extension
functions) whose properties are axiomatized

by a set Ki of (Π0 ∪
⋃i

j=1
Σj)-clauses.

Let i = n. As long as the extension level
i is greater than 0, we compute Ki[G] (Ki[Ψ ]
for arrays). If no separation of the extension
symbols is required, we stop here (the result
will be passed to an external prover that can
reason about the extension of the theory T0
with free function symbols in Σn). Otherwise,
we perform the hierarchical reduction by pu-
rifying Ki and G (to K0

i , G0 respectively) and
by adding corresponding instances of the con-
gruence axioms Coni. To prepare for the next
iteration, we transform the clauses into the
form ∀x̄.Φ∨Ki (compute prenex form, skolem-
ize). If Ki[G] (i > 1) is not ground, we quit
with a corresponding message. Otherwise we set G′ := K0

i ∧ G0 ∧ Coni and
T ′ := T \ {Ki}. We flatten and linearize K′ and decrease i. If level i = 0 is
reached G′ is handed to an external prover.

Post-processing. If the answer is “unsatisfiable” then G |=Tn
⊥. If the answer

is “satisfiable” and all extensions were local, then G is satisfiable w.r.t. Tn and
we know how to build a model. If the answer is satisfiable but we do not know
that all extensions are local, or if the instantiated clauses (of level > 1) were not
ground, we answer “unknown”.
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4 Modules of H-PILoT

We present the different parts of H-PILoT in more detail.

4.1 Preprocessing

H-PILoT receives as input a many-sorted specification of the signature; a speci-
fication of the hierarchy of local extensions to be considered; an axiomatization
K of the theory extension(s); a set G of ground clauses containing possibly ad-
ditional constants. H-PILoT allows the following preprocessing functionality.

Translation to clause form. H-PILoT provides a translator to clause normal
form (CNF) for ease of use. First-order formulas can be given as input; H-PILoT
translates them into CNF. In the present implementation, the CNF translator
does not provide the full functionality of FLOTTER ([NW01]) – it has only
restricted subformula renaming – but is powerful enough for most applications.

Flattening/linearization. Methods for recognizing local theory extensions
usually require that the clauses in the set K extending the base theory are
flat and linear, which does nothing to improve readability. If the flags -linearize
and/or -flatten are used then the input is flattened and/or linearized (the gen-
eral purpose flag -preprocess may also be used). H-PILoT allows the user to
enter a more intelligible non-flattened version and will perform the flattening
and linearization of K.

Recognizing syntactic criteria which imply locality. Examples of local
extensions include (fragments of) the theories of the common data structures: the
theory of arrays (see Section 11.1) and the theory of pointers (see Section 11.2),
respectively (and also iterations and combinations thereof). In the preprocessing
phase H-PILoT analyzes the input clauses to check whether they are in one of
these fragments.

– If the flag -array is on, H-PILoT checks if the input is in the “array property
fragment”.

– If the keyword “pointer” is detected, H-PILoT checks if the input is in the
appropriate pointer fragment and adds missing “nullability” terms, i.e., it
adds premises of the form “t 6= null”, in order to relieve the user of this
clerical labor.

If the answer is “yes” then we know that the extensions we consider are local,
i.e., that H-PILoT can be used as a decision procedure.

4.2 Main algorithm

The main algorithm hierarchically reduces a decision problem in a theory exten-
sion to a decision problem in the base theory.

Given a set of clauses K and a set of ground clauses G, the algorithm we
use carries out a hierarchical reduction of G to a set of formulas in the base
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theory. It then hands over the new problem to a dedicated prover such as Yices,
CVC3 or Z3. H-PILoT is also coupled with Redlog (for handling non-linear real
arithmetic) and with SPASS4.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

n

0

1

...

0

1

0
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

Base theory:

Extension 1: 
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Base theory:
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Loop. For a chain of local extensions:

T0 ⊆ T1 = T0 ∪ K1 ⊆ T2 = T0 ∪ K1 ∪K2

⊆ ... ⊆ Tn = T0 ∪K1 ∪ ... ∪ Kn.

a satisfiability check w.r.t. the last extension
can be reduced (in n steps) to a satisfiability
check w.r.t. T0. The only caveat is that at each
step the reduced clauses K0

i∪G
0∪Con0 need to

be ground. Groundness is assured if each vari-
able in a clause appears at least once under
an extension function. In that case, we know
that at each reduction step the total clause
size only grows polynomially in the size of G
([Sof05]). H-PILoT allows the user to specify
a chain of extensions by tagging the extension
functions with their place in the chain (e.g.,
if f belongs to K3 but not to K1 ∪ K2 it is
declared as level 3).

Let i = n. As long as the extension level i
is larger than 0, we compute Ki[G] (Ki[Ψ(G)]
in case of arrays). If no separation of the ex-
tension symbols is required, we stop here (the
result will be passed to an external prover).
Otherwise, we perform a hierarchical reduc-
tion by purifying Ki and G (to K0

i , G
0 respectively) and by adding corresponding

instances of the congruence axioms Coni. To prepare for the next iteration, we
transform the clauses into the form ∀x.Φ∨Ki (compute prenex form, skolemize).
If Ki[G]/K0

i is not ground, we quit with a corresponding message. Otherwise our
new proof task G′ becomes G′ := K0

i ∧G
0 ∧Coni, our new extension clauses are

K′ := Ki−1 and our new base theory becomes T ′ := Ti−1 \ {Ki−1}. We flatten
and linearize K′ and decrease i. If level i = 0 is reached, we exit the main loop
and G′ is handed to an external prover. Completeness is guaranteed if all exten-
sions are known to be local and if each reduction step produces a set of ground
clauses for the next step.

4.3 Post-processing

Depending on the answer of the external provers to the satisfiability problem
Gn, we can infer whether the initial set G of clauses was satisfiable or not.

4 H-PILoT only calls one of these solvers once.
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– If Gn is unsatisfiable w.r.t. T0 then we know that G is unsatisfiable.
– If Gn is satisfiable, but H-PILoT failed to detect this, and the user did not

assert the locality of the sets of clauses used in the axiomatization, its answer
is “unknown”.

– If Gn is satisfiable and H-PILoT detected the locality of the axiomatization,
then the answer is “satisfiable”. In this case, H-PILoT takes advantage of
the ability of SMT-solvers to provide counterexamples for the satisfiable set
Gn of ground clauses and specifies a counterexample of G by translating the
basic SMT-model of the reduced proof task to a model of the original proof
task. This improves readability greatly, especially when we have a chain of
extensions. The counterexamples can be graphically displayed using Math-
ematica (cf. Section 15.3). This is currently done separately; an integration
with Mathematica is planned for the future.

5 The input grammar

The input file consists of a declaration part (for function symbols in the base
theory, for extension functions, for relations, and constants), specifications of
the types and of the base theory, a part containing axiomatizations of base the-
ory/extension functions; and a part containing the set of ground clauses whose
satisfiability is being checked.

〈start〉 ::= 〈base functions〉 〈extension functions〉 〈relations〉 〈constants〉 〈interval〉
〈baseTheory〉 〈formulasOrClauses〉 〈groundformulas〉 〈query〉

5.1 Declarations

Type declarations: We allow for declarations of standard types:

〈domain〉 ::= bool | int | real | pointer | pointer# 〈int〉
| scalar | free | free# 〈int〉

Declarations of simple types such as intervals are also allowed:

〈interval〉 ::= ǫ
| Interval := 〈int〉 〈sm〉 〈identifier〉;
| Interval := 〈identifier〉 〈sm〉 〈int〉;
| Interval := 〈int〉 〈sm〉 〈identifier〉 〈sm〉 〈int〉;

〈int〉 ::= any non-negative number.

〈sm〉 ::= <= | <

Further details are given in Section 10.

Function and relation declarations. The declaration part contains sort and
type declarations for the function symbols in the base theory, for the extension
function symbols, for the relation symbols and for the constants:
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〈base functions〉 ::= Base functions := { 〈function list〉 }

〈extension functions〉 ::= Extension functions := { 〈function list〉 }

〈relations〉 ::= Relations := { 〈relation list〉 }

〈constants〉 ::= ǫ | Constants := { constant list }

〈constant list〉 ::= 〈constant〉 〈additional constants〉

〈additional constants〉 ::= ǫ | , 〈constant〉 〈additional constant〉

〈constant〉 ::= ( 〈identifier〉 , bool )

| ( 〈identifier〉 , int )

| ( 〈identifier〉 , real )

| ( 〈identifier〉 , scalar )

| ( 〈identifier〉 , pointer )

| ( 〈identifier〉 , pointer# 〈int〉 )
| ( 〈identifier〉 , free )

| ( 〈identifier〉 , free# 〈int〉 )

〈function list〉 ::= ǫ | 〈function〉 〈additional functions〉

〈additional functions〉 ::= ǫ | , 〈function〉 〈additional functions〉

〈relation list〉 ::= ǫ | 〈relation〉 〈additional relations〉

〈additional relations〉 ::= ǫ | , 〈relation〉 〈additional relations〉

We allow for predefined relation declarations (e.g. for relations such as ≤ or <
as well as for new relation declarations. In each case we specify together with
the relation symbols also their arity.

〈relation〉 ::= ( 〈uneqs〉 , 〈int〉 ) | ( 〈identifier〉 , 〈int〉 )

We allow for several forms of function declaration: We can declare the number
of arguments of the function ((1),(2)); the number of arguments and the level
(for predefined arithmetical operations over the integers (3), or reals (4) or for
uninterpreted functions (5)); the number of arguments, the level, and the sort
of the domain and codomain (without repetitions if the domain and codomain
are the same (6); separately specified if they are different (7)).

〈function〉 ::= ( 〈identifier〉 , 〈int〉 ) (1)
| ( 〈arithop〉 , 〈int〉 ) (2)
| ( 〈arithop〉 , 〈int〉 , 〈int〉 , int ) (3)
| ( 〈arithop〉 , 〈int〉 , 〈int〉 , real ) (4)
| ( 〈identifier〉 , 〈int〉 , 〈int〉 ) (5)
| ( 〈identifier〉 , 〈int〉 , 〈int〉 , 〈domain〉 ) (6)
| ( 〈identifier〉 , 〈int〉 , 〈int〉 , 〈domain〉 , 〈domain〉 ) (7)

At the moment declarations of functions which accept arguments of different
sorts are not supported.
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5.2 Axiomatizations

We support axiomatizations for the base theory:

〈base theory〉 ::= ǫ | Base := 〈clause list〉

axiomatizations of the properties of the extension functions:

〈formulasOrClauses〉 ::= ǫ | 〈formulas〉 | 〈clauses〉
| 〈formulas〉〈clauses〉 | 〈clauses〉〈formulas〉

as well as input of the ground formulae whose (un)satisfiability is being checked:

〈formulas〉 ::= Formulas := 〈formula list〉

〈formula list〉 ::= 〈formula〉 | 〈formula〉 ; 〈additional formulas〉

〈additional formulas〉 ::= ǫ | 〈formula〉 ; 〈additional formulas〉

〈formula〉 ::= 〈atom〉
| NOT ( 〈formula〉 )
| OR ( 〈formula〉 〈formula plus〉 )
| AND ( 〈formula〉 〈formula plus〉 )
| ( 〈formula〉 --> 〈formula〉 )
| ( 〈formula〉 <--> 〈formula〉 )
| ( FORALL 〈variables〉 ) . 〈formula〉
| ( EXISTS 〈variables〉 ) . 〈formula〉

〈formula plus〉 ::= , 〈formula〉 〈formula star〉

〈formula star〉 ::= ǫ | , 〈formula〉 〈formula star〉

〈ground formulas〉 ::= ǫ | Ground Formulas := 〈formula list〉

〈query〉 ::= Query := 〈ground clauses〉

〈clauses〉 ::= Clauses := 〈clause list〉

〈base clause list〉 ::= ǫ | 〈clause〉 ; 〈additional base clauses〉

〈additional base clauses〉 ::= ǫ | 〈base clause〉 ; 〈additional base clauses〉

〈base clause〉 ::= 〈clausematrix〉 | 〈universalQuantifier〉 〈clausematrix〉

〈clause list〉 ::= 〈clause〉 | 〈clause〉 ; 〈additional clauses〉

〈additional clauses〉 ::= ǫ | 〈clause〉 ; 〈additional clauses〉

〈clause〉 ::= 〈clausematrix〉
| 〈universalQuantifier〉 〈clausematrix〉
| { 〈formula〉 } OR 〈clausematrix〉
| 〈universalQuantifier〉 { 〈formula〉 } OR 〈clausematrix〉
| { 〈formula〉 } --> 〈clausematrix〉
| 〈universalQuantifier〉 { 〈formula〉 } --> 〈clausematrix〉
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〈universalQuantifier〉 ::= ( FORALL 〈variables〉 ) .

〈variables〉 ::= 〈name〉 〈additional variable〉

〈additional variables〉 ::= ǫ | , 〈name〉 〈additional variables〉

〈ground clauses〉 ::= ǫ | 〈clausematrix〉 ; 〈ground clauses〉

〈clausematrix〉 ::= 〈literal〉 | 〈disjunctive clause〉 | 〈sorted clause〉

〈disjunctive clause〉 ::= OR ( 〈literal〉 〈literal plus〉 )

〈literal plus〉 ::= , 〈literal〉 〈literal star〉

〈literal star〉 ::= ǫ | , 〈literal〉 〈literal star〉

〈sorted clause〉 ::= 〈atom list〉 --> 〈atom list〉

〈atom list〉 ::= ǫ | 〈atom〉 〈atom star〉

〈atom star〉 ::= ǫ | , 〈atom〉 〈atom star〉

〈literal〉 ::= 〈atom〉 | NOT ( 〈atom〉 )

〈atom〉 ::= 〈equality atom〉 | 〈ineq atom〉 | 〈predicate atom〉

〈equality atom〉 ::= 〈term〉 = 〈term〉

〈ineq atom〉 ::= 〈term〉 〈uneqs〉 〈term〉

〈predicate atom〉 ::= 〈identifier〉 [ 〈term〉 〈additional terms〉 ]

〈arguments〉 ::= 〈term〉 〈additional terms〉

〈additional terms〉 ::= ǫ | , 〈term〉 〈additional terms〉

〈term〉 ::= 〈name〉
| 〈operator〉 ( 〈arguments〉 )
| 〈array〉 ( 〈arguments〉 )
| 〈update〉 ( 〈arguments〉 )
| 〈term arith〉 〈arithop〉 〈term arith〉

〈term arith〉 ::= 〈name〉
| 〈operator〉 ( 〈arguments〉 )
| ( 〈term arith〉 〈arithop〉 〈term arith〉 )

〈arithop〉 ::= + | - | * | /

〈uneqs〉 ::= <= | >= | < | >

〈operator〉 ::= 〈identifier〉

〈array:〉 ::= write ( 〈identifier〉 , 〈term〉 , 〈term〉 )
| write ( 〈array〉 , 〈term〉 , 〈term〉 )

〈update〉 ::= update ( 〈identifier〉 , 〈term〉 , 〈term〉 )
| update ( 〈update〉 , 〈term〉 , 〈term〉 )

〈name〉 ::= 〈identifier〉

〈identifier〉 ::= any string consisting of letters and numbers starting with a letter.
It may end with “’”.
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6 Parameters of H-PILoT

H-PILoT has several input parameters controlling its behavior. They can be
listed by calling hpilot.opt -help.

-min Use minimal locality. Currently, this is only relevant
for the array property fragment.

-prClauses Produce output: print all the clauses calculated and used.
-noProver Do not hand over to prover, just produce output.
-arith Use arithmetic. ’plus’,’+’,’-’ etc. are predefined.

Numerals (names for integers) must be used preceded by
underscore , e.g., ’ 3’.

-yices Use Yices as background solver: ’plus’, ’+’ etc.
are predefined as are the order relations ≤,≥, <,>.
Numbers can also be given in the input.
Numbers are integers by default
(use ’-real’ for real numbers).

-cvc Use CVC as background solver.
Arithmetic is predefined as with ’-yices’.

-z3 Use Z3 as background solver.
Arithmetic is predefined as with ’-yices’.

-flatten Flatten clauses first.
-linearize Linearize clauses first.
-flattenQuery Flattens the proof task first.
-preprocess Preprocess input: flatten/linearize clauses, flatten proof task.

In array-context: split clauses which contain inequalities
like i 6= j into two clauses.

-noSeparation Stop at calculating the instances K[G]. Don’t introduce
names for extension terms and don’t reduce to base theory.

-unPseudofy Eliminate pseudo-quantifiers like ∀i.i = 3...
before handing over to a prover.5

-noProcessing No computation. Just translate into prover syntax and
hand over. Overrides ’-preprocess’.
When using this flag one should provide the domains
of functions too. When used in combination with CVC
there may arise problems with boolean types.6

-clausification Toggle clausification (true/false). Default is ’true’.
’false’ implies ’-noProcessing’.

-real Use reals instead of integers as the default type.
-redlog Call Redlog for base prover. Assumes ’-real’.
-version Print version number.

5 This is automatically carried out if we have a multiple-step extension. This is because
the next step can only be carried out if the current step resulted in ground clauses.

6 This is because CVC only provides booleans as bit-vectors of length 1. The type
’BOOLEAN’ is the type of formulas.
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-freeType Enables the use of an unspecified type ’free’
in addition to ’real’ and ’int’.
Only CVC, Z3 and Yices accept free types.
Yices is default.

-renameSubformulas Toggles the renaming of subformulas
during clausification (true/false).
Subformula renaming avoids exponential growth.
Default is “true”.

-verbosity Verbosity level (0,1,2).
From taciturn to garrulous.
To be used in conjunction with ’-prClauses’.
Default is 0

-arrays Use settings for array.
This combines ’-preprocess’, ’-min’ and ’-arith’;
It also splits clauses on negative equalities.

-model Gives a counter-model for satisfiable proof tasks.
Needs Yices or CVC (implies Yices by default).

-smt Produce SMT-LIB output
without calling a prover.

-isLocal Use this flag (true/false) to tell the program
whether all the extensions are local or not.
This matters only if H-PILoT
cannot derive a contradiction.
In that case this means that there really is none
only if the extensions are local.
Default is false.

-help Display list of options

7 Error handling

In case there is a parsing error one can use

export OCAMLRUNPARAM=’p’ (in bash syntax).

This produces a walk-through of the parsing process, which is of great help in
localizing syntax errors. To turn it back off use

export OCAMLRUNPARAM=’’.

8 Application areas

H-PILoT has applications in mathematics, multiple-valued logics, data- structures
and reasoning in complex systems.

Mathematics. An important example of local extensions are extensions with
monotone functions over partially ordered sets [SI07a,SI07b]. We will give an
example of how to use H-PILoT on problems involving monotonicity in Section 9
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below. Another example from mathematics is an extension with free functions,
i.e., we have an empty set of extension clauses K but the proof task G contains
new function symbols. Even in this simple case, local and hierarchical reasoning is
useful, because expanding the signature might already derail a back-end prover.
For instance, consider real arithmetic. Linear arithmetic is tractable and can be
handled quite efficiently by state-of-the-art SMT-solvers. Non-linear arithmetic
is another matter, however (cf. [FHT+07,BPT07]). Here the options are more
limited. To handle non-linear real arithmetic, H-PILoT is integrated with the
prover Redlog ([DS97]). Since Redlog uses quantifier elimination for real closed
fields, it relies on a fixed signature. In a case like this, H-PILoT can be employed
as a preprocessor that eliminates the new function symbols in the proof task,
allowing the user to employ free function symbols together with (non-linear) real
arithmetic. Another example from mathematics, taken from [Sof05], is that of a
Lipschitz function. There it was shown that any extension of the real numbers
with a Lipschitz function is local.

Multiple-valued logics. Another important application area of local reasoning
and, by the same token, H-PILoT is reasoning in multiple-valued logics. These
logics have more than two truth values, in fact they allow as truth values the
whole real interval of [0, 1]. The semantics are often given algebraically. For
example, the class MV of all MV-algebras is the quasi-variety generated by
the real unit interval [0, 1] with connectives {∨,∧, ◦,⇒} (cf. [SI07a,SI07b]). The
connectives for these algebras can be defined in terms of real functions and
relations. Hence, these connectives can be seen as the extension functions of a
definitional extension over the reals, which is local. One may, therefore, reduce
universal validity problems over the class of MV-algebras, say, to a constraint
satisfiability problem over the unit interval [0, 1] (cf. [SI07a,SI07b]). This allows
one to use solvers for the real numbers to discharge proof tasks over multiple-
valued logics. We will give an example of this in Section 10.1.

Data structures. The ubiquitous data structures of arrays and lists satisfy
locality conditions if we confine ourselves to appropriate fragments of their the-
ories. This matters in particular if we have satisfiable problems. In order to have
a full decision procedure - one that is also able to give the correct answer for
satisfiable problems - one has to stay inside of these fragments. H-PILoT auto-
mates this task: it will check whether a given problem lies inside the appropriate
fragment of the theory of arrays or pointers, respectively, and give the answer
“satisfiable” only if this is the case. Otherwise, H-PILoT will give the answer
“unknown” and warn the user that the problem did not fall inside the local
fragment. (For unsatisfiable problems this never matters. If we can derive a con-
tradiction from the local instances alone, we can derive one from the universal
extension axioms a fortiori.)

Reasoning in complex systems. In order to be able to handle complex real life
systems which mix many theories, a stratified approach is expedient: we consider
chains of local extensions (cf. [JSS07]). This feature is supported in H-PILoT.
The user simply has to tag extension functions with their respective level in the
chain. A reduction is then carried out iteratively by the program. A full-fledged
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reduction is possible provided the reduced theory clauses are ground at each
level of the extension chain. H-PILoT has been part of a vertically integrated
tool chain, checking invariants of a transition system modeling a European train
controller system (see Section 15.1). The correctness of the model was shown au-
tomatically [IJSS08]. The underlying track topology was complex and dynamic,
making H-PILoT’s ability to decide the pointer fragment essential. It was also a
great help in practice, due to its ability to provide (readable) counterexamples
in the cases where the problem together with the axiomatization was satisfiable.
This aided the modeler in finding gaps in the specification.

9 Examples

We illustrate the way H-PILoT is implemented and can be used on two examples.

9.1 Monotone functions

We consider as base theory T0 the theory of a partial order, and its extension
with two monotone functions f and g.
That is, our base theory T0 consists of the axioms for reflexivity, transitivity and
anti-symmetry.

(1) ∀x. x ≤ x.

(2) ∀x, y. x ≤ y ∧ y ≤ x→ x = y.

(3) ∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z.

The extension we consider consists of the two new function symbols together
with the clauses K expressing their monotonicity.

(1) ∀x, y. x ≤ y → f(x) ≤ f(y).

(2) ∀x, y. x ≤ y → g(x) ≤ g(y).

We want to show that

T0 ∪ K |= c0 ≤ c1 ≤ d1∧c2 ≤ d1∧d2 ≤ c3∧d2 ≤ c4∧f(d1) ≤ g(d2) → f(c0) ≤ g(c4).

Expressed as a satisfiability problem of the form “T0 ∪ K ∪G |=⊥?”, where:

G = c0 ≤ c1 ≤ d1 ∧ c2 ≤ d1 ∧ d2 ≤ c3 ∧ d2 ≤ c4 ∧ f(d1) ≤ g(d2)∧¬f(c0) ≤ g(c4).

As an input file for H-PILoT this looks as follows (we use “R” as order relation
because ≤ is reserved).

% Two monotone functions over a poset.

% Status: unsatisfiable

Base_functions:={}

Extension_functions:={(f, 1), (g, 1)}
Relations:={(R, 2)}
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% R is partial order
Base := (FORALL x). R[x, x];

(FORALL x,y,z). R[x, y], R[y, z] --> R[x, z];

(FORALL x,y). R[x, y], R[y, x] --> x = y;

Clauses := (FORALL x,y). R[x, y] --> R[f(x), f(y)];
(FORALL x,y). R[x, y] --> R[g(x), g(y)];

Query := R[c0, c1];
R[c1, d1];

R[c2, d1];
R[d2, c3];

R[d2, c4];
R[f(d1), g(d2)];
NOT(R[f(c0), g(c4)]);

In this case we have no function symbols in the base theory and two functions
symbols f and g of arity 1 in the extension clauses. This is expressed by:

Base_functions:={}

Extension_functions:={(f, 1), (g, 1)}

We have only one relation in our (base) clauses, namely ’R’, with arity 2. This
we express by:

Relations:={(R, 2)}.

For technical reasons, relations require square brackets for their arguments in
H-PILoT as seen above. The symbols <=, <, >= and > are reserved for arith-
metic over the integers or over the reals. They may be written infix and there
are provers (e.g., Yices, CVC) that “understand” arithmetic and orderings. We
wouldn’t have needed to axiomatize ’≤’ at all.
However, the above problem is more general. It concerns every partial order
not only orderings of numbers. By default, H-PILoT calls SPASS. SPASS has
no in-built understanding of orderings and, thus, <= would be just an arbitrary
symbol. For clarity we used the letter ’R’.
As for the syntax of clauses, one should note that the syntax of H-PILoT requires
that each clause must end with a semicolon, be in prenex normal form and all
names meant to be (universal) variables must be explicitly quantified.

Every name which is not explicitly quantified will be considered a constant!

As we can see in our proof task.

Proof Task := R[c0, c1];

R[c1, d1];

R[c2, d1];

R[d2, c3];

R[d2, c4];

R[f(d1), g(d2)];

NOT(R[f(c0), g(c4)]);

Note further that because the background theory, extension theory and the proof
task must all be clauses7, we need to break up the conjunction in our original

7 In fact, the extension clauses might be more general as we will see later.
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proof task into a set of unit clauses. A non-unit clause may be written as above
in a “sorted” manner ϕ1, ..., ϕn → ψ1, ..., ψk for ϕ1 ∧ ...∧ϕn → ψ1 ∨ ...∨ψk , i.e.,
as an implication with the negated atoms of the clause in the antecedent and
the (positive) atoms in the consequent (the operator --> is reserved for sorted
clauses) or as an arbitrary disjunctions of literals.

The name of the input files for H-PILoT can be freely chosen, although it is
customary to have them have the suffix “.loc”. Suppose we have put the above
problem in a file named mono_for_poset.loc, then we can run H-PILoT by
calling

hpilot.opt mono_for_poset.loc

H-PILoT will parse the input file, carry out the reduction and then will hand
over the reduced problem to SPASS (using the same name but with the suffix
“.dfg”). SPASS terminates quickly with the result that a proof exists

SPASS beiseite: Proof found.

Problem: mono_for_poset.dfg
SPASS derived 35 clauses, backtracked 0 clauses and kept 41 clauses.

SPASS allocated 496 KBytes.
SPASS spent 0:00:02.32 on the problem.

0:00:00.00 for the input.

0:00:00.00 for the FLOTTER CNF translation.
0:00:00.00 for inferences.

0:00:00.00 for the backtracking.
0:00:00.10 for the reduction.

meaning that the set of clauses is inconsistent, as we wanted to show.

One can see the full reduction process by using the option -prClauses.

9.2 Arrays

For a more complicated example, let us consider an algorithm for inserting an
element x into a sorted array a with the bounds l and u. We want to check that
the algorithm is correct, i.e., that the updated array a′ remains sorted. This
could be an invariant being checked in a verification task.

There are three different cases.

– x could be smaller than any element in a (equivalently, x < a[l]),

– x could be greater than any element of a (x > a[u]) or,

– there is a position p (l < p ≤ u) such that a[p− 1] < x and x ≤ a[p].

In the first two cases we put x at the first respectively last position of the array.
In the third case, we insert x at position p and shift the other elements to the
right, i.e., a′[i+ 1] = a[i] for i > p. We have to take care to cover also the cases
where the array contains only 1 or 2 elements. As input it will look as follows.
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Clauses :=

% case 1
(FORALL i). i = l, x <= a(i) --> a’(i) = x;

(FORALL i). x <= a(l), l < i, i <= u + _1 --> a’(i) = a(i - _1);

% case 2

(FORALL i). i = u, a(i) <= x --> x <= a(l), a’(i + _1) = x;
(FORALL i). a(u) <= x, l - _1 <= i, i < u

--> x <= a(l), a’(i + _1) = a(i + _1);

% case 3
(FORALL i). x < a(u), l <= i, i < u, a(i) < x, x <= a(i + _1)

--> a’(i + _1) = x;

(FORALL i). a(l) < x, x < a(u), l <= i, i < u, x <= a(i),
x <= a(i + _1) --> a’(i + _1) = a(i);

(FORALL i). a(l) < x, x < a(u), i = u + _1 --> a’(i) = a(i - _1);
(FORALL i). a(l) < x, x < a(u), l - _1 <= i, i < u, a(i + _1) < x

--> a’(i + _1) = a(i + _1);

(FORALL i,j). l <= i, i <= j, j <= u --> a(i) <= a(j);

with the last clause saying that a was sorted at the beginning.

There are several things to note. Most importantly, we now have a two-step
extension. First, an array can be simply seen as a partial function. This gives
us the first extension T0 ⊆ T1. T0 here is the theory of indices (integers, say)
which we extend by the function a and the axiom for monotonicity of a. Now
we update a, giving us a second extension T2 ⊇ T1 where our extension clauses
K2 are given by the three cases above.

We need to make sure that the last extension is also local. This is easy to estab-
lish, because K2 is a definitional extension or case distinction (cf. [SI07a,SI07b]).
A definitional extension is one where extension functions f only appear in the
form ϕi(x̄) → f(x̄) = ti(x̄) with ti being a base theory term and the ϕi are
mutually exclusive base theory clauses. This is the reason that we have written
∀i.i = l, x ≤ a(i) → a′(i) = x instead of the shorter x ≤ a(l) → a′(l) = x:
to ensure that the antecedents of the clauses are all mutually exclusive. Now
we know that we are dealing with a definitional and therefore local extension.
(Remember that when assessing whether T2 ⊇ T1 is a local extension, T1 is the
base theory; that T1 is itself an extension is not important at the moment.)

We need to tell the program that we are dealing with a chain of extensions
instead of a single one. We do this by declaring to which level of the chain an
extension function belongs: (f, arity, level).

In our example that would be

Extension_functions:={(a’, 1, 2), (a, 1, 1)}

The program will now automatically determine the level of each extension clause.
In our example, an extension clause will have level 2 if and only if a′ occurs in
it and level 1 otherwise (level 0 refers to a clause in the base theory).
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Also recall from the explanations in Section 6 that numerals (names for integers)
must be preceded by an underscore, and that + and − may be written infix for
readability; (=,+,−, ∗, /) are the only functions for which this is allowed8.

Our declarations, therefore should look like this.

Base_functions:={(+,2), (-, 2)}

Extension_functions:={(a’, 1, 2), (a, 1, 1)}

Relations:={(<=, 2), (<, 2)}

All that is left to do now is add the proof task – the negation of

∀i, j. (l ≤ i ≤ j ≤ u+ 1 → a′(i) ≤ a′(j))

namely:

1 ≤ m ∧m ≤ n ∧ n ≤ u+ 1 ∧ ¬(a′(m) ≤ a′(m))

to the file and hand it over to H-PILoT . The file looks like this.

Base_functions:={(+,2), (-, 2)}
Extension_functions:={(a’, 1, 2), (a, 1, 1)}

Relations:={(<=, 2), (<, 2)}

% K

Clauses :=
% case 1

(FORALL i). i = l, x <= a(i) --> a’(i) = x;
(FORALL i). x <= a(l), l < i, i <= u + _1 --> a’(i) = a(i - _1);

% case 2
(FORALL i). i = u, a(i) <= x --> x <= a(l), a’(i + _1) = x;

(FORALL i). a(u) <= x, l - _1 <= i, i < u
--> x <= a(l), a’(i + _1) = a(i + _1);

% case 3
(FORALL i). x < a(u), l <= i, i < u, a(i) < x, x <= a(i + _1)

--> a’(i + _1) = x;
(FORALL i). a(l) < x, x < a(u), l <= i, i < u, x <= a(i),

x <= a(i + _1) --> a’(i + _1) = a(i);
(FORALL i). a(l) < x, x < a(u), i = u + _1 --> a’(i) = a(i - _1);

(FORALL i). a(l) < x, x < a(u), l - _1 <= i, i < u, a(i + _1) < x
--> a’(i + _1) = a(i + _1);

(FORALL i,j). l <= i, i <= j, j <= u --> a(i) <= a(j);

Query := l <= m;
m <= n;
n <= u + _1;

NOT( a’(m) <= a’(n) );

We do not need to declare a base theory here because we will be using Yices and
Yices already “knows” integer arithmetic. We call H-PILoT thus:

hpilot.opt -yices -preprocess ai.loc

8 When using SPASS, they may also be written infix but nevertheless they are just
free functions for SPASS.
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H-PILoT will produce a reduction, put it in a file called ai.ys and pass it over to
Yices which will say unsat or sat. A note on the flag -preprocess: Establishing
that some extension is local presupposes that the extension clauses in K are
flat and linear. Flatness means that the clauses contain no nesting of extension
functions. Linearity means that:

– no variable occurrs twice in any extension term and

– if any variable occurs in two extension terms, the terms are the same.

In this example, we have non-flat clauses such as

(FORALL i). i = u, a(i) <= x --> x <= a(l), a’(i + _1) = x;

We rectify matters by a flattening operation - rewriting the above clause to

(FORALL i,j). j = i + _1, i = u, a(i) <= x -->

x <= a(l), a’(j) = x;

This will not affect consistency of any proof task w.r.t. K. However, it does not
improve readability. Therefore the program will perform flattening/linearization
only if the option -preprocess is chosen.

10 Example: Specifying the type information

10.1 Global constraints9

Sometimes we want to restrict the domain of the problem, e.g., we want to
consider natural numbers instead of integers or we are interested in a real interval
[a, b] only. Yices and CVC support the definition of subtypes. When using one
of these it is possible to state a global constraint on the domain of the models
in the preamble as follows:

Interval := 0 <= x <= 1;

This will restrict the domain of the models of the theory to the unit interval
[0, 1]. It is equivalent to adding the antecedent 0 ≤ x ∧ x ≤ 1, for every variable
x, to each formula in the clauses and the proof task.

The bounds of the interval can also be exclusive or mixed as in

Interval := 0 < x <= 1;

or one-sided as in

Interval := 2 <= x;

9 This feature is not supported for Z3.



22 Carsten Ihlemann and Viorica Sofronie-Stokkermans

Consider the following example, taken from [SI07a,SI07b], concerning multiple-
valued logic. The class MV of all MV-algebras is the quasi-variety generated
by the real unit interval [0, 1] with the  Lukasiewicz connectives {∨,∧, ◦,⇒},
i.e., the algebra [0, 1]L = ([0, 1],∨,∧, ◦,⇒). The  Lukasiewicz connectives can be
defined in terms of the real functions ’+’,’−’ and the relation ’≤’, giving us a
local extension over the real unit interval.
Therefore, the following are equivalent:

(1) MV |= ∀x
∧n

i=1
si(x) = ti(x) → s(x) = t(x)

(2) [0, 1]L |= ∀x
∧n

i=1
si(x) = ti(x) → s(x) = t(x)

(3) T0 ∪ DefL ∧
∧n

i=1
si(c) = ti(c) ∧ s(c) 6= t(c) |=⊥,

where T0 consists of the real unit interval [0, 1] with the operations +,− and
predicate symbol ≤.

For instance, we might want to establish whether linearity (x⇒ y)∨(y ⇒ x) = 1
follows from the axioms. As an input file for H-PILoT it looks like this.

Base_functions:={(+, 2), (-, 2)}
Extension_functions:={(V, 1), (M, 1), (o, 1), (r, 1)}

Relations:={(<=, 2), (<, 2), (>, 2), (>=, 2)}

Interval := 0 <= x <= 1;

% K

Clauses := % definition of \/
(FORALL x,y). x <= y --> V(x, y) = y;

(FORALL x,y). x > y --> V(x, y) = x;

% definition of /\

(FORALL x,y). x <= y --> M(x, y) = x;
(FORALL x,y). x > y --> M(x, y) = y;

% definition of o

(FORALL x,y). x + y < _1 --> o(x, y) = _0;
(FORALL x,y). x + y >= _1 --> o(x, y) = (x + y) - _1;

% definition of =>
(FORALL x,y). x <= y --> r(x, y) = _1;

(FORALL x,y). x > y --> r(x, y) = (_1 - x) + y;

Query := % linearity: x => y . \/ . y => x = 1

NOT(V(r(a, b), r(b, a)) = _1);

10.2 Using standard types

In default mode using SPASS, H-PILoT hands over a set of general first-order
formulas without types. However, H-PILoT also provides support for the stan-
dard types int, real, bool and for free types. When using CVC or Yices the
default type is int, for Redlog it is real. The default type does not need to be
specified in the input file. One can also use the -real flag to set the default type
to real for Yices and CVC.
Free types are specified as free#i, i = 1, 2, . . . or simply as free if there is
only one free type. When using free types the flag -freeType must be set. Only
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Yices and CVC are able to handle free types (Yices is default when the flag is
set). When using mixed type in one input file, the types of the functions and
the constants need to be declared. If the domain of a function is the same as the
range it is enough to specify the domain as in

(foo, arity, level, domainType)

if they differ say

(foo, arity, level, domainType, rangeType).

Constants are simply declared as

(name, type).

The following example is taken from [Sof06b].

% Pointers
% status unsatisfiable

Base_functions:={(+,2), (-, 2)}
Extension_functions:={(next, 1, 1, free#1), (prev, 1, 1, free#1),

(priority, 1, 1, free#1, real),
(state, 1, 1, free#1, free#2)}

Relations:={(>=, 2)}
Constants:={(null, free#1), (eps, real), (a, free#1), (b, free#1),

(RUN, free#2), (WAIT, free#2), (IDLE, free#2)}

% K

Clauses :=
(FORALL x). OR(state(x) = RUN, state(x) = WAIT, state(x) = IDLE);
% prev and next are inverse

(FORALL p). OR(p = null, prev(next(p)) = null, prev(next(p)) = p);
(FORALL p). --> p = null, next(prev(p)) = null, next(prev(p)) = p;

(FORALL p, q). next(q) = next(p) --> p = null, q = null, p = q;
(FORALL p, q). prev(q) = prev(p) --> p = null, q = null, p = q;

(FORALL p). --> p = null, next(p) = null, state(p) = IDLE,
state(next(p)) = IDLE, state(p) = state(next(p));

(FORALL p). OR(p = null, next(p) = null, NOT(state(p) = RUN),

priority(p) >= priority(next(p)));

Query := NOT(eps = _5);
NOT(eps = _6);

priority(a) = _5;
priority(b) = _6;

a = prev(b);
state(a) = RUN;

NOT(next(a) = null);
NOT(a = null);
NOT(b = null);

11 Example: Handling data structures

11.1 Arrays

We consider the local fragment of the theory of arrays in more detail and show
how it can be dealt with by H-PILoT. For the array property fragment ([BMS06])
the following syntactical restrictions are imposed. Let A be a set of function
symbols used for denoting arrays.
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1. An index guard is a positive Boolean combination of atoms of the form
t ≤ u or t = u where t and u are either a variable or a ground term of linear
arithmetic.

2. A value restriction is a formula ϕV (c, x) containing constants among those
in c = c1, . . . , ck and free variables among those in x = x1, . . . , xn, with the
property that:
(1) all occurrences of the variables are shielded by function symbols in A;
(2) no nested array reads are allowed
i.e., the free variables xi occur in ϕV only in direct array reads a[xi].

3. A universal formula of the form (∀x̄)(ϕI(x̄) → ϕV (x̄)) is an array property
if it is flat, ϕI is an index guard and φV a value restriction.

In this section we only consider extensions by clauses of the above form. Our
base theory is the disjoint, many-sorted combination of linear integer arithmetic
(Presburger) with a theory of elements. The extension functions are in this case
the function symbols in A, used for denoting arrays. In order to be able to
handle this fragment we have to use a particular type of locality, namely minimal
locality. To use this feature we call H-PILoT with parameter -arrays:

hpilot.opt -arrays k.loc

Consider the example of inserting a new element into a sorted array a. Arrays
are modeled as free functions and array updates are dealt with by introducing
new array names. In this fashion, let d be identical to a except for position k
at which it takes value w and let e be identical to d except possibly at position
l where we have written x and similarly for c, b and a. The set K of extension
clauses we consider is:

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → c[i] ≤ c[j]) (1)

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → e[i] ≤ e[j]) (2)

(∀i)(i 6= l → b[i] = c[i]) (3)

(∀i)(i 6= k → a[i] = b[i]) (4)

(∀i)(i 6= l → d[i] = e[i]) (5)

(∀i)(i 6= k → a[i] = d[i]). (6)
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Our proof task (with additional constraints) is

w < x < y < z

0 < k < l < n

k + 3 < l

c[l] = x

b[k] = w

e[l] = z

d[k] = y.
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The input file looks as follows. (The operators are written prefix here which
requires the names plus and minus, because + and - are reserved for infix.)
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% Arrays for minimal locality

Base_functions:={(plus,2), (minus, 2)}
Extension_functions:={(a, 1), (b, 1), (c, 1), (d, 1), (e, 1)}

Relations:={(<=, 2)}

% K

Clauses := (FORALL i,j). _0 <= i, i <= j,
j <= minus(n, _1) --> c(i) <= c(j);

(FORALL i,j). _0 <= i, i <= j,
j <= minus(n, _1) --> e(i) <= e(j);

(FORALL i). --> i=l, b(i) = c(i);
(FORALL i). --> i=k, a(i) = b(i);
(FORALL i). --> i=l, d(i) = e(i);

(FORALL i). --> i=k, a(i) = d(i);

Query := plus(w, _1) <= x;
plus(x, _1) <= y;

plus(y, _1) <= z;
plus(_0, _1) <= k;

plus(k, _1) <= l;
plus(l, _1) <= n;

plus(k, _3) <= l;
c(l) = x;
b(k) = w;

e(l) = z;
d(k) = y;

K does not yet fulfil the syntactic requirements (index guards must be positive!).
We rewrite K as follows: We change an expression i 6= l where i is the (universally
quantified) variable to i ≤ l − 1 ∨ l + 1 ≤ i. We rewrite it like this because the
universally quantified variable i must appear unshielded in the index guard. This
gives us the following set of clauses.

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → c[i] ≤ c[j]) (1)

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → e[i] ≤ e[j]) (2)

(∀i)(i ≤ l − 1 → b[i] = c[i]) (3)

(∀i)(l + 1 ≤ i→ b[i] = c[i]) (4)

(∀i)(i ≤ k − 1 → a[i] = b[i]) (5)

(∀i)(k + 1 ≤ i→ a[i] = b[i]) (6)

(∀i)(i ≤ l − 1 → d[i] = e[i]) (7)

(∀i)(l + 1 ≤ i→ d[i] = e[i]) (8)

(∀i)(i ≤ k − 1 → a[i] = d[i]) (9)

(∀i)(k + 1 ≤ i→ a[i] = d[i]). (10)
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H-PILoT performs this and the following rewrite steps automatically to spare
the user this tedious labor. Also, K is not linear, this must also be taken care
of. H-PILoT carries out all necessary rewrite steps for the user, who can simply
input the above file to the system.

Instead of using free functions to specify array updates, H-PILoT allows the
user to model array updates directly by using a “write” function – for example,
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write(a, i, x) denotes a new array which is identical to a except (possibly) at
position i where the value of the new array is set to x. In this way we can specify
our problem above as:

% Arrays for minimal locality with ’write’function.
Base_functions:={(+, 2), (-, 2)}

Extension_functions:={(a, 1)}
Relations:={(<=, 2)}

% K
Clauses :=

(FORALL i,j). _0 <= i, i <= j, j <= n - _1 -->
write(write(a,k,w), l, x)(i) <= write(write(a,k,w), l, x)(j);

(FORALL i,j). _0 <= i, i <= j, j <= n - _1 -->

write(write(a,k,y), l, z)(i) <= write(write(a,k,y), l, z)(j);

Query := w + _1 <= x;

x + _1 <= y;
y + _1 <= z;

_0 + _1 <= k;
k + _1 <= l;

l + _1 <= n;
k + _3 <= l;

As above, H-PILoT will also automatically split on disequations in the an-
tecedent. Note also that since we assume that indices of arrays are integers,
it makes no difference whether we write w + _1 or plus(w, _1) in the input
file. Linear integer arithmetic will be used (Yices is default).

11.2 Pointers

The local fragment of the theory of pointers (cf. [MN05,IJSS08,FIJS10]) is also
implemented in H-PILoT. We consider pointer problems over a two-sorted lan-
guage, containing one sort pointer and another scalar sort. The scalar sort can
be concrete e.g. real, or is kept abstract in which case it is written as scalar.
There are two function types involving pointers, namely pointer → pointer

and pointer→ scalar, where scalar is either a concrete scalar sort (e.g. real)
or the abstract sort “scalar”.10 The axioms we consider are all of the form

∀p̄. E ∨ C

where p̄ is a set of pointer variables containing all the pointer variables occurring
in E ∨ C, E contains disjunctions of pointer equalities and C is a disjunction of
scalar constraints (i.e., literals of scalar type). E∨C may also contain free variables
of scalar type or, equivalently, free scalar constants.
We require that pointer terms appearing below a function should not be null
in order to rule out null pointer errors. That is, for all terms f1(f2(. . . fn(p))),

10 In [FIJS10] we use an extension of H-PILoT which allows several pointer sorts, as well
as functions of sort p1, . . . pn → p (where pi, p are pointer sorts) and p1, . . . , pm →
scalar. This aspect is discussed at the end of this section.
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i = 1, .., n, occurring in the axiom, the axiom also contains the disjunction
p = null ∨ fn(p) = null ∨ · · · ∨ f2(. . . fn(p)) = null.
Pointer/scalar formulas complying with this restriction are called nullable. The
locality result in [IJSS08] allows the integration of pointer reasoning with the
above features into H-PILoT. We now present an example given in [MN05], which
looks like this as input for H-PILoT. (We have added an appropriate proof task.)

Base_functions:={(+,2), (-, 2)}

Extension_functions:={(next, 1, 1, pointer),
(prev, 1, 1, pointer),

(priority, 1, 1, pointer, real)}
Relations:={(>=, 2)}

Constants:={(a, pointer), (b, pointer)}

Clauses :=

(FORALL p). prev(next(p)) = p;
(FORALL p). --> next(prev(p)) = p;

(FORALL p). --> q = null, priority(p) >= priority(next(p));

Query := priority(a) = _5;

priority(b) = _6;
a = prev(b);

NOT(a = null);
NOT(b = null);

H-PILoT can be called without any parameters because the keyword pointer

is present. This will trigger H-PILoT’s pointer mode so that it will add all the
nullable terms to the axioms and use the specific (stable) locality required.

Because the scalar type is concrete here (real), H-PILoT will use Yices as the
back-end prover (its default for arithmetic). If we want to leave the scalar type
abstract we could write something like

%psiPointers.scalar.loc

Base_functions:={}
Extension_functions:={(next, 1, 1, pointer),

(prev, 1, 1, pointer),

(priority, 1, 1, pointer, scalar)}
Relations:={}

Constants:={(a, pointer), (b, pointer), (c5, scalar), (c6, scalar)}

Clauses := (FORALL p). prev(next(p)) = p;
(FORALL p). next(prev(p)) = p;
(FORALL p). NOT(priority(p) = priority(next(p)));

Query := priority(a) = c5;
priority(b) = c6;
a = prev(b);

c5 = c6;
NOT(a = null);

NOT(b = null);

We again can simply type

hpilot.opt -preprocess psiPointers.scalar.loc
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without any parameters. H-PILoT will recognize this as a pointer problem and
use Yices as default, this time because of the free type scalar. There can also be
more than one pointer type and pointer extensions can be fused with other types
of extensions in a hierarchy. However, due to the different types of locality that
need to be employed, the user must specify which levels are pointer extensions.
He does this by using the keyword Stable.
For example, the header of a more complicated verification task which mixes
different pointer types might look like this.

Base_functions:={(-, 2), (+, 2)}
Extension_functions:=

{ % level 4
(next’,1,4, pointer#2,pointer#2), (pos’,1,4,pointer#2,real)
% level 3

(next,1,3,pointer#2,pointer#2), (pos,1,3,pointer#2,real),
(spd,1,3,pointer#2,real), (segm,1,3,pointer#2,pointer#1),

% level 2
(bd,1,2,real,real),

% level 1
(lmax,1,1,pointer#1,real), (length,1,1,pointer#1,real),
(nexts,1,1,pointer#1,pointer#1), (alloc,1,1,pointer#1,int)}

Relations :={(<=, 2), (>=, 2), (>, 2), (<, 2)}

Constants:= {(t3,pointer#2), (t2,pointer#2), (t1,pointer#2),

(d,real), (State0,int), (s,pointer#1), (State1,int)}

Stable := 1, 3;

Note that the type pointer#2must be declared with a higher level than pointer#1

because pointer#2 refers to pointer#1 but not vice versa.

12 Example: Using the built-in CNF translator

H-PILoT also provides a clausifier for ease of use. First-order formulas can be
given as input and H-PILoT translates them into clausal normal form (CNF).
The CNF-translator does not provide the full functionality of FLOTTER. It
uses structural formula renaming ([PG86]) and standard Skolemization, not the
more exotic variants thereof (cf. [NW01]). Nevertheless, it is powerful enough
for most applications. As a simple example consider the following.

% cnf.fol

Base_functions:={(delta, 2), (abs, 1), (-, 2)}
Extension_functions:={(f, 1)}
Relations:={}

Formulas :=
(FORALL eps, a, x). (_0 < eps -->

AND( _0 < delta(eps, a),

(abs(x - a) < delta(eps, a)
--> abs(f(x) - f(a)) < eps)));

Query :=
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H-PILoT translates Formulas to clause normal form. To see the output, we use

hpilot.opt -preprocess -prClauses cnf.fol

We obtain the following output file:

!- Adding formula:

(FORALL eps, a, x).
(_0 < eps -->

AND( _0 < delta(eps, a), (abs(-(x, a)) < delta(eps, a)
--> abs(-(f(x), f(a))) < eps)))

!- add_formulas

!- We have 1 levels.
!- done

!- Our base theory is:
!- empty.
!- Clausifying formulas...

!- (FORALL z_1, z_3). OR( _0 < delta(z_1, z_3), NOT(_0 < z_1))
!- (FORALL z_1, z_2, z_3).

OR( NOT(abs(-(z_2, z_3)) < delta(z_1, z_3)),
abs(-(f(z_2), f(z_3))) < z_1, NOT(_0 < z_1))

!- Yielding 2 new clauses:
!- [z_1, z_2, z_3] abs(-(z_2, z_3)) < delta(z_1, z_3), _0 < z_1

---> abs(-(f(z_2), f(z_3))) < z_1

!- [z_1, z_3] _0 < z_1 ---> _0 < delta(z_1, z_3)
!- After rewriting we have as clauses K:

!- [z_1, z_2, z_3] abs(-(z_2, z_3)) < delta(z_1, z_3), _0 < z_1
---> abs(-(f(z_2), f(z_3))) < z_1

!- [z_1, z_3] _0 < z_1 ---> _0 < delta(z_1, z_3)

telling us that the above formula resulted in two new clauses (in addition to
those given outright under Clauses), viz.

∀z1, z3. 0 < delta(z1, z3) ∨ ¬(0 < z1)

and

∀z1, z2, z3. ¬(abs(z2− z3) < delta(z1, z3))∨abs(f(z2)− f(z3)) < z1 ∨¬(0 < z1).

In this case no ground clause resulted and H-PILoT stops.

13 Extended locality

For some applications we would like to allow more complicated extension clauses,
say we want them to be inductive (∀∃) instead of universal. H-PILoT is also
able to handle extensions with augmented clauses, i.e., formulas of the form
∀x.Φ(x)∨C(x), where Φ is an arbitrary formula which does not contain extension
functions and C is a clause which does (cf. [IJSS08]). Consider the following
example taken from [IJSS08].
Suppose there is a parametric number m of processes. The priorities associated
with the processes (non-negative real numbers) are stored in an array p. The
states of the process – enabled (1) or disabled (0) – are stored in an array a. At
each step only the process with maximal priority is enabled, its priority is set
to x and the priorities of the waiting processes are increased by y. This can be
expressed by the following set of axioms which we denote as Update(p, p′, a, a′).
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∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → a′(i) = 1)
∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → p′(i)=x)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → a′(i)=0)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → p′(i)=p(i)+y),

where x and y are parameters. We may need to check whether, given that at the
beginning the priority list is injective, i.e., formula (Inj)(p) holds:

(Inj)(p) ∀i, j(1 ≤ i ≤ m ∧ 1 ≤ j ≤ m ∧ i 6= j → p(i) 6= p(j)),

then it remains injective after the update, i.e., check whether

(Inj)(p)∧Update(p, p′, a, a′)∧(1 ≤ c ≤ m∧1 ≤ d ≤ m∧c 6= d∧p′(c) = p′(d)) |= ⊥.

We need to deal with alternations of quantifiers in the extension. The extension
formulas K are augmented clauses of the form

∀x1, ..., xn. (Φ(x1, . . . , xn) ∨ C(x1, . . . , xn)),

where Φ(x1, . . . , xn) is an arbitrary first-order formula in the base signature with
free variables x1, . . . , xn and C(x1, . . . , xn) is a clause in the extended signature.
As input for H-PILoT, extended clauses may be either written as ∀x̄. (Φ(x̄) ∨
C(x̄)) or as ∀x̄. (Φ(x̄) → C′(x̄)). The input file for H-PILoT looks as follows.

% Updating of priorities of processes

% File update_AE.loc
Base_functions:={(+,2), (-, 2)}

Extension_functions:={(a’, 1, 2, bool), (a, 1, 1, bool), (p’, 1, 2, real), (p, 1, 1, real)}
Relations:={(<=, 2), (<, 2), (>, 2)}
Constants:={(x, real), (y, real)}

% K

Clauses :=
(FORALL i). _1 <= i, i <= m --> _0 <= p(i);
(FORALL i). { AND(_1 <= i, i <= m,

(FORALL j). (AND(_1 <= j, j <= m, NOT(j = i))
--> p(i) > p(j)))}

--> a’(i) = _1;

(FORALL i). { AND(_1 <= i, i <= m,
(FORALL j). (AND(_1 <= j, j <= m, NOT(j = i))

--> p(i) > p(j)))}

--> p’(i) = x;
(FORALL i). { AND(_1 <= i, i <= m,

NOT((FORALL j,i).(AND(_1 <= j, j <= m, NOT(j = i))
--> p(i) > p(j))))}

--> a’(i) = _0;

(FORALL i). { AND(_1 <= i, i <= m,
NOT((FORALL j).(AND(_1 <= j, j <= m, NOT(j = i))

--> p(i) > p(j))))}
--> p’(i) = p(i) + y;

(FORALL i,j). _1 <= i, i <= m, _1 <= j, j <= m, p(i) = p(j)
--> i = j;

Query := _1 <= c;

c <= m;
_1 <= d;
d <= m;

x <= _0;
y > _0;

NOT(c=d);
p’(c) = p’(d);
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The curly braces ’{’, ’}’ are required to mark the beginning and the end of the
base formula Φ.

14 System evaluation

We have used H-PILoT on a variety of local extensions and on chains of local
extensions. An overview of the tests we made is given below. For these tests,
we have used Yices as the back-end solver for H-PILoT. We distinguish between
satisfiable and unsatisfiable problems.

Unsatisfiable Problems. For simple unsatisfiable problems, there hardly is
any difference in run-time whether one uses H-PILoT or an SMT-solver directly.
This is due to the fact that a good SMT-solver uses the heuristic of trying out all
the occurring ground terms as instantiations of universal quantifiers. For local
extensions this is always sufficient to derive a contradiction.
When we consider chains of extensions the picture changes dramatically. On one
test example – the array insertion of Section 9 which used a chain of two local
extensions – Yices performed considerably slower than H-PILoT: The original
problem took Yices over 5 minutes to solve. The hierarchical reduction yielded
113 clauses of the background theory (integers) which were proved to be unsat-
isfiable by Yices in a mere 0.07s.

Satisfiable Problems. For satisfiable problems over local theory extensions,
H-PILoT always provides the right answer. In local extensions, H-PILoT is a
decision procedure whereas completeness of other SMT-solvers is not guaranteed.
In the test runs, Yices either ran out of memory or took more than 6 hours when
given any of the unreduced problems. This even was the case for small problems,
e.g., problems over the reals with less than ten clauses. With H-PILoT as a front
end, Yices solved all the satisfiable problems in less than a second with the single
exception of monotone functions over posets/distributive lattices.

14.1 Test runs for H-PILoT

We analyzed the following examples. The satisfiable variant of a problem carries
the suffix “.sat”.

array insert. Insertion of an element into a sorted integer array. This is the ex-
ample from Section 9. Arrays are definitional extensions here.

array insert (∃). Insertion of an element into a sorted integer array. Arrays are
definitional extensions here. Alternate version with (implicit) existential quan-
tifier.

array insert (linear). Linear version of array insert.
array insert real. Like array insert but with an array of reals.
array insert real (linear). Linear version of array insert real.
update process priorities (∀∃). Updating of priorities of processes. This is the ex-

ample from Section 13. We have an ∀∃-clause.
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list1. Made-up example of integer lists. Some arithmetic is required

chain1. Simple test for chains of extensions (plus transitivity).

chain2. Simple test for chains of extensions (plus transitivity and arithmetic).

double array insert. A sorted array is updated twice. This is the example from
Section 11.1. It is inside the array property fragment.

mono. Two monotone functions over integers/reals for SMT solver.

mono for distributive lattices.R. Two monotone functions over a distributive lat-
tice. The axioms for a distributive lattice are stated together with the defi-
nition of a relation R: R(x, y) :⇔ x∧ y = x. Monotonicity of f (respectively
of g) is given in terms of R: R(x, y) → R(f(x), f(y)). Flag -freeType must
be used.

mono for distributive lattices. Same as mono for distributive lattices.R except that
no relation R is defined. Monotonicity of the two functions f, g is directly
given: x ∧ y = x→ f(x) ∧ f(y) = f(x). Flag -freeType must be used.

mono for poset. Two monotone functions over a poset with poset axioms as in
Section 9. Same as mono, except the order is modeled by a relation R.

mono for total order. Same as mono except linearity is an axiom. This makes no
difference unless SPASS is used.

own. Simple test for monotone function.

mvLogic/mv1. The example for MV-algebras from Section 10.1. The  Lukasiewicz
connectives can be defined in terms of the (real) operations +,−,≤. Linearity
is deducible from axioms.

mvLogic/mv2. Example for MV-algebras. The  Lukasiewicz connectives can be
defined in terms of +,−,≤.

mvLogic/bl1. Example for MV-algebras with BL axiom (redundantly) included.
The  Lukasiewicz connectives can be defined in terms of +,−,≤.

mvLogic/example 6.1. Example for MV-algebras with monotone and bounded
function. The  Lukasiewicz connectives can be defined in terms of +,−,≤.

RBC simple. Example with train controller.

RBC variable2. Example with train controller.

14.2 Test results

The running times are given in User + sys times (in s). Run on an Intel Xeon
3 GHz, 512 kB cache; median of 100 runs (entries marked with 1: 10 runs;
marked with 2: 3 runs). The third column lists the number of clauses produced;
“unknown” means Yices answer was unknown, “out. mem.” means out of memory
and time out was set at 6h. Yices version 1.0.19 was used.

The answer “unknown∗” for the satisfiable examples with monotone functions
over distributive lattices/posets (H-PILoT followed by Yices) is due to the fact
that Yices cannot handle the universal axioms of distributive lattices/posets. A
translation of such problems to SAT provides a decision procedure (cf. [Sof05]
and also [Sof03]).
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Name status #cl. H-PILoT H-PILoT yices
+ yices + yices

stop at K[G]

array insert (implicit ∃) Unsat 310 0.29 0.06 0.36

array insert (implicit ∃).sat Sat 196 0.13 0.04 time out

array insert Unsat 113 0.07 0.03 318.221

array insert (linear version) Unsat 113 0.07 0.03 7970.532

array insert.sat Sat 111 0.07 0.03 time out

array insert real Unsat 113 0.07 0.03 360.001

array insert real (linear) Unsat 113 0.07 0.03 7930.002

array insert real.sat Sat 111 0.07 0.03 time out

update process priorities Unsat 45 0.02 0.02 0.03

update process priorities.sat Sat 37 0.02 0.02 unknown

list1 Unsat 18 0.02 0.01 0.02

list1.sat Sat 16 0.02 0.01 unknown

chain1 Unsat 22 0.01 0.01 0.02

chain2 Unsat 46 0.02 0.02 0.02

mono Unsat 20 0.01 0.01 0.01

mono.sat Sat 20 0.01 0.01 unknown

mono for distributive lattices.R Unsat 27 0.22 0.06 0.03

mono for distributive lattices.R.sat Sat 26 unknown∗ unknown∗ unknown

mono for distributive lattices Unsat 17 0.01 0.01 0.02

mono for distributive lattices.sat Sat 17 0.01 0.01 unknown

mono for poset Unsat 20 0.02 0.02 0.02

mono for poset.sat Sat 19 unknown∗ unknown∗ unknown

mono for total order Unsat 20 0.02 0.02 0.02

own Unsat 16 0.01 0.01 0.01

mvLogic/mv1 Unsat 10 0.01 0.01 0.02

mvLogic/mv1.sat Sat 8 0.01 0.01 unknown

mvLogic/mv2 Unsat 8 0.01 0.01 0.06

mvLogic/bl1 Unsat 22 0.02 0.01 0.03

mvLogic/example 6.1 Unsat 10 0.01 0.01 0.03

mvLogic/example 6.1.sat Sat 10 0.01 0.01 unknown

RBC simple Unsat 42 0.03 0.02 0.03

double array insert Unsat 791 1.16 0.20 0.07

double array insert Sat 790 1.10 0.20 unknown

RBC simple.sat Sat 40 0.03 0.02 out. mem.

RBC variable2 Unsat 137 0.08 0.04 0.04

RBC variable2.sat Sat 136 0.08 0.04 out. mem.

15 Examples

15.1 A case study

In [IJSS08] we used H-PILoT for verifying the correctness of the controller of
a system of trains moving on a linear track. In [FIJS10], H-PILoT’s ability to
decide the pointer fragment of Section 11.2 has been used in the verification
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of real-time systems which exhibit rich and dynamic data structures. There H-
PILoT was part of a tool chain employed for the verification of a case study
from the European Train Control System standard, describing the controller of
a system of trains moving on a rail track with complex topology – modeled
using two-sorted pointer structures. The tool chain received as input a high level
specification and a formula (a safety property), and generated proof obligations,
which were automatically verified using H-PILoT (with Yices).
The verification problem we considered are expressed as satisfiability problems
for universally quantified formulas, hence cannot be solved by SMT-solvers alone.
The experimental results show H-PILoT to be a very efficient tool for the dis-
charging of all the proof tasks of the case study. The full type system imple-
mented in H-PILoT increased the efficiency considerably by blocking unneces-
sary instantiations. The tool chain used in the case study range from a specifi-
cation language for real-time systems called COD to the translation of such a
specification via phase-event automata (Syspect/PEA) to transition constraint
systems (TCS) which can then be exported to H-PILoT. The invariant for every
transition in the TCS was checked.
Since the invariant was too complex to be handled by the clausifier of H-PILoT
we checked the invariant for every transition in two parts yielding 92 proof
obligations. Further, we performed tests to ensure that the specifications are
consistent. The time to compute the TCS from the specification was insignificant.
The overall time to verify all transition updates with Yices and H-PILoT in the
unsatisfiable case (when the invariant is correct) does not differ much. There is
one example – the speed update – on which H-PILoT was 5 times faster than
Yices alone.
We also made tests with the verification of a set of conditions which was not
inductive over all transitions. Here, H-PILoT was able to provide a model after
8s whereas Yices detected unsatisfiability for 17 problems, returned “unknown”
for 28, and timed out once. For the consistency check H-PILoT was able to
provide a model after 3s, whereas Yices answered “unknown”.
During the development of the case study H-PILoT helped us finding the correct
transition invariants by providing models for satisfiable sets of clauses (occurring
when the safety formulae were not invariant under transitions).

15.2 A run example of H-PILoT

We consider an example taken from [BM07] (Example 11.10). The input file
looks as follows.

% arrays_from_book.loc

Base_functions:={(+, 2), (-, 2)}
Extension_functions:={(a, 1, 1, int, int), (b, 1, 1, int, int)}

Relations:={(<=, 2)}

% K

Formulas :=
AND( (FORALL i). (AND(l <= i, i <= u) --> a(i) = b(i)),

NOT((FORALL i). (AND(l <= i, i <= u + _1) -->
write(a, u + _1, b(u +_1))(i) = b(i))));
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The arrays a and b are considered to be equal between the constants l and u.
We prove that if we update a at u+ 1 to b(u+ 1) then a and b should be equal
between l and u + 1. The formula above denies this and should therefore be
inconsistent. We call H-PILoT with

hpilot.opt -preprocess -prClauses arrays_from_book.loc

-preprocess is needed as usual; we use -prClauses to get a trace of the pro-
gram. (Because the array keyword write appears in the input we don’t have to
use the flag -arrays: it is implicit.) The trace looks as follows (to improve read-
ability we aligned the level labels and often left out the listing of the extension
ground terms due to space constraints).
First, H-PILoT reads the input and clausifies the formula.

********************************************** Starting hpilot**********************************************

arrays_from_book.loc

Adding formula:

AND( (FORALL i). (AND( l <= i, i <= u) --> a(i) = b(i)),

NOT((FORALL i). (AND( l <= i, i <= +(u, _1)) --> read(write(a, +(u, _1),b(+(u, _1))), i) = b(i))))

done.

Clausifying formulas...

(FORALL z_1). OR( NOT(l <= z_1), NOT(z_1 <= u), a(z_1) = b(z_1))

l <= sk_1

sk_1 <= +(u, _1)

NOT(read(write(a, +(u, _1), b(+(u, _1))), sk_1) = b(sk_1))

Yielding 4 new clauses:

read(write(a, +(u, _1), b(+(u, _1))), sk_1) = b(sk_1) ---> L: 0; Extension ground terms: b(sk_1), b(+(u, _1))

---> sk_1 <= +(u, _1) L: 0; Extension ground terms:

---> l <= sk_1 L: 0; Extension ground terms:

[z_1] l <= z_1, z_1 <= u ---> a(z_1) = b(z_1) L: 0; Extension ground terms:

H-PILoT then replaces array writes by introducing new arrays:
write(a, u+ 1, b(u+ 1)) is replaced by: ∀i.i 6= u+ 1 → aw1(i) = a(i) and aw1(u+
1) = b(u + 1). To remain in the decidable fragment, H-PILoT replaces ∀i.i 6=
u+ 1 → aw1(i) = a(i) with ∀i.i ≤ u+ 1 − 1 → aw1(i) = a(i) and ∀i.u+ 1 + 1 ≤
i→ aw1(i) = a(i).

Replacing writes...

We have 1 levels.

Our base theory is:

empty.

Splitting clause [i] ---> i = +(u, _1), a_w1(i) = a(i) L: 1;

terms: on eq i = +(u, _1)

Checking APF for clause [i] i <= -(+(u, _1), _1) ---> a_w1(i) = a(i) L: 0;

Extension ground terms: ---> true

Checking APF for clause [i] +(+(u, _1), _1) <= i ---> a_w1(i) = a(i) L: 0;

Extension ground terms: ---> true

Checking APF for clause [z_1] l <= z_1, z_1 <= u ---> a(z_1) = b(z_1) L: 1;

Extension ground terms: ---> true

Recalculating all levels.

H-PILoT then flattens and linearizes the result.

After rewriting we have as clauses K:

[i, x_1] x_1 = i, i <= -(+(u, _1), _1) ---> a_w1(i) = a(x_1) L: 1; Extension ground terms:

[i, x_1] x_1 = i, +(+(u, _1), _1) <= i ---> a_w1(i) = a(x_1) L: 1; Extension ground terms:

[z_1, x_1] x_1 = z_1, l <= z_1, z_1 <= u ---> a(z_1) = b(x_1) L: 1; Extension ground terms:

and as query:

---> l <= sk_1 L: 0; Extension ground terms:

---> sk_1 <= +(u, _1) L: 0; Extension ground terms:

a_w1(sk_1) = b(sk_1) ---> L: 1; Extension ground terms: a_w1(sk_1), b(sk_1)

---> a_w1(+(u, _1)) = b(+(u, _1)) L: 1; Extension ground terms: a_w1(+(u, _1)),b(+(u, _1))

Our query G is :

---> l <= sk_1 L: 0; Extension ground terms:

---> sk_1 <= +(u, _1) L: 0; Extension ground terms:

a_w1(sk_1) = b(sk_1) ---> L: 1; Extension ground terms: a_w1(sk_1), b(sk_1)

---> a_w1(+(u, _1)) = b(+(u, _1)) L: 1; Extension ground terms: a_w1(+(u, _1)),b(+(u, _1))

xxxxxxxxxxx End preprocessing.

H-PILoT then calculates the set of instances K[Ψ(G)] and simplifies the terms
to avoid redundant instances of clauses (e.g. u+1−1 is replaced by u).
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We have 5 index terms for minimal locality l, sk_1, u, +(u, _1), +(u, _2)

K has 3 members.

[i, x_1] x_1 = i, i <= -(+(u, _1), _1) ---> a_w1(i) = a(x_1) L: 1;

[i, x_1] x_1 = i, +(+(u, _1), _1) <= i ---> a_w1(i) = a(x_1) L: 1;

[z_1, x_1] x_1 = z_1, l <= z_1, z_1 <= u ---> a(z_1) = b(x_1) L: 1;

Computing K<G>...

K<G> looks as follows:

K_G has 75 members.

[] l = l, l <= -(+(u, _1), _1) ---> a_w1(l) = a(l) L: 0;

[] l = sk_1, sk_1 <= -(+(u, _1), _1) ---> a_w1(sk_1) = a(l) L: 0;

[] l = u, u <= -(+(u, _1), _1) ---> a_w1(u) = a(l) L: 0;

[] l = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> a_w1(+(u, _1)) = a(l) L: 0;

[] l = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> a_w1(+(u, _2)) = a(l) L: 0;

[] sk_1 = l, l <= -(+(u, _1), _1) ---> a_w1(l) = a(sk_1) L: 0;

[] sk_1 = sk_1, sk_1 <= -(+(u, _1), _1) ---> a_w1(sk_1) = a(sk_1) L: 0;

[] sk_1 = u, u <= -(+(u, _1), _1) ---> a_w1(u) = a(sk_1) L: 0;

[] sk_1 = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> a_w1(+(u, _1)) = a(sk_1) L: 0;

[] sk_1 = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> a_w1(+(u, _2)) = a(sk_1) L: 0;

[] u = l, l <= -(+(u, _1), _1) ---> a_w1(l) = a(u) L: 0;

[] u = sk_1, sk_1 <= -(+(u, _1), _1) ---> a_w1(sk_1) = a(u) L: 0;

[] u = u, u <= -(+(u, _1), _1) ---> a_w1(u) = a(u) L: 0;

[] u = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> a_w1(+(u, _1)) = a(u) L: 0;

[] u = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> a_w1(+(u, _2)) = a(u) L: 0;

[] +(u, _1) = l, l <= -(+(u, _1), _1) ---> a_w1(l) = a(+(u, _1)) L: 0;

[] +(u, _1) = sk_1, sk_1 <= -(+(u, _1), _1) ---> a_w1(sk_1) = a(+(u, _1)) L: 0;

[] +(u, _1) = u, u <= -(+(u, _1), _1) ---> a_w1(u) = a(+(u, _1)) L: 0;

[] +(u, _1) = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> a_w1(+(u, _1)) = a(+(u,_1)) L: 0;

[] +(u, _1) = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> a_w1(+(u, _2)) = a(+(u,_1)) L: 0;

[] +(u, _2) = l, l <= -(+(u, _1), _1) ---> a_w1(l) = a(+(u, _2)) L: 0;

[] +(u, _2) = sk_1, sk_1 <= -(+(u, _1), _1) ---> a_w1(sk_1) = a(+(u, _2)) L: 0;

[] +(u, _2) = u, u <= -(+(u, _1), _1) ---> a_w1(u) = a(+(u, _2)) L: 0;

[] +(u, _2) = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> a_w1(+(u, _1)) = a(+(u,_2)) L: 0;

[] +(u, _2) = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> a_w1(+(u, _2)) = a(+(u,_2)) L: 0;

[] l = l, +(+(u, _1), _1) <= l ---> a_w1(l) = a(l) L: 0;

[] l = sk_1, +(+(u, _1), _1) <= sk_1 ---> a_w1(sk_1) = a(l) L: 0;

[] l = u, +(+(u, _1), _1) <= u ---> a_w1(u) = a(l) L: 0;

[] l = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> a_w1(+(u, _1)) = a(l) L: 0;

[] l = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> a_w1(+(u, _2)) = a(l) L: 0;

[] sk_1 = l, +(+(u, _1), _1) <= l ---> a_w1(l) = a(sk_1) L: 0;

[] sk_1 = sk_1, +(+(u, _1), _1) <= sk_1 ---> a_w1(sk_1) = a(sk_1) L: 0;

[] sk_1 = u, +(+(u, _1), _1) <= u ---> a_w1(u) = a(sk_1) L: 0;

[] sk_1 = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> a_w1(+(u, _1)) = a(sk_1) L: 0;

[] sk_1 = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> a_w1(+(u, _2)) = a(sk_1) L: 0;

[] u = l, +(+(u, _1), _1) <= l ---> a_w1(l) = a(u) L: 0;

[] u = sk_1, +(+(u, _1), _1) <= sk_1 ---> a_w1(sk_1) = a(u) L: 0;

[] u = u, +(+(u, _1), _1) <= u ---> a_w1(u) = a(u) L: 0;

[] u = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> a_w1(+(u, _1)) = a(u) L: 0;

[] u = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> a_w1(+(u, _2)) = a(u) L: 0;

[] +(u, _1) = l, +(+(u, _1), _1) <= l ---> a_w1(l) = a(+(u, _1)) L: 0;

[] +(u, _1) = sk_1, +(+(u, _1), _1) <= sk_1 ---> a_w1(sk_1) = a(+(u, _1)) L: 0;

[] +(u, _1) = u, +(+(u, _1), _1) <= u ---> a_w1(u) = a(+(u, _1)) L: 0;

[] +(u, _1) = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> a_w1(+(u, _1)) = a(+(u,_1)) L: 0;

[] +(u, _1) = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> a_w1(+(u, _2)) = a(+(u,_1)) L: 0;

[] +(u, _2) = l, +(+(u, _1), _1) <= l ---> a_w1(l) = a(+(u, _2)) L: 0;

[] +(u, _2) = sk_1, +(+(u, _1), _1) <= sk_1 ---> a_w1(sk_1) = a(+(u, _2)) L: 0;

[] +(u, _2) = u, +(+(u, _1), _1) <= u ---> a_w1(u) = a(+(u, _2)) L: 0;

[] +(u, _2) = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> a_w1(+(u, _1)) = a(+(u,_2)) L: 0;

[] +(u, _2) = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> a_w1(+(u, _2)) = a(+(u,_2)) L: 0;

[] l = l, l <= l, l <= u ---> a(l) = b(l) L: 0;

[] sk_1 = l, l <= l, l <= u ---> a(l) = b(sk_1) L: 0;

[] u = l, l <= l, l <= u ---> a(l) = b(u) L: 0;

[] +(u, _1) = l, l <= l, l <= u ---> a(l) = b(+(u, _1)) L: 0;

[] +(u, _2) = l, l <= l, l <= u ---> a(l) = b(+(u, _2)) L: 0;

[] l = sk_1, l <= sk_1, sk_1 <= u ---> a(sk_1) = b(l) L: 0;

[] sk_1 = sk_1, l <= sk_1, sk_1 <= u ---> a(sk_1) = b(sk_1) L: 0;

[] u = sk_1, l <= sk_1, sk_1 <= u ---> a(sk_1) = b(u) L: 0;

[] +(u, _1) = sk_1, l <= sk_1, sk_1 <= u ---> a(sk_1) = b(+(u, _1)) L: 0;

[] +(u, _2) = sk_1, l <= sk_1, sk_1 <= u ---> a(sk_1) = b(+(u, _2)) L: 0;

[] l = u, l <= u, u <= u ---> a(u) = b(l) L: 0;

[] sk_1 = u, l <= u, u <= u ---> a(u) = b(sk_1) L: 0;

[] u = u, l <= u, u <= u ---> a(u) = b(u) L: 0;

[] +(u, _1) = u, l <= u, u <= u ---> a(u) = b(+(u, _1)) L: 0;

[] +(u, _2) = u, l <= u, u <= u ---> a(u) = b(+(u, _2)) L: 0;

[] l = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> a(+(u, _1)) = b(l) L: 0;

[] sk_1 = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> a(+(u, _1)) = b(sk_1) L: 0;

[] u = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> a(+(u, _1)) = b(u) L: 0;

[] +(u, _1) = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> a(+(u, _1)) = b(+(u,_1)) L: 0;

[] +(u, _2) = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> a(+(u, _1)) = b(+(u,_2)) L: 0;

[] l = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> a(+(u, _2)) = b(l) L: 0;

[] sk_1 = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> a(+(u, _2)) = b(sk_1) L: 0;

[] u = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> a(+(u, _2)) = b(u) L: 0;

[] +(u, _1) = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> a(+(u, _2)) = b(+(u,_1)) L: 0;

[] +(u, _2) = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> a(+(u, _2)) = b(+(u,_2)) L: 0;

The result is then purified:

computing defs ...

We have the following definitions:

---> e_1 = a(l) L: 0; Extension ground terms: a(l)
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---> e_2 = a(sk_1) L: 0; Extension ground terms: a(sk_1)

---> e_3 = a(u) L: 0; Extension ground terms: a(u)

---> e_4 = a(+(u, _1)) L: 0; Extension ground terms: a(+(u, _1))

---> e_5 = a(+(u, _2)) L: 0; Extension ground terms: a(+(u, _2))

---> e_6 = a_w1(l) L: 0; Extension ground terms: a_w1(l)

---> e_7 = a_w1(sk_1) L: 0; Extension ground terms: a_w1(sk_1)

---> e_8 = a_w1(u) L: 0; Extension ground terms: a_w1(u)

---> e_9 = a_w1(+(u, _1)) L: 0; Extension ground terms: a_w1(+(u, _1))

---> e_10 = a_w1(+(u, _2)) L: 0; Extension ground terms: a_w1(+(u, _2))

---> e_11 = b(l) L: 0; Extension ground terms: b(l)

---> e_12 = b(sk_1) L: 0; Extension ground terms: b(sk_1)

---> e_13 = b(u) L: 0; Extension ground terms: b(u)

---> e_14 = b(+(u, _1)) L: 0; Extension ground terms: b(+(u, _1))

---> e_15 = b(+(u, _2)) L: 0; Extension ground terms: b(+(u, _2))

Purified:

K_G has 75 members.

[] l = l, l <= -(+(u, _1), _1) ---> e_6 = e_1 L: 0; Extension ground terms:

[] l = sk_1, sk_1 <= -(+(u, _1), _1) ---> e_7 = e_1 L: 0; Extension ground terms:

[] l = u, u <= -(+(u, _1), _1) ---> e_8 = e_1 L: 0; Extension ground terms:

[] l = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> e_9 = e_1 L: 0; Extension ground terms:

[] l = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> e_10 = e_1 L: 0; Extension ground terms:

[] sk_1 = l, l <= -(+(u, _1), _1) ---> e_6 = e_2 L: 0; Extension ground terms:

[] sk_1 = sk_1, sk_1 <= -(+(u, _1), _1) ---> e_7 = e_2 L: 0; Extension ground terms:

[] sk_1 = u, u <= -(+(u, _1), _1) ---> e_8 = e_2 L: 0; Extension ground terms:

[] sk_1 = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> e_9 = e_2 L: 0; Extension ground terms:

[] sk_1 = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> e_10 = e_2 L: 0; Extension ground terms:

[] u = l, l <= -(+(u, _1), _1) ---> e_6 = e_3 L: 0; Extension ground terms:

[] u = sk_1, sk_1 <= -(+(u, _1), _1) ---> e_7 = e_3 L: 0; Extension ground terms:

[] u = u, u <= -(+(u, _1), _1) ---> e_8 = e_3 L: 0; Extension ground terms:

[] u = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> e_9 = e_3 L: 0; Extension ground terms:

[] u = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> e_10 = e_3 L: 0; Extension ground terms:

[] +(u, _1) = l, l <= -(+(u, _1), _1) ---> e_6 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = sk_1, sk_1 <= -(+(u, _1), _1) ---> e_7 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = u, u <= -(+(u, _1), _1) ---> e_8 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> e_9 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> e_10 = e_4 L: 0; Extension ground terms:

[] +(u, _2) = l, l <= -(+(u, _1), _1) ---> e_6 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = sk_1, sk_1 <= -(+(u, _1), _1) ---> e_7 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = u, u <= -(+(u, _1), _1) ---> e_8 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> e_9 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> e_10 = e_5 L: 0; Extension ground terms:

[] l = l, +(+(u, _1), _1) <= l ---> e_6 = e_1 L: 0; Extension ground terms:

[] l = sk_1, +(+(u, _1), _1) <= sk_1 ---> e_7 = e_1 L: 0; Extension ground terms:

[] l = u, +(+(u, _1), _1) <= u ---> e_8 = e_1 L: 0; Extension ground terms:

[] l = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> e_9 = e_1 L: 0; Extension ground terms:

[] l = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> e_10 = e_1 L: 0; Extension ground terms:

[] sk_1 = l, +(+(u, _1), _1) <= l ---> e_6 = e_2 L: 0; Extension ground terms:

[] sk_1 = sk_1, +(+(u, _1), _1) <= sk_1 ---> e_7 = e_2 L: 0; Extension ground terms:

[] sk_1 = u, +(+(u, _1), _1) <= u ---> e_8 = e_2 L: 0; Extension ground terms:

[] sk_1 = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> e_9 = e_2 L: 0; Extension ground terms:

[] sk_1 = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> e_10 = e_2 L: 0; Extension ground terms:

[] u = l, +(+(u, _1), _1) <= l ---> e_6 = e_3 L: 0; Extension ground terms:

[] u = sk_1, +(+(u, _1), _1) <= sk_1 ---> e_7 = e_3 L: 0; Extension ground terms:

[] u = u, +(+(u, _1), _1) <= u ---> e_8 = e_3 L: 0; Extension ground terms:

[] u = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> e_9 = e_3 L: 0; Extension ground terms:

[] u = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> e_10 = e_3 L: 0; Extension ground terms:

[] +(u, _1) = l, +(+(u, _1), _1) <= l ---> e_6 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = sk_1, +(+(u, _1), _1) <= sk_1 ---> e_7 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = u, +(+(u, _1), _1) <= u ---> e_8 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> e_9 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> e_10 = e_4 L: 0; Extension ground terms:

[] +(u, _2) = l, +(+(u, _1), _1) <= l ---> e_6 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = sk_1, +(+(u, _1), _1) <= sk_1 ---> e_7 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = u, +(+(u, _1), _1) <= u ---> e_8 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> e_9 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> e_10 = e_5 L: 0; Extension ground terms:

[] l = l, l <= l, l <= u ---> e_1 = e_11 L: 0; Extension ground terms:

[] sk_1 = l, l <= l, l <= u ---> e_1 = e_12 L: 0; Extension ground terms:

[] u = l, l <= l, l <= u ---> e_1 = e_13 L: 0; Extension ground terms:

[] +(u, _1) = l, l <= l, l <= u ---> e_1 = e_14 L: 0; Extension ground terms:

[] +(u, _2) = l, l <= l, l <= u ---> e_1 = e_15 L: 0; Extension ground terms:

[] l = sk_1, l <= sk_1, sk_1 <= u ---> e_2 = e_11 L: 0; Extension ground terms:

[] sk_1 = sk_1, l <= sk_1, sk_1 <= u ---> e_2 = e_12 L: 0; Extension ground terms:

[] u = sk_1, l <= sk_1, sk_1 <= u ---> e_2 = e_13 L: 0; Extension ground terms:

[] +(u, _1) = sk_1, l <= sk_1, sk_1 <= u ---> e_2 = e_14 L: 0; Extension ground terms:

[] +(u, _2) = sk_1, l <= sk_1, sk_1 <= u ---> e_2 = e_15 L: 0; Extension ground terms:

[] l = u, l <= u, u <= u ---> e_3 = e_11 L: 0; Extension ground terms:

[] sk_1 = u, l <= u, u <= u ---> e_3 = e_12 L: 0; Extension ground terms:

[] u = u, l <= u, u <= u ---> e_3 = e_13 L: 0; Extension ground terms:

[] +(u, _1) = u, l <= u, u <= u ---> e_3 = e_14 L: 0; Extension ground terms:

[] +(u, _2) = u, l <= u, u <= u ---> e_3 = e_15 L: 0; Extension ground terms:

[] l = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> e_4 = e_11 L: 0; Extension ground terms:

[] sk_1 = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> e_4 = e_12 L: 0; Extension ground terms:

[] u = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> e_4 = e_13 L: 0; Extension ground terms:

[] +(u, _1) = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> e_4 = e_14 L: 0; Extension ground terms:

[] +(u, _2) = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> e_4 = e_15 L: 0; Extension ground terms:

[] l = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> e_5 = e_11 L: 0; Extension ground terms:

[] sk_1 = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> e_5 = e_12 L: 0; Extension ground terms:

[] u = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> e_5 = e_13 L: 0; Extension ground terms:

[] +(u, _1) = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> e_5 = e_14 L: 0; Extension ground terms:
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[] +(u, _2) = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> e_5 = e_15 L: 0; Extension ground terms:

---> l <= sk_1 L: 0; Extension ground terms:

---> sk_1 <= +(u, _1) L: 0; Extension ground terms:

e_7 = e_12 ---> L: 0; Extension ground terms:

---> e_9 = e_14 L: 0; Extension ground terms:

The introduced definitions are replaced by the corresponding congruence axioms.

Replacing D by N0:

This yields 30 clauses.

+(u, _1) = +(u, _2) ---> e_14 = e_15 L: 0; Extension ground terms:

u = +(u, _2) ---> e_13 = e_15 L: 0; Extension ground terms:

u = +(u, _1) ---> e_13 = e_14 L: 0; Extension ground terms:

sk_1 = +(u, _2) ---> e_12 = e_15 L: 0; Extension ground terms:

sk_1 = +(u, _1) ---> e_12 = e_14 L: 0; Extension ground terms:

sk_1 = u ---> e_12 = e_13 L: 0; Extension ground terms:

l = +(u, _2) ---> e_11 = e_15 L: 0; Extension ground terms:

l = +(u, _1) ---> e_11 = e_14 L: 0; Extension ground terms:

l = u ---> e_11 = e_13 L: 0; Extension ground terms:

l = sk_1 ---> e_11 = e_12 L: 0; Extension ground terms:

+(u, _1) = +(u, _2) ---> e_9 = e_10 L: 0; Extension ground terms:

u = +(u, _2) ---> e_8 = e_10 L: 0; Extension ground terms:

u = +(u, _1) ---> e_8 = e_9 L: 0; Extension ground terms:

sk_1 = +(u, _2) ---> e_7 = e_10 L: 0; Extension ground terms:

sk_1 = +(u, _1) ---> e_7 = e_9 L: 0; Extension ground terms:

sk_1 = u ---> e_7 = e_8 L: 0; Extension ground terms:

l = +(u, _2) ---> e_6 = e_10 L: 0; Extension ground terms:

l = +(u, _1) ---> e_6 = e_9 L: 0; Extension ground terms:

l = u ---> e_6 = e_8 L: 0; Extension ground terms:

l = sk_1 ---> e_6 = e_7 L: 0; Extension ground terms:

+(u, _1) = +(u, _2) ---> e_4 = e_5 L: 0; Extension ground terms:

u = +(u, _2) ---> e_3 = e_5 L: 0; Extension ground terms:

u = +(u, _1) ---> e_3 = e_4 L: 0; Extension ground terms:

sk_1 = +(u, _2) ---> e_2 = e_5 L: 0; Extension ground terms:

sk_1 = +(u, _1) ---> e_2 = e_4 L: 0; Extension ground terms:

sk_1 = u ---> e_2 = e_3 L: 0; Extension ground terms:

l = +(u, _2) ---> e_1 = e_5 L: 0; Extension ground terms:

l = +(u, _1) ---> e_1 = e_4 L: 0; Extension ground terms:

l = u ---> e_1 = e_3 L: 0; Extension ground terms:

l = sk_1 ---> e_1 = e_2 L: 0; Extension ground terms:

Finally we hand over to a prover (Yices is default here). The program checked
earlier that the problem was in a decidable fragment of the theory of arrays
(APF), which is Ψ -local. Hence Yices’ answer can always be trusted irrespective
of whether the answer is ’satisfiable’ or ’unsatisfiable’.

The problem is in APF
Handing over to Yices:

Total number of clauses: 109.
unsat

unsat
H-PILoT spent 0.161975s on the problem.
Of which clausification took 0.006998s.

The prover needed 0.021996s for the problem.
Total running time: 0.183971s.

15.3 Model generation and visualization

We illustrate the method for model generation we use on two examples.

Example 1: Theory of pointers

Consider the following problem, specified in H-PILoT input syntax:
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Base_functions:={(+,2), (-, 2)}

Extension_functions:={(next, 1, 1, pointer), (prev, 1, 1, pointer),
(priority, 1, 1, pointer, real)}

Relations:={(>=, 2)}
Constants:={(null, pointer), (a, pointer), (b, pointer)}

% K
Clauses := (FORALL p). prev(next(p)) = p;

(FORALL p). --> next(prev(p)) = p;
(FORALL p). priority(p) >= priority(next(p));

Query := priority(a) = _5; priority(b) = _6; a = prev(b);
%NOT(a = null); % pivotal for satisfiability

NOT(b = null);

We used CVC3 to generate a model for the set of clauses obtained after the hier-
archical reduction. A partial model is given below (after preprocessing/deleting
repetitions):

null = a

prev(b) = a

prev(a) = d_5

next(prev(prev(b))) = e_5

next(prev(b)) = d_1

next(b) = a

prev(prev(b)) = d_5

prev(next(prev(b))) = d_5

prev(next(b)) = d_5

prev(next(a)) = d_5

next(a) = d_1

priority(next(a)) = 0

priority(next(prev(b))) = 0

priority(prev(b)) = 5

priority(b) = 6

priority(a) = 5

We can make this model total by defining next(x) := null and prev(y) := null
whenever next(x) resp. prev(y) are undefined (cf. Section 11.2). The obtained
model can be visualized using Mathematica (this last step is currently performed
separately; it is not yet integrated into H-PILoT, but an integration is planned
for the near future.). The result is presented below.
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Example 2: Theory of functions over the real numbers

Consider now the following example: decide whether

Monf∪Mong |=R ∀x, y, z, u, v(x≤y∧z≤y∧f(y)≤g(u)∧u≤v∧u≤w → f(x)≤g(v)).

We formulate a satisfiable version, by replacing the argument x in the conclusion
with a new variable x0. The problem obtained this way can be formulated as
follows in the input format of H-PILoT.

Base_functions:={}

Extension_functions:={(f, 1), (g, 1)}
Relations:={(<=, 2)}

Clauses := (FORALL x,y). x <= y --> f(x) <= f(y);

(FORALL x,y). x <= y --> g(x) <= g(y);

Query := c1 <= d1; c2 <= d1; d2 <= c3; d2 <= c4;

f(d1) <= g(d2); NOT(f(c0) <= g(c4));

CVC3 can be used to generate the following model of the proof task:

model:

c0 = 1

c1 = 0

d1 = 0

c2 = 0

c3 = 0

c4 = 1

d2 = 0

g(d2) = 0

f(d1) = 0

g(c4) = 1

f(c0) = 2

From this partial model, a total model can be constructed as explained in [Sof08].
This model can then be visualized as follows in Mathematica:

Note that if we require differentiability of f and g then – with the completion
described in the previous example – monotonicity of the extensions may not be
preserved:
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In the example above we can enforce the functions to be linear. A general study
of the properties which can be guaranteed when building the models is work in
progress.
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