Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Feature Preserving Sketching of Volume Data

MPG-Autoren
/persons/resource/persons44758

Kerber,  Jens
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44158

Bokeloh,  Martin
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45695

Wand,  Michael
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kerber, J., Bokeloh, M., Wand, M., Krüger, J., & Seidel, H.-P. (2010). Feature Preserving Sketching of Volume Data. In R. Koch, A. Kolb, & C. Rezk-Salama (Eds.), Vision, Modeling & Visualization (pp. 195-202). Goslar: Eurographics Association. doi:10.2312/PE/VMV/VMV10/195-202.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-1752-C
Zusammenfassung
In this paper, we present a novel method for extracting feature lines from volume data sets. This leads to a reduction of visual complexity and provides an abstraction of the original data to important structural features. We employ a new iteratively reweighted least-squares approach that allows us to detect sharp creases and to preserve important features such as corners or intersection of feature lines accurately. Traditional least-squares methods This is important for both visual quality as well as reliable further processing in feature detection algorithms. Our algorithm is efficient and easy to implement, and nevertheless effective and robust to noise. We show results for a number of different data sets.