Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Micro-rendering for Scalable, Parallel Final Gathering

MPG-Autoren
/persons/resource/persons45298

Ritschel,  Tobias
Computer Graphics, MPI for Informatics, Max Planck Society;

Engelhardt,  Thomas
Max Planck Society;

/persons/resource/persons44531

Grosch,  Thorsten
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44747

Kautz,  Jan
Computer Graphics, MPI for Informatics, Max Planck Society;

Dachsbacher,  Carsten
Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ritschel, T., Engelhardt, T., Grosch, T., Seidel, H.-P., Kautz, J., & Dachsbacher, C. (2009). Micro-rendering for Scalable, Parallel Final Gathering. In SIGGRAPH Asia '09: ACM SIGGRAPH Asia 2009 papers (pp. 132:1-132:8). New York: ACM.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-19BD-C
Zusammenfassung
Recent approaches to global illumination for dynamic scenes achieve interactive
frame rates by using coarse approximations to geometry, lighting, or both,
which limits scene complexity and rendering quality. High-quality global
illumination renderings of complex scenes are still limited to methods based on
ray tracing. While conceptually simple, these techniques are computationally
expensive. We present an efficient and scalable method to compute global
illumination solutions at interactive rates for complex and dynamic scenes. Our
method is based on parallel final gathering running entirely on the GPU. At
each final gathering location we perform micro-rendering: we traverse and
rasterize a hierarchical point-based scene representation into an
importance-warped micro-buffer, which allows for BRDF importance sampling. The
final reflected radiance is computed at each gathering location using the
micro-buffers and is then stored in image-space. We can trade quality for speed
by reducing the sampling rate of the gathering locations in conjunction with
bilateral upsampling. We demonstrate the applicability of our method to
interactive global illumination, the simulation of multiple indirect bounces,
and to final gathering from photon maps.