
Superposition
for Fixed Domains

Matthias Horbach
and Christoph Weidenbach

MPI–I–2009–RG1–005 Oct. 2009

Authors’ Addresses

Matthias Horbach and Christoph Weidenbach
Max Planck Institute for Informatics
Campus E1 4
66123 Saarbrücken
Germany

Publication Notes

This report is a preliminary version of an article intended for publication
elsewhere.

Acknowledgements

We want to thank our reviewers for their valuable and detailed comments.
Their suggestions helped significantly in improving this report.

Matthias Horbach and Christoph Weidenbach are supported by the Ger-
man Transregional Collaborative Research Center SFB/TR 14 AVACS.

Abstract

Superposition is an established decision procedure for a variety of first-order
logic theories represented by sets of clauses. A satisfiable theory, saturated
by superposition, implicitly defines a minimal term-generated model for the
theory. Proving universal properties with respect to a saturated theory di-
rectly leads to a modification of the minimal model’s term-generated domain,
as new Skolem functions are introduced. For many applications, this is not
desired.

Therefore, we propose the first superposition calculus that can explicitly
represent existentially quantified variables and can thus compute with respect
to a given domain. This calculus is sound and refutationally complete in the
limit for a first-order fixed domain semantics. For saturated Horn theories
and classes of positive formulas, we can even employ the calculus to prove
properties of the minimal model itself, going beyond the scope of known
superposition-based approaches.

Keywords

Automated Theorem Proving, Fixed Domain Semantics, Inductionless In-
duction, Minimal Model Semantics, Proof by Consistency, Superposition

Contents

1 Introduction 2

2 Preliminaries 6

3 First-Order Reasoning in Fixed Domains 13
3.1 The Superposition Calculus for Fixed Domains 14
3.2 Model Construction and Refutational Completeness 19
3.3 Other Herbrand Models of Constrained Clause Sets 26

4 Fixed Domain and Minimal Model Validity
of Constrained Clauses 30
4.1 Relations between |=, |=F , and |=Ind 30
4.2 Reasoning about IN . 35

5 Conclusion 43

1

1 Introduction

A formula Φ is entailed by a clause set N with respect to the standard first-
order semantics, written N |= Φ, if Φ holds in all models of N over all possible
domains. For a number of applications, this semantics is not sufficient to
prove all properties of interest. In some cases, properties with respect to
models over the fixed given domain of N are required. These models are
isomorphic to Herbrand models of N over the signature F , i.e. models whose
domains consist only of terms build over F . We denote this by N |=F Φ.
Even stronger, the validity of Φ often needs to be considered with respect to
a minimal model IN of the clause set N , written IN |= Φ or alternatively
N |=Ind Φ. For the sets of formulas that are valid with respect to these three
different semantics, the following relations hold: {Φ | N |=Ind Φ} ⊇ {Φ |
N |=F Φ} ⊇ {Φ | N |= Φ}.

The different semantics are of relevance, for example, in proving proper-
ties of computer systems. Very often, such systems can be naturally modeled
by first-order formulas over a fixed domain. Consider the simple example of
a building with three floors, Figure 1.1.

The bottom (G)round floor and the top (R)estaurant floor of the building
are open to the public whereas the middle floor is occupied by a (C)ompany

Restaurant

Company

Ground


   ``````

a b

Figure 1.1: Elevator Example

2



and only open to its employees. In order to support this setting, there are
two elevators a and b in the building. Elevator a is for the employees of the
company and stops on all three floors whereas elevator b is for visitors of the
restaurant, stopping solely on the ground and restaurant floor. Initially, there
is a person p in elevator a and a person q in elevator b, both on the ground
floor. We model the system by three predicates G, C, R for the different
floors, respectively, where, e.g., G(a, p) means that person p sits in elevator a
on the ground floor. The initial state of the system and the potential upward
moves are modeled by the following clauses: NE = {→ G(a, p), → G(b, q),
G(a, x) → C(a, x), C(a, x) → R(a, x), G(b, x) → R(b, x)}. Let us assume
that the above predicates accept in their first argument elevators and in their
second persons, e.g. implemented via a many-sorted discipline.

The intended semantics of the elevator system coincides with the mini-
mal model of NE. Therefore, in order to prove properties of the system, we
need to consider the semantics |=Ind in general. Nevertheless, some struc-
tural properties are valid with respect to |=, for example the property that
whenever a person (not necessarily p or q) sits on the ground floor in ele-
vator a or b, they can reach the restaurant floor, i.e. NE |= ∀x.(G(a, x) →
R(a, x)) ∧ (G(b, x) → R(b, x)). In order to prove properties with respect to
the specific domain of the system, we need to consider |=F , for our example
|={a,b,p,q}. With respect to this semantics, the state R is reachable for all el-
evators, i.e. NE |={a,b,p,q} ∀y, x.G(y, x)→ R(y, x). This property is not valid
for |= as there are models of NE with more elevators than just a and b. For
example, there could be an elevator for the managers of the company that
does not stop at the restaurant floor. Of course, such artificially extended
models are not desired for analyzing the scenario. For the above elevator
system, the company floor is not reachable by elevator b. This can only be
proven with respect to |=Ind, i.e. NE |=Ind ∀x.¬C(b, x), but not with respect
to |={a,b,p,q} nor |= because there are models of NE over {a, b, p, q} where
e.g. C(b, q) holds.

In this simple example, all appearing function symbols are constants and
the Herbrand universe is finite. Hence we could code the quantification
over the Herbrand universe explicitly as ∀y, x.(y≈a ∨ y≈b) ∧ (x≈p ∨ x≈q) ∧
G(y, x)→ R(y, x). A property extended in this way is valid in all models of
NE if and only if it is valid in all Herbrand models of NE, i.e. fixed domain
reasoning can be reduced to first-order reasoning in this case. This reduction
is, however, not possible when the Herbrand universe is infinite.

Inductive (|=Ind) and fixed-domain (|=F) theorem proving are more diffi-
cult problems than first-order (|=) theorem proving: It follows from Gödels
incompleteness theorem that inductive validity is not semi-decidable, and

3



the same holds for fixed-domain validity.1 For the standard first-order se-
mantics |=, one of the most successful calculi is superposition [2, 25, 29].
This is in particular demonstrated by superposition instances effectively de-
ciding many known decidable classical subclasses of first-order logic, e.g. the
monadic class with equality [3] or the guarded fragment with equality [12], as
well as a number of decidable first-order classes that have been proven decid-
able for the first time by means of the superposition calculus [24, 19, 28, 20].
Furthermore, superposition has been successfully applied to decision prob-
lems from the area of description logics [18] and data structures [1]. The key
to this success is an inherent redundancy notion based on the term-generated
minimal interpretation IN of a clause set N , that restricts the necessary in-
ferences and thereby often enables termination. If all inferences from a clause
set N are redundant (then N is called saturated) and N does not contain the
empty clause, then IN is a minimal model of N .

Consider the following small example, demonstrating again the differ-
ences of the three semantics with respect to the minimal term generated
model induced by the superposition calculus. The clause set NG = {→
G(s(0), 0), G(x, y) → G(s(x), s(y)) } is finitely saturated by superposition.
The model ING

in this example consists of all atoms G(t1, t2) where t2 is
a term over the signature Fnat = {s, 0} and t1 = s(t2). So the domain of
ING

is isomorphic to the naturals and the interpretation of G in ING
is the

“one greater than” relation. Now for the different entailment relations, the
following holds:

NG |= G(s(s(0)), s(0)) NG |=Fnat G(s(s(0)), s(0)) NG |=Ind G(s(s(0)), s(0))
NG 6|= ∀x.G(s(x), x) NG |=Fnat ∀x.G(s(x), x) NG |=Ind ∀x.G(s(x), x)
NG 6|= ∀x.¬G(x, x) NG 6|=Fnat ∀x.¬G(x, x) NG |=Ind ∀x.¬G(x, x)

Superposition is a sound and refutationally complete calculus for the stan-
dard semantics |=. In this paper, we develop a sound and refutationally com-
plete calculus for |=F . Given a clause set N and a purely existentially quanti-
fied conjecture, standard superposition is also complete for |=F . The problem
arises with universally quantified conjectures that become existentially quan-
tified after negation. Then, as soon as these existentially quantified variables
are Skolemized, the standard superposition calculus applied afterwards no

1In fact, peano arithmetic can be encoded in a fixed-domain setting as follows: Given
the signature FPA = {s, 0,+, ·}, let N consist of the clauses x+0≈0 and x+s(y)≈s(x+y)
defining addition, x · 0≈0 and x · s(y)≈(x · y) + x defining multiplication, and s(x)6≈0
and s(x)≈s(y) → x≈y stating that all numbers are different. Then N has exactly one
Herbrand model over FPA, and this model is isomorphic to the natural numbers. So an
arithmetic formula Φ is valid over the natural numbers if and only if N |=Ind Φ if and only
if N |=FPA Φ.

4



longer computes modulo |=F , but modulo |=F∪{f1,...,fn}, where f1, . . . , fn are
the introduced Skolem functions. This approach is incomplete: In the exam-
ple above, NG |=Fnat ∀x.G(s(x), x), but the ground clause G(s(c), c) does not
hold in ING

, where c is the Skolem constant introduced for x.

The idea behind our new calculus is not to Skolemize existentially quanti-
fied variables, but to treat them explicitly by the calculus. This is represented
by an extended clause notion, containing a constraint for the existentially
quantified variables. For example, the above conjecture ∀x.G(s(x), x) results
after negation in the clause u≈x ‖G(s(x), x)→ with existential variable u.
In addition to standard first-order equational reasoning, the inference and
reduction rules of the new calculus also take care of the constraint (see Sec-
tion 3).

A |=F unsatisfiability proof of a constrained clause set with our calculus
in general requires the computation of infinitely many empty clauses, i.e. we
lose compactness. This does not come as a surprise because we have to
show that an existentially quantified clause cannot be satisfied by a term-
generated infinite domain. For example, proving the unsatisfiability of the
set NG∪{u≈x ‖G(s(x), x)→} over the signature F = {0, s} amounts to the
successive derivation of the clauses u≈0 ‖�, u≈s(0) ‖�, u≈s(s(0)) ‖�, and
so on. In order to represent such an infinite set of empty clauses finitely, a
further induction rule, based on the minimal model semantics |=Ind, can be
employed. We prove the new rule sound in Section 4 and show its potential.

In general, our calculus can cope with (conjecture) formulas of the form
∀∗∃∗Φ and does not impose special conditions on N (except saturation for
|=Ind), which is beyond any known result on superposition-based calculi prov-
ing properties of |=F or |=Ind [21, 6, 13, 4, 10, 22, 14, 26, 11]. This, together
with potential extensions and directions of research, is discussed in the final
Section 5.

This article is a significantly extended version of [15].

5



2 Preliminaries

We build on the notions of [2, 29] and shortly recall here the most important
concepts as well as the specific extensions needed for the new superposition
calculus.

Terms and Clauses

Let F be a signature, i.e. a set of function symbols of fixed arity, and X ∪ V
an infinite set of variables, such that X, V and F are disjoint and V is
finite. Elements of X are called universal variables and denoted as x, y, z,
and elements of V are called existential variables and denoted as u, v. We
denote by T (F , X ′) the set of all terms over F and X ′ ⊆ X∪V and by T (F)
the set of all ground terms over F . For technical reasons, we assume that
there is at least one ground term, i.e. that F contains at least one function
symbol of arity 0.

We will define equations and clauses in terms of multisets. A multiset
over a set S is a function M : S → N. We use a set-like notation to de-
scribe multisets, e.g. {x, x, x} denotes the multiset M where M(x) = 3 and
M(y) = 0 for all y 6= x in S. An equation is a multiset {s, t} of two terms,
usually written as s≈t. A (standard universal) clause is a pair of multisets
of equations, written Γ→ ∆, interpreted as the conjunction of all equations
in the antecedent Γ implying the disjunction of all equations in the succedent
∆. A clause is Horn if ∆ contains at most one equation. The empty clause
is denoted by �.

We denote the subterm of a term t at position p by t|p. The term that
arises from t by replacing the subterm at position p by the term r is t[r]p. A
substitution σ is a map from a finite set X ′ ⊆ X ∪V of variables to T (F , X),
and dom(σ) = X ′ is called its domain.1 The substitution σ is identified with

1This notion of a domain is non-standard: Usually, the domain of a substitution is the
set of all variables on which the substitution operates non-trivially. However, we want to

6



its homomorphic extension to T (F , X ∪ V ). The most general unifier of two
terms s, t ∈ T (F , X) is denoted by mgu(s, t).

Constrained Clauses

A constrained clause v1≈t1, . . . , vn≈tn ‖C consists of a conjunctively inter-
preted sequence of equations v1≈t1, . . . , vn≈tn, called the constraint, and a
clause C, such that

1. V = {v1, . . . , vn},

2. vi 6= vj for i 6= j, and

3. neither the clause C nor the terms t1, . . . , tn contain existential vari-
ables.

Intuitively, constraint equations are just a different type of antecedent liter-
als. The constrained clause is called ground if C and t1, . . . , tn are ground,
i.e. if it does not contain any non-existential variables. A constraint α =
v1≈t1, . . . , vn≈tn induces a substitution V → T (F , X) mapping vi to ti for
all i, which we will denote by σα.

Constrained clauses are considered equal up to renaming of non-existen-
tial variables. For example, the two constrained clauses u≈x, v≈y ‖P (x)
and u≈y, v≈x ‖P (y) are considered equal (x and y have been exchanged),
but they are both different from the constrained clause u≈y, v≈x ‖P (x),
where u and v have been exchanged. We regularly omit constraint equa-
tions of the form vi≈x, where x is a variable, if x does not appear elsewhere
in the constrained clause, e.g. when V = {u, v}, we write u≈x ‖P (x) for
u≈x, v≈y ‖P (x). A constrained clause ‖C is called unconstrained. As con-
straints are ordered, the notion of positions lift naturally to constraints.

Clause Orderings

One of the strengths of superposition relies on the fact that only inferences
involving maximal literals in a clause have to be considered, and that the
conclusion of an inference is always smaller than the maximal premise. To
state such ordering conditions, we extend a given ordering on terms to literal
occurrences inside a clause, and to clauses.

be able to distinguish between substitutions like {x 7→ f(x)} and {x 7→ f(x); y 7→ y} to
simplify the proofs in Section 4.

7



Any ordering ≺ on a set S can be extended to an ordering on multisets
over S as follows: M ≺ N if M 6= N and whenever there is x ∈ S such that
N(x) < M(x) then N(y) > M(y) for some y � x.

Considering this, any ordering ≺ on terms can be extended to clauses in
the following way. We consider clauses as multisets of occurrences of equa-
tions. The occurrence of an equation s≈t in the antecedent is identified
with the multiset {{s, t}}; the occurrence of an equation s≈t in the succe-
dent is identified with the multiset {{s}, {t}}. Now we lift ≺ to equation
occurrences as its twofold multiset extension, and to clauses as the mul-
tiset extension of this ordering on equation occurrences. If, for example,
s ≺ t ≺ u, then the equation occurrences in the clause s≈t, t≈t → s≈u
are ordered as s≈t ≺ t≈t ≺ s≈u, because {{s, t}} ≺ {{t, t}} ≺ {{s}, {u}}.
Observe that an occurrence of an equation s≈t in the antecedent is strictly
bigger than an occurrence of the same equation in the succedent, because
{{s}, {t}} ≺ {{s, t}}.

An occurrence of an equation s≈t is maximal in a clause C if there is no
occurrence of an equation in C that is strictly greater with respect to ≺ than
the occurrence s≈t. It is strictly maximal in C if there is no occurrence of
an equation in C that is greater than or equal to the occurrence s≈t with
respect to ≺.

We extend ≺ to constraints pointwise2 by defining v1≈s1, . . . , vn≈sn ≺
v1≈t1, . . . , vn≈tn iff s1 � t1 ∧ . . . ∧ sn � tn and s1 6= t1 ∨ . . . ∨ sn 6= tn. Con-
strained clauses are ordered lexicographically with priority on the constraint,
i.e. α ‖C ≺ β ‖D iff α ≺ β, or α = β and C ≺ D. This ordering is not total
on ground constrained clauses, e.g. the constrained clauses u≈a, v≈b ‖� and
u≈b, v≈a ‖� are incomparable, but the ordering is strong enough to support
our completeness results and an extension of the usual notion of redundancy
to constrained clauses.

An ordering ≺ is well-founded if there is no infinite chain t1 � t2 � . . .,
it has the subterm property if t[t′]p � t′ for all t, t′ where t[t′]p 6= t′, and
it is stable under substitutions if t � t′ implies tσ � t′σ for all t, t′ and all
substitutions σ. A reduction ordering is a well-founded ordering that has the
subterm property and is stable under substitutions.

2It is also possible to consider constraints as multisets when ordering them, or to
extend the ordering lexicographically. While all results of this article remain valid in both
cases, the latter approach is less natural because it relies on an ordering on the induction
variables.

8



Rewrite Systems

A binary relation→ on T (F , X) is a rewrite relation if s→ t implies u[sσ]→
u[tσ] for all terms u ∈ T (F , X) and all substitutions σ. By ↔ we denote

the symmetric closure of →, and by
∗→ (and

∗↔, respectively) we denote the
reflexive and transitive closure of → (and ↔).

A set R of equations is called a rewrite system with respect to a term
ordering ≺ if s ≺ t or t ≺ s for each equation s≈t ∈ R. Elements of R are
called rewrite rules. We also write s → t ∈ R instead of s≈t ∈ R if s � t.
By →R we denote the smallest rewrite relation for which s →R t whenever
s→ t ∈ R. A term s is reducible by R if there is a term t such that s→R t,
and irreducible or in normal form (with respect to R) otherwise. The same
notions also apply to constraints instead of terms.

The rewrite system R is ground if all equations in R are ground. It is
terminating if there is no infinite chain t0 →R t1 →R . . . , and it is confluent
if for all terms t, t1, t2 such that t→∗

R t1 and t→∗
R t2 there is a term t3 such

that t1 →∗
R t3 and t2 →∗

R t3.

Herbrand Interpretations

A Herbrand interpretation over the signature F is a congruence on the ground
terms T (F), where the denotation of a term t is the equivalence class of t.

We recall the construction of the special Herbrand interpretation IN de-
rived from a set N of (unconstrained) clauses [2]. Let ≺ be a well-founded
reduction ordering that is total on ground terms. We use induction on the
clause ordering ≺ to define ground rewrite systems EC , RC and IC for ground
clauses over T (F) by RC =

⋃
C�C′ EC′ , and IC = R∗

C , i.e. IC is the reflexive,
transitive closure of RC . Moreover, EC = {s → t} if C = Γ → ∆, s≈t is a
ground instance of a clause from N such that

1. s≈t is a strictly maximal occurrence of an equation in C and s � t,

2. s is irreducible by RC ,

3. Γ ⊆ IC , and

4. ∆ ∩ IC = ∅.

In this case, we say that C is productive or that C produces s→ t. Otherwise
EC = ∅. Finally, we define a ground rewrite system RN =

⋃
C EC as the set

of all produced rewrite rules and define the interpretation IN over the domain
T (F) as IN =

∗↔RN
. The rewrite system RN is confluent and terminating.

9



If N is consistent and saturated with respect to a complete inference system
then IN is a minimal model of N with respect to set inclusion.

We will extend this construction of IN to constrained clauses in Sec-
tion 3.2.

Constrained Clause Sets and Their Models

If V = {v1, . . . , vn} and N is a set of constrained clauses, then the semantics
of N is that there is a valuation of the existential variables, such that for all
valuations of the universal variables, the constraint of each constrained clause
in N implies the respective clausal part: An interpretation M models N ,
writtenM |= N , iff there is a map σ from the set of existential variables to the
universe ofM,3 such that for each (α ‖C) ∈ N , the formula ∀x1, . . . , xm.α→
C is valid inM under σ, where x1, . . . , xm are the universal variables of α ‖C.
In this case,M is called a model of N . IfM is also a Herbrand interpretation
over the signature F of N , we callM a Herbrand model of N .

For example, every Herbrand interpretation over the signature {0, s} is a
model of {v≈0 ‖�}, because instantiating v to s(0) falsifies the constraint.
On the other hand, the set {v≈0 ‖�, v≈s(x) ‖�} does not have any Her-
brand models over {0, s} because each instantiation of v to a ground term
over this signature validates one of the constraints, so that the corresponding
constrained clause is falsified.

Note that the existential quantifiers range over the whole constrained
clause set instead of each single constrained clause. The possibly most sur-
prising effect of this is that two constrained clause sets may hold individ-
ually in a given interpretation while their union does not. As an exam-
ple, note that the interpretation {P (s(0))} models both constrained clause
sets {v≈x ‖P (x)} (namely for v 7→ s(0)) and {v≈x ‖P (s(x))} (namely for
v 7→ 0). However, the union {v≈x ‖P (x), v≈x ‖P (s(x))} is not modeled
by {P (s(0))} because there is no instantiation of v that is suitable for both
constrained clauses.

Let M and N be two (constrained) clause sets. We write N |= M if each
model of N is also a model of M . We write N |=F M if the same holds for
each Herbrand model of N over F , and N |=Ind M if IN |= M . A constrained
clause set is satisfiable if it has a model, and it is satisfiable over F if it has
a Herbrand model over F .

3If M is a Herbrand interpretation over the signature F , then σ : V → T (F) is a
substitution mapping every existential variable to a ground term.

10



Inference Rules and Redundancy

An inference rule is a relation on constrained clauses. Its elements are called
inferences and are written as4

α1 ‖C1 . . . αk ‖Ck

α ‖C .

The constrained clauses α1 ‖C1, . . . , αk ‖Ck are called the premises and α ‖C
the conclusion of the inference. An inference system is a set of inference rules.
An inference rule is applicable to a constrained clause set N if the premises
of the rule are contained in N .

A ground constrained clause α ‖C is called redundant with respect to a set
N of constrained clauses if there are ground instances α ‖C1, . . . , α ‖Ck (with
the common constraint α) of constrained clauses in N such that Ci ≺ C for all
i and C1, . . . , Ck |= C.5 A non-ground constrained clause is redundant if all
its ground instances are redundant. A ground inference with conclusion β ‖B
is called redundant with respect to N if either some premise is redundant or if
there are ground instances β ‖C1, . . . , β ‖Ck of constrained clauses in N such
that C1, . . . , Ck |= B and C1, . . . , Cn are smaller than the maximal premise of
the ground inference. A non-ground inference is redundant if all its ground
instances are redundant.

A constrained clause set N is saturated (with respect to a given inference
system) if each inference with premises in N is redundant with respect to N .

Predicates

Our notion of (constrained) clauses does not natively support predicative
atoms. However, predicates can be included as follows: We consider a many-
sorted framework with two sorts term and predicate, where the predicative
sort is separated from the sort of all other terms. The signature is extended
by a new constant true of the predicative sort, and for each predicate P
by a function symbol fP of sort term, . . . , term → predicate. We then re-
gard a predicative atom P (t1, . . . , tn) as an abbreviation for the equation
fP (t1, . . . , tn)≈true. As there are no variables of the predicative sort, substi-
tutions do not introduce symbols of this sort and we never explicitly express

4Inference rules are sometimes marked by the letter I to differentiate them from re-
duction rules, marked by R, where the premises are replaced by the conclusion. Since all
rules appearing in this article are inference rules, we omit this marker.

5Note that |= and |=F agree on ground clauses over F .

11



the sorting, nor do we include predicative symbols when writing down signa-
tures.

A given term ordering ≺ is extended to the new symbols such that true
is minimal.

12



3 First-Order Reasoning in
Fixed Domains

In this section, we will present a saturation procedure for sets of constrained
clauses over a domain T (F) and show how it is possible to decide whether
a saturated constrained clause set possesses a Herbrand model over F . The
calculus extends the superposition calculus of Bachmair and Ganzinger [2].

Before we come to the actual inference rules, let us review the semantics of
constrained clauses by means of a simple example. Consider the constrained
clause set

{ ‖ → G(s(x), 0) ,
u≈x, v≈y ‖ G(x, y) → }

over the signature Fnat = {s, 0}.
This set corresponds to the formula ∃u, v.(∀x.G(s(x), 0)) ∧ ¬G(u, v). In

each Herbrand interpretation over Fnat, this formula is equivalent to the for-
mula ∃u, v.(∀x.G(s(x), 0))∧¬G(u, v)∧(∀x.u 6=s(x)∨v 6=0), which corresponds
to the following constrained clause set:

{ ‖ → G(s(x), 0) ,
u≈x, v≈y ‖ G(x, y) → ,
u≈s(x), v≈0 ‖ � }

Hence these two constrained clause sets are equivalent in every Herbrand
interpretation over the signature Fnat.

An aspect that catches the eye is that, although the clausal part of the last
constrained clause is empty, this does not mean that the constrained clause
set is unsatisfiable over Fnat. The � clause is constrained by u≈s(x) ∧ v≈0,
which means that, e.g., it is not satisfiable under the instantiation u 7→ s(0)
and v 7→ 0. In fact, the instantiated formula (∀x.G(s(x), 0)) ∧ ¬G(s(0), 0) ∧
(∀x.s(0) 6=s(x) ∨ 06=0) is unsatisfiable. On the other hand, the clause set is
satisfiable under the instantiation u 7→ 0 and v 7→ s(0).

13



Derivations using our calculus will usually contain multiple, potentially
infinitely many, constrained clauses with empty clausal parts. We explore in
Theorem 3.12 how the unsatisfiability of a saturated set of constrained clauses
over F depends on a covering property of the constraints of constrained
clauses with empty clausal part. In Theorem 3.6, we prove that this property
is decidable for finite constrained clause sets. Furthermore, we show how
to saturate a given set of constrained clauses (Theorem 3.16). Finally, we
present in Section 3.3 an extension of the calculus that allows to deduce a
wider range of Herbrand models of F -satisfiable constrained clause sets.

3.1 The Superposition Calculus

for Fixed Domains

We consider the following inference rules, which are defined with respect to a
reduction ordering ≺ on T (F , X) that is total on ground terms. Most of the
rules are quite similar to the usual superposition rules [2], just generalized
to constrained clauses. However, they require additional treatment of the
constraints to avoid inferences like

u≈f(x) ‖→ a≈b u≈g(y) ‖ a≈c→
u≈f(x), u≈g(y) ‖ b≈c→

the conclusion of which contains the existential variable u more than once in
its constraint and hence is not a constrained clause. In addition, there are
two new rules that rewrite constraints.

To simplify the presentation below, we do not enrich the calculus by the
use of a negative literal selection function as in [2], although this is also
possible. As usual, we consider the universal variables in different appearing
constrained clauses to be renamed apart. If α1 = v1≈s1, . . . , vn≈sn and
α2 = v1≈t1, . . . , vn≈tn are two constraints, we write α1≈α2 for the equations
s1≈t1, . . . , sn≈tn, and mgu(α1, α2) for the most general simultaneous unifier
of (s1, t1), . . . , (sn, tn). Note that α1≈α2 does not contain any existential
variables.

Definition 3.1. The superposition calculus for fixed domains SFD consists
of the following inference rules:

• Equality Resolution:

α ‖Γ, s≈t→ ∆

(α ‖Γ→ ∆)σ

14



where (i) σ = mgu(s, t) and (ii) (s≈t)σ is maximal in (Γ, s≈t→ ∆)σ.1

• Equality Factoring:

α ‖Γ→ ∆, s≈t, s′≈t′

(α ‖Γ, t≈t′ → ∆, s′≈t′)σ

where (i) σ = mgu(s, s′), (ii) (s≈t)σ is maximal in (Γ→ ∆, s≈t, s′≈t′)σ,
and (iii) tσ 6� sσ

• Superposition, Right:

α1 ‖Γ1 → ∆1, l≈r α2 ‖Γ2 → ∆2, s[l
′]p≈t

(α1 ‖Γ1, Γ2 → ∆1, ∆2, s[r]p≈t)σ1σ2

where (i) σ1 = mgu(l, l′), σ2 = mgu(α1σ1, α2σ1), (ii) (l≈r)σ1σ2 is
strictly maximal in (Γ1 → ∆1, l≈r)σ1σ2 and (s≈t)σ1σ2 is strictly max-
imal in (Γ2 → ∆2, s≈t)σ1σ2, (iii) rσ1σ2 6� lσ1σ2 and tσ1σ2 6� sσ1σ2,
and (iv) l′ is not a variable.

• Superposition, Left:

α1 ‖Γ1 → ∆1, l≈r α2 ‖Γ2, s[l
′]p≈t→ ∆2

(α1 ‖Γ1, Γ2, s[r]p≈t→ ∆1, ∆2)σ1σ2

where (i) σ1 = mgu(l, l′), σ2 = mgu(α1σ1, α2σ1), (ii) (l≈r)σ1σ2 is
strictly maximal in (Γ1 → ∆1, l≈r)σ1σ2 and (s≈t)σ1σ2 is maximal in
(Γ2 → ∆2, s≈t)σ1σ2, (iii) rσ1σ2 6� lσ1σ2 and tσ1σ2 6� sσ1σ2, and (iv) l′

is not a variable.

• Constraint Superposition:

α1 ‖Γ1 → ∆1, l≈r α2[l
′] ‖Γ2 → ∆2

(α2[r] ‖α1≈α2[r], Γ1, Γ2 → ∆1, ∆2)σ

where (i) σ = mgu(l, l′), (ii) (l≈r)σ is strictly maximal in (Γ1 →
∆1, l≈r)σ, (iii) rσ 6� lσ, and (iv) l′ is not a variable.

• Equality Elimination:

α1 ‖Γ→ ∆, l≈r α2[r
′] ‖�

(α1 ‖Γ→ ∆)σ1σ2

where (i) σ1 = mgu(r, r′), σ2 = mgu(α1σ1, α2[l]σ1), (ii) (l≈r)σ1σ2 is
strictly maximal in (Γ → ∆, l≈r)σ1σ2, (iii) rσ1σ2 6� lσ1σ2, and (iv) r′

is not a variable.
1Note that we do not consider the constraint part for the maximality condition.

15



This inference system contains the standard universal superposition cal-
culus as the special case when there are no existential variables at all present,
i.e. V = ∅ and all constraints are empty: The rules equality resolution, equal-
ity factoring, and superposition right and left reduce to their non-constrained
counterparts and the constraint superposition and equality elimination rules
become obsolete.

While the former rules are thus well-known, a few words may be in order
to explain the idea behind constraint superposition and equality elimination.
They have been introduced to make the calculus refutationally complete,
i.e. to ensure that constrained clause sets that are saturated with respect
to the inference system and that do not have a Herbrand model over the
given signature always contain “enough” constrained empty clauses (cf. Def-
inition 3.4 and Theorem 3.12).

A notable feature of constraint superposition is how the information of
both premise constraints is combined in the conclusion. Classically, the ex-
istential variables would be Skolemized and the constraint of a constrained
clause would be regarded as part of its antecedent. In this setting, superpo-
sitions into the constraint part as considered here would not even require a
specialized rule but occur naturally in the following form:

α1, Γ1 → ∆1, l≈r α2[l
′], Γ2 → ∆2

(α1, α2[r], Γ1, Γ2 → ∆1, ∆2)σ

Translated into the language of constrained clauses, the conclusion would,
however, not be a well-formed constrained clause. In most inference rules,
we circumvent this problem by forcing a unification of the constraints of
the premises, so that we can use an equivalent and admissible conclusion.
For constraint superposition, this approach turns out to be too weak to
prove Proposition 3.8. Therefore, we instead replace α1 by α1≈α2[r] in this
inference rule to regain an admissible constrained clause.

The resulting constraint superposition rule alone is not sufficient to obtain
refutational completeness. Abstractly speaking, it only transfers information
about the equality relation from the clausal part into the constraint part.
For completeness, we also need a transfer the other way round. Once we
find terms that cannot be solutions to the existentially quantified variables,
we have to propagate this information through the respective equivalence
classes in the clausal part. The result is the rule equality elimination, which
deletes equations that are in conflict with the satisfiability of constrained
empty clauses.

The rules constraint superposition and equality elimination are the main
reason why SFD can manage theories that are not constructor-based, i.e.
where the calculus cannot assume the irreducibility of certain terms.

16



Example 3.2. Constraint superposition and equality elimination allow to
derive, e.g., u≈b ‖� from u≈b ‖→ a≈b and u≈a ‖�, although u≈a and u≈b
are not unifiable:

If b � a, then u≈b ‖� is derived by one step of equality elimination:

u≈b ‖→ b≈a u≈a ‖�
u≈b ‖�

Equality Elimination

Otherwise, u≈b ‖� follows from a step of constraint superposition and the
subsequent resolution of a trivial equality:

u≈b ‖→ a≈b u≈a ‖�
u≈b ‖ b≈b→ Constraint Superposition

u≈b ‖�
Equality Resolution

♦

When we work with predicative atoms in the examples, we will not make
the translation into the purely equational calculus explicit. If, e.g., P is a
predicate symbol that is translated into the function symbol fP , we write a
derivation

α1‖Γ1→∆1, fP (s1, . . . , sn)≈true α2 ‖Γ2, fP (t1, . . . , tn)≈true→ ∆2

(α1 ‖Γ1, Γ2, true≈true→ ∆1, ∆2)σ1σ2

(α1 ‖Γ1, Γ2 → ∆1, ∆2)σ1σ2

consisting of a superposition into a predicative atom and the subsequent
resolution of the atom true≈true in the following condensed form:

α1 ‖Γ1 → ∆1, P (s1, . . . , sn) α2 ‖Γ2, P (t1, . . . , tn)→ ∆2

(α1 ‖Γ1, Γ2 → ∆1, ∆2)σ1σ2

Example 3.3. For a simple example involving only superposition on predica-
tive atoms, consider the clause set NE = {→ G(a, p), → G(b, q), G(a, x) →
C(a, x), C(a, x) → R(a, x), G(b, x) → R(b, x)} that describes the elevator
example presented in the introduction, and additionally the two constrained
clauses u≈x, v≈y ‖R(y, x)→ and u≈x, v≈y ‖→ G(y, x). These clauses state
that there are a person and an elevator, such that the person can reach the
ground floor but not the restaurant floor in this elevator.

Assume a term ordering ≺ for which G(y, x) ≺ C(y, x) ≺ R(y, x). With
this ordering, the succedent is strictly maximal in each clause of NE. Because

17



superposition inferences always work on maximal atoms (condition (ii)), only
two inferences between the given constrained clauses are possible:

C(a, x)→ R(a, x) u≈x, v≈y ‖R(y, x)→
u≈x, v≈a ‖C(a, x)→

G(b, x)→ R(b, x) u≈x, v≈y ‖R(y, x)→
u≈x, v≈b ‖G(b, x)→

The first conclusion can now be superposed with the third clause of NE:

G(a, x)→ C(a, x) u≈x, v≈a ‖C(a, x)→
u≈x, v≈a ‖G(a, x)→

The last two conclusions can in turn be superposed with the constrained
clause u≈x, v≈y ‖→ G(y, x):

u≈x, v≈y ‖→ G(y, x) u≈x, v≈a ‖G(a, x)→
u≈x, v≈a ‖�

u≈x, v≈y ‖→ G(y, x) u≈x, v≈b ‖G(b, x)→
u≈x, v≈b ‖�

Now the only remaining SFD inferences are those between the constrained
clauses → G(a, p) and u≈x, v≈a ‖G(a, x)→ and between the constrained
clauses → G(b, q) and u≈x, v≈b ‖G(b, x)→. They both result in clauses
that are redundant with respect to the last two conclusions. Hence the
inferences themselves are redundant, which means that they do not give us
any new information on the system, and we can ignore them.

In order to present such a series of inferences in a more concise manner,
we will write them down as follows, where all constrained clauses are indexed
and premises to an inference are represented by their indices:

clauses in NE: 1 : ‖ → G(a, p)
2 : ‖ → G(b, q)
3 : ‖ G(a, x) → C(a, x)
4 : ‖ C(a, x) → R(a, x)
5 : ‖ G(b, x) → R(b, x)

additional clauses: 6 : u≈x, v≈y ‖ R(y, x) →
7 : u≈x, v≈y ‖ → G(y, x)

Superposition(4,6) = 8 : u≈x, v≈a ‖ C(a, x) →
Superposition(5,6) = 9 : u≈x, v≈b ‖ G(b, x) →

Superposition(3,7) = 10 : u≈x, v≈a ‖ G(a, x) →
Superposition(7,9) = 11 : u≈x, v≈b ‖ �

Superposition(7,10) = 12 : u≈x, v≈a ‖ �
♦

18



3.2 Model Construction

and Refutational Completeness

By treating each constraint as a part of the antecedent, constrained clauses
can be regarded as a special class of unconstrained clauses. Because of this,
the construction of a Herbrand interpretation for a set of constrained clauses
is strongly connected to the one for universal clause sets [2]. The main differ-
ence is that we now have to account for existential variables before starting
the construction. To define a Herbrand interpretation IN of a set N of con-
strained clauses, we proceed in two steps: First, we identify an instantiation
of the existential variables that does not contradict any constrained clauses
with empty clausal part, and then we construct the model of a set of uncon-
strained clause instances.

Definition 3.4 (Coverage). Given a set N of constrained clauses, we denote
the set of all constraints of constrained clauses in N with empty clausal part
by AN , i.e. AN = {α | (α ‖�) ∈ N}. We call AN covering if every ground
constraint over the given signature is an instance of a constraint in AN .

Furthermore, we distinguish one constraint αN : If AN is not covering,
then let αN be a minimal ground constraint with respect to ≺ such that αN

is not an instance of any constraint in AN . Otherwise let αN be arbitrary.

Definition 3.5 (Minimal Model of a Constrained Clause Set). Let N be a set
of constrained clauses with associated ground constraint αN . The Herbrand
interpretation IαN

N is defined as the minimal model of the unconstrained
clause set {Cσ | (α ‖C) ∈ N ∧ ασ = αN} as described in Section 2. We usu-
ally do not mention αN explicitly and write IN for IαN

N if no ambiguities
arise from this.

Note that even if AN is not covering, αN is usually not uniquely defined.
E.g. for the constrained clause set N = {u≈0, v≈0 ‖�} over F = {0, s}, it
holds that AN = {(u≈0, v≈0)} and both α1

N = {u≈0, v≈s(0)} and α2
N =

{u≈s(0), v≈0} are valid choices. When necessary, this ambiguity can be
avoided by using an ordering on the existential variables as a tie breaker.

While it is well known how the construction of IN works once αN is given,
it is not that obvious that it is decidable whether AN is covering and, if it is
not, effectively compute αN . This is, however, possible for finite AN :

Theorem 3.6 (Decidability of Finite Coverage). Let N be a set of con-
strained clauses such that AN is finite. It is decidable whether AN is covering,
and αN is computable if AN is not covering.

19



Proof. Consider the formula

Φ =
∧

(v1≈t1,...,vn≈tn ‖�)∈N

v1 6≈t1 ∨ . . . ∨ vn 6≈tn

and let {x1, . . . , xm} ⊆ X be the set of universal variables occurring in Φ. The
set AN is not covering if and only if the formula ∀x1, . . . , xm.Φ is satisfiable
in T (F). Such so-called disunification problems have been studied among
others by Comon and Lescanne [9], who gave a terminating algorithm that
eliminates the universal quantifiers from ∀x1, . . . , xm.Φ and transforms the
initial problem into a formula Ψ1 ∨ . . . ∨Ψm, m ≥ 0, such that each Ψj is of
the shape

Ψj = ∃~u.v1≈s1 ∧ . . . ∧ vn≈sn ∧ z1 6≈s′1 ∧ . . . ∧ zk 6≈s′k ,

where v1, . . . , vn occur only once in each Ψj, the zi are variables and zi 6= s′i.
This is done in such a way that (un-)satisfiability in T (F) is preserved. The
formula Ψ1 ∨ . . . ∨Ψm is satisfiable in T (F) if and only if the disjunction is
not empty. All solutions can easily be read off from the formula. ♦

For saturated sets, the information contained in the constrained empty
clauses is already sufficient to decide whether Herbrand models exist: Specif-
ically, we will now show that a saturated constrained clause set N has a Her-
brand model over F (namely IN) if and only if AN is not covering. In this
case, IN is a minimal model of {Cσ | (α ‖C) ∈ N ∧ ασ = αN}, and we will
also call it the minimal model of N (with respect to αN). Observe, however,
that for other choices of αN there may be strictly smaller models of N with
respect to set inclusion: For N = { ‖→ P (s(0)), u≈x ‖→ P (x)}, we have
αN = u≈0 and IN = IαN

N = {P (0), P (s(0))}, and IN strictly contains the
model {P (s(0))} of N that corresponds to the constraint u≈s(0).

Since IN is defined via a set of unconstrained clauses, it inherits all prop-
erties of minimal models of unconstrained clause sets. Above all, we will use
the property that the rewrite system RN constructed in parallel with IN is
confluent and terminating.

Lemma 3.7. Let N be saturated with respect to the inference system SFD.
If AN is not covering then αN is irreducible by RN .

Proof. Assume contrary to the proposition that AN is not covering and
αN is reducible. Then there are a position p and a rule lσ → rσ ∈ RN

produced by a ground instance (β ‖Λ→ Π, l≈r)σ of a constrained clause
β ‖Λ→ Π, l≈r ∈ N , such that lσ = αN |p.

20



Because of the minimality of αN and because αN � αN [rσ]p, there
must be a constrained clause γ ‖� ∈ N and a substitution σ′ such that
γσ′≈αN [rσ]p. Since by definition αN is not an instance of γ, the position p
is a non-variable position of γ. Since furthermore βσ = αN = γσ′[lσ]p and
σ is a unifier of γ|p and r and γσ′|p = rσ, there is an equality elimination
inference as follows:

β ‖Λ→ Π, l≈r γ ‖�
(β ‖Λ→ Π)σ1σ2

σ1 = mgu(γ|p, r), σ2 = mgu(βσ1, γ[l]pσ1)

Because of the saturation of N , the ground instance

(β ‖Λ→ Π, l≈r)σ (γ ‖�)σ′

(β ‖Λ→ Π)σ

of this derivation is redundant. The first premise cannot be redundant be-
cause it is productive; the second one cannot be redundant because there are
no clauses that are smaller than �. This means that the constrained clause
(β ‖Λ→ Π)σ follows from ground instances of constrained clauses in N all
of which are smaller than the maximal premise (β ‖Λ→ Π, l≈r)σ. But then
the same ground instances imply (β ‖Λ→ Π, l≈r)σ, which means that this
constrained clause cannot be productive. A contradiction. ♦

Lemma 3.8. Let N be saturated with respect to SFD and let AN not be
covering. If IN 6|= N and if (α ‖C)σ is a minimal ground instance of a
constrained clause in N such that IN 6|= (α ‖C)σ, then ασ = αN .

Proof. Let C = Γ→ ∆. By definition of entailment, IN 6|= (α ‖C)σ implies

that IN |= αN≈ασ, or equivalently αN
∗↔RN

ασ. We have already seen in
Lemma 3.7 that αN is irreducible. Because of the confluence of RN , either
ασ = αN or ασ must be reducible.

Assume the latter, i.e. that ασ|p = lσ′ for a position p and a rule lσ′ →
rσ′ ∈ RN that has been produced by the ground instance (β ‖Λ→ Π, l≈r)σ′

of a constrained clause β ‖Λ→ Π, l≈r ∈ N . If p is a variable position in α or
not a position in α at all, then the rule actually reduces σ, which contradicts
the minimality of (α ‖C)σ. Otherwise, there is a constraint superposition
inference

β ‖Λ→ Π, l≈r α ‖Γ→ ∆

(α[r]p ‖ β≈α[r]p, Λ, Γ→ Π, ∆)τ
τ = mgu(α|p, l) .

Consider the ground instance δ ‖D := (α[r]p ‖ β≈α[r]p, Λ, Γ→ Π, ∆)σσ′ of
the conclusion. This constrained clause is not modeled by IN . On the other
hand, that N is saturated implies that the ground inference

(β ‖Λ→ Π, l≈r)σ′ (α ‖Γ→ ∆)σ

(α[r]p ‖ β≈α[r]p, Λ, Γ→ Π, ∆)σσ′

21



is redundant. The premises cannot be redundant, because (β ‖Λ→ Π, l≈r)σ′

is productive and (α ‖C)σ is minimal, so the constrained clause δ ‖D follows
from ground instances of constrained clauses of N all of which are smaller
than δ ‖D. Since moreover δ ‖D ≺ (α ‖C)σ, all these ground instances hold
in IN , hence IN |= δ ‖D by minimality of (α ‖C)σ. This is a contradiction
to IN 6|= δ ‖D. ♦

Proposition 3.9. Let N be a set of constrained clauses such that N is sat-
urated with respect to SFD and AN is not covering. Then IN |= N .

Proof. Assume, contrary to the proposition, that N is saturated, AN is not
covering, and IN 6|= N . Then there is a minimal ground instance (α ‖C)σ of
a constrained clause α ‖C ∈ N that is not modeled by IN . We will refute
this minimality. We proceed by a case analysis of the position of the maximal
literal in Cσ. As usual, we assume that the appearing constrained clauses
do not share any non-existential variables.

• C = Γ, s≈t → ∆ and sσ≈tσ is maximal in Cσ with sσ = tσ. Then s
and t are unifiable, and so there is an inference by equality resolution
as follows:

α ‖Γ, s≈t→ ∆

(α ‖Γ→ ∆)σ1
σ1 = mgu(s, t)

Consider the ground instance (α ‖Γ→ ∆)σ of the conclusion. From
this constrained clause, a contradiction can be obtained as in the proof
of Lemma 3.8.

• C = Γ, s≈t → ∆ and sσ≈tσ is maximal in Cσ with sσ � tσ. Since
IN 6|= Cσ, we know that sσ≈tσ ∈ IN , and because RN only rewrites
larger to smaller terms sσ must be reducible by a rule lσ′→rσ′ ∈ RN

produced by a ground instance (β ‖Λ→ Π, l≈r)σ′ of a constrained
clause β ‖Λ→ Π, l≈r ∈ N . So sσ|p = lσ′ for some position p in sσ.
Case 1: p is a non-variable position in s. Since βσ′ = αN = ασ and
sσ|p = lσ′, there is an inference by left superposition as follows:

β ‖Λ→ Π, l≈r α ‖Γ, s≈t→ ∆

(α ‖Λ, Γ, s[r]p≈t→ Π, ∆)σ1σ2
σ1 := mgu(s|p, l), σ2 = mgu(βσ1, ασ1)

As before, a contradiction can be derived from the existence of the
ground instance (α ‖Λ, Γ, s[r]p≈t→ Π, ∆)σσ′ of the conclusion.
Case 2: p = p′p′′, where s|p′ = x is a variable. Then (xσ)|p′′ = lσ. If
τ is the substitution that coincides with σ except that xτ = xσ[rσ]p′′ ,
then IN 6|= Cτ and (α ‖C)τ contradicts the minimality of (α ‖C)σ.

22



• C = Γ → ∆, s≈t and sσ≈tσ is maximal in Cσ with sσ = tσ. This
cannot happen because then Cσ would be a tautology.

• C = Γ → ∆, s≈t and sσ≈tσ is strictly maximal in Cσ with sσ �
tσ. Since IN 6|= Cσ, we know that IN |= Γσ, IN 6|= ∆σ, and IN 6|=
sσ≈tσ, and thus C did not produce the rule sσ → tσ. The only
possible reason for this is that sσ is reducible by a rule lσ′→rσ′ ∈
RN produced by a ground instance (β ‖Λ→ Π, l≈r)σ′ of a constrained
clause β ‖Λ→ Π, l≈r ∈ N . So sσ|p = lσ′ for some position p in sσ.
Case 1: p is a non-variable position in s. Since βσ′ = αN = ασ and
sσ|p = lσ′, there is an inference by right superposition as follows:

β ‖Λ→ Π, l≈r α ‖Γ→ ∆, s≈t

(α ‖Λ, Γ→ Π, ∆, s[r]p≈t)σ1σ2
σ1 := mgu(s|p, l), σ2 = mgu(βσ1, ασ1)

As before, a contradiction can be derived from the existence of the
ground instance (α ‖Λ, Γ→ Π, ∆, s[r]p≈t)σσ′ of the conclusion.
Case 2: p = p′p′′, where s|p′ = x is a variable. Then (xσ)|p′′ = lσ′. If
τ is the substitution that coincides with σ except that xτ = xσ[rσ′]p′′ ,
then IN 6|= Cτ and Cτ contradicts the minimality of Cσ.

• C = Γ→ ∆, s≈t and sσ≈tσ is maximal but not strictly maximal in Cσ
with sσ � tσ. Then ∆ = ∆′, s′≈t′ such that s′σ≈t′σ is also maximal in
Cσ, i.e. without loss of generality sσ = s′σ and tσ = t′σ. Then there
is an inference by equality factoring as follows:

α ‖Γ→ ∆′, s≈t, s′≈t′

(α ‖Γ, t≈t′ → ∆′, s′≈t′)σ1
σ1 = mgu(s, s′)

In analogy to the previous cases, a contradiction can be derived from
the existence of the ground instance (α ‖Γ, t≈t′ → ∆′, s′≈t′)σ of the
conclusion.

• Cσ does not contain any maximal literal at all, i.e. C = �. Since
ασ = αN by Lemma 3.8 but IN 6|= ασ≈αN by definition of αN , this
cannot happen.

Since we obtained a contradiction in each case, the initial assumption must
be false, i.e. the proposition holds. ♦

For the construction of IN , we chose αN to be minimal. For non-minimal
αN , the proposition does not hold:

23



Example 3.10. If N = {u≈a ‖→ a≈b, u≈b ‖ a≈b→} and a � b, then no
inference rule from SFD is applicable to N , so N is saturated. However,
N implies u≈a ‖�. So the Herbrand interpretation constructed with α′N =
{u≈a} is not a model of N . ♦

On the other hand, whenever N has any Herbrand model over F then
AN is not covering:

Proposition 3.11. Let N be a set of constrained clauses over F for which
AN is covering. Then N does not have any Herbrand model over F .

Proof. LetM be a Herbrand model of N over F .
ThenM |= {(α ‖�) | (α ‖�) ∈ N}, i.e. there is a substitution σ: V → T (F),
such that for all (α ‖�) ∈ N and all τ : X → T (F), M |= αστ implies
M |= �. Since the latter is false, M |= ¬αστ for all τ , and so M |= ¬ασ.
The same holds for the Herbrand modelM≈ over F where ≈ is interpreted
as syntactic equality, i.e.M≈ |= ¬ασ. But then the constraint

∧
v∈V v≈vσ is

not an instance of the constraint of any constrained clause of the form α ‖�,
so AN is not covering. ♦

A constrained clause set N for which AN is covering may nevertheless have
both non-Herbrand models and Herbrand models over an extended signature:
If F = {a} and N = {u≈a ‖�} then AN is covering, but any standard first-
order interpretation with a universe of at least two elements is a model of
N .

Propositions 3.9 and 3.11 constitute the following theorem:

Theorem 3.12 (Refutational Completeness). Let N be a set of constrained
clauses over F that is saturated with respect to SFD. Then N has a Herbrand
model over F if and only if AN is not covering.

Moreover, the classical notions of (first-order) theorem proving deriva-
tions and fairness from [2] carry over to our setting.

Definition 3.13 (Theorem Proving Derivations). A (finite or countably in-
finite) |=F theorem proving derivation is a sequence N0, N1, . . . of constrained
clause sets, such that either

• (Deduction) Ni+1 = Ni ∪ {α ‖C} and Ni |=F Ni+1, or

• (Deletion) Ni+1 = Ni \ {α ‖C} and α ‖C is redundant with respect to
Ni.

24



If N is a saturated constrained clause set for which AN is not covering, a
|=Ind theorem proving derivation for N is a sequence N0, N1, . . . of constrained
clause sets such that N ⊆ N0 and either

• (Deduction) Ni+1 = Ni ∪ {α ‖C} and N |=Ind Ni ⇐⇒ N |=Ind Ni+1,
or

• (Deletion) Ni+1 = Ni \ {α ‖C} and α ‖C is redundant with respect to
Ni.

Due to the semantics of constrained clauses and specifically the fact that
all constrained clauses in a set are connected by common existential quan-
tifiers, it does not suffice to require that Ni |=F α ‖C (or Ni |=Ind α ‖C,
respectively). E.g. for the signature F = {a, b} and a ≺ b, the constrained
clause α ‖C = u≈x ‖→ x≈b is modeled by every Herbrand interpretation
over F , but {u≈x ‖→ x≈a} 6|=Ind {u≈x ‖→ x≈a} ∪ {α ‖C}.

Our calculus is sound, i.e. we may employ it for deductions in both types
of theorem proving derivations:

Lemma 3.14. Let α ‖C be the conclusion of a SFD inference with premises
in N . Then Nτ |= Nτ ∪ {ατ → Cτ} for each substitution τ : V → T (F).

Proof. This proof relies on the soundness of paramodulation, the unordered
correspondent to (unconstrained) superposition [25].

Let α ‖C be the conclusion of an inference from α1 ‖C1, α2 ‖C2 ∈ N .
Then ατ → Cτ is (modulo (unconstrained) equality resolution) an instance
of the conclusion of a paramodulation inference from α1τ → C1τ and α2τ →
C2τ . Because of the soundness of the paramodulation rules, we have Nτ |=
Nτ ∪ {ατ → Cτ}. ♦

Proposition 3.15 (Soundness). The calculus SFD is sound for |=F and |=Ind

theorem proving derivations:

1. Let α ‖C be the conclusion of a SFD inference with premises in N .
Then N |=F N ∪ {α ‖C}.

2. Let N be saturated with respect to SFD, let AN not be covering, and let
α ‖C be the conclusion of a SFD inference with premises in N ∪ N ′.
Then N |=Ind N ′ if and only if N |=Ind N ′ ∪ {α ‖C}.

Proof. This follows directly from Lemma 3.14. ♦

25



A |=F or |=Ind theorem proving derivation N0, N1, . . . is fair if every in-
ference with premises in the constrained clause set N∞ =

⋃
j

⋂
k≥j Nk is

redundant with respect to
⋃

j Nj. As usual, fairness can be ensured by sys-
tematically adding conclusions of non-redundant inferences, making these
inferences redundant.

As it relies on redundancy and fairness rather than on a concrete inference
system (as long as this system is sound), the proof of the next theorem is
exactly as in the unconstrained case:

Theorem 3.16 (Saturation). Let N0, N1, N2, . . . be a fair |=F theorem prov-
ing derivation. Then the set N∞ is saturated. Moreover, N0 has a Herbrand
model over F if and only if N∞ does.

Let N0, N1, . . . be a fair |=Ind theorem proving derivation for N . Then the
set N ∪N∞ is saturated. Moreover, N |=Ind N0 if and only if N |=Ind N∞.

Example 3.17. Consider again the example of the elevator presented in the
introduction. We will now prove that ∀y, x.G(y, x) → R(y, x) is valid in all
Herbrand models of NE over {a, b}, i.e. that NE∪{¬∀y, x.G(y, x)→ R(y, x)}
does not have any Herbrand models over {a, b}. Following the line of thought
presented above, we transform the negated query into the constrained clause
set

{ u≈x, v≈y ‖R(y, x)→, u≈x, v≈y ‖→ G(y, x) }

and then saturate NE together with these clauses. This saturation is exactly
what we did in Example 3.3. The derived constrained empty clauses are
u≈x, v≈a ‖� and u≈x, v≈b ‖�. Their constraints are covering for {a, b},
which means that the inital constrained clause set does not have any Her-
brand models over {a, b}, i.e. that NE |={a,b} ∀y, x.G(y, x)→ R(y, x). ♦

3.3 Other Herbrand Models

of Constrained Clause Sets

A so far open question in the definition of the minimal model IN is whether
there is the alternative of choosing a non-minimal constraint αN . We have
seen in Example 3.10 that this is in general not possible for sets N that are
saturated with respect to our present calculus, but we have also seen after
Theorem 3.6 that models corresponding to non-minimal constraints may well
be of interest. Such a situation will occur again in Example 4.4, where
knowledge about all models allows to find a complete set of counterexamples
to a query.

26



To include also Herbrand models arising from non-minimal constraints,
we now change our inference system. The trade-off is that we introduce
a new and prolific inference rule that may introduce constrained clauses
that are larger than the premises. This makes even the saturation of sim-
ple constrained clause sets non-terminating. E.g. a derivation starting from
{ ‖→ f(a)≈a, u≈a ‖→ P (a)} will successively produce increasingly large
constrained clauses u≈f(a) ‖→ P (a), u≈f(f(a)) ‖→ P (a) and so on.

The following two changes affect only this section.

Definition 3.18. The calculus SFD+ arises from SFD by replacing the equal-
ity elimination inference rule by the following more general rule:

α1 ‖Γ→ ∆, l≈r α2[r
′] ‖Γ2 → ∆2

(α2[l] ‖α1≈α2[l], Γ1, Γ2 → ∆1, ∆2)σ

where (i) σ = mgu(r, r′), (ii) lσ≈rσ is strictly maximal in (Γ → ∆, l≈r)σ,
(iii) rσ 6� lσ, and (iv) r′ is not a variable.

Note that in a purely predicative setting, i.e. when all equations outside
constraints are of the form t≈true, the separation of base sort and predica-
tive sort prevents the application of both the original and the new equality
elimination rule. So the calculi SFD and SFD+ coincide in this case.

Definition 3.19. Let N be a set of constrained clauses. If AN is not covering,
then let αN be any ground constraint that is not an instance of any constraint
in AN (note that αN does not have to be minimal). Otherwise let αN be
arbitrary.

The Herbrand interpretation IαN
N is still defined as the minimal model of

the unconstrained clause set {Cσ | (α ‖C) ∈ N ∧ ασ = αN}.

Since the proof of Lemma 3.7 depends strongly on the minimality of αN ,
we have to change our proof strategy and cannot rely on previous results.

Lemma 3.20. Let N be saturated with respect to SFD+. Assume that AN is
not covering and fix some αN . If IN 6|= N , then there is a ground instance
(α ‖C)σ of a constrained clause in N such that IN 6|= (α ‖C)σ and ασ = αN .

Proof. Let (α ‖C)σ be the minimal ground instance of a constrained clause
in N such that IN 6|= (α ‖C)σ. We first show that we can restrict ourselves
to the case where αN rewrites to ασ using RN and then solve this case.

IN 6|= (α ‖C)σ implies IN |= ασ≈αN , thus by confluence of RN

ασ
∗→RN

α0 RN

∗← αN ,

27



where α0 is the normal form of αN under RN . We show that ασ = α0.
If ασ 6= α0, then there is a rule lσ′ → rσ′ ∈ RN that was produced by the

ground instance (β ‖Λ→ Π, l≈r)σ′ of a constrained clause β ‖Λ→ Π, l≈r ∈
N such that ασ[lσ′]p →RN

ασ[rσ′]p.
If p is a variable position in α or not a position in α at all, then the rule

actually reduces σ, which contradicts the minimality of (α ‖C)σ.
So p must be a non-variable position of α. Let C = Γ→ ∆. Then there

is a constraint superposition inference as follows:

β ‖Λ→ Π, l≈r α ‖Γ→ ∆

(α[r]p ‖ β≈α[r]p, Λ, Γ→ Π, ∆)τ
τ = mgu(α|p, l)

The ground instance δ ‖D := (α[r]p ‖ β≈α[r]p, Λ, Γ→ Π, ∆)σσ′ of the con-
clusion is not modeled by IN . On the other hand, because N is saturated,
the ground instance

(β ‖Λ→ Π, l≈r)σ′ (α ‖Γ→ ∆)σ

(α[r]p ‖ β≈α[r]p, Λ, Γ→ Π, ∆)σσ′

of the above inference is redundant. The first premise cannot be redundant
because it is productive; the second one cannot be redundant because of the
minimality of (α ‖Γ→ ∆)σ. This means that the conclusion follows from
ground instances of constrained clauses in N all of which are smaller than
the maximal premise (α ‖Γ→ ∆)σ. All these ground instances are modeled
by IN , and so IN |= δ ‖D.

So whenever IN 6|= N , there is a ground instance (α ‖C)σ of a constrained

clause in N such that IN 6|= (α ‖C)σ and ασ = α0. In particular αN
∗→RN

ασ.

Let n ∈ N be the minimal number for which there is a ground instance
(α ‖C)σ of a constrained clause α ‖C = α ‖Γ→ ∆ in N such that IN 6|=
(α ‖C)σ and αN rewrites to ασ via RN in n steps, written αN →n

RN
ασ. We

have to show that n = 0.
Assume n > 0. Then the last step of the derivation αN →n

RN
ασ is of the

form ασ[lσ′]p →RN
ασ[rσ′]p = ασ, where the rule lσ′ → rσ′ ∈ RN has been

produced by a constrained clause β ‖Λ→ Π, l≈r ∈ N with βσ′ = αN .
If p is a variable position in α or not a position in α at all, we write

p = p′p′′ such that α|p′ = x is a variable. Let τ be the substitution that
coincides with σ except that xτ = xσ[lσ′]p′′ . Then IN 6|= (α ‖C)τ and
αN →n−1

RN
ατ contradicts the minimality of n.

Otherwise there is an equality elimination inference as follows:

β ‖Λ→ Π, l≈r α ‖Γ→ ∆

(α[l]p ‖ β≈α[l]p, Λ, Γ→ Π, ∆)τ
τ = mgu(α|p, r)

28



The ground instance δ ‖D := (α[l]p ‖ β≈α[l]p, Λ, Γ→ Π, ∆)σσ′ of the con-
clusion is not modeled by IN . In particular, IN |= δ and IN 6|= D.

Since the inference, and hence also the constrained clause δ ‖D is redun-
dant, there are constrained clauses δ1 ‖D1, . . . , δm ‖Dm ∈ N together with
substitutions σ1, . . . , σm, such that δ = δiσi for all i and D1σ1, . . . , Dmσm |=
D. This implies that IN 6|= (δi ‖Di)σi for at least one of the constrained
clause instances (δi ‖Di)σi. Since αN →n−1

RN
δiσi = δ = ασ[lσ′], this contra-

dicts the minimality of n. ♦

With this preparatory work done, we can reprove Proposition 3.11 and
Theorem 3.12 in this new setting:

Proposition 3.21. Let N be a set of constrained clauses that is saturated
with respect to SFD+. Then IαN

N |= N for any ground constraint αN that is
not covered by AN .

Proof. The proof is almost identical to the proof of Proposition 3.9. The only
difference is that, instead of reasoning about the minimal ground instance
(α ‖C)σ of a constrained clause α ‖C ∈ N that is not modeled by IN ,
we consider the minimal such instance that additionally satisfies ασ = αN .
Lemma 3.20 states that this is sufficient. ♦

Theorem 3.22 (Refutational Completeness). Let N be a set of constrained
clauses over F that is saturated with respect to SFD+. Then N has a Her-
brand model over F if and only if AN is not covering.

29



4 Fixed Domain and
Minimal Model Validity
of Constrained Clauses

Given a constrained or unconstrained clause set N , we are often not only
interested in the (un)satisfiability of N (with or without respect to a fixed
domain), but also in properties of Herbrand models of a N over F , especially
of IN . These are not always disjoint problems: We will show in Proposi-
tion 4.1 that, for some N and queries of the form ∃~x.A1∧ . . .∧An, first-order
validity and validity in IN coincide, so that we can explore the latter with
first-order techniques.

The result can be extended further: We will use our superposition calculus
SFD to demonstrate classes of constrained clause sets N and H for which
N |=F H and N |=Ind H coincide (Proposition 4.2). Finally, we will look at
ways to improve the termination of our approach for proving properties of
IN (Theorem 4.9).

In this context, it is important to carefully observe the semantics of, e.g.,
the expression N |=Ind H when N is constrained. Consider for example
the signature F = {a, b} with a � b, NP = {u≈x ‖→ P (x)} and HP =
{u≈x ‖P (x)→}. Then NP ∪ HP is unsatisfiable, but nevertheless HP is
valid in the model INP

= {P (b)}, i.e. NP |=Ind HP . These difficulties vanish
when the existential variables in NP and HP are renamed apart.

4.1 Relations between |=, |=F , and |=Ind

Even with standard first-order superposition, we can prove that first-order
validity and validity in IN coincide for some N and properties Γ:

Proposition 4.1. If N is a saturated set of unconstrained Horn clauses and

30



Γ is a conjunction of positive literals with existential closure ∃~x.Γ, then

N |=Ind ∃~x.Γ ⇐⇒ N |= ∃~x.Γ .

Proof. N |= ∃~x.Γ holds if and only if the set N ∪{∀~x.¬Γ} is unsatisfiable. N
is Horn, so during saturation of N ∪ {¬Γ}, where inferences between clauses
in N need not be performed, only purely negative, hence non-productive,
clauses can appear. That means that the Herbrand interpretation IN ′ is the
same for every clause set N ′ in the derivation. So N ∪ {¬Γ} is unsatisfiable
if and only if N 6|=Ind ∀~x.¬Γ, which is in turn equivalent to N |=Ind ∃~x.Γ. ♦

If N and Γ additionally belong to the Horn fragment of a first-order
logic (clause) class decidable by (unconstrained) superposition, such as for
example the monadic class with equality [3] or the guarded fragment with
equality [12], it is thus decidable whether N |=Ind ∃~x.Γ.

Given our superposition calculus for fixed domains, we can show that a
result similar to Proposition 4.1 holds for universally quantified queries.

Proposition 4.2. If N is a saturated set of Horn clauses and Γ is a con-
junction of positive literals with universal closure ∀~v.Γ, then

N |=Ind ∀~v.Γ ⇐⇒ N |=F ∀~v.Γ .

Proof. N |=F ∀~v.Γ holds if and only if N∪{∃~v.¬Γ} does not have a Herbrand
model over F .

If N ∪ {∃~v.¬Γ} does not have a Herbrand model over F , then obviously
N 6|=Ind ∃~v.¬Γ.

Otherwise, consider the constrained clause α ‖∆→ corresponding to the
formula ∃~v.¬Γ and assume without loss of generality that the existential
variables in N and α are renamed apart. The minimal models of the two
sets N and N ∪ {α ‖∆→} are identical, since during the saturation of N ∪
{α ‖∆→} inferences between clauses in N need not be performed and so only
purely negative, hence non-productive, constrained clauses can be derived.
This in turn just means that N |=Ind ∃~v.¬Γ. ♦

These propositions can also be proved using agruments from model the-
ory. The shown proofs using superposition or SFD, respectively, notably the
argument about the lack of new productive clauses, illustrate recurring cru-
cial concepts of superposition-based inductive theorem proving. We will see
in Example 4.4 that other superposition-based algorithms often fail because
they cannot obviate the derivation of productive clauses.

31



Example 4.3. We consider the partial definition of the usual ordering on the
naturals given by NG = {→ G(s(0), 0), G(x, y)→ G(s(x), s(y))}, as shown
in the introduction. We want to use Proposition 4.2 to check whether or
not NG |=Fnat ∀x.G(s(x), x). The first steps of a possible derivation are as
follows:

clauses in N : 1 : ‖ → G(s(0), 0)
2 : ‖ G(x, y) → G(s(x), s(y))

negated conjecture: 3 : u≈x ‖ G(s(x), x) →
Superposition(1,3) = 4 : u≈0 ‖ �
Superposition(2,3) = 5 : u≈s(y) ‖ G(s(y), y) →
Superposition(1,5) = 6 : u≈s(0) ‖ �
Superposition(2,5) = 7 : u≈s(s(z)) ‖ G(s(z), z) →

In the sequel, we repeatedly superpose the constrained clauses 1 and 2 into
(descendants of) the constrained clause 5. This way, we successively derive
all constrained clauses of the forms u≈sn(x) ‖G(s(x), x)→ and u≈sn(0) ‖�,
where sn(0) denotes the n-fold application s(. . . s(s(0)) . . .) of s to 0, and
analogously for sn(x). Since the constraints of the derived constrained �
clauses are covering in the limit, we know that NG |=Fnat ∀x.G(s(x), x). ♦

Using Proposition 4.2, we can employ the calculus SFD for fixed domain
reasoning to also decide properties of minimal models. This is even possible
in cases for which neither the approach of Ganzinger and Stuber [13] nor the
one of Comon and Nieuwenhuis [10] works.

Example 4.4. Consider a partial definition of the usual ordering on the nat-
urals given by the saturated set N ′

G = {→ G(s(x), 0), G(x, s(y))→ G(x, 0)}
over the signature Fnat = {0, s}. We want to prove N ′

G 6|=Ind ∀x, y.G(x, y).

• We start with the constrained clause u≈x, v≈y ‖G(x, y)→ and do the
following one step derivation:

clauses in N : 1 : ‖ → G(s(x), 0)
2 : ‖ G(x, s(y)) → G(x, 0)

negated conjecture: 3 : u≈x, v≈y ‖ G(x, y) →
Superposition(1,3) = 4 : u≈s(x), v≈0 ‖ �

All further inferences are redundant (even for the extended calculus
SFD+ from Section 3.3), thus the counter examples to the query are
exactly those for which no constrained empty clause was derived, i.e.
instantiations of u and v which are not an instance of {u 7→ s(x), v 7→
0}. Hence, these counter examples take on exactly the form {u 7→

32



0, v 7→ t2} or {u 7→ t1, v 7→ s(t2)} for any t1, t2 ∈ T (Fnat). Thus we
know that N ′

G 6|=Fnat ∀x, y.G(x, y), and since the query is positive, we
also know that N ′

G 6|=Ind ∀x, y.G(x, y).

• In comparison, the algorithm by Ganzinger and Stuber starts a deriva-
tion with the clause → G(x, y), derives in one step the potentially
productive clause → G(x, 0) and terminates with the answer “don’t
know”.

Ganzinger and Stuber also developed an extended approach that uses
a predicate gnd defined by {→ gnd(0), gnd(x) → gnd(s(x))}. In this
context, they guard each free variable x in a clause of N and the con-
jecture by a literal gnd(x) in the antecedent. These literals mimic the
effect of restricting the instantiation of variables to ground terms over
Fnat. The derivation then starts with the following clause set:

clauses defining gnd: → gnd(0)
gnd(x) → gnd(s(x))

modified N : gnd(x) → G(s(x), 0)
gnd(x), gnd(y), G(x, s(y)) → G(x, 0)

conjecture: gnd(x), gnd(y) → G(x, y)

Whenever the conjecture or a derived clause contains negative gnd
literals, one of these is selected, e.g. always the leftmost one. This allows
a series of superposition inferences with the clause gnd(x)→ gnd(s(x)),
deriving the following infinite series of clauses:

gnd(x), gnd(y) → G(x, y)
gnd(x1), gnd(y) → G(s(x1), y)
gnd(x2), gnd(y) → G(s(s(x2)), y)

. . .

The extended algorithm diverges without producing an answer to the
query.

• The approach by Comon and Nieuwenhuis fails as well. Before starting
the actual derivation, a so-called I-axiomatization of the negation of G
has to be computed. This involves a quantifier elimination procedure as
in [9], that fails since the head of the clause G(x, s(y))→ G(x, 0) does
not contain all variables of the clause: G is defined in the minimal model
IN ′

G
by G(x, y) ⇐⇒ (y = 0∧∃z.x = s(z))∨ (y = 0∧∃z.G(x, s(z))), so

its negation is defined by ¬G(x, y) ⇐⇒ (y 6= 0∨∀z.x 6= s(z))∧(y 6= 0∨
∀z.¬G(x, s(z))). Quantifier elimination simplifies this to ¬G(x, y) ⇐⇒

33



(y 6= 0 ∨ x = 0) ∧ (y 6= 0 ∨ ∀z.¬G(x, s(z))) but cannot get rid of the
remaining universal quantifier:

G(x, y) ⇐⇒ (y = 0 ∧ ∃z.x = s(z))
∨ (y = 0 ∧ ∃z.G(x, s(z)))

¬G(x, y) ⇐⇒ (y 6= 0 ∨ ∀z.x 6= s(z))
∧ (y 6= 0 ∨ ∀z.¬G(x, s(z)))

⇐⇒ (y 6= 0 ∨ (∀z.x 6= s(z) ∧ x = 0) by E(x)
∨ (∃w.∀z.x 6= s(z) ∧ x = s(w)))
∧ (y 6= 0 ∨ ∀z.¬G(x, s(z)))

⇐⇒ (y 6= 0 ∨ x = 0 by R1, C2,UE1,→E
∨ (∃w.∀z.x 6= s(z) ∧ x = s(w)))
∧ (y 6= 0 ∨ ∀z.¬G(x, s(z)))

⇐⇒ (y 6= 0 ∨ x = 0) by R1, D2,UE2,
∧ (y 6= 0 ∨ ∀z.¬G(x, s(z))) UE1,EE1,→E

The notation of the rules is taken from [7]. Almost all rules are reduc-
tion or simplification rules. The only exception is the explosion rule
E(x) which performs a signature-based case distinction on the possible
instantiations for the variable x: either x = 0 or x = s(t) for some term
t.

No rule is applicable to the last formula, but there is still a universal
quantifier left. Hence the quantifier elimination is not successful. ♦

The previous example can, alternatively, be solved using test sets [4, 5].
Test set approaches describe the minimal model of the specification by a set
of rewrite rules in such a way that the query holds iff it can be reduced to
a tautology (or a set thereof) by the rewrite rules. Such approaches rely on
the decidability of ground reducibility [27, 21, 23, 8].

Following Bouhoula and Jouannaud, N ′
G corresponds to the following

term rewrite system:

G(s(x), 0)→ true

G(x, 0)→ G(x, s(y))

G(0, y)→ false

To prove N ′
G 6|=Ind ∀x, y.G(x, y), the algorithm maintains a set of currently

regarded formulas with side conditions, which are all reducible to tautologies
iff N ′

G |=Ind ∀x, y.G(x, y). It starts with the query {G(x, y)≈true}. Using the
rewrite splitting rule, a case distinction based on the possible applications of

34



rewrite rules to G(x, y)≈true is performed. The result is the formula set

{ true≈true if x = s(x′) ∧ y = 0 ,
G(x, y′)≈true if y = 0 ∧ y′ = s(y′′) ,
false≈true if x≈0 } .

Since the last formula is not reducible to a tautology, N 6|=Ind ∀x, y.G(x, y)
follows.

Here is a second example where all previously mentioned methods fail:

Example 4.5. The formula ∀x.∃y.x 6≈0→ G(x, y) is obviously valid in each
Herbrand model of the theory N ′

G = {→ G(s(x), 0), G(x, s(y))→ G(x, 0)}
from Example 4.4 over the signature Fnat = {0, s}, i.e. it holds that N ′

G |=Fnat

∀x.∃y.x 6≈0 → G(x, y). In our inference system, this can again be proved in
a two step derivation:

clauses in N : 1 : ‖ → G(s(x), 0)
2 : ‖ G(x, s(y)) → G(x, 0)

negated conjecture: 3 : u≈x ‖ x≈0 →
4 : u≈x ‖ G(x, y) →

Equality Resolution(3) = 5 : u≈0 ‖ �
Superposition(1,4) = 6 : u≈s(x) ‖ �

The constraints u≈0 and u≈s(x) of the constrained empty clauses are cov-
ering, which proves that N ′

G |=Fnat ∀x.∃y.x 6≈0→ G(x, y).
However, all previous approaches based on implicit induction formalisms

fail to prove even the weaker proposition N ′
G |=Ind ∀x.∃y.x 6≈0 → G(x, y),

because they cannot cope with the quantifier alternation. ♦

4.2 Reasoning about IN

As we have seen in Example 4.3, a proof of |=F validity using SFD may require
the computation of infinitely many constrained empty clauses. This is not
surprising, because we have to show that an existentially quantified formula
cannot be satisfied by a term-generated infinite domain. In the context of the
concrete model IN of a saturated and F -satisfiable constrained clause set N ,
we can make use of additional structure provided by this model. To do so,
we introduce a further inference that enables the termination of derivations
in additional cases. The given version of this rule is in general not sound
for |=F but glued to the currently considered model IN ; however, analogous
results hold for every Herbrand model of N over F and even for arbitrary

35



sets of such models, in particular for the set of all Herbrand models of N
over F .

Over any domain where an induction theorem is applicable, i.e. a domain
on which a (non-trivial) well-founded partial ordering can be defined, we
can exploit this structure to concentrate on finding minimal solutions. We
do this by adding a form of induction hypothesis to the constrained clause
set. If, e.g., P is a unary predicate over the natural numbers and n is the
minimal number such that P (n) holds, then we know that at the same time
P (n−1), P (n−2), . . . do not hold. This idea will now be cast into an inference
rule (Definition 4.7) that can be used during a SFD-based |=Ind theorem
proving derivation (Theorem 4.9).

Let < be a well-founded partial ordering on on the elements of IN , i.e. on
T (F)/

∗↔RN
. If s, t are non-ground terms with equivalence classes [s] and [t],

then we define [s] < [t] if and only if [sσ] < [tσ] for all grounding substitutions
σ: X ′ → T (F), where X ′ ⊆ X∪V . The definition lifts to equivalence classes
[σ], [ρ]: X ′ → T (F)/ ∗↔R

of substitutions, where we say that [ρ] < [σ] if and

only if [xρ] < [xσ] for all x ∈ X ′.

Lemma 4.6. Let N be a saturated constrained clause set and let AN be not
covering. Let V = {v1, . . . , vk}, let α = v1≈x1, . . . , vk≈xk be a constraint that
contains only variables and let Xα = {x1, . . . , xk} be the set of non-existential
variables in α. Let H = {α ‖C1, . . . , α ‖Cn} be a set of constrained clauses
containing only variables in V ∪Xα. Furthermore, let ρ1, ρ2: Xα → T (F , X)
be substitutions with [ρ1] < [ρ2].

If N |=Ind H, then there is a ground substitution σ : V → T (F) such that
N |=Ind ασρ2 → (¬C1ρ1 ∨ . . . ∨ ¬Cnρ1).

Proof. Let [σmin]: V → T (F)/ ∗↔R
be minimal with respect to < such that

N |=Ind {ασmin → C1, . . . , ασmin → Cn}. We will show that σmin is the
wanted substitution.

Let Xρ2 be the set of variables in the codomain of ρ2 and let τ : Xρ2 →
T (F) be such that N |=Ind ασminρ2τ . Note that this set of ground equations
equals v1σmin≈x1ρ2τ, . . . , vkσmin≈xkρ2τ because the domains of ρ2τ and σmin

are disjoint. We have to show that N |=Ind ¬C1ρ1τ ∨ . . . ∨ ¬Cnρ1τ .
To achieve a more concise representation, we employ the symbols ∀ and

∃ on the meta level, where they are also used for higher-order quantification.
The restriction of a substitution σ to the set V of existential variables is
denoted by σ|V , and σα: V → T (X,F) is the substitution induced by α, i.e.

36



σα maps vi to xi.

[ρ1] < [ρ2]

⇐⇒ [σαρ1] < [σαρ2]

because Xα ⊆ X

=⇒ [(σαρ1τ)|V ] < [(σαρ2τ)|V ]

Since N |=Ind ασminρ2τ , the latter class equals [σmin].

=⇒ N 6|=Ind {α(σαρ1τ)|V → C1(σαρ1τ)|V , . . . , α(σαρ1τ)|V → Cn(σαρ1τ)|V }
because of the minimality of [σmin]

=⇒ ∃τ ′. N |=Ind α(σαρ1τ)|V τ ′ and N 6|=Ind C1τ
′ ∧ . . . ∧ Cnτ

′

=⇒ ∃τ ′.∀i. N |=Ind viσαρ1τ≈xiτ
′ and N 6|=Ind C1τ

′ ∧ . . . ∧ Cnτ
′

because τ ′ and (σαρ1τ)|V affect different sides of each equation in α

=⇒ ∃τ ′.∀i. N |=Ind xiρ1τ≈xiτ
′ and N 6|=Ind C1τ

′ ∧ . . . ∧ Cnτ
′

=⇒ ∃τ ′.∀x ∈ Xα. N |=Ind xρ1τ≈xτ ′ and N |=Ind ¬C1τ
′ ∨ . . . ∨ ¬Cnτ

′

because C1τ
′ ∧ . . . ∧ Cnτ

′ is ground

=⇒ N |=Ind ¬C1ρ1τ ∨ . . . ∨ ¬Cnρ1τ

because var(Ci) ⊆ Xα

for i ∈ {1, . . . , k} and τ ′: Xα → T (F). ♦

Usually when we consider sets of constrained clauses, all considered con-
strained clauses are supposed to have been renamed in advance so that
they do not have any universal variables in common. We deviate from
this habit here by forcing the common constraint α = v1≈x1, . . . , vk≈xk

upon all constrained clauses in H. Note that this does not affect the se-
mantics because of the order of existential and universal quantifiers. E.g.,
the constrained clause set {u≈x ‖P (x)→, u≈y ‖→ P (y)} has the seman-
tics ∃u.∀x, y.(u 6≈x ∨ ¬P (x)) ∧ (u 6≈y ∨ P (y)), which is equivalent to the se-
mantics ∃u.∀x.(u 6≈x ∨ ¬P (x)) ∧ (u 6≈x ∨ P (x)) of the constrained clause set
{u≈x ‖P (x)→, u≈x ‖→ P (x)}.

The formula αρ2 → (¬C1ρ1∨ . . .∨¬Cnρ1) can usually not be written as a
single equivalent constrained clause if some Ci contains more than one literal.
However, if D1 ∧ . . . ∧Dm is a conjunctive normal form of ¬C1 ∨ . . . ∨ ¬Cn,
then each Dj is a disjunction of literals and so αρ2 ‖Djρ1 is a constrained
clause.

We will now cast these ideas into an inference rule.

Definition 4.7. The inductive superposition calculus IS(H) with respect to a
finite constrained clause set H is the union of SFD and the following inference
rule:

37



• Induction with respect to H:

α ‖C1 . . . α ‖Cn

αρ2 ‖Dρ1

where (i) H = {α ‖C1, . . . , α ‖Cn} (ii) α = v1≈x1, . . . , vm≈xm contains
only equations between variables (and V = {v1, . . . , vm}), (iii) all vari-
ables of the premises occur in α, (iv) ρ1, ρ2 : {x1, . . . , xm} → T (F , X)
and [ρ1] < [ρ2], and (v) D is an element of the conjunctive normal form
of ¬C1 ∨ . . . ∨ ¬Cn.

Lemma 4.6 ensures that all constrained clauses derived by the induction
inference rule with respect to H will have a common solution with the initial
query H, because the preserved solution [σmin] is independent of the choices
of ρ1 and ρ2.

Example 4.8. Let Fnat = {0, s} and NP = {P (s(s(x)))}. All clauses
derivable by the induction inference rule wrt. HP = {u≈x ‖→ P (x)} are
of one of the forms u≈sn+m(0) ‖P (sn(0))→, u≈sn+m(0) ‖P (sn(x))→, or
u≈sn+m(x) ‖P (sn(x))→ for natural numbers n, m with m > 0. All these
formulas and the initial constrained clause set HP have in INP

the common
solution {u 7→ s(s(0))}. ♦

We can thus, to decide the validity of H in IN , use the induction inference
rule for H in a theorem proving derivation:

Theorem 4.9 (Soundness of the Induction Rule). Let N be a constrained
clause set that is saturated with respect to SFD and let AN be not covering.
Let V = {v1, . . . , vk}, let α = v1≈x1, . . . , vk≈xk be a constraint that contains
only variables and let Xα = {x1, . . . , xk} be the set of non-existential variables
in α. Let H be a finite set of constrained clauses containing only variables
in V ∪Xα.

If N ∪ H ′ is derived from N ∪ H using IS(H), then N |=Ind H ⇐⇒
N |=Ind H ′.

Proof. This follows directly from Proposition 3.15, which implies that the
solutions of H are not changed by the rules in SFD, and Lemma 4.6, which
states that minimal solutions are invariant under the induction inference rule
for H. ♦

This theorem basically states that the addition of constrained clauses of
the presented form is a valid step in a |=Ind theorem proving derivation that
starts from N and H and uses the calculus SFD. Before we come to appli-
cations of the induction rule, let us shortly investigate the side conditions

38



to this rule. Conditions (iv) and (v) are direct consequences of the ideas
developed at the beginning of this section. Conditions (i)–(iii) are needed to
guarantee soundness.

Example 4.10. We present some examples to show how a violation of one
of the conditions (i)–(iii) makes the induction rule unsound.

(i) It is important to use the induction rule on the whole query set only
(condition (i)), because the minimal solution of a subset of the query
may not be equal to the minimal solution of the whole query. Let
us consider the constrained clause set N(i) = {→ P (x), Q(a) →
, → Q(b)} over the signature {a, b} where [b] < [a], and H(i) =
{u≈x ‖→ P (x), u≈x ‖→ Q(x)}. The set N(i) ∪H(i) is satisfiable over
{a, b}: just set u 7→ b. Using the induction rule for H(i), only the re-
dundant constrained clause u≈b ‖P (a), Q(a)→ is derivable, namely
for ρ1(x) = b and ρ2(x) = a. If we apply the induction rule for
{u≈x ‖→ P (x)} instead of H(i), ignoring condition (i), we can derive
the constrained clause u≈b ‖P (a)→. The combined set N(i) ∪ H(i) ∪
{u≈b ‖P (a)→} is unsatisfiable over {a, b}.

(ii) For an example illustrating the need for condition (ii), consider the
constrained clause set N(ii) = {s(0)≈0 →, → s(s(x))≈x} over the
signature Fnat = {s, 0}. In the minimal model of N(ii), all ground
terms representing even numbers are equivalent, as are all ground
terms representing odd numbers, i.e. there are exactly two equiva-
lence classes, [0] and [s(0)]. Let [0] < [s(0)] and consider the query
H(ii) = {u≈s(x) ‖→ x≈0}. The instantiation u 7→ 0 is a witness of the
validity of H(ii) in the minimal model of N(ii). However, applying the
induction rule on H(ii) in violation of condition (ii) with ρ1(x) = 0 and
ρ2(x) = s(0), we can derive u≈s(s(0)) ‖ 0≈0→. The only instantia-
tion validating this constrained clause in the minimal model of N(ii) is
u 7→ 0, i.e. the combined set H(ii) ∪ {u≈s(s(0)) ‖ 0≈0→} is not valid
in this model.

(iii) Now consider the theory N(iii) = {} over the signature Fnat with [0] <
[s(0)] < [s(s(0))] < . . . and the query H(iii) = {u≈x ‖ y≈x→ y≈s(0)}.
The instantiation u 7→ s(0) shows that H(iii) is valid in the minimal
model T (Fnat) of N(iii). Note that no other instantiation of u can show
this. If we ignore condition (iii) and apply the induction rule to H(iii)

with ρ1(x) = x and ρ2(x) = s(x), we can derive u≈s(x) ‖ y≈s(0)→.
This constrained clause can only be satisfied in the minimal model of
N(iii) by the instantiation u 7→ 0. Since this instantiation is not suited

39



for H(iii), the set H(iii)∪{u≈s(x) ‖ y≈s(0)→} is not valid in the minimal
model of N(iii). ♦

Some further examples will demonstrate the power of the extended cal-
culus IS(H). In these examples, there will always be a unique (non-empty)
set H satisfying the side conditions of the induction rule, and we will write
IS instead of IS(H).

In contrast to the other inference rules, which have a unique conclusion
for each given set of premises, the induction rule will often allow to derive
an unbounded number of conclusions. So the application of this rule in
all possible ways is clearly unfeasible. It seems appropriate to employ it
only when a conclusion can directly be used for a superposition inference
simplifying another constrained clause. We will use this heuristic in the
examples below.

Example 4.11. We revisit the partial definition of the usual ordering on the
naturals given by NG = {→ G(s(0), 0), G(x, y)→ G(s(x), s(y))}, as shown
in the introduction and in Example 4.3. Again, we want to check whether or
not NG |=Fnat ∀x.G(s(x), x). While the derivation in Example 4.3 diverges,
a derivation using IS terminates after only a few steps:

clauses in NG: 1 : ‖ → G(s(0), 0)
2 : ‖ G(x, y) → G(s(x), s(y))

negated conjecture: 3 : u≈x ‖ G(s(x), x) →
Superposition(1,3) = 4 : u≈0 ‖ �
Superposition(2,3) = 5 : u≈s(y) ‖ G(s(y), y) →

Induction(3) = 6 : u≈s(z) ‖ → G(s(z), z)
Superposition(6,5) = 7 : u≈s(z) ‖ �

The induction rule was applied using H = {u≈x ‖G(s(x), x)→}, ρ1(x) =
z and ρ2(x) = s(z). At this point, the constrained clauses u≈0 ‖� and
u≈s(z) ‖� have been derived. Their constraints are covering for {s, 0}, which
means that NG |=Ind ∀x.G(s(x), x). Because of Proposition 4.2, this implies
N |=Fnat ∀x.G(s(x), x). ♦

Example 4.12. A standard example that can be solved by various ap-
proaches (e.g. [13, 10]) is the theory of addition on the natural numbers:
N+ = {→ 0 + y≈y, → s(x) + y≈s(x + y)}. A proof of N+ |=Ind ∀x.x + 0≈x

40



with IS terminates quickly:

clauses in N+: 1 : ‖ → 0 + y≈y
2 : ‖ → s(x) + y≈s(x + y)

negated conjecture: 3 : u≈x ‖ x + 0≈x →
Superposition(1,3) = 4 : u≈0 ‖ 0≈0 →

Equality Resolution(4) = 5 : u≈0 ‖ �
Superposition(2,3) = 6 : u≈s(y) ‖ s(y + 0)≈s(y) →

Induction(3) = 7 : u≈s(z) ‖ → z + 0≈z
Superposition(7,6) = 8 : u≈s(z) ‖ s(z)≈s(z) →

Equality Resolution(8) = 9 : u≈s(z) ‖ �

The induction rule was applied using H = {u≈x ‖x + 0≈x→}, ρ1(x) =
z and ρ2(x) = s(z). At this point, the constrained clauses u≈0 ‖� and
u≈s(z) ‖� have been derived. Their constraints cover all constraints of the
form u≈t, t ∈ T (Fnat, X), which means that N+ 6|=Ind u≈x ‖x + 0≈x→, i.e.
N+ |=Ind ∀x.x + 0≈x.

Without the induction rule, the derivation in this example would resemble
the one in Example 4.3 and diverge. We would thus not even gain information
about the |=Fnat validity of the query. Here, however, we can again apply
Proposition 4.2 to show additionally that N+ |=Fnat ∀x.x + 0≈x. ♦

Along the same lines, we can also prove that addition is symmetric,
i.e. N+ |=Ind ∀x, y.x + y≈y + x. In this case, we need to apply the induction
rule twice to obtain the additional clauses

u≈x, v≈s(y′) ‖→ x + y′≈y′ + x

and
u≈s(x′), v≈y ‖→ x′ + y≈y + x′ .

Example 4.13. Given the theory NE = {→ E(0), E(x) → E(s(s(x)))} of
the natural numbers together with a predicate describing the even numbers,
we show that NE 6|=Ind ∀x.E(x). A possible derivation runs as follows:

clauses in NE: 1 : ‖ → E(0)
2 : ‖ E(x) → E(s(s(x)))

negated conjecture: 3 : u≈x ‖ E(x) →
Superposition(1,3) = 4 : u≈0 ‖ �
Superposition(2,3) = 5 : u≈s(s(y)) ‖ E(y) →

Induction(3) = 6 : u≈s(s(z)) ‖ → E(z)
Superposition(6,5) = 7 : u≈s(s(z)) ‖ �

41



The induction rule was applied using H = {u≈x ‖E(x)→}, ρ1(x) = z and
ρ2(x) = s(s(z)). The set {(1) − (7)} is saturated with respect to SFD. We
could, of course, use the induction rule to derive one more non-redundant con-
strained clause, namely u≈s(z) ‖→ E(z). However, this constrained clause
cannot be used in any further inference. All other constrained clauses deriv-
able by the induction rule are redundant.

The derived constrained empty clauses are u≈0 ‖� and u≈s(s(z)) ‖�.
Their constraints are not covering: They miss exactly the constraint u≈s(0),
and in fact NE |=Ind E(s(0))→.

Note that, although also NE |=Ind E(s(s(s(0)))) →, we cannot derive
this nor any other additional counterexample. This is due to the fact that
the application of the induction rule preserves only the minimal satisfying
constraint. ♦

42



5 Conclusion

We have presented the superposition calculi SFD and SFD+, which are sound
and refutationally complete for a fixed domain semantics for first-order logic.
Compared to other approaches in model building over fixed domains, our ap-
proach is applicable to a larger class of clause sets. We showed that standard
first-order and fixed domain superposition-based reasoning, respectively, de-
livers minimal model results for some cases. Moreover, we presented a way to
prove the validity of minimal model properties by use of the calculus IS(H),
combining SFD and a specific induction rule.

The most general inductive theorem proving methods based on satura-
tion so far are those by Ganzinger and Stuber [13] and Comon and Nieuwen-
huis [10]. Both approaches work only on sets of purely universal and univer-
sally reductive (Horn) clauses. Given such a clause set N and a query ∀~x.C,
Comon and Nieuwenhuis compute a so-called I-axiomatization A such that
N |=Ind A and N ∪A has only one Herbrand model, and then check the first-
order satisfiability of N ∪ A ∪ {C}. Like ours, this method is refutationally
complete but not terminating. In fact, the clause set A does in general not
inherit properties of N like universal reductiveness or being Horn, so that
the saturation of N ∪A∪{C} does not necessarily terminate even if N ∪{C}
belongs to a finitely saturating fragment. Ganzinger and Stuber, on the
other hand, basically saturate N ∪ {C}. Even if N ∪ {C} saturates finitely,
this results in a non-complete procedure because productive clauses may be
derived. They also present a way to guarantee completeness by forcing all
potentially productive atoms to the ground level. This effectively results in
an enumeration of ground instances, at the cost that the resulting algorithm
almost never terminates.

We gave an example of a purely universal inductive theorem proving
problem that can be solved using SFD while neither of the above approaches
works (Example 4.4). Additionally, we showed how we can also prove formu-
las with a ∀∃ quantifier alternation, i.e. check the validity of ∀∗∃∗-quantified
formulas. The opposite ∃∀ quantifier alternation or subsequent alternations

43



can currently not be tackled by our calculus and are one potential subject
for future work.

Another intensely studied approach to inductive theorem proving is via
test sets [21, 4, 5]. Test sets rely on the existence of a set of constructor
symbols that are either free or specified by unconditional equations only.
Such properties are not needed for the applicability of our calculus. However,
in order to effectively apply our induction rule, we need decidability of the
ordering < on IN , i.e. on the T (F)/ ∗↔R

equivalence classes. The existence of
constructor symbols is often useful to establish this property. Examples 4.3
and 4.5 are not solvable via test sets, whereas Example 4.4 is.

Finally, works in the tradition of Caferra and Zabel [6] or Kapur [21, 22,
14, 11] consider only restricted forms of equality literals and related publica-
tions by Peltier [26] pose strong restrictions on the clause sets (e.g. that they
have a unique Herbrand model).

In summary, our approach does not need many of the prerequisites re-
quired by previous approaches, like solely universally reductive clauses in
N , solely Horn clauses, solely purely universal clauses, solely non-equational
clauses, the existence and computability of an “A” set making the minimal
model the unique Herbrand model, or the existence of explicit constructor
symbols. Its success is built on a superposition-based saturation concept.

There are several obvious ways in which to extend the presented calculi.
In analogy to the work of Bachmair and Ganzinger [2], it is possible to extend
the new superposition calculi by negative literal selection, with the restriction
that no constraint literals may be selected. This does not affect refutational
completeness. For universally reductive clause sets N , it is also possible to
make the inductive theorem proving calculus IS(H) (with selection) refuta-
tionally complete, following the approach of Ganzinger and Stuber [13]. As
in their context, this particular superposition strategy carries the disadvan-
tage of enumerating all ground instances of all clauses over to our setting.
So it can hardly be turned into a decision procedure for clause classes having
infinite Herbrand models. In some cases, the induction rule might constitute
a remedy: In case we can finitely saturate a clause set N , the ordering <
on its minimal model IN may become effective and hence the induction rule
may be effectively usable to finitely saturate clause sets that otherwise have
an infinite saturation.

Our hope is that the success of the superposition-based saturation ap-
proach on identifying decidable classes with respect to the classical first-order
semantics can be extended to some new classes for the fixed domain and min-
imal model semantics. Decidability results for the fixed domain semantics
are hard to obtain for infinite Herbrand domains but the problem can now

44



be attacked using the sound and refutationally complete calculus SFD. This
will require in addition the extension of the redundancy notion suggested in
Section 3 as well as more expressive constraint languages. Here, concepts and
results from tree automata could play a role. First results in this direction
have been established [17].

It also turns out that an extension of the current algorithm can be em-
ployed to decide the validity of various classes of formulae with a ∀∗∃∗ or
∃∗∀∗ prefix in models that are represented by a conjunction of atoms or by
the contexts computed in model evolution [16].

45



Bibliography

[1] A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results
on rewrite-based satisfiability procedures. ACM Transactions on Com-
pututational Logic, 10(1):129–179, 2009.

[2] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem prov-
ing with selection and simplification. Journal of Logic and Computation,
4(3):217–247, 1994. Revised version of Technical Report MPI-I-91-208,
1991.

[3] L. Bachmair, H. Ganzinger, and U. Waldmann. Superposition with sim-
plification as a decision procedure for the monadic class with equality. In
G. Gottlob, A. Leitsch, and D. Mundici, editors, KGC ’93: Proceedings
of the Third Kurt Gödel Colloquium on Computational Logic and Proof
Theory, volume 713 of LNCS, pages 83–96, London, UK, August 1993.
Springer.

[4] A. Bouhoula. Automated theorem proving by test set induction. Journal
of Symbolic Computation, 23(1):47–77, 1997.

[5] A. Bouhoula and J.-P. Jouannaud. Automata-driven automated induc-
tion. In Information and Computation, pages 14–25, Warsaw, Poland,
1997. Press.

[6] R. Caferra and N. Zabel. A method for simultanous search for refuta-
tions and models by equational constraint solving. Journal of Symbolic
Computation, 13(6):613–642, 1992.

[7] H. Comon. Disunification: A survey. In J.-L. Lassez and G. Plotkin,
editors, Computational Logic: Essays in Honor of Alan Robinson, pages
322–359. MIT Press, Cambridge, MA, 1991.

46



[8] H. Comon and F. Jacquemard. Ground reducability is exptime-
complete. In Twelfth Annual IEEE Symposium on Logic in Computer
Science, LICS’97, pages 26–34. IEEE Computer Society Press, 1997.

[9] H. Comon and P. Lescanne. Equational problems and disunification.
Journal of Symbolic Computation, 7(3-4):371–425, 1989.

[10] H. Comon and R. Nieuwenhuis. Induction = I-axiomatization + first-
order consistency. Information and Computation, 159(1/2):151–186,
May 2000.

[11] S. Falke and D. Kapur. Inductive Decidability Using Implicit Induction.
In M. Hermann and A. Voronkov, editors, Proceedings of the 13th In-
ternational Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR ’06), Phnom Penh, Cambodia, volume 4246 of
Lecture Notes in Artificial Intelligence, pages 45–59. Springer-Verlag,
2006.

[12] H. Ganzinger and H. D. Nivelle. A superposition decision procedure for
the guarded fragment with equality. In Proc. 14th IEEE Symposium
on Logic in Computer Science, pages 295–305. IEEE Computer Society
Press, 1999.

[13] H. Ganzinger and J. Stuber. Inductive theorem proving by consistency
for first-order clauses. In J. Buchmann, H. Ganzinger, and W. Paul,
editors, Informatik - Festschrift zum 60. Geburtstag von Günter Hotz,
pages 441–462. Teubner, 1992. Also in Proc. CTRS’92, LNCS 656,
pp. 226–241.

[14] J. Giesl and D. Kapur. Deciding inductive validity of equations. In Pro-
ceedings of the 19th International Conference on Automated Deduction
(CADE-19), volume 2741 of Lecture Notes in Computer Science, pages
17–31. Springer, 2003.

[15] M. Horbach and C. Weidenbach. Superposition for fixed domains. In
M. Kaminski and S. Martini, editors, Proc. of the 17th Annual Con-
ference of the European Association for Computer Science Logic, CSL
2008, volume 5213 of Lecture Notes in Computer Science, pages 293–
307, Berlin/Heidelberg, September 2008. Springer.

[16] M. Horbach and C. Weidenbach. Decidability results for saturation-
based model building. In R. Schmidt, editor, Proceedings of the

47



22nd International Conference on Automated Deduction, CADE-22, vol-
ume 5663 of Lecture Notes in Artificial Intelligence, pages 404–420,
Berlin/Heidelberg, August 2009. Springer.

[17] M. Horbach and C. Weidenbach. Deciding the inductive validity of ∀∃∗
queries. In E. Grädel and R. Kahle, editors, Proceedings of the 18th
Annual Conference of the European Association for Computer Science
Logic, CSL 2009, volume 5771 of Lecture Notes in Computer Science,
pages 332–347, Berlin/Heidelberg, September 2009. Springer.

[18] U. Hustadt, R. A. Schmidt, and L. Georgieva. A survey of decidable first-
order fragments and description logics. Journal of Relational Methods
in Computer Science, 1:251–276, 2004. Invited overview paper.

[19] F. Jacquemard, C. Meyer, and C. Weidenbach. Unification in extensions
of shallow equational theories. In T. Nipkow, editor, Rewriting Tech-
niques and Applications, 9th International Conference, RTA-98, volume
1379 of LNCS, pages 76–90. Springer, 1998.

[20] F. Jacquemard, M. Rusinowitch, and L. Vigneron. Tree automata with
equality constraints modulo equational theories. In Automated Reason-
ing, Third International Joint Conference, IJCAR 2006, Seattle, WA,
USA, August 17-20, 2006, Proceedings, volume 4130 of Lecture Notes in
Computer Science, pages 557–571. Springer, 2006.

[21] D. Kapur, P. Narendran, and H. Zhang. Automating inductionless in-
duction using test sets. Journal of Symbolic Computation, 11(1/2):81–
111, 1991.

[22] D. Kapur and M. Subramaniam. Extending decision procedures with
induction schemes. In Proceedings of the 17th International Conference
on Automated Deduction (CADE-17), volume 1831 of Lecture Notes in
Computer Science, pages 324–345. Springer, 2000.

[23] E. Kounalis. Testing for the ground (co-)reducibility property in term-
rewriting systems. Theor. Comput. Sci., 106(1):87–117, 1992.

[24] R. Nieuwenhuis. Basic paramodulation and decidable theories (extended
abstract). In Proceedings 11th IEEE Symposium on Logic in Computer
Science, LICS’96, pages 473–482. IEEE Computer Society Press, 1996.

[25] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem prov-
ing. In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning, volume I, chapter 7, pages 371–443. Elsevier, 2001.

48



[26] N. Peltier. Model building with ordered resolution: extracting models
from saturated clause sets. Journal of Symbolic Computation, 36(1-2):5–
48, 2003.

[27] D. A. Plaisted. Semantic confluence tests and completion methods.
Information and Control, 65(2/3):182–215, 1985.

[28] C. Weidenbach. Towards an automatic analysis of security protocols in
first-order logic. In H. Ganzinger, editor, 16th International Conference
on Automated Deduction, CADE-16, volume 1632 of LNAI, pages 378–
382. Springer, 1999.

[29] C. Weidenbach. Combining superposition, sorts and splitting. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Rea-
soning, volume 2, chapter 27, pages 1965–2012. Elsevier, 2001.

49



Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They
are available via WWW using the URL http://www.mpi-inf.mpg.de. If you have any questions concern-
ing WWW access, please contact reports@mpi-inf.mpg.de. Paper copies (which are not necessarily free
of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbrücken
GERMANY
e-mail: library@mpi-inf.mpg.de

MPI-I-2009-RG1-002 P. Wischnewski, C. Weidenbach Contextual rewriting

MPI-I-2009-5-006 S. Bedathur, K. Berberich, J. Dittrich,
N. Mamoulis, G. Weikum

Scalable phrase mining for ad-hoc text analytics

MPI-I-2009-5-004 N. Preda, F.M. Suchanek, G. Kasneci,
T. Neumann, G. Weikum

Coupling knowledge bases and web services for active
knowledge

MPI-I-2009-5-003 T. Neumann, G. Weikum The RDF-3X engine for scalable management of RDF
data

MPI-I-2008-RG1-001 A. Fietzke, C. Weidenbach Labelled splitting

MPI-I-2008-5-004 F. Suchanek, M. Sozio, G. Weikum SOFI: a self-organizing framework for information
extraction

MPI-I-2008-5-003 F.M. Suchanek, G. de Melo, A. Pease Integrating Yago into the suggested upper merged
ontology

MPI-I-2008-5-002 T. Neumann, G. Moerkotte Single phase construction of optimal DAG-structured
QEPs

MPI-I-2008-5-001 F. Suchanek, G. Kasneci,
M. Ramanath, M. Sozio, G. Weikum

STAR: Steiner tree approximation in
relationship-graphs

MPI-I-2008-4-003 T. Schultz, H. Theisel, H. Seidel Crease surfaces: from theory to extraction and
application to diffusion tensor MRI

MPI-I-2008-4-002 W. Saleem, D. Wang, A. Belyaev,
H. Seidel

Estimating complexity of 3D shapes using view
similarity

MPI-I-2008-1-001 D. Ajwani, I. Malinger, U. Meyer,
S. Toledo

Characterizing the performance of Flash memory
storage devices and its impact on algorithm design

MPI-I-2007-RG1-002 T. Hillenbrand, C. Weidenbach Superposition for finite domains

MPI-I-2007-5-003 F.M. Suchanek, G. Kasneci,
G. Weikum

Yago : a large ontology from Wikipedia and WordNet

MPI-I-2007-5-002 K. Berberich, S. Bedathur,
T. Neumann, G. Weikum

A time machine for text search

MPI-I-2007-5-001 G. Kasneci, F.M. Suchanek, G. Ifrim,
M. Ramanath, G. Weikum

NAGA: searching and ranking knowledge

MPI-I-2007-4-008 J. Gall, T. Brox, B. Rosenhahn,
H. Seidel

Global stochastic optimization for robust and accurate
human motion capture

MPI-I-2007-4-007 R. Herzog, V. Havran, K. Myszkowski,
H. Seidel

Global illumination using photon ray splatting

MPI-I-2007-4-006 C. Dyken, G. Ziegler, C. Theobalt,
H. Seidel

GPU marching cubes on shader model 3.0 and 4.0

MPI-I-2007-4-005 T. Schultz, J. Weickert, H. Seidel A higher-order structure tensor

MPI-I-2007-4-004 C. Stoll, E. de Aguiar, C. Theobalt,
H. Seidel

A volumetric approach to interactive shape editing

MPI-I-2007-4-003 R. Bargmann, V. Blanz, H. Seidel A nonlinear viseme model for triphone-based speech
synthesis

MPI-I-2007-4-002 T. Langer, H. Seidel Construction of smooth maps with mean value
coordinates

MPI-I-2007-4-001 J. Gall, B. Rosenhahn, H. Seidel Clustered stochastic optimization for object recognition
and pose estimation



MPI-I-2007-2-001 A. Podelski, S. Wagner A method and a tool for automatic veriication of region
stability for hybrid systems

MPI-I-2007-1-003 A. Gidenstam, M. Papatriantafilou LFthreads: a lock-free thread library

MPI-I-2007-1-002 E. Althaus, S. Canzar A Lagrangian relaxation approach for the multiple
sequence alignment problem

MPI-I-2007-1-001 E. Berberich, L. Kettner Linear-time reordering in a sweep-line algorithm for
algebraic curves intersecting in a common point

MPI-I-2006-5-006 G. Kasnec, F.M. Suchanek,
G. Weikum

Yago - a core of semantic knowledge

MPI-I-2006-5-005 R. Angelova, S. Siersdorfer A neighborhood-based approach for clustering of linked
document collections

MPI-I-2006-5-004 F. Suchanek, G. Ifrim, G. Weikum Combining linguistic and statistical analysis to extract
relations from web documents

MPI-I-2006-5-003 V. Scholz, M. Magnor Garment texture editing in monocular video sequences
based on color-coded printing patterns

MPI-I-2006-5-002 H. Bast, D. Majumdar, R. Schenkel,
M. Theobald, G. Weikum

IO-Top-k: index-access optimized top-k query
processing

MPI-I-2006-5-001 M. Bender, S. Michel, G. Weikum,
P. Triantafilou

Overlap-aware global df estimation in distributed
information retrieval systems

MPI-I-2006-4-010 A. Belyaev, T. Langer, H. Seidel Mean value coordinates for arbitrary spherical polygons
and polyhedra in R3

MPI-I-2006-4-009 J. Gall, J. Potthoff, B. Rosenhahn,
C. Schnoerr, H. Seidel

Interacting and annealing particle filters: mathematics
and a recipe for applications

MPI-I-2006-4-008 I. Albrecht, M. Kipp, M. Neff,
H. Seidel

Gesture modeling and animation by imitation

MPI-I-2006-4-007 O. Schall, A. Belyaev, H. Seidel Feature-preserving non-local denoising of static and
time-varying range data

MPI-I-2006-4-006 C. Theobalt, N. Ahmed, H. Lensch,
M. Magnor, H. Seidel

Enhanced dynamic reflectometry for relightable
free-viewpoint video

MPI-I-2006-4-005 A. Belyaev, H. Seidel, S. Yoshizawa Skeleton-driven laplacian mesh deformations

MPI-I-2006-4-004 V. Havran, R. Herzog, H. Seidel On fast construction of spatial hierarchies for ray
tracing

MPI-I-2006-4-003 E. de Aguiar, R. Zayer, C. Theobalt,
M. Magnor, H. Seidel

A framework for natural animation of digitized models

MPI-I-2006-4-002 G. Ziegler, A. Tevs, C. Theobalt,
H. Seidel

GPU point list generation through histogram pyramids

MPI-I-2006-4-001 A. Efremov, R. Mantiuk,
K. Myszkowski, H. Seidel

Design and evaluation of backward compatible high
dynamic range video compression

MPI-I-2006-2-001 T. Wies, V. Kuncak, K. Zee,
A. Podelski, M. Rinard

On verifying complex properties using symbolic shape
analysis

MPI-I-2006-1-007 H. Bast, I. Weber, C.W. Mortensen Output-sensitive autocompletion search

MPI-I-2006-1-006 M. Kerber Division-free computation of subresultants using bezout
matrices

MPI-I-2006-1-005 A. Eigenwillig, L. Kettner, N. Wolpert Snap rounding of Bézier curves

MPI-I-2006-1-004 S. Funke, S. Laue, R. Naujoks, L. Zvi Power assignment problems in wireless communication

MPI-I-2005-5-002 S. Siersdorfer, G. Weikum Automated retraining methods for document
classification and their parameter tuning

MPI-I-2005-4-006 C. Fuchs, M. Goesele, T. Chen,
H. Seidel

An emperical model for heterogeneous translucent
objects

MPI-I-2005-4-005 G. Krawczyk, M. Goesele, H. Seidel Photometric calibration of high dynamic range cameras

MPI-I-2005-4-004 C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A. Magnor,
H. Seidel

Joint motion and reflectance capture for creating
relightable 3D videos

MPI-I-2005-4-003 T. Langer, A.G. Belyaev, H. Seidel Analysis and design of discrete normals and curvatures

MPI-I-2005-4-002 O. Schall, A. Belyaev, H. Seidel Sparse meshing of uncertain and noisy surface scattered
data


