An Efficient Algorithm for Keyframe-based Motion
Retrieval in the Presence of Temporal Deformations

Andreas Baak, Meinard Miiller, Hans-Peter Seidel
Max Planck Institut fir Informatik and Saarland University
Campus E1 4, 66123 Saarbriicken, Germany
{abaak,mmueller,hpseidel}@mpi-inf.mpg.de

ABSTRACT

In the last years, various algorithms have been proposed
for automatic classification and retrieval of motion capture
data. Here, one main difficulty is due to the fact that sim-
ilar types of motions may exhibit significant spatial as well
as temporal variations. To cope with such variations, previ-
ous algorithms often rely on warping and alignment tech-
niques that are computationally time and cost intensive.
In this paper, we present a novel keyframe-based algorithm
that significantly speeds up the retrieval process and dras-
tically reduces memory requirements. In contrast to previ-
ous index-based strategies, our recursive algorithm can cope
with temporal variations. In particular, the degree of admis-
sible deformation tolerance between the queried keyframes
can be controlled by an explicit stiffness parameter. While
our algorithm works for general multimedia data, we con-
centrate on demonstrating the practicability of our concept
by means of the motion retrieval scenario. Our experiments
show that one can typically cut down the search space from
several hours to a couple of minutes of motion capture data
within a fraction of a second.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; 1.3.7 [Three-Dimensional Graph-
ics and Realism]: Animation

General Terms

Algorithms, Experimentation, Performance

1. INTRODUCTION

Modern motion capture or mocap technology is capable
of accurately tracking and recording human motions at high
spatial and temporal resolutions. The resulting 3D mocap
data is used in a variety of applications ranging from mo-
tion synthesis in data-driven computer animation to motion
analysis in fields such as sports sciences, biomechanics, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MIR’08, October 30-31, 2008, Vancouver, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-312-9/08/10 ...$5.00.

SIVTETS
S e b el s

Figure 1: Seven poses of a side kick sequence (top)
and a front kick sequence (bottom). Even though
the two kicking motions are similar in some logical
sense, they exhibit significant spatial and temporal
differences.

computer vision [5, 6, 11]. Even though there is a rapidly
growing corpus of freely available mocap data, e.g. [2, 10],
there is still a lack of efficient motion retrieval systems that
work in a purely content-based fashion without relying on
manually generated annotations. Here, the main difficulty
is due to the fact that similar types of motions may exhibit
significant spatial as well as temporal variations [5, 6]. For
example, the two kick sequences shown in Fig. 1 are logically
related even though they differ considerably with respect to
motion speed as well as the direction, the height, and the
style of the kick.

Most of the previous approaches to motion comparison
are based on features that are semantically close to the
raw data, using 3D positions, 3D point clouds, joint an-
gle representations, or PCA-reduced versions thereof, see,
e.g., [3, 4, 5, 13]. One problem of such features is their
sensitivity towards pose deformations which may occur in
logically related motions. Furthermore, computational ex-
pensive techniques such as dynamic time warping (DTW)
are necessary to establish temporal correspondence between
related frames [5]. To cope with spatial variations, Miiller et
al. [9] introduce the concept of relational features, which is
based on the following observation. Unlike other data types
such as 3D shape, image, or video, 3D motion capture data is
explicitly based on a kinematic chain that models the human
skeleton. This underlying model can be exploited by looking
for semantically meaningful boolean relations between speci-
fied points of the body. For example, even though there may
be large variations between different kicking motions as il-
lustrated by Fig. 1, all such motions share some common
characteristics: first the right knee is stretched, then bent,
and finally stretched again, while the right foot is raised dur-
ing this process. Afterwards, the right knee is once again
bent and then stretched, while the right foot drops back to

\
§
N

Figure 2: Keyframe-based retrieval in the presence
of temporal deformations. A database hit has to
contain the queried keyframes in the same order and
within specified time bounds controlled by a stiffness
parameter. Note that the query and the two hits
exhibit different temporal deformations.

the floor. In other words, by simply checking some charac-
teristic poses in the temporal context, one can exclude all
motions in the database that do not share the characteristic
progression of relations.

As the main contribution of this paper, we introduce a
novel keyframe-based search algorithm. A keyframe query
consists of a sequence of keyframes, where each keyframe is
specified by a boolean feature vector that describes charac-
teristic relations of a specific pose. Then, the general strat-
egy is to extract all parts from the unknown motion database
that exhibit feature vectors matching the keyframe feature
vectors in the correct order within suitable time bounds.
One important property of our algorithm is that it allows for
explicitly controlling the degree of temporal deformations in
the retrieval process. Intuitively spoken, the neighboring
query keyframes are connected with elastic springs which
can be expanded and compressed by a certain factor spec-
ified by what we refer to as stiffness parameter, see Fig. 2.
Even though our algorithm can handle temporal variations,
it works with a standard inverted file index as used in text
retrieval [12]. Significantly speeding up and drastically re-
ducing memory requirements, our strategy is ideally suited
to cut down the search space in a preprocessing step before
applying more refined analysis methods to rank and further
process the reduced data set. We will demonstrate such a
two-stage retrieval procedure by combining our keyframe-
based search with the DTW-based retrieval strategy using
motion templates as described in [8]. A similar approach,
proposed by Wu et al. [13], proceeds in two stages: First
start and end frames of possible candidate clips are identi-
fied utilizing a pose-based index and then the actual distance
from the query is computed via DTW. However, having no
explicit control over temporal deformation of the keyframes,
a stong limitation on the preprocessing is imposed.

The remainder of the paper is organized as follows. In
Sect. 2, we summarize the concept of relational features as
introduced in [9] while fixing the notation. In Sect. 3, as
the main contribution of our paper, we describe in detail an
efficient keyframe-based search strategy. To prove the prac-
ticability of our algorithm, we describe various experiments
and show how our algorithm can be applied to speed up pre-
vious motion retrieval strategies, see Sect. 4. We conclude
in Sect. 5 with prospects of future work. Further references
will be given in the respective sections.

2. RELATIONAL MOTION FEATURES

In the following, a motion capture data stream is mod-
eled as a sequence D = (P1, P,...,Pn) of poses P, € P

Figure 3: Various boolean relational features that
encode spatial, velocity-based, as well as directional
information between the joints of a pose.

Figure 4: Skiing exercise motion. (a): Poses of a
motion at frame positions 10, 15, 19, 23, and 28
(30 Hz). (b): Feature matrix of the skiing motion
used in (a). The label numbers of the features corre-
spond to the features used in [8]. Black encodes the
feature value one, white encodes the value 0. (c):
Feature matrix of another execution of the skiing
exercise. (d): Motion template of the skiing mo-
tion class trained with 15 training motions from the
HDMO05 [10] motion database.

forn € [1: N] := {1,2,...,N} (wr.t. a fixed sampling
rate), where P denotes the set of all poses. Here, each pose
consists of a full set of 3D coordinates describing the joint
positions of a skeletal kinematic chain for a fixed point in
time. The idea of relational features as introduced by Miiller
et al. [9] is to describe semantically interpretable, boolean
aspects of a pose or a short sequence of poses expressing ac-
tions or interactions of certain body parts. Mathematically,
a relational feature is a boolean function F' : P — {0, 1} that
only assumes the values zero and one. Forming a vector of
f boolean features for some f > 1, one obtains a combined
feature F' : P — {0,1}7 referred to as a feature function. A
feature function F' is applied to a mocap data stream D in
a pose-wise fashion: F (D) := (F(P1), F(P2),...,F(Pn)).
As an example of a relational feature, consider the ori-
ented plane determined by the center of the hip (the root),
the left hip joint, and the left foot (Fig. 3 (a)). When the
right foot lies in front of that plane, the relational feature
F'5 is defined to assume the value zero, otherwise one. Inter-
changing corresponding left and right joints in the definition
of F** and flipping the orientation of the resulting plane, we
obtain another feature function denoted by F'*¢. The combi-
nation (F'*5, F1%) of these features is useful to characterize
the motion of the lower part of the body, see Fig. 4 (b),

rows 15 and 16. Here, the feature values for one execution
of the motion have been visualized. Relational features may
also encode velocity-based information. For example, one
may check if the absolute velocity of the right foot exceeds
a certain velocity threshold, see Fig. 3 (b). The feature F°
encodes this relation for the right foot. F2° does the same
job for the left foot. By checking whether the velocity of the
right hand in the direction which is determined by the belly
and chest, one obtains a feature that tests whether the right
hand is moving upwards or not, see Fig. 3 (c). The values of
the features F° (right hand to top) and F° (left hand to top)
can be seen in Fig. 4 (b). For further details including the
specification of various generic features and a discussion of
threshold selection we refer to [6, 8, 9]. In this paper, we use
the feature set described in [8], which comprises f = 39 re-
lational features and has been specifically designed to focus
on full-body motions. The main point is that even though
relational features discard a lot of detail contained in the
raw motion data, important information regarding the over-
all configuration of a pose is retained. Moreover, relational
motion features are invariant under global orientation and
position, the size of the skeleton, and local spatial deforma-
tions of a pose.

Applying a feature function F' with f components to a
motion data stream D of length N in a pose-wise fashion
yields a feature matriz X € {0,1}7*"N | see Fig. 4 (b) and
(¢). The n*™ column of X then contains the feature values of
frame n and will be denoted by X (n) := F(P,),n € [1: N].
Given a set of training motions representing a given motion
class, one can learn a motion template (MT) that explicitly
encodes the consistent and the variable aspects of the mo-
tion class, see [8]. Here, a motion template can be thought
of as a generalized feature matrix which is obtained by suit-
ably averaging the feature matrices of the training motions,
see Fig. 4 (d). Miiller et al. [8] suggest MT-based motion
retrieval using a variant of dynamic time warping (DTW) to
locally compare a motion template with the feature matrices
of the unknown motion data. In this paper, as will be ex-
plained in the next sections, we speed up MT-based retrieval
by prepending a keyframe-based retrieval component to re-
duce the search space and then apply MT-based retrieval
on the reduced data set. Intuitively, the keyframes can be
thought of as a small number of characteristic columns of a
generalized feature matrix.

3. KEYFRAME-BASED SEARCH

We now describe our keyframe-based search algorithm.
To account for temporal deformations within related motion
segments, our algorithm allows for controlling the admissi-
ble distances between neighboring keyframes by means of
an explicit stiffness parameter. Despite possible temporal
deformations, our algorithm is very efficient and works with
a standard inverted file index. In Sect. 3.1 and Sect. 3.2 we
describe the index structure and introduce the query, hit,
and match concept, respectively. The details of the main
algorithm and a discussion of its running time behavior are
presented in Sect. 3.3, where we also illustrate the operation
mode of our recursive algorithm by means of an explicit ex-
ample.

3.1 Indexing

Let D = (D1, D2, ..., D) denote a database consisting of
mocap data streams or documents D;, ¢ € [1 : I]. For sim-

plicity, we may assume that the database D consists of one
large document D = (Pi,...,Pn). (This can be achieved
by concatenating the documents Di,..., D; while keeping
track of document boundaries in a supplemental data struc-
ture). Note that due to their boolean nature, relational fea-
tures are ideally suited for indexing. Let F' be a fixed fea-
ture function having f relational features as its components.
Then for each feature vector v € {0,1}/ one stores the in-
verted list L(v) consisting of the indices n € [1 : N| with
v = F(P,). In other words, L(v) shows which of the poses
of D exhibit the feature vector v. In a preprocessing step,
we construct a query-independent index structure IZ con-
sisting of the 2/ inverted lists L(v), v € {0,1}/. Note that
one only has to store the non-empty lists. Furthermore, to
control the number of index words, one can also split up the
feature function into several feature functions and then work
with the resulting smaller indices in parallel, see [9]. The el-
ements of the inverted lists are stored in ascending order,
accounting for efficient union and intersection operations in
the subsequent query stage. To further reduce the size of the
index, the elements of each list L(v) are run-length encoded.

3.2 Query, Hit, and Match Concept

As mentioned in the introduction, certain types of mo-
tions typically exhibit characteristic relations that already
discriminate these motions from most other types of mo-
tions. For example, a cartwheel motion can be distinguished
from most other motions simply by checking if the body is
upside down in the execution of the motion. Or, a skiing
exercise motion is characterized by a diametrical backward
and forward swinging of arms and legs coupled with a joint
air and landing phase of the two feet, see Fig. 4. The idea
is to express the characteristic relations of a keyframe pose
by a suitable feature vector v € {0,1} with respect to a
fixed feature function F'. Since using all components of F
is often too restrictive, we allow an entire set V C {0,1}/
of alternative feature vectors to describe the characteristic
relations. In the following, such a set V is simply referred
to as keyframe.

A keyframe query of length K is a tuple (V,d) consisting
of a sequence V = (Vi,..., Vi) of keyframes V; C {0,1}/,
k € [1: K], and a sequence d = (du,...,dx—1) of keyframe
distances di, € No, k € [1 : K — 1]. Here, di specifies the
distance (in frames) of the neighboring keyframes Vi, and
Vi+1. To account for temporal deformations, we introduce
a stiffness parameter o = (o1,...,0x-1), o € [0, 1], which
controls the degree of expansion and compression allowed in
the matching process. A hit in the database document D =
(P1,...,Pn) with respect to the query (V,d) is a sequence

(ni,...,nk) of increasing indices 1 < n; < ... <ng < N
so that the following two conditions are fulfilled:
Vke[l: K]: F(Pp,) € Vi (1)

1
Ok - dig < Npr1 —ne < — - di (2)
Ok

VkEe[l: K—1]:

Here, condition (1) implies the occurrences of the charac-
teristic keyframe poses and condition (2) ensures that the
distances of two consecutive keyframes are within the tol-
erated time bounds specified by o and the query distances.
Note that choosing ox = 1 implies that the keyframe dis-
tance of keyframes V), and Vi1 within a hit have to coin-
cide with the distances within the query (i.e., there is no
deformation tolerance). On the other hand, for o, = 0 (we

L(v2) H

}_, AV |
L(v1)— —
I I T I I T
T 1T 1T 1T 1T 1 1T 1T 1T 1T 1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 5: To compute the inverted keyframe list of
a keyframe V = {v1,v2}, corresponding inverted lists
are combined. The run-lengh-encoding step can re-
duce the total number of segments.

then set Ul = o0) there are no deformation bounds—the
keyframes within a hit simply have to appear in the order
as specified by the query.

The number of different hits may explode with decreas-
ing stiffness. For example, a small deviation in one of the
keyframe positions already defines, in mathematical terms,
a different hit. In applications, one is typically not inter-
ested in all hits but only in a set of representative hits.
We therefore soften the frame-based notion of a hit and as-
sume a segment-focused view. For each query keyframe V4,
k € [1: K], we define an inverted keyframe list

Ag = A(Vi) ==] L(v). (3)

veEV)

Again we sort the list in ascending order and look for max-
imal runs of consecutive indices (similar to run-length en-
coding), see Fig. 5. Each such run is defined by a segment
[s:t] with integers s < t, where s denotes the start frame
and t denotes the end frame of the segment. Then, one can
encode the inverted keyframe list Ay by a sequence

Ap = ([ska:tels -5 [Ske T])) (4)

of segments, where £;. denotes the number of segments. Note
that, because of the maximality of the runs, one has t; ;+1 <
Sk,i4+1 for i € [1: £ —1]. Now, a sequence M = (p1,...,pK)
with pr € [1 : i), k € [1 : K], is called a match in D
with respect to the query (V,d), if there exists a hit H =
(ni1,...,nk) with

Vk € [1 : K] DSk SNk S tkpy - (5)

In this case, we also say that the match M contains the hit
H. In other words, a match specifies a sequence of segments
(rather than a sequence of frames) containing at least one
hit. In the following, we think of p, being a pointer to the
segment [skp, : tkp,], see Fig. 6. The motivation of this
notion becomes clear in Sect. 3.3 when describing the main
algorithm.

Of course, a match may contain several hits. For a given
match M let R(M) = [s:t] be the segment (given by start
frame s and end frame t) of minimal length that comprises
all hits contained in M. R(M) will also be referred to as hit
relevant range of M. For example, assume that the match
M = (p1,p2) = (1,3) of Fig. 6 contains exactly the three
hits Hy = (3,7), H2 = (4,7), and Hz = (4, 8), then R(M) =
[s:t] =[3:8].

In the case that hit relevant ranges of several matches
overlap, we consider, as a further reduction, the union of
these ranges instead of the individual ranges. This is mo-
tivated by our strategy that in a first stage of a multistage
retrieval procedure (as a kind of preselection) it suffices to
locate coarse candidate excerpts of the database that contain
the keyframe query at least once. As an example, consider
the four ranges shown in Fig. 7. The ranges R(M;) = [1:7],

Figure 6: Two inverted keyframe lists A; and As.
Here, p1 points to the segment Aq(p1) = [2:4] and ps
to the segment As(p2) = [7:8].

R(Ms3)
R(M>)
R(My) R(My
et 1 1 1 1 et 1t 1 1 1 1 1

|
- rrr T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7: Ranges R(M;) (indicated by arrows) of
four different matches M;, ¢ € [1 : 4]. The ranges
R(My) = [1:7], R(M2) = [2:11] and R(Ms) = [4:10]
overlap, whereas R(M4) = [13:15] is disjoint to the
other ranges.

R(Mz) = [2:11], and R(M3) = [4 : 10] overlap, whereas
R(My4) = [13:15] is disjoint to the other ranges. The union
of the first three ranges defines the segment [1:11]. Note
that the union does not change, when considering only the
first two ranges leaving out the range R(Ms3). We then say
that Ms is an irrelevant match. Our keyframe-based search
algorithm to be presented next, may actually leave out some
matches, but for these one can prove that they are irrelevant
matches.

3.3 Main Algorithm

Before describing our main algorithm, we need some fur-
ther notation. Generalizing the above notion, a segment is
an element of the set

S:={[s:t] :s€ZU{—-o0},t € ZU{o0},s <t} U{0}. (6)

The intersection of two segments is defined as) in case one of
the segments is empty. Otherwise, for segments [s1:{1] € S
and [s2:t2] € S, we define

[s1:t1] N [s2:t2] := { (M)

Our keyframe-based search algorithm consists of a main
procedure called KEYFRAMEBASEDSEARCH, and a recursive
procedure called RECURSIVESEARCH. The input consists of
the inverted file index IZ, a keyframe query (V,d) with V =
(Vi,...,Vk) and d = (d1,...drx—1), as well as a stiffness
parameter o = (01...,0Kk-1). Recall from Sect. 3.1 that
the index IZ does not depend on the query. The algorithm
outputs unions of hit relevant ranges, which comprise all
matches except for possibly some irrelevant matches. These
hit ranges as well as the pointers (pi1,...,pr) are given
by global variables and are consistent in both procedures.
In the following, we illustrate the functioning of our algo-
rithm by means of an explicit example with three keyframes
V = (11, V2, V3) and frame distances d = (3,5). As stiffness
parameter we use o = (0.5,0.6), see also Fig. 8 (a).

The procedure KEYFRAMEBASEDSEARCH takes care of the
initialization and the first step. In Line 3, the inverted
keyframe lists A1, ..., Ax are computed, see (3). Recall that

0,if t1 < sgorts < s1
[max(s1, s2):min(t1, t2)], else.

Algorithm Keyframe-based Search

Input: keyframe query (V,d), comprising K keyframes
stiffness parameter o
inverted file index I 11«2
Output: hitRanges, the union of all hit relevant ranges
Global: (p1,...,pk), hitRanges
procedure KEYFRAMEBASEDSEARCH(V, d, o, 117?)
for Kk — 1 to K do
Ak: «— LJ'UEV,c L(U)
pp — 1
for p; — 1 to ¢; do
admissibleRange <« p1(A1(p1))
RECURSIVESEARCH(2, admissibleRange)

8: procedure RECURSIVESEARCH(k, [s:t])
9: while pp </l Atg,p, <sdopg «—pp+1
10: pointerIncremented <+ FALSE

11: intersection «— Ay (px) N [s:t]

12: while intersection # () do

13: if k = K then

14: hitRanges < hitRanges UR((p1,...,PK))
15: else

16: admissibleRange < py (intersection)

17: RECURSIVESEARCH(k + 1, admissibleRange)
18: Pk < P+ 1

19: pointerIncremented < TRUE

20: if pi, > £}, then intersection « ()

21: else intersection < Ag(pg) N [s:1]

22: if pointerIncremented = TRUE then p; «— pp — 1

A — H

1l 1 1 1
1101 1 T 1

\ 7 8 9 10 11 12 13 14 15

Pointers (p1, p2, p3):

Figure 8: (a): Keyframe query of our running ex-
ample. (b): Resulting keyframe lists Ai, A2, and
As. The pointers (p1,p2, p3) are initialized to point to
the first segments of the respective list. The range
11([3:4]) is indicated by the gray area.

each list Ag, k € [1 : K], consists of a sequence of) seg-
ments, see (4). In Line 4, the pointers (p1,...,px) are all
initialized to the value one, thus pointing to the first seg-
ments of the respective lists. For our running example, this
state is also illustrated by Fig. 8 (b). The three keyframe
lists are

Avo = ([3:4],16:7]),
A = ([1:2],[4:6],][9:10)), (8)
As = ([1:3],[5:8],[11:12], [14:15]).

Now, the for-loop in Line 5 runs over all segments A1 (p1),
p1 € [1 : £1]. Note that these segments exactly contain
the database frames that match to the first keyframe V;.
In other words, for each hit H = (ni,...,nk) one has
n1 € Ai(p1) for some p; € [1 : ¢1]. Line 6 specifies an
admissible search range p1(A1(p1)) for the second keyframe

Va. More generally, given a segment of candidate frames for
the k* keyframe, i computes the admissible range, which
is specified by dr and oy, for the next keyframe. Here, the
function px = poy 4, : S — S, k € [1: K — 1], is defined as

[S:t]H{ [s+[ok..dk];t+%.dkﬁ, o >0 o
[s:00], if o =0.

0—0

To illustrate this definition, we consider our running example
for the case p1 = 1. Then, A1(p1) = [3:4] and u1([3:4]) =
o, (13:4)) = pros 5(13:4]) = [3+ [05-3]:4 + | s - 8]] =
[34+2:44 6] = [5:10]. In other words, if the first keyframe
lies within the segment [3 : 4], then the second keyframe
must lie within the segment [5:10] to fulfill condition (2), see
Fig. 8 (b). Finally, Line 7 triggers the recursion starting with
the second keyframe and the admissable range 1 (A1(p1)).

The procedure RECURSIVESEARCH starts with fast for-
warding the current pointer py (Line 9) until the list end
is reached or until the current segment Ax(pr) = [Sk,p, :
tk,p,) does not lie entirely to the left of the admissible range
[s:t]. In our example, this is the case for po = 2, where
Aa(p2) = [4:6]. Line 11 calculates the intersection of the
current segment and the admissible range. The intersection
defines a segment of candidate frames that match keyframe
Vi and fulfill the distance condition (2) for at least one frame
of the previous segment Ax_1(pr—1). In our example, the in-
tersection is [4:6] N [5:10] = [5:6].

In the while-loop, starting with Line 12, all segments in
A that non-empty intersect with the admissible range [s:]
are considered. Here, the increment of the pointer px and
computation of the intersections is handeled between Line
18 and Line 21. In the case k = K, each such intersection
contributes to a hit (this directly follows from what was
said above). Therefore, in Line 14, the hit relevant range of
a resulting match is computed and the union is formed with
previously computed hit relevant ranges. An example for
this step will be discussed later. In the case k < K, a new
admissible range is computed (Line 16), and a recursion is
triggered with the (k 4+ 1)*® keyframe (Line 17).

We continue our example with po = 2 and the non-empty
intersection [5 : 6]. In Line 16, the admissible range [8 :
14] = p2([5:6]) is computed. Line 17 triggers another call of
RECURSIVESEARCH for the third keyframe. At this recursion
level, ps is incremented to ps = 2 (Line 9) and the intersec-
tion of the current segment As(ps) and the admissible range
is [5:8] N [8:14] = [8:8]. Now, the condition k = K is
fulfilled. The pointers (p1,p2,p3) = (1,2,2) define a match
and Line 14 extends the union of the hit relevant ranges
by R((1,2,2)) = [3:8]. At this point we note that the hit
relevant range [s:t] of a given match can be efficiently com-
puted. Here, the end frame of the intersection, calculated
in Line 11, yields ¢. To calculate s, one has to only con-
sider the K intersections that yield the found match during
the recursion. Then, Line 18 sets p3 = 3 and the resulting
intersection is [11:12] N [8:14] = [11:12] (Line 21). The
pointers (p1,p2,p3) = (1,2,3) define another match with
R((1,2,3)) = [3:12], which is merged with the previously
found hit relevant range by means of the union operator in
Line 14. After incrementing to ps = 4, Line 20 sets the in-
tersection to [14:14] and R((1,2,4)) = [3:14] is processed
in line Line 14. Now, incrementing the pointer p3 in Line 18
exceeds the list boundary, so the empty intersection, set in

[M__ [Hits [ROM)

(1,2,2)](3,5,8) [3:9]

(1,2,3)((3,5,11), (3,6,11), (3,6,12), (4,6,11), (4,6,12) [3:12

(1,2,4)((3,6,14), (4,6,14) [3:14

(1,3,4)((3,9,14), (3,9,15), (4,9,14), (4,9,15), (4,10,14), (4,10,15)|[3: 15
(6,9,14), (6,9,15), (6,10,14), (6,10,15)

(2:3.9)](7,9,14), (7,9,15), (7,10,14), (7,10,15) [6:15]

Table 1: Matches found by the proposed algorithm
for our running example, hits that are contained in
these matches, and their hit relevant ranges R(M).

Line 20, causes the while-loop to stop. In Line 22, the
pointer ps is decremented to the last value, where the inter-
section was non-empty. In our example, we then have p3 =
4. Note that the decrementation is necessary to find all hit
relevant ranges. Although the matches already comprise the
last segment of the third inverted keyframe list, the hit rele-
vant ranges of the matches found so far do not include frame
15. Decrementing ps and continuing the algorithm ensures
finding the correct hit relevant ranges. The recursion returns
to the point where RECURSIVESEARCH(3, (8,14)) was called
(Line 17). The pointer ps is incremented to p2 = 3 (Line 18)
and intersection = [9:10] N [5:10] = [9:10] is calculated
(Line 21). The while-loop is repeated and in Line 16 the ad-
missible range is set to pu2([9:10]) = [12:18]. The subsequent
recursive call (Line 17) leads to the match (1, 3,4). Finally,
the pointer p; is increased leading to another match (2, 3,4).

Table 1 shows all matches M found by our algorithm
along with all hits contained in the respective match and
the resulting hit relevant ranges R(M). Actually, there are
two matches, (1,3,3) and (2,3, 3), which are not found by
the algorithm. These matches, however, are irrelevant since
R((1,3,3)) = [3:12] and R((2,3,3)) = [6:12] are contained
in unions of hit relevant ranges of the other matches. Also
recall that the actual output of the algorithm consists of the
union of all R(M), thus avoiding an explosion of the output
size. In our example, this results in a single segment [3:15].

4. EXPERIMENTS

Our keyframe-based search algorithm works for general
time-dependent multimedia data and is designed for effi-
ciently handling temporal deformation between the query
and database keyframes. We will demonstrate the prac-
ticability of our concept by means of the motion retrieval
scenario, where one typically encounters such deformations
between semantically related motion sequences. In Sect. 4.2,
we describe some experiments showing that our algorithm is
often able to limit the search space from several hours to a
couple of minutes of motion capture data within a few mil-
liseconds (ms). The so reduced data set can then be ranked
and analyzed by more refined alignment techniques. We will
demonstrate such a two-stage retrieval strategy by using the
motion templates [8] for postprocessing the keyframe-based
matches, see Sect. 4.3. Here, we also report on some experi-
ments to demonstrate the effect of the stiffness parameter on
the final retrieval result. Information on the experimental
data set and the used keyframes can be found in Sect. 4.1.

4.1 Experimental Data Set and Keyframes
For our experiments, we used the HDMO05 database, which

consists of 210 minutes of motion data contained in 324 files.

Making up an average length of 39 seconds, each file con-

sists of a sequence of different actions. A detailed descrip-
tion of the motion files’ can be found in [10]. From the
HDMO05 database we cut out 1327 short motion clips, which
were organized into 57 motion classes, each containing 10
to 50 realizations executed by various actors. These motion
classes were used to generate keyframes in a semi-automatic
process. Here, using one half of the motion clips of each
class as training data, we computed the quantized motion
templates based on the 39 relational features as described
in [8]. These features were divided up into three feature sets:
One for the upper body, one lower body, and one mixed set.
We then selected 3 to 9 representative columns along with
their distances of each class motion template as keyframes.
For details of a similar procedure we refer to [8]. To avoid
false negatives (at the expense of having more false posi-
tives), we manually post-processed the keyframes by adding
or removing suitable feature vectors from the keyframes, see
Sect. 3.2.

At this point, we note that the focus of this paper is
not on the fully automated generation of keyframes, but
on the efficient and deformation-tolerant retrieval based on
a given set of suitable keyframes. In order to fully automate
the keyframe generation, one may use genetic algorithms to
learn keyframes from positive as well as negative training
motions, see [7]. Further keyframe selection methods based
on the analysis of joint attribute sequences are described by
Assa et al. [1]. Once suitable keyframes are generated for
a specific motion class, they can be used as queries to arbi-
trary databases. Furthermore, we concatenated the motion
class keyframes to generate longer and more complex queries
describing sequences of different actions, see Sect. 4.3.

To prove the applicability of our algorithm, we conducted
several experiments. The presented algorithm has been im-
plemented in a mixture of C' and Matlab®. All experiments

were executed on an AMD Athlon’ 64 X2 5000+ (using
only 1 core) with 3.5GB of RAM.

4.2 Data Reduction

As shown in Table 2, we used the generated keyframes
as an input for our algorithm to reduce the search space
for 57 query motion classes. For each query, K denotes the
number of keyframes. I, amounts to the number of seg-
ments in the inverted lists that have to be processed in the
query. To demonstrate the efficiency of our algorithm, t¥
shows the keyframe search time in milliseconds, and %(D)
shows the size of the reduced search space in percent with
regard to the database size. The time taken to reduce the
search space using our algorithm comprises on average only
12.5ms to reduce the search space to less than 5% of the en-
tire database. As the table shows, the search time depends
on the size of the processed inverted lists. Small searching
times, like 0.3ms for query ID1, are due to queries that con-
tain keyframes describing infrequent poses in the database.
For query ID1, characteristic poses for a cartwheel, which
occur only in few other motions in the database, were used
as keyframes. In contrast to this, using the 39 full body
motion features from [8], the class ID49 (turnRight) can not
be distinguished from the standing pose. Here, using a to-
tal of 9 keyframes, more than 60000 segments have to be
processed. Because of the unspecific keyframes, all standing

!The files have been made available at
http://wuw.mpi-inf.mpg.de/resources/HDMO5/.

[1D] query class [k S]] KJem] 7]
1 cartwheelLHandStart1Reps 3 75 0.3 1.2 234
2 claplReps 5139326 | 36.6 14.0 5094
3 clapAboveHead1Reps 5111959 | 11.8 1.7 328
4 depositFloorR 5118565 | 17.5 6.0 1063
5 depositHighR 7] 20860 [21.5 2.2 375
6 elbowToKneelRepsLelbowStart 3 265 0.5 0.6 78
7 elbowToKneelRepsRelbowStart 4 1631 2.0 0.6 63
8 grabFloorR 7120664 [19.3 2.5 344
9 grabHighR 6] 18560 | 17.9 2.9 656

10 hopBothLegslhops 5123808 | 22.0 1.0 125
11 | hopLLegihops 3| 4358 | 4.5 0.5 371
12 hopRLeglhops 4116965 | 15.8 1.1 109
13 | jogLeftCircledStepsRstart I 2115 | 2.8 14 203
14 | jogOnPlaceStartFloor2StepsRStart 5] 28583 | 27.6 30.4 8766
15 | jogRightCircledStepsRstart 3| 1451 1.8 13 188
16 umpDown 4 5726 5.6 1.2 188
17 umpingJackIReps) 3 780 1.5 0.9 109
18 ickLFrontl1Reps 5130918 | 26.9 2.0 250
19 kickLSideIReps 4 1516 2.0 1.1 141
20 kickRFrontlReps 5 4302 5.3 1.1 188
21 kickRSidelReps 4111610 | 10.5 1.2 172
22 lieDownFloor 3 1784 2.2 2.7 813
23 punchLFront1Reps 5111214]| 12.5 1.4 234
24 punchLSidelReps 6 | 29549 | 29.8 2.6 375
25 punchRFront1Reps 6] 16880 | 19.3 2.5 406
26 punchRSidelReps 6 | 45343 | 42.8 1.7 266
27 | rotateArmsBothBackwardIReps 3 837 1.0 1.5 172
28 rotateArmsBothForward1Reps 6 6009 6.5 0.7 78
29 | rotateArmsLBackwardIReps 4 6021 6.0 0.6 78
30 rotateArmsLForwardIReps 3 508 0.8 0.7 94
31 rotateArmsRBackward1Reps 3 1618 2.1 0.6 63
32 rotateArmsRForward1Reps 3 298 0.6 0.7 78
33 | runOnPlaceStartFloor2StepsRStart 5] 24522 | 22.9 0.4 31
34 shuffle2StepsRStart 8131395 | 31.6 2.0 359
35 sitDownChair 6 2793 3.8 2.4 422
36 sitDownFloor 5 3911 4.5 4.7 1109
37 sitDownKneelTieShoes 3 372 0.7 2.2 609
38 sitDownTable 6] 18393 | 19.9 29.3 | 16766
39 skierlRepsLstart 5 4157 5.2 0.8 78
40 sneak2StepsLStart 4 4935 5.6 1.5 250
41 sneak2StepsRStart 6] 18126 | 18.3 2.0 328
42 squatlReps 4 848 1.2 1.0 141
43 staircaseDown3Rstart 5 9644 | 10.5 6.5 1469
44 staircaseUp3Rstart 5 2860 4.0 1.7 281
45 standUpLieFloor 3 463 0.7 1.7 375
46 standUpSitFloor 6 7969 7.9 3.6 672
47 throwBasketball 5 5624 6.9 3.0 563
48 turnLeft 7] 34548 [33.8 10.6 4063
49 turnRight 9163819 | 61.8 20.1 9844
50 walk2StepsLstart 6] 12956 | 14.8 10.5 4609
51 walk2StepsRstart 5118547 | 18.4 13.2 5875
52 walkBackwards2StepsRstart 5 8641 9.8 1.1 141
53 walkSidewaysLeft2Steps 3 312 0.5 0.9 141
54 walkLeftCircledStepsRstart 6] 11447 | 13.8 13.5 3953
55 walkOnPlace2StepsLStart 5114792 |1 16.0 35.9 | 17422
56 walkRightCircledStepsRstart 7110196 [14.1 11.5 2719
57 walkRightCrossFront2Steps 3 6545 5.7 4.0 875
Iz 4.8 112314 [12.5 4.8 1657
sequences of actions
58 | ID 6 + ID 42 7 1114 1.8 1.2 281
59 [ID 13 + ID 15 7 3566 5.1 1.3 438
60 | ID 19 + ID 23, ID 26 16 | 63739 | 72.7 1.8 797
61 | ID 22 + ID 22 6 3568 4.2 2.1 1656
62 | ID 27 + ID 28 10 | 12030 | 14.4 1.0 219
63 [ID 39 + ID 6 8 4423 5.8 0.8 234
64 | ID 44 + ID 43 10 | 12505 | 16.7 1.0 281
65 | ID 52 + ID 57 8115186 | 17.5 1.7 594
66 | ID 55 + ID 33 10 | 39314 | 42.5 1.0 391
C o] [0 1[17272[20.1] 1.8] 543]

Table 2: Retrieval results on the HDMO05 database
(3.5 hours of mocap data). K: Number of keyframes
used in the query. > l,: Number of segments in
the processed inverted lists. t¥: Keyframe search
time in ms. %(D): Size of the reduced search space
in percent (w.r.t. the size of HDMO05). t*: Time
for motion template retrieval on the reduced search
space in ms.

poses in the database are contained in the reduced search
space. It is important to notice that altough the number of
keyframes in this case is rather high, the search time does
not explode.

Having a look at the percental size of the reduced search
space, for most of the classes, sizes of less than 3% can be
achieved. For many classes, like ID6, even better reducing
rates are reached, returning less than 1% of the HDMO05
database. Unlike these results, some queries do not reduce
the search space well. As already mentioned, the keyframes
for query ID49 are rather unspecific. As a result, for this
query more than 20% of the database is returned. Similarly,

20 40 60 80 100 120 140

Figure 9: A combination of queries can be used to
search for a sequence of motion classes. The feature
labels correspond to [8].

for queries ID50 to ID57, some of the reduction rates are
not so good due to the large number of walking motions in
HDMO05 and due to some confusion between various walking
styles.

As a further application, the keyframes can be combined
to describe a query for an entire sequence of various actions.
As an example, the conatenation of the queries elbow-to-
knee and squat is shown in Fig. 9 (a). By setting the distance
ds and the corresponding stiffness parameter o3 between the
last keyframe of the first motion class and the first keyframe
of the second motion class, one can control the time that
may elapse between the two actions. A similar approach
to scene description has been sketched in [9]. To demon-
strate the applicability of this scenario, we have created nine
combined queries. The retrieval results are documented in
Tab. 2, Lines 58 to 66. Although more keyframes are used,
the keyframe search time does not explode. For example,
in query 60, comprising 16 keyframes, a total of 63739 seg-
ments have been processed in 72.7ms. In comparison to
query ID49, which exhibits a similar number of processed
segments, but a smaller number of keyframes, only a small
increase in the search time can be observed. Additionaly,
for all combined queries the size of the reduced search space
is very small. Generally, the more keyframes are used in a
query, the less data fits to these keyframes.

4.3 Retrieval Quality

To show the effectiveness of our algorithm in a two-stage
retrieval system, we apply motion template retrieval [8] as
a ranking of the reduced search space. For queries ID1 to
ID57, class motion templates have been used. For queries
ID58 to ID66, the class motion templates have been com-
bined as indicated in Fig. 9 (b). In this example, the elbow-
to-knee motion template and the squat motion template
have been concatenated with a block of 0.5-values, assigning
zero cost for this clipping during the ranking process. The
output of this postprocessing step is a set of ranked motion
clips contained in the reduced search space.

In Table 2, column ¢, depicts the time in ms used for
the ranking step. Using a variant of DTW, the running
time depends linearly on the product of the size of the re-
duced search space and the size of the motion template. In
practice, for most of the queries this step takes less than a
second. The speed-up with regard to motion template re-
trieval on the whole database is equal to the reduction rate
of the keyframe based search. To demonstrate the quality
of the results, precision-recall diagrams for some queries are
shown in Fig. 10. For these queries, 15 to 75 relevant doc-
uments are contained in the HDMO05 database. The recall
is very high, which means that the reduced search space,

1 1 ™
0.5 0.5]| 0.5 ‘:“:' 0.5 "I 0.5 ‘
0 ID 16 0 1D 27 0 ID 36 0 ID 44 0 ID 45
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
1 1 1 1 1
L}
0.5 0.5 | 0.5 i 0.5 0.5 ~1|
0 ID 1 0 ID 6 0 ID 10 0 ID 17 0 ID 39
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Figure 10: Precision-recall diagrams of hits obtained
by queries with the indicated IDs (see Tab. 2).

1 1 1 1 i 1
(a)o.s g 0.5 0.5 5 0.5
0 ID 16 0 1D 27 0 ID 36 ID 44 0 ID 45
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
1 1 1 1 1
[
0.5 7"—.'«' 0.5 _ »i 0.5 _ i 0.5 _ 0.5 _
0 o =0.0 0 o =0.3 0 o =0.6 0 o =10.8 0 o =1.0
b) 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
1 1 .] 1 .] 1] 1
0.5 _ J 0.5 _ 0.5 _ 0.5 _ 0.5 _
Ocr:(). 00:0.3 00:0.6 00:0.8 06:1,0
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Figure 11: Stiffness experiments. (a): Queries of
the first row of Fig. 10 were modified to ¢ = 1.0.
(b): Precision-recall diagram for query ID59 (top
row), and ID60 (bottom row), whereas the manually
optimized stiffness values have been modified to the
specified values.

obtained by our algorithm with stiffness values around 0.6,
still contains most of the relevant documents. Unlike the
other queries, on query ID36 (“sit down on floor”) false pos-
itives occur early in the hit list. Most of the false positives
are motions of the class “lie down on floor”;, which starts
in most cases in the HDMO05 database with a “sit down on
floor”-phase.

To quantify the influence of the stiffness parameter, Fig. 11
shows the results for queries where the stiffness parameter
has been set to the value 1.0, thus prohibiting any time de-
formation between keyframes. In comparison to the corre-
sponding diagrams in the first row of Fig. 10, many relevant
documents have been missed due to the denial of temporal
deformations.

A further experiment shows the effect of varying the stiff-
ness parameter. Fig. 11 (b), top row, shows precision-recall
diagrams for query ID59 with modified stiffness values. Some
false positives occur when setting o = 0, which are elemi-
nated when using higher stiffness values. For o = 0.6, the
precision-recall diagram is the same as for a manually opti-
mized stiffness values. A further raise of the stiffness results
in a loss of some relevant documents. A similar behavior
is demonstrated for query ID60 in Fig. 11 (b), bottom row.
Again, no difference in the & = 0.6-diagram can be noticed
in comparison to the manually optimized query stiffness val-
ues. However, the sizes of the reduced search spaces and so
the times for the ranking steps are smaller for queries ID59
and ID60 than for the o = 0.6-modified queries.

5. CONCLUSIONS

In this paper, we have introduced a novel algorithm for
keyframe-based multimedia retrieval, which is able to dras-
tically cut down the search space. In contrast to previous
approaches, our index-based algorithm can cope with signif-
icant temporal deformations without resorting to computa-
tionally expensive techniques such as dynamic time warping.
To prove its practicability, we have applied our algorithm

within a two-stage motion retrieval scenario. As it turned
out, the temporal flexibility introduced by our stiffness con-
cept is necessary to avoid a large number of false negatives
in the preselection step. Because of its efficiency, our al-
gorithm may be applied iteratively as a subroutine in clas-
sification and learning scenarios. For example, we plan to
apply such an approach for automatically learning character-
istic keyframes using supervised training algorithms based
on positive and negative motion examples.

6. ACKNOWLEDGMENTS

The research was funded by the German Research Foun-
dation (DFG CL 64/5-1) and the Cluster of Excellence on
Multimodal Computing and Interaction.

7. REFERENCES

[1] J. Assa, Y. Caspi, and D. Cohen-Or. Action synopsis:
Pose selection and illustration. ACM Trans. Graph.,
24(3):667-676, 2005.

[2] CMU. Carnegie-Mellon Mocap Database.
http://mocap.cs.cmu. edu, 2003.

[3] K. Forbes and E. Fiume. An efficient search algorithm
for motion data using weighted PCA. In Proc. 2005
ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA 2005), pages 67-76. ACM
Press, 2005.

[4] E. J. Keogh, T. Palpanas, V. B. Zordan,

D. Gunopulos, and M. Cardle. Indexing large
human-motion databases. In Proc. 30th VLDB Conf.,
Toronto, pages 780-791, 2004.

[5] L. Kovar and M. Gleicher. Automated extraction and
parameterization of motions in large data sets. ACM
Trans. Graph., 23(3):559-568, 2004.

[6] M. Miiller. Information Retrieval for Music and
Motion. Springer, 2007.

[7] M. Miiller, B. Demuth, and B. Rosenhahn. An
evolutionary approach for learning motion class
patterns. In Proc. DAGM, LNCS 5096. Springer, 2008.

[8] M. Miiller and T. Réder. Motion templates for
automatic classification and retrieval of motion
capture data. In Proc. of the 2006 ACM
SIGGRAPH /Eurographics Symposium on Computer
Animation, pages 137-146. ACM Press, 2006.

[9] M. Miiller, T. Réder, and M. Clausen. Efficient
content-based retrieval of motion capture data. ACM
Trans. Graph., 24(3):677-685, 2005.

[10] M. Miiller, T. Réder, M. Clausen, B. Eberhardt,

B. Kriiger, and A. Weber. Documentation: Mocap
Database HDMO05. Computer Graphics Technical
Report CG-2007-2, Universitit Bonn, June 2007.
http://www.mpi-inf.mpg.de/resources/HDMO5/

[11] B. Rosenhahn, R. Klette, and D. Metaxas. Human
Motion Understanding, Modeling, Capture, and
Animation. Springer, 2007.

[12] 1. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes. Morgan Kaufmann Publishers, 1999.

[13] M.-Y. Wu, S. Chao, S. Yang, and H. Lin.
Content-based retrieval for human motion data. In
16th IPPR Conf. on Computer Vision, Graphics and
Image Processing, pages 605-612, 2003.

