Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A Simple Framework for Natural Animation of Digitized Models

MPG-Autoren
/persons/resource/persons43977

de Aguiar,  Edilson
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45789

Zayer,  Rhaleb
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45610

Theobalt,  Christian       
Computer Graphics, MPI for Informatics, Max Planck Society;
Programming Logics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44965

Magnor,  Marcus
Graphics - Optics - Vision, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

de Aguiar, E., Zayer, R., Theobalt, C., Magnor, M., & Seidel, H.-P. (2007). A Simple Framework for Natural Animation of Digitized Models. In SIBGRAPI'07 - XX Brazilian Symposium on Computer Graphics and Image Processing (pp. 3-10). Piscataway, NJ, USA: IEEE.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-1E3B-C
Zusammenfassung
We present a versatile, fast and simple framework to generate animations of
scanned human characters from input optical motion capture data. Our method is
purely meshbased and requires only a minimum of manual interaction. The only
manual step needed to create moving virtual people is the placement of a sparse
set of correspondences between the input data and the mesh to be animated. The
proposed algorithm implicitly generates realistic body deformations, and can
easily transfer motions between human
subjects of completely different shape and proportions. We feature a working
prototype system that demonstrates that our method can generate convincing
lifelike character animations directly from optical motion capture data.