Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Functional Evaluation of Domain–domain Interactions and Human Protein Interaction Networks

MPG-Autoren
/persons/resource/persons45392

Schlicker,  Andreas
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44662

Huthmacher,  Carola
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

Ramírez,  Fidel
Max Planck Society;

/persons/resource/persons44907

Lengauer,  Thomas
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

/persons/resource/persons43993

Albrecht,  Mario
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schlicker, A., Huthmacher, C., Ramírez, F., Lengauer, T., & Albrecht, M. (2007). Functional Evaluation of Domain–domain Interactions and Human Protein Interaction Networks. Bioinformatics, 23(7), 859-865. doi:10.1093/bioinformatics/btm012.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-1F4B-2
Zusammenfassung
Motivation: Large amounts of protein and domain interaction data are being
produced by experimental high-throughput techniques and computational
approaches. To gain insight into the value of the provided data, we used our
new similarity measure based on the Gene Ontology (GO) to evaluate the
molecular functions and biological processes of interacting proteins or
domains. The applied measure particularly addresses the frequent annotation of
proteins or domains with multiple GO terms.
Results: Using our similarity measure, we compare predicted domain–domain and
human protein–protein interactions with experimentally derived interactions.
The results show that our similarity measure is of significant benefit in
quality assessment and confidence ranking of domain and protein networks. We
also derive useful confidence score thresholds for dividing domain interaction
predictions into subsets of low and high confidence.